JP3666055B2 - X-ray generator and X-ray exposure apparatus - Google Patents

X-ray generator and X-ray exposure apparatus Download PDF

Info

Publication number
JP3666055B2
JP3666055B2 JP12760095A JP12760095A JP3666055B2 JP 3666055 B2 JP3666055 B2 JP 3666055B2 JP 12760095 A JP12760095 A JP 12760095A JP 12760095 A JP12760095 A JP 12760095A JP 3666055 B2 JP3666055 B2 JP 3666055B2
Authority
JP
Japan
Prior art keywords
ray
scattered
scattered particles
scattering particle
ray generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12760095A
Other languages
Japanese (ja)
Other versions
JPH08321395A (en
Inventor
典明 神高
洋行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP12760095A priority Critical patent/JP3666055B2/en
Publication of JPH08321395A publication Critical patent/JPH08321395A/en
Application granted granted Critical
Publication of JP3666055B2 publication Critical patent/JP3666055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、X線露光装置、X線顕微鏡、X線分析装置などのX線装置に用いられるX線発生装置に関するものである。
【0002】
【従来の技術】
レーザー光(励起エネルギービームの一例)を減圧された真空容器内に置かれた標的部材に集光して照射すると、標的部材は急速にプラズマ化し、このプラズマから非常に輝度の高いX線が輻射(放出)される(X線を発生する)ことが知られている(例えば、このようなX線発生源はLPX:Laser-Plasma X-ray source と呼ばれる)。
【0003】
X線の発生と共に、前記プラズマからは高速の電子やイオン等の飛散粒子が、また前記標的部材からは部材材料の飛散粒子(例えば、ガス化した材料、イオン化した材料、材料小片など)が放出されて真空容器内に飛散する(以下、これらをまとめて飛散粒子と呼ぶ)。
これらの飛散粒子のうち、比較的形状の大きなものをデブリ(debris)と呼んでいる。このような飛散粒子(特に、デブリ)は、清浄光学面(例えば、X線光学素子面)に衝突して、これらを破損したり、或いは付着、堆積して機能や特性を低下させたり変化させるので、大きな問題であった。
【0004】
この問題点を解決するために従来の方法では、X線源と清浄光学面との間に、X線透過性の高い物質(例えば、Be)からなる薄膜(以下、飛散粒子阻止用薄膜またはX線取り出しフィルターと呼ぶ)を設置して遮蔽することにより、飛散粒子が清浄光学面に到達しないようにしていた。
その他の方法としては、真空容器内にX線に対する透過率の高い低原子番号のガス(例えば、Heガス)を充填することにより、或いは該ガスのガス流を形成することにより、飛散粒子にガス分子を衝突させて飛散粒子の阻止を図っていた(特開昭63-292553 参照)。
【0005】
【発明が解決しようとする課題】
飛散粒子阻止用薄膜の設置により、清浄光学面への飛散粒子の付着、堆積は防げるが、そのかわり、飛散粒子阻止用薄膜上に飛散粒子が付着、堆積するので、飛散粒子阻止用薄膜のX線透過率が次第に低下する(X線取り出し方向における使用X線強度が低下する)という問題点がある。
【0006】
また、真空容器内にX線に対する透過率の高い低原子番号のガス(バッファガス)を充填することにより、或いは該ガスのガス流を形成することにより、飛散粒子の阻止を図る方法では、必ずしも飛散粒子を有効に阻止できるわけではないという問題点がある。
例えば、標的部材がタンタルである場合に、十分に排気された(圧力10Pa以下)真空容器内では、飛散粒子は標的部材表面の法線方向に多く分布する。そして、真空容器内に飛散粒子阻止用のバッファガスを導入すると、飛散粒子が多く放出される方向については、ガス分子による散乱のために飛散粒子は減少するが、散乱した飛散粒子はガス導入前には飛散粒子の放出が少なかった方向にも飛散する。
【0007】
そのため、飛散粒子を阻止するためにバッファガスを使用すると、飛散粒子の放出方向の分布が均一化される。このことは、飛散粒子の放出が少ない方向については、飛散粒子の放出が多い方向と比較してガス導入の効果が小さいか、むしろ逆効果となることを示している。
X線の取り出しは、飛散粒子の放出が少ない方向において行うのが一般的であり、飛散粒子の放出が少ないX線の取り出し方向について、ガス導入の効果が小さいか、むしろ逆効果となることは大きな問題点である。
【0008】
特に、プラズマ近傍に飛散粒子の放出量の方向分布を制御する飛散粒子制御部材であり、前記X線を取り出す方向への飛散粒子の放出量を低減させる飛散粒子制御部材を設ける場合に、X線の取り出し方向について、ガス導入の効果が小さいか、むしろ逆効果となることは大きな問題点である。
本発明は、かかる問題点に鑑みてなされたもので、飛散粒子を阻止するためにバッファガスを用いるX線発生装置であり、X線の取り出し方向について、不都合な飛散粒子の付着、堆積を低減して、その結果、長時間安定して使用できるX線発生装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
そのため、本発明は「減圧された真空容器内の標的部材に励起エネルギービームを照射してプラズマを形成させ、該プラズマからX線を取り出すX線発生装置であり、前記標的部材及び/又は前記プラズマから放出される飛散粒子を阻止するためにバッファガスを用いるX線発生装置において、前記X線を取り出す範囲に相当する立体角領域に隣接または近接する飛散粒子阻止部材を設けたことを特徴とするX線発生装置」を提供する。
【0010】
また、本発明は「減圧された真空容器内の標的部材に励起エネルギービームを照射してプラズマを形成させ、該プラズマからX線を取り出すX線発生装置であり、前記標的部材及び/又は前記プラズマから放出される飛散粒子を阻止するためにバッファガスを用いるX線発生装置において、前記X線を取り出す範囲に相当する立体角領域内に飛散粒子阻止部材を設けたことを特徴とするX線発生装置」を提供する。
【0011】
また、本発明は「前記標的部材及び/又は前記プラズマから放出される飛散粒子の放出量の方向分布を制御する飛散粒子制御部材であり、前記X線を取り出す方向への飛散粒子の放出量を低減させる飛散粒子制御部材をさらに設けたことを特徴とするX線発生装置」を提供する。
【0012】
また、本発明は「前記飛散粒子阻止部材を冷却する冷却手段をさらに設けたことを特徴とするX線発生装置」を提供する。
【0013】
【作用】
減圧された真空容器内の標的部材に励起エネルギービームを照射してプラズマを形成させ、該プラズマからX線を取り出すX線発生装置であり、前記標的部材及び/又は前記プラズマから放出される飛散粒子を阻止するためにバッファガスを用いるX線発生装置に、X線を取り出す範囲に相当する立体角領域の外側(隣接または近接する領域)または内側に位置する飛散粒子阻止部材を設けると、X線の取り出し方向について、不都合な飛散粒子の付着、堆積(飛散粒子阻止用薄膜や清浄光学面などへの付着、堆積)を低減できるので、その結果、長時間安定してX線発生装置を使用できる(請求項1、2)。
【0014】
図1(a)のように、プラズマ101から開口102を見込んだ立体角内の領域(X線を取り出す範囲に相当する立体角領域)103を考える。図1(b)はプラズマ及び開口を含む断面を示す。
十分な真空状態では、飛散粒子は直線的に運動し、立体角領域103(105)内に出射した飛散粒子110、111は、領域103(105)内のみを通って開口102に到達する。
【0015】
しかし、真空容器内にバッファガスを導入すると、飛散粒子はガス分子と衝突して散乱されるので、最初は領域103(105)の外に出射した飛散粒子の中には、散乱の結果、領域103(105)内に進入してくる粒子112が、また一度領域103(105)の外に出た飛散粒子の中には、再び領域103(105)内に戻る粒子113が、それぞれ存在する。
【0016】
このことは、開口102に到達する飛散粒子は、発生してから到達するまで、終始、領域103(105)内を通過するとは限らないことを示す。これに対して、プラズマから発生したX線の光路は直線であり、開口102に到達するX線の光は常に領域103(105)内にある。
ここで、例えば図2に示すように、開孔付きの部材201(飛散粒子阻止部材の一例)を設けた場合を考える。部材の開孔は、立体角領域103(105)の切断面に等しい。
【0017】
部材201を設けても開口102に達するX線には、なんら影響がなく、取り出されるX線の量は変化しない。これに対して、飛散粒子のうち、領域103(105)内に進入しようとする前記粒子112、113は、部材201により阻止されるので、部材201を設けないときに比べて、開口102に達する飛散粒子は減少する。
【0018】
このような効果をもたらす飛散粒子阻止部材は、領域103(105)の外に出た飛散粒子が再度領域103(105)内に進入するのを阻止できる形状を有すればよく、部材201のような開孔付きの板状の物に限定されるわけではない。
また、厳密には取り出すX線光量が低下することになるが、X線を取り出す範囲に相当する立体角領域内に飛散粒子阻止部材を設けても、前記の効果が得られる。例えば、図8に示すように、立体角領域内にあるX線の光路上に非常に薄い板を光路に沿って設ける場合である。
【0019】
このように、減圧された真空容器内の標的部材に励起エネルギービームを照射してプラズマを形成させ、該プラズマからX線を取り出すX線発生装置であり、前記標的部材及び/又は前記プラズマから放出される飛散粒子を阻止するためにバッファガスを用いるX線発生装置に、X線を取り出す範囲に相当する立体角領域の外側(隣接または近接する領域)または内側に位置する飛散粒子阻止部材を設けると、X線の取り出し方向について、不都合な飛散粒子の付着、堆積(飛散粒子阻止用薄膜や清浄光学面などへの付着、堆積)を低減できるので、その結果、長時間安定してX線発生装置を使用できる(請求項1、2)。
【0020】
また、飛散粒子の放出量の方向分布を制御する飛散粒子制御部材であり、X線を取り出す方向への飛散粒子の放出量を低減させる飛散粒子制御部材をさらに設けると、X線の取り出し方向における飛散粒子阻止効果が増大するので好ましい。かかる飛散粒子制御部材により、X線取り出し方向への飛散粒子放出量を低減させるためには、例えば、飛散粒子制御部材に以下のような形状部分を設けるとよい。
【0021】
かかる形状部分としては、例えば、前記飛散粒子制御部材に設けられた貫通孔であって、0.1 〜3mmの最小開口径部と該最小開口径部に対する開き角が60〜140度である最大開口径部を有する貫通孔が好ましい。
前記最小開口径部を前記励起エネルギービームの前記標的部材上への集光部分に隣接又は近接させ、前記励起エネルギービームが前記貫通孔を通って前記集光部分に入射する角度を0〜60度に、また該集光部分に対する前記X線の取り出し角を30〜60度にそれぞれ設定すると、取り出し方向へのX線強度を減少させることなく、取り出し方向への不都合な飛散粒子の付着、堆積を著しく低減できるので好ましい。
【0022】
X線を取り出す方向への飛散粒子放出量を低減させる形状部分は、飛散粒子制御部材に設けた前記貫通孔に限らず、例えば、飛散粒子制御部材が複数の部材により構成されている場合には、該複数の部材のうちの少なくとも二つの部材の間に形成されてなるテーパ状の間隙であって、0.1 〜3mmの最小間隙部と、該最小間隙部に対する開き角が60〜140度である最大間隙部を有するテーパ状の間隙でもよい。
【0023】
かかるテーパ状の間隙の最小間隙部を励起エネルギービームの標的部材上への集光部分に隣接又は近接させ、かつ、励起エネルギービームがテーパ状の間隙を通って前記集光部分に入射する角度を0〜60度に、また該集光部分に対するX線の取り出し角を30〜60度にそれぞれ設定すると、取り出し方向へのX線強度を低減することなく、不都合な飛散粒子の付着、堆積を低減することができるので好ましい。
【0024】
本発明にかかる飛散粒子制御部材に用いる材料としては、例えば、タンタル、タングステン、ダイヤモンド、セラミックなどの高融点、又は高硬度の材料が好ましい。これは、飛散粒子制御部材がプラズマに非常に近接した位置に配置されるので、プラズマから飛来するイオンや電子の該部材表面への衝突による該部材材料の放出を防止するためである。即ち、該部材材料の放出があると飛散粒子と同様に不都合な付着、堆積が生じるので、これを防止するのである。
【0025】
前記飛散粒子阻止部材を冷却する冷却手段をさらに設けると、該部材が飛散粒子を吸着しやすくなって、阻止効果が増大するので好ましい。或いは、飛散粒子を吸着しやすいように、飛散粒子阻止部材の表面を加工(例えば、つや消し加工)することも好ましい。以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0026】
【実施例】
図3に本実施例のX線発生装置の概略構成図を示す。また、図4は飛散粒子放出量の方向分布を制御する飛散粒子制御部材であり、X線を取り出す方向への飛散粒子の放出量を低減させる飛散粒子制御部材の一例であるテープ押さえアパーチャー401の拡大断面図である。
【0027】
飛散粒子の放出量の角度分布は、このアパーチャー401により制御されて、タンタルテープ表面の法線方向に集中した分布となる。アパーチャー401がある場合とない場合の飛散粒子放出量の角度分布を図5に示す。
YAGレーザー光(励起エネルギービームの一例)311が集光レンズ312によりTaターゲット(標的部材の一例)303の表面に集光される。Taターゲット303は、厚さ15μmのテープ形状であり、テープ上の同位置にレーザー光が集光されることがないように、プラズマ発生時には、駆動手段(例えば、モーター、不図示)によりリール304を回転させてTaテープを巻き取りながら、レーザー集光位置を変化させている。
【0028】
Taテープの移動速度は、一つのプラズマが生成されて次のプラズマを生成するレーザー光が入射するまでに、プラズマの発生によりTaテープに生じる孔の直径分以上に移動する速度である。
発生したプラズマから放射(輻射)されるX線は、X線取り出しフィルタ(飛散粒子阻止用薄膜)321を通過してX線光学系に至る。
【0029】
本実施例では、飛散粒子阻止部材330は図3に示すように、フィルタ321に入射するX線の光路を遮らないような開孔を有する3枚の板331、332、333を有し、各板は所定の距離にてそれぞれ隔離されている。
また、真空容器内には、バッファガスとしてヘリウムが導入されており、またその圧力を一定に保持するように、ヘリウムの導入及び排気を行っている。
【0030】
Taターゲット303は、非常に高い融点を有するので、発生する飛散粒子はイオン、原子レベルの大きさである。飛散粒子放出量の角度分布は、図5に示す通りであり、本実施例では、X線取り出し方向における飛散粒子放出量が少なくなるように、X線の取り出し角度を45°としている。
プラズマから板331までの距離は短いので、飛散粒子はバッファガスの影響を殆ど受けることなく板331に到達する。即ち、最初にX線取り出し方向に飛びだした飛散粒子以外は、板331により殆ど阻止される。
【0031】
図5に示すように、飛散粒子の放出はタンタルテープ表面の法線方向に集中するが、この方向の飛散粒子も板331により阻止されるので、バッファガスにより散乱しても、フィルタ321に到達することはない。
また、板331の開孔を通過した飛散粒子は、バッファガスにより散乱しながら進むので、その軌跡は直線ではなくなり、フィルタ321に向かうにつれて、最初の進行方向からずれていく。
【0032】
そのため、板331の開孔を通過した飛散粒子でも、板332または板333の開孔を通過できないものがでてくる。従って、最終的にフィルタ321に到達する飛散粒子は、X線を取り出す範囲に相当する立体角領域において最初に発生する飛散粒子よりもかなり減少する。
飛散粒子阻止部材330の形状は、図3の例に限定されるものではなく、X線取り出し方向に放射されたX線の光路を遮ることなく、飛散粒子を効率よく阻止できるものであればよい。
【0033】
例えば、図6に示すような中空の円錐台形状の飛散粒子阻止部材341としてもよい。或いは、飛散粒子阻止部材の微妙な位置合わせが困難である場合には、図7に示すように、1枚の板からなる飛散粒子阻止部材351としてもよく、この場合でも、飛散粒子が多い方向から散乱によってX線取り出し方向に向かってくる飛散粒子を飛散粒子阻止部材351により有効に阻止できる。
【0034】
また、X線を取り出す範囲に相当する立体角領域内にあるX線の光路を多少は遮ることになるが、図8に示すように、X線光路上に非常に薄い複数の板からなる飛散粒子阻止部材811を光路に沿って設置することも有効である。
この場合、飛散粒子が立体角領域から出ないときでも、バッファガスによりその進行方向が少しでも変われば、飛散粒子阻止部材811に吸着される。
【0035】
図8に示す飛散粒子阻止部材811を用いた場合に、クリティカル照明を行うと、照明ムラが発生するが、ケーラー照明を行うときやX線の総光量のみを対象とするとき(例えば、分析機器など)には、ごく僅かにX線量が低下するだけであり、実用上は問題がない。
飛散粒子阻止部材330、341、351、811は、飛散粒子を吸着しやすいように、表面を加工(例えば、つや消し加工)することが好ましい。また、飛散粒子阻止部材330、341、351、811を冷却する冷却手段をさらに設けると、該部材が飛散粒子を吸着しやすくなって、阻止効果が増大するので好ましい。
【0036】
なお、標的部材の形状はテープ状に限定されるものではなく、例えば、板状やバルク状であってもよい。また、標的部材の材料もTaに限定されるものではなく、Al,Sn,Zn,Pbなどでもよい。
【0037】
【発明の効果】
本発明のX線発生装置によれば、X線の取り出し方向について、不都合な飛散粒子の付着、堆積(飛散粒子阻止用薄膜や清浄光学面などへの付着、堆積)を低減できるので、その結果、長時間安定してX線発生装置を使用できる。
【図面の簡単な説明】
【図1】は、プラズマ101から開口102を見込んだ立体角内の領域(X線を取り出す範囲に相当する立体角領域)103を示す斜視図(a)と概略断面図(b)である。
【図2】は、飛散粒子阻止部材201を設けた場合における、プラズマ101から開口102を見込んだ立体角内の領域(X線を取り出す範囲に相当する立体角領域)105を示す斜視図(a)と概略断面図(b)である。
【図3】は、実施例のX線発生装置の概略構成図である。
【図4】は、飛散粒子制御部材の一例であるアパーチャー401の概略断面図である。
【図5】は、飛散粒子量の角度分布を示すデータ図である。
【図6】は、中空の円錐台形状の飛散粒子阻止部材341を用いたときの実施例のX線発生装置の概略構成図である。
【図7】は、1枚の板からなる飛散粒子阻止部材351を用いたときの実施例のX線発生装置の概略構成図である。
【図8】は、X線光路上に設けた、非常に薄い複数の板からなる飛散粒子阻止部材811の概略断面図である。
【主要部分の符号の説明】
101・・・プラズマ
102・・・開口
103,105・・・取り出すX線が通過する領域(立体角領域)
110,111,112,113・・・飛散粒子の軌跡
201・・・飛散粒子阻止部材
303・・・標的部材
304・・・リール
311・・・YAGレーザー光(励起エネルギービームの一例)
312・・・集光レンズ
321・・・X線取り出しフィルター(飛散粒子阻止用薄膜)
330,341,351・・・飛散粒子阻止部材
331,332,333・・・開孔を有する板材(飛散粒子阻止部材330を構成する部材)
401・・・テープ押さえアパーチャー(飛散粒子制御部材の一例)
801・・・プラズマ
802・・・X線取り出しフィルター(飛散粒子阻止用薄膜)
811・・・飛散粒子阻止部材
以 上
[0001]
[Industrial application fields]
The present invention relates to an X-ray generator used in an X-ray apparatus such as an X-ray exposure apparatus, an X-ray microscope, and an X-ray analyzer.
[0002]
[Prior art]
When laser light (an example of an excitation energy beam) is focused on and irradiated onto a target member placed in a vacuum container that has been decompressed, the target member is rapidly turned into plasma, and X-rays with very high brightness are radiated from this plasma. (X-ray generation) is known (for example, such an X-ray generation source is called LPX: Laser-Plasma X-ray source).
[0003]
Along with the generation of X-rays, scattered particles such as high-speed electrons and ions are emitted from the plasma, and scattered particles of the member material (for example, gasified material, ionized material, small piece of material, etc.) are emitted from the target member. And scattered in the vacuum container (hereinafter collectively referred to as scattered particles).
Among these scattered particles, those having a relatively large shape are called debris. Such scattered particles (particularly debris) collide with the clean optical surface (for example, the surface of the X-ray optical element) and damage them, or adhere and deposit to reduce or change the function and characteristics. So it was a big problem.
[0004]
In order to solve this problem, in the conventional method, a thin film (hereinafter referred to as a scattering particle blocking thin film or an X-ray film) made of a substance having high X-ray permeability (for example, Be) is provided between the X-ray source and the clean optical surface. A scattering filter is prevented from reaching the clean optical surface by installing and shielding a line extraction filter).
As another method, gas in the scattered particles can be obtained by filling a vacuum vessel with a low atomic number gas (for example, He gas) having a high X-ray transmittance or by forming a gas flow of the gas. They attempted to prevent scattered particles by colliding molecules (see JP-A-63-292553).
[0005]
[Problems to be solved by the invention]
The scattering particle prevention thin film can be prevented from adhering to and depositing on the clean optical surface, but instead, scattering particles adhere to and deposit on the scattering particle prevention thin film. There is a problem that the line transmittance gradually decreases (the used X-ray intensity in the X-ray extraction direction decreases).
[0006]
Further, in a method for preventing scattered particles by filling a vacuum vessel with a low atomic number gas (buffer gas) having a high transmittance for X-rays or by forming a gas flow of the gas, There is a problem that the scattered particles cannot be effectively prevented.
For example, when the target member is tantalum, scattered particles are distributed in the normal direction on the surface of the target member in a sufficiently evacuated (pressure 10 Pa or less) vacuum vessel. When a buffer gas for preventing scattered particles is introduced into the vacuum vessel, the scattered particles are reduced due to scattering by gas molecules in the direction in which many scattered particles are released. Will also scatter in the direction where there was little emission of scattered particles.
[0007]
Therefore, when the buffer gas is used to prevent the scattered particles, the distribution in the emission direction of the scattered particles is made uniform. This indicates that the direction in which the emission of scattered particles is small has a smaller effect of introducing the gas than the direction in which the emission of scattered particles is large, or rather the reverse effect.
The extraction of X-rays is generally performed in a direction in which the emission of scattered particles is small, and the effect of gas introduction is small or rather counterproductive in the X-ray extraction direction in which the emission of scattered particles is small. It is a big problem.
[0008]
In particular, in the case of providing a scattering particle control member that controls the directional distribution of the emission amount of scattered particles in the vicinity of the plasma and reduces the emission amount of the scattering particles in the direction of taking out the X-ray, It is a big problem that the effect of gas introduction is small or rather counterproductive with respect to the extraction direction.
The present invention has been made in view of such problems, and is an X-ray generator that uses a buffer gas to prevent scattered particles, and reduces the adhesion and accumulation of unwanted scattered particles in the X-ray extraction direction. As a result, an object is to provide an X-ray generator that can be used stably for a long time.
[0009]
[Means for Solving the Problems]
Therefore, the present invention provides an “X-ray generator that irradiates an excitation energy beam to a target member in a decompressed vacuum vessel to form plasma and extracts X-rays from the plasma, and the target member and / or the plasma An X-ray generator using a buffer gas for blocking scattered particles emitted from a particle is provided with a scattered particle blocking member adjacent to or close to a solid angle region corresponding to the X-ray extraction range. X-ray generator "is provided.
[0010]
The present invention is also an “X-ray generator that irradiates a target member in a decompressed vacuum vessel with an excitation energy beam to form plasma and extracts X-rays from the plasma, and the target member and / or the plasma An X-ray generator that uses a buffer gas to block scattered particles emitted from the X-ray generator, characterized in that a scattered particle blocking member is provided in a solid angle region corresponding to the X-ray extraction range Equipment ".
[0011]
Further, the present invention provides a “scattering particle control member that controls a directional distribution of the amount of scattered particles emitted from the target member and / or the plasma, and controls the amount of scattered particles emitted in the direction of taking out the X-rays. An X-ray generator characterized by further providing a scattering particle control member for reduction is provided.
[0012]
In addition, the present invention provides an “X-ray generator characterized by further comprising a cooling means for cooling the scattered particle blocking member”.
[0013]
[Action]
An X-ray generator that irradiates a target member in a vacuum container with an excitation energy beam to form plasma and extracts X-rays from the plasma, and the scattered particles emitted from the target member and / or the plasma If an X-ray generator that uses a buffer gas to prevent X-rays is provided with a scattering particle blocking member positioned outside (adjacent or close to) a solid angle region corresponding to a range where X-rays are extracted, or inside, a X-ray As a result, it is possible to reduce inconvenient scattered particle adhesion and deposition (adhesion and deposition on a scattering particle blocking thin film, clean optical surface, etc.), and as a result, the X-ray generator can be used stably for a long time. (Claims 1 and 2).
[0014]
As shown in FIG. 1A, a region (solid angle region corresponding to a range in which X-rays are extracted) 103 within a solid angle in which the opening 102 is viewed from the plasma 101 is considered. FIG. 1B shows a cross section including the plasma and the opening.
In a sufficient vacuum state, the scattered particles move linearly, and the scattered particles 110 and 111 emitted into the solid angle region 103 (105) reach the opening 102 only through the region 103 (105).
[0015]
However, when the buffer gas is introduced into the vacuum vessel, the scattered particles collide with the gas molecules and are scattered. Therefore, the scattered particles initially emitted out of the region 103 (105) may have a region as a result of the scattering. Among the particles 112 that enter the region 103 (105) and scattered particles that have once exited the region 103 (105), there are particles 113 that return to the region 103 (105) again.
[0016]
This indicates that the scattered particles that reach the opening 102 do not always pass through the region 103 (105) from the generation to the arrival until the arrival. On the other hand, the optical path of the X-rays generated from the plasma is a straight line, and the X-ray light reaching the opening 102 is always in the region 103 (105).
Here, for example, as shown in FIG. 2, a case where a member 201 with an opening (an example of a scattering particle blocking member) is provided is considered. The opening of the member is equal to the cut surface of the solid angle region 103 (105).
[0017]
Even if the member 201 is provided, the X-ray reaching the opening 102 is not affected at all, and the amount of the extracted X-ray does not change. On the other hand, among the scattered particles, the particles 112 and 113 trying to enter the region 103 (105) are blocked by the member 201, and therefore reach the opening 102 as compared with the case where the member 201 is not provided. Scattered particles are reduced.
[0018]
The scattered particle blocking member that brings about such an effect may have a shape that can prevent the scattered particles that have come out of the region 103 (105) from entering the region 103 (105) again. However, the present invention is not limited to a plate-like product having a hole.
Strictly speaking, the amount of X-rays to be extracted decreases, but the above-described effect can be obtained even if a scattering particle blocking member is provided in the solid angle region corresponding to the range in which X-rays are extracted. For example, as shown in FIG. 8, a very thin plate is provided along the optical path on the X-ray optical path in the solid angle region.
[0019]
In this way, the target member in the decompressed vacuum vessel is irradiated with an excitation energy beam to form plasma, and X-rays are extracted from the plasma, and is emitted from the target member and / or the plasma. An X-ray generator that uses a buffer gas to block scattered particles is provided with a scattering particle blocking member located outside (adjacent or adjacent to) or inside a solid angle region corresponding to a range where X-rays are extracted. In addition, in the X-ray extraction direction, it is possible to reduce inconvenient scattered particle adhesion and deposition (adhesion and deposition on the scattering particle blocking thin film, clean optical surface, etc.), resulting in stable X-ray generation for a long time. A device can be used (claims 1, 2).
[0020]
Moreover, it is a scattering particle control member which controls the directional distribution of the amount of scattered particles emitted, and when a scattering particle control member for reducing the amount of scattered particles emitted in the direction of extracting X-rays is further provided, This is preferable because the effect of preventing scattered particles is increased. In order to reduce the amount of scattered particles emitted in the X-ray extraction direction by such a scattered particle control member, for example, the following shape portion may be provided on the scattered particle control member.
[0021]
As such a shape portion, for example, a through-hole provided in the scattering particle control member, and a maximum opening diameter having a minimum opening diameter portion of 0.1 to 3 mm and an opening angle with respect to the minimum opening diameter portion of 60 to 140 degrees. A through hole having a portion is preferred.
The minimum aperture diameter portion is adjacent to or close to a condensing portion of the excitation energy beam on the target member, and an angle at which the excitation energy beam enters the condensing portion through the through hole is 0 to 60 degrees. In addition, if the X-ray extraction angle with respect to the light condensing portion is set to 30 to 60 degrees, respectively, inconvenient scattering particles in the extraction direction are deposited and deposited without decreasing the X-ray intensity in the extraction direction. Since it can reduce remarkably, it is preferable.
[0022]
The shape part that reduces the amount of scattered particles released in the direction of taking out X-rays is not limited to the through-hole provided in the scattered particle control member. For example, when the scattered particle control member is constituted by a plurality of members, And a tapered gap formed between at least two members of the plurality of members, wherein the minimum gap portion is 0.1 to 3 mm and the opening angle with respect to the minimum gap portion is 60 to 140 degrees. A tapered gap having a maximum gap may be used.
[0023]
The minimum gap of such a tapered gap is adjacent to or close to the condensing part of the excitation energy beam on the target member, and the angle at which the excitation energy beam enters the condensing part through the tapered gap is determined. Setting the X-ray extraction angle to 0 to 60 degrees and the X-ray extraction angle to 30 to 60 degrees respectively reduces inadvertent scattered particle adhesion and deposition without reducing the X-ray intensity in the extraction direction. This is preferable.
[0024]
As a material used for the scattered particle control member according to the present invention, for example, a material having a high melting point or a high hardness such as tantalum, tungsten, diamond, or ceramic is preferable. This is because the scattered particle control member is arranged at a position very close to the plasma, so that release of the member material due to collision of ions and electrons flying from the plasma with the member surface is prevented. That is, if the member material is released, inadequate adhesion and deposition occur as in the case of the scattered particles, and this is prevented.
[0025]
It is preferable to further provide a cooling means for cooling the scattered particle blocking member because the member easily adsorbs the scattered particles and the blocking effect is increased. Alternatively, it is also preferable to process (for example, matte processing) the surface of the scattering particle blocking member so that the scattering particles are easily adsorbed. EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.
[0026]
【Example】
FIG. 3 shows a schematic configuration diagram of the X-ray generator of the present embodiment. FIG. 4 is a scattered particle control member that controls the directional distribution of the amount of scattered particles emitted. The tape pressing aperture 401 is an example of a scattered particle control member that reduces the amount of scattered particles emitted in the direction of taking out X-rays. It is an expanded sectional view.
[0027]
The angular distribution of the amount of scattered particles emitted is controlled by the aperture 401 and becomes a distribution concentrated in the normal direction of the tantalum tape surface. FIG. 5 shows the angular distribution of the amount of scattered particles emitted with and without the aperture 401.
YAG laser light (an example of an excitation energy beam) 311 is condensed on the surface of a Ta target (an example of a target member) 303 by a condenser lens 312. The Ta target 303 has a tape shape with a thickness of 15 μm, and when plasma is generated, the reel 304 is driven by driving means (for example, a motor, not shown) so that the laser beam is not condensed at the same position on the tape. The laser focusing position is changed while winding the Ta tape by rotating.
[0028]
The moving speed of the Ta tape is a speed at which it moves more than the diameter of the hole generated in the Ta tape by the generation of the plasma before the laser beam for generating the next plasma is incident.
X-rays radiated (radiated) from the generated plasma pass through the X-ray extraction filter (scattering particle blocking thin film) 321 and reach the X-ray optical system.
[0029]
In this embodiment, as shown in FIG. 3, the scattering particle blocking member 330 includes three plates 331, 332, and 333 having apertures that do not block the optical path of the X-rays incident on the filter 321. The plates are separated from each other by a predetermined distance.
Further, helium is introduced as a buffer gas into the vacuum vessel, and helium is introduced and exhausted so as to keep the pressure constant.
[0030]
Since the Ta target 303 has a very high melting point, the generated scattered particles are of an ion or atomic level. The angular distribution of the amount of scattered particle emission is as shown in FIG. 5. In this embodiment, the X-ray extraction angle is set to 45 ° so that the amount of scattered particle emission in the X-ray extraction direction is reduced.
Since the distance from the plasma to the plate 331 is short, the scattered particles reach the plate 331 with almost no influence of the buffer gas. That is, most of the particles other than the scattered particles that have first jumped in the X-ray extraction direction are blocked by the plate 331.
[0031]
As shown in FIG. 5, the emission of scattered particles is concentrated in the normal direction of the surface of the tantalum tape, but the scattered particles in this direction are also blocked by the plate 331, and therefore reach the filter 321 even if scattered by the buffer gas. Never do.
Further, since the scattered particles that have passed through the apertures of the plate 331 travel while being scattered by the buffer gas, the trajectory is not a straight line and deviates from the initial traveling direction toward the filter 321.
[0032]
For this reason, scattered particles that have passed through the apertures of the plate 331 may not be able to pass through the apertures of the plate 332 or the plate 333. Therefore, the scattered particles that finally reach the filter 321 are considerably reduced from the scattered particles that are first generated in the solid angle region corresponding to the range in which the X-ray is extracted.
The shape of the scattered particle blocking member 330 is not limited to the example of FIG. 3, and may be any shape that can efficiently block scattered particles without blocking the optical path of X-rays emitted in the X-ray extraction direction. .
[0033]
For example, a hollow frustum-shaped scattering particle blocking member 341 as shown in FIG. 6 may be used. Alternatively, when it is difficult to finely position the scattered particle blocking member, as shown in FIG. 7, the scattered particle blocking member 351 may be formed of a single plate. Scattered particles coming in the X-ray extraction direction by scattering can be effectively blocked by the scattered particle blocking member 351.
[0034]
Further, although the X-ray optical path in the solid angle region corresponding to the X-ray extraction range is somewhat blocked, as shown in FIG. 8, scattering of a plurality of very thin plates on the X-ray optical path. It is also effective to install the particle blocking member 811 along the optical path.
In this case, even when the scattered particles do not come out of the solid angle region, if the traveling direction is changed by the buffer gas even a little, the particles are adsorbed by the scattered particle blocking member 811.
[0035]
When the scattered particle blocking member 811 shown in FIG. 8 is used, if critical illumination is performed, uneven illumination occurs. However, when Koehler illumination is performed or only the total amount of X-rays is targeted (for example, an analytical instrument) Etc.), the X-ray dose is reduced only slightly, and there is no problem in practical use.
The scattered particle blocking members 330, 341, 351, and 811 are preferably processed (for example, matted) on the surface so that the scattered particles can be easily adsorbed. Further, it is preferable to further provide a cooling means for cooling the scattered particle blocking members 330, 341, 351, and 811 because the member easily adsorbs the scattered particles and the blocking effect is increased.
[0036]
In addition, the shape of a target member is not limited to tape shape, For example, plate shape and a bulk shape may be sufficient. Further, the material of the target member is not limited to Ta, and may be Al, Sn, Zn, Pb or the like.
[0037]
【The invention's effect】
According to the X-ray generator of the present invention, inadvertent scattered particle adhesion and deposition (adhesion and deposition on a scattering particle blocking thin film, clean optical surface, etc.) can be reduced in the X-ray extraction direction. The X-ray generator can be used stably for a long time.
[Brief description of the drawings]
FIGS. 1A and 1B are a perspective view and a schematic cross-sectional view showing a region (solid angle region corresponding to a range where X-rays are extracted) 103 within a solid angle when an opening 102 is viewed from a plasma 101.
FIG. 2 is a perspective view showing a region (solid angle region corresponding to a range where X-rays are extracted) 105 within a solid angle in which the opening 102 is viewed from the plasma 101 when the scattering particle blocking member 201 is provided (a). ) And a schematic sectional view (b).
FIG. 3 is a schematic configuration diagram of an X-ray generator according to an embodiment.
FIG. 4 is a schematic cross-sectional view of an aperture 401 which is an example of a scattering particle control member.
FIG. 5 is a data diagram showing an angular distribution of the amount of scattered particles.
FIG. 6 is a schematic configuration diagram of an X-ray generator of an embodiment when a hollow frustoconical scattering particle blocking member 341 is used.
FIG. 7 is a schematic configuration diagram of an X-ray generator of an embodiment when a scattering particle blocking member 351 made of one plate is used.
FIG. 8 is a schematic cross-sectional view of a scattering particle blocking member 811 comprising a plurality of very thin plates provided on the X-ray optical path.
[Explanation of main part codes]
101... Plasma 102... Opening 103 and 105... Region through which extracted X-ray passes (solid angle region)
110, 111, 112, 113 ... scattered particle trajectory 201 ... scattered particle blocking member 303 ... target member 304 ... reel 311 ... YAG laser beam (an example of excitation energy beam)
312 ... Condensing lens 321 ... X-ray extraction filter (scattering particle blocking thin film)
330, 341, 351 ... Scattering particle blocking members 331, 332, 333 ... Plates having holes (members constituting the scattering particle blocking member 330)
401: Tape pressing aperture (an example of a scattering particle control member)
801 ... plasma 802 ... X-ray extraction filter (thin film for preventing scattered particles)
811 ... Scattered particle blocking member or higher

Claims (10)

減圧された真空容器内の標的部材に励起エネルギービームを照射してプラズマを形成させ、該プラズマからX線を取り出すX線発生装置であり、バッファガスを用いることにより飛散粒子の阻止を図るX線発生装置において、
前記X線を取り出す範囲に相当する立体角領域の外側に、飛散粒子阻止用薄膜または清浄光学面を囲うように配置され、該立体角領域の外側に出た飛散粒子が再度該立体角領域内に進入するのを阻止できる形状を有する飛散粒子阻止部材を設けたことを特徴とするX線発生装置。
An X-ray generator that irradiates a target member in a vacuum chamber with an excitation energy beam to form plasma and extracts X-rays from the plasma, and uses a buffer gas to prevent scattered particles. In the generator,
The solid particles are arranged outside the solid angle region corresponding to the X-ray extraction range so as to surround the scattering particle blocking thin film or the clean optical surface, and the scattered particles emitted outside the solid angle region are again within the solid angle region. An X-ray generation apparatus comprising a scattering particle blocking member having a shape capable of blocking entry into a tube.
減圧された真空容器内の標的部材に励起エネルギービームを照射してプラズマを形成させ、該プラズマからX線を取り出すX線発生装置であり、バッファガスを用いることにより飛散粒子の阻止を図るX線発生装置において、
前記X線を取り出す範囲に相当する立体角領域内に、光路に沿って配置される薄板から構成された飛散粒子阻止部材を設けたことを特徴とするX線発生装置。
An X-ray generator that irradiates a target member in a vacuum chamber with an excitation energy beam to form plasma and extracts X-rays from the plasma, and uses a buffer gas to prevent scattered particles. In the generator,
An X-ray generation apparatus comprising a scattering particle blocking member made of a thin plate disposed along an optical path in a solid angle region corresponding to a range in which the X-ray is extracted.
前記飛散粒子阻止部材を飛散粒子阻止用薄膜または清浄光学面を囲うように配置したことを特徴とする請求項2に記載のX線発生装置。The X-ray generator according to claim 2, wherein the scattering particle blocking member is disposed so as to surround the scattering particle blocking thin film or the clean optical surface. 前記飛散粒子阻止部材の表面は飛散粒子を吸着しやすい加工が施されていることを特徴とする請求項1〜3のいずれか一項に記載のX線発生装置。The X-ray generator according to any one of claims 1 to 3 , wherein the surface of the scattering particle blocking member is subjected to processing that easily adsorbs scattering particles. 前記飛散粒子阻止部材を冷却する冷却手段をさらに設けたことを特徴とする請求項1〜4のいずれか一項に記載のX線発生装置。The X-ray generator according to claim 1 , further comprising a cooling unit that cools the scattering particle blocking member. 前記励起エネルギービームの前記標的部材上へ集光部分に隣接または近接させた 0.1 3mm の最小開口径部と該最小開口径部に対する開き角が 60 140 度である最大開口径部を有することにより、放出される飛散粒子の放出量の方向分布を制御し前記X線を取り出す方向への飛散粒子の放出量を低減させる飛散粒子制御部材を更に備えることを特徴とする請求項1〜5のいずれか一項に記載のX線発生装置。 The excitation energy beam has a minimum opening diameter portion of 0.1 to 3 mm adjacent to or close to the condensing portion on the target member, and a maximum opening diameter portion having an opening angle of 60 to 140 degrees with respect to the minimum opening diameter portion. 6. The method according to claim 1 , further comprising: a scattering particle control member that controls a directional distribution of a discharge amount of scattered particles emitted to reduce a discharge amount of the scattered particles in a direction in which the X-ray is extracted. The X-ray generator as described in any one of Claims. 少なくとも2つの部材の間によって形成されてなるテーパー状の間隙であり、前記励起エネルギービームの前記標的部材上へ集光部分に隣接または近接させた該テーパー状の間隙が0.1〜3mmの最小間隙部と該最小間隙部に対する開き角が60〜140度である最大間隙部を有することにより、放出される飛散粒子の放出量の方向分布を制御し前記X線を取り出す方向への飛散粒子の放出量を低減させる飛散粒子制御部材を更に備えることを特徴とする請求項1〜5のいずれか一項に記載のX線発生装置。A tapered gap formed between at least two members, wherein the tapered gap adjacent to or adjacent to the focused portion of the excitation energy beam on the target member is 0.1 to 3 mm in minimum gap And the maximum gap portion having an opening angle of 60 to 140 degrees with respect to the minimum gap portion, thereby controlling the directional distribution of the emission amount of the emitted scattered particles and releasing the scattered particles in the direction of taking out the X-rays. The X-ray generator according to any one of claims 1 to 5 , further comprising a scattering particle control member for reducing the above. 前記飛散粒子制御部材に用いる材料としてタンタル、タングステン、ダイヤモンド、セラミックのいずれかを用いることを特徴とする請求項6または7に記載のX線発生装置。8. The X-ray generator according to claim 6 , wherein any one of tantalum, tungsten, diamond, and ceramic is used as a material used for the scattered particle control member. 前記標的材料に、タンタル、アルミニウム、錫、亜鉛、鉛のいずれかを用いることを特徴とする請求項1〜8のいずれか一項に記載のX線発生装置。The X-ray generator according to claim 1 , wherein any one of tantalum, aluminum, tin, zinc, and lead is used as the target material. ケーラー照明を用いる光学系に請求項1〜9のいずれか一項に記載のX線発生装置を用いることを特徴とするX線露光装置。An X-ray exposure apparatus using the X-ray generator according to any one of claims 1 to 9 in an optical system using Koehler illumination.
JP12760095A 1995-05-26 1995-05-26 X-ray generator and X-ray exposure apparatus Expired - Lifetime JP3666055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12760095A JP3666055B2 (en) 1995-05-26 1995-05-26 X-ray generator and X-ray exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12760095A JP3666055B2 (en) 1995-05-26 1995-05-26 X-ray generator and X-ray exposure apparatus

Publications (2)

Publication Number Publication Date
JPH08321395A JPH08321395A (en) 1996-12-03
JP3666055B2 true JP3666055B2 (en) 2005-06-29

Family

ID=14964103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12760095A Expired - Lifetime JP3666055B2 (en) 1995-05-26 1995-05-26 X-ray generator and X-ray exposure apparatus

Country Status (1)

Country Link
JP (1) JP3666055B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320792A (en) * 1996-05-27 1997-12-12 Nikon Corp X-ray generator
NL1008352C2 (en) 1998-02-19 1999-08-20 Stichting Tech Wetenschapp Apparatus suitable for extreme ultraviolet lithography, comprising a radiation source and a processor for processing the radiation from the radiation source, as well as a filter for suppressing unwanted atomic and microscopic particles emitted from a radiation source.
US20070115443A1 (en) * 2005-11-23 2007-05-24 Asml Netherlands B.V. Radiation system and lithographic apparatus
JP5034362B2 (en) * 2006-08-08 2012-09-26 ウシオ電機株式会社 Extreme ultraviolet light source device
KR101968675B1 (en) 2010-06-25 2019-04-12 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and method
KR101140098B1 (en) * 2010-12-21 2012-04-30 한국원자력연구원 Metal microwire target feeder and x-ray generating apparatus having the same

Also Published As

Publication number Publication date
JPH08321395A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP2010212674A (en) Extreme ultraviolet light source apparatus
TWI324281B (en) Method and device for removing particles generated by means of a radiation source during generation of short-wave radiation
US20040055871A1 (en) Use of ion beams for protecting substrates from particulate defect contamination in ultra-low-defect coating processes
KR20210152552A (en) Plasma light source generated by high-intensity laser
JP3666055B2 (en) X-ray generator and X-ray exposure apparatus
JPH09320792A (en) X-ray generator
JP3790814B2 (en) Method and apparatus for removing scattered matter in X-ray irradiation apparatus
US8101930B2 (en) Method of increasing the operation lifetime of a collector optics arranged in an irradiation device
JPH09245992A (en) X-ray generating device
US6078043A (en) Mass selector
JPH09320794A (en) X-ray generator
JP3460130B2 (en) X-ray generator
JPH09237695A (en) X-ray generating device
JPH1055899A (en) X-ray generator
JPH09148092A (en) X-ray generator
JPH09245989A (en) X-ray generating device
JP7506461B2 (en) Apparatus for pulsed laser deposition for particle reduction on a substrate and substrate having a substrate surface - Patents.com
JPH08162287A (en) X-ray generating apparatus
JPH09148093A (en) X-ray generating device
JP2711383B2 (en) Ion beam sputtering equipment
JPS63216257A (en) Ion beam device
JPH08195533A (en) X-ray generator
JPH06275219A (en) High energy corpuscular ray generating device
JPH09161991A (en) X-ray generating device
JP2000047000A (en) Laser excited x-ray source

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160415

Year of fee payment: 11

EXPY Cancellation because of completion of term