JPH09161991A - X-ray generating device - Google Patents

X-ray generating device

Info

Publication number
JPH09161991A
JPH09161991A JP7313964A JP31396495A JPH09161991A JP H09161991 A JPH09161991 A JP H09161991A JP 7313964 A JP7313964 A JP 7313964A JP 31396495 A JP31396495 A JP 31396495A JP H09161991 A JPH09161991 A JP H09161991A
Authority
JP
Japan
Prior art keywords
duct
scattered
scattered particles
particles
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7313964A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kondo
洋行 近藤
Noriaki Kamitaka
典明 神高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7313964A priority Critical patent/JPH09161991A/en
Publication of JPH09161991A publication Critical patent/JPH09161991A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sufficiently suppress collision, attachment and deposition of sputtering particles to an optical element installed in a vacuum vessel and satisfactorily prevent damage of the optical element and drop of its performance. SOLUTION: A target member 204 in a vacuum vessel 201 which is decompressed, is bombarded with an exciting energy beam 203 so that a plasma 205 is formed, and an X-ray 207 is taken out of the plasma 205. In this X-ray generating device, a duct 209 is provided to take in the sputtered particles 206 emitted by the target member 204 in the normal direction in that position of target member 204 which is irradiated with the energy beam 203. The duct 209 is connected with an evacuation device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はX線顕微鏡、X線分
析装置、X線露光装置などのX線装置に用いて好適なX
線発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use in X-ray apparatuses such as X-ray microscopes, X-ray analyzers and X-ray exposure apparatuses.
The present invention relates to a line generator.

【0002】[0002]

【従来の技術】励起エネルギービーム(例えば、パルス
レーザー光)を真空容器内に置かれた標的材料(標的部
材)上に集光し、標的材料をプラズマ化して、このプラ
ズマから輻射されるX線を取り出して利用するX線源
(以下ではLPXと呼ぶ)においては、X線の他に、プ
ラズマ及びプラズマ近傍から標的材料のイオン、原子、
または小片(以下では、これらを飛散粒子と呼ぶ)が放
出される。
2. Description of the Related Art An excitation energy beam (for example, a pulsed laser beam) is focused on a target material (target member) placed in a vacuum vessel, the target material is turned into plasma, and X-rays radiated from this plasma. In the X-ray source (hereinafter referred to as LPX) that extracts and uses the ions, in addition to the X-rays, ions and atoms of the target material from the plasma and the vicinity of the plasma,
Alternatively, small pieces (hereinafter referred to as scattered particles) are emitted.

【0003】これら飛散粒子は、真空容器内に配置され
ている光学素子、特にプラズマ近傍に配置されている光
学素子または光学部材(以下、まとめて光学素子と称
す)に衝突し、これら光学素子に損傷を与えたり、光学
素子上に付着、堆積し、光学素子の性能(例えば、反射
率や透過率)を低下させてしまう。前記光学素子には例
えば、レーザー光を真空容器内に導入するための窓、レ
ーザー光を集光するためのレンズ(集光素子が真空容器
内に置かれている場合)、プラズマから輻射されたX線
を反射するためのミラー、プラズマから輻射されるX線
を透過し可視光をカットするためのフィルターなどがあ
る。
These scattered particles collide with an optical element arranged in a vacuum container, particularly an optical element or an optical member (hereinafter collectively referred to as an optical element) arranged in the vicinity of plasma, and these optical elements are collided with these optical elements. It may be damaged or adhered to or deposited on the optical element to reduce the performance of the optical element (for example, reflectance or transmittance). The optical element includes, for example, a window for introducing laser light into the vacuum container, a lens for condensing the laser light (when the condensing element is placed in the vacuum container), and radiation from plasma. There are a mirror for reflecting X-rays, a filter for transmitting X-rays radiated from plasma, and a filter for cutting visible light.

【0004】LPXを利用するに当たっては、前記光学
素子への飛散粒子の衝突、付着、堆積を防止することが
重要な課題であり、様々な防止方法が考えられている。
例えば、真空容器内にガスを充填し、飛散粒子とガス分
子との衝突により飛散粒子の速度を減速、停止させて、
光学素子に到達しないように、或いは到達する量が減少
するようにしていた。
In using the LPX, it is an important issue to prevent collision, adhesion and deposition of scattered particles on the optical element, and various prevention methods have been considered.
For example, by filling the vacuum container with gas, the speed of scattered particles is reduced and stopped by the collision of scattered particles with gas molecules,
The optical element is prevented from reaching the optical element or the amount of the optical element reaching the optical element is reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ガスを
真空容器内に充填して、前記光学素子への飛散粒子の衝
突、付着、堆積を防止する方法の場合、本来光学素子が
置かれている方向とは異なる方向に放出された飛散粒子
も、ガス分子との多数回にわたる衝突により拡散し、最
終的には光学素子に衝突、付着、または堆積してしまう
ため、光学素子の損傷防止及び性能低下防止の十分な効
果が得られないという問題点があった。
However, in the case of the method of filling the vacuum container with gas to prevent collision, adhesion and deposition of scattered particles on the optical element, the direction in which the optical element is originally placed is set. Particles emitted in a different direction from the above also diffuse due to a large number of collisions with gas molecules, and eventually collide with, adhere to, or accumulate on the optical element, preventing damage to the optical element and degrading performance. There is a problem that a sufficient effect of prevention cannot be obtained.

【0006】本発明は、かかる問題点に鑑みてなされた
ものであり、真空容器内に配置された光学素子への飛散
粒子の衝突、付着、堆積を十分に抑制することが可能で
あり、その結果、光学素子の損傷及び性能低下を十分に
防止することができるX線発生装置を提供することを目
的とする。
The present invention has been made in view of the above problems, and it is possible to sufficiently suppress the collision, adhesion, and deposition of scattered particles on an optical element arranged in a vacuum container. As a result, it is an object of the present invention to provide an X-ray generator capable of sufficiently preventing damage to an optical element and performance deterioration.

【0007】[0007]

【課題を解決するための手段】そのため、本発明は第一
に「減圧された真空容器内の標的部材に励起エネルギー
ビームを照射してプラズマを形成させ、該プラズマから
X線を取り出すX線発生装置において、前記標的部材か
ら放出される飛散粒子を取り込むダクトであり、少なく
とも前記標的部材の前記励起エネルギービーム照射位置
における法線方向に放出される飛散粒子を取り込むダク
トを設け、さらに該ダクトの内部に前記飛散粒子を散乱
させる散乱部材、及び/または前記飛散粒子を捕獲する
捕獲部材を設けたことを特徴とするX線発生装置(請求
項1)」を提供する。
Therefore, the first aspect of the present invention is to "generate X-rays by irradiating a target member in a depressurized vacuum container with an excitation energy beam to form plasma and extracting X-rays from the plasma. In the apparatus, there is provided a duct for taking in the scattered particles emitted from the target member, and at least a duct for taking in the scattered particles emitted in the normal direction of the excitation energy beam irradiation position of the target member is provided, and further inside the duct. An X-ray generator (claim 1), characterized in that a scattering member that scatters the scattered particles and / or a trapping member that traps the scattered particles are provided.

【0008】また、本発明は第二に「減圧された真空容
器内の標的部材に励起エネルギービームを照射してプラ
ズマを形成させ、該プラズマからX線を取り出すX線発
生装置において、前記標的部材から放出される飛散粒子
を取り込むダクトであり、少なくとも前記標的部材の前
記励起エネルギービーム照射位置における法線方向に放
出される飛散粒子を取り込むダクトを設けて、該ダクト
を真空排気装置に接続したことを特徴とするX線発生装
置(請求項2)」を提供するまた、本発明は第三に「前
記ダクトの内部に前記飛散粒子を散乱させる散乱部材、
及び/または前記飛散粒子を捕獲する捕獲部材を設けた
ことを特徴とする請求項2記載のX線発生装置(請求項
3)」を提供する。
A second aspect of the present invention relates to an "X-ray generator for irradiating an excitation energy beam to a target member in a depressurized vacuum container to form plasma and extracting X-rays from the plasma. A duct for taking in scattered particles emitted from the device, and at least providing a duct for taking in scattered particles emitted in the normal direction of the excitation energy beam irradiation position of the target member, and connecting the duct to a vacuum exhaust device. An X-ray generator (claim 2) "is provided, and the present invention thirdly provides a" scattering member for scattering the scattered particles inside the duct, "
And / or an X-ray generator (claim 3) according to claim 2 provided with a capture member for capturing the scattered particles.

【0009】また、本発明は第四に「前記真空容器内に
ガスを導入するガス導入口を前記真空容器に設けたこと
を特徴とする請求項1〜3記載のX線発生装置(請求項
4)」を提供する。また、本発明は第五に「前記励起エ
ネルギービームを前記真空容器内に導入するための窓、
及び/または前記真空容器内に設置された光学素子に、
前記飛散粒子が衝突、付着または堆積するのを防止する
ための別ダクトをそれぞれ設けたことを特徴とする請求
項1〜4記載のX線発生装置(請求項5)」を提供す
る。
In a fourth aspect of the present invention, "the X-ray generator according to any one of claims 1 to 3, wherein a gas inlet for introducing gas into the vacuum container is provided in the vacuum container. 4) ”is provided. Further, the present invention is fifthly, "a window for introducing the excitation energy beam into the vacuum container,
And / or an optical element installed in the vacuum container,
An X-ray generator (claim 5) according to any one of claims 1 to 4, wherein separate ducts are provided to prevent the scattered particles from colliding, adhering or accumulating.

【0010】また、本発明は第六に「前記別ダクトにガ
ス導入口を設けたことを特徴とする請求項5記載のX線
発生装置(請求項6)」を提供する。また、本発明は第
七に「前記別ダクト内にバッフルを設けたことを特徴と
する請求項5または6記載のX線発生装置(請求項
7)」を提供する。また、本発明は第八に「前記飛散粒
子を遮蔽する飛散粒子遮蔽部材を前記プラズマの近傍に
設け、かつ該飛散粒子遮蔽部材に前記励起エネルギービ
ームが通過する第1開口部、前記X線が通過する第2開
口部、及び前記ダクトの内部に向かう飛散粒子が通過す
る第3開口部を設けたことを特徴とする請求項1〜7記
載のX線発生装置(請求項8)」を提供する。
A sixth aspect of the present invention provides an "X-ray generator according to claim 5 (claim 6)", wherein a gas inlet is provided in the separate duct. Further, the present invention seventhly provides an “X-ray generator (claim 7) according to claim 5 or 6, wherein a baffle is provided in the separate duct”. In addition, an eighth aspect of the present invention is that "a scattered particle shielding member that shields the scattered particles is provided in the vicinity of the plasma, and the scattered particle shielding member has a first opening through which the excitation energy beam passes and the X-ray An X-ray generator (claim 8) according to any one of claims 1 to 7, wherein a second opening passing therethrough and a third opening through which particles scattered toward the inside of the duct pass are provided. To do.

【0011】また、本発明は第九に「前記飛散粒子の放
出量の方向分布を制御する飛散粒子制御部材を前記プラ
ズマの近傍に設けたことを特徴とする請求項1〜8記載
のX線発生装置(請求項9)」を提供する。また、本発
明は第十に「前記飛散粒子制御部材は、前記X線を取り
出す方向への前記飛散粒子の放出量を低減させ、かつ前
記ダクトの内部に向かう飛散粒子の放出量を増大させる
形状部分を有することを特徴とする請求項9記載のX線
発生装置(請求項10)」を提供する。
The ninth aspect of the present invention is that "a scattered particle control member for controlling the directional distribution of the emitted amount of the scattered particles is provided in the vicinity of the plasma. Generator (claim 9) ". The tenth aspect of the present invention is that the “scattered particle control member has a shape that reduces the emitted amount of the scattered particles in the direction of extracting the X-rays and increases the emitted amount of the scattered particles toward the inside of the duct. An X-ray generator (claim 10) according to claim 9, characterized in that it has a portion.

【0012】[0012]

【発明の実施の形態】本発明のX線発生装置において
は、標的部材から放出される飛散粒子を取り込むダクト
であり、少なくとも該照射位置の法線方向(即ち、飛散
粒子放出量が最も多い方向)に放出される飛散粒子を取
り込むダクトを設けて、さらに、該ダクト内部に散乱部
材及び/または捕獲部材を設けるか、或いは、該ダクト
を真空排気装置に接続した。そのため、真空容器内に拡
散、浮遊する飛散粒子の量を大幅に低減することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In the X-ray generator of the present invention, it is a duct for taking in scattered particles emitted from a target member, and at least in the normal direction of the irradiation position (that is, the direction in which the amount of scattered particles emitted is the largest). (1) is provided with a duct for taking in the scattered particles emitted to (1) and further provided with a scattering member and / or a trapping member inside the duct, or the duct is connected to a vacuum exhaust device. Therefore, the amount of scattered particles that are diffused and suspended in the vacuum container can be significantly reduced.

【0013】即ち、本発明のX線発生装置においては、
励起エネルギービームを標的部材に照射したときに、標
的部材の励起エネルギービーム照射位置から見た所定の
立体角範囲に放出される飛散粒子、少なくとも該照射位
置の法線方向(すなわち飛散粒子放出量が最も多い方
向)に放出される飛散粒子は、ダクト内部に向かって放
出され、ダクト内に取り込まれる。
That is, in the X-ray generator of the present invention,
When a target member is irradiated with an excitation energy beam, scattered particles emitted in a predetermined solid angle range viewed from the excitation energy beam irradiation position of the target member, at least the normal direction of the irradiation position (that is, the scattered particle emission amount is The scattered particles emitted in the most direction) are emitted toward the inside of the duct and are taken into the duct.

【0014】そして、ダクト内部に散乱部材を設けた場
合には、取り込まれた飛散粒子は、散乱部材により散乱
されてダクト内部で多数回反射した後、ダクト内に捕獲
される。また、ダクト内部に捕獲部材(例えば、ゴムな
どの弾性体)を設けた場合には、ダクト内に取り込まれ
た飛散粒子の大部分は、捕獲部材によりダクト内に捕獲
される。
When a scattering member is provided inside the duct, the scattered particles taken in are scattered by the scattering member, reflected many times inside the duct, and then captured inside the duct. Further, when a capturing member (for example, an elastic body such as rubber) is provided inside the duct, most of the scattered particles taken into the duct are captured inside the duct by the capturing member.

【0015】また、ダクトを真空排気装置に接続した場
合には、ダクト内に取り込まれた飛散粒子は、真空排気
装置により真空容器外に排出される。従って、本発明の
X線発生装置(請求項1〜10)によれば、真空容器内に
配置された光学素子、特にプラズマ近傍に配置された光
学素子への飛散粒子の衝突、付着、堆積を十分に抑制す
ることが可能であり、その結果、光学素子の損傷及び性
能低下を十分に防止することができる。
Further, when the duct is connected to a vacuum exhaust device, the scattered particles taken in the duct are discharged to the outside of the vacuum container by the vacuum exhaust device. Therefore, according to the X-ray generator of the present invention (claims 1 to 10), collision, adhesion, and deposition of scattered particles to an optical element arranged in a vacuum container, particularly to an optical element arranged in the vicinity of plasma, can be prevented. It is possible to sufficiently suppress it, and as a result, it is possible to sufficiently prevent damage to the optical element and performance deterioration.

【0016】かかる光学素子としては、例えば、励起エ
ネルギービーム(例えば、レーザー光)を真空容器内に
導入するための窓、励起エネルギービームを集光するた
めのレンズ(集光素子が真空容器内に置かれている場
合)、プラズマから輻射されたX線を反射するためのミ
ラー、プラズマから輻射されるX線を透過し可視光をカ
ットするためのフィルターなどがあるが、これらに限定
されるものではない。
Examples of such an optical element include, for example, a window for introducing an excitation energy beam (for example, a laser beam) into the vacuum container, a lens for condensing the excitation energy beam (the condensing element is inside the vacuum container). (When placed), there are mirrors for reflecting the X-rays radiated from the plasma, filters for transmitting the X-rays radiated from the plasma and cutting visible light, but are not limited to these. is not.

【0017】本発明のX線装置においては、真空容器内
にガスを導入するためのガス導入口を設けることが好ま
しい(請求項4)。かかるガス導入口からガスを導入し
て、真空容器内にガスを充填することにより飛散粒子と
ガス分子との衝突を起こさせて、飛散粒子を停止させる
か、或いはその速度を効果的に減少させることができ
る。減速された飛散粒子は、真空排気装置に接続された
前記ダクトに取り込まれて排気されることにより、或い
は、真空容器に接続されている真空排気装置により排気
されることにより、真空容器外に排出される。
In the X-ray apparatus of the present invention, it is preferable to provide a gas introduction port for introducing gas into the vacuum container (Claim 4). Gas is introduced from such a gas introduction port to cause a collision between the scattered particles and the gas molecules by filling the gas in the vacuum container to stop the scattered particles or effectively reduce the speed thereof. be able to. The decelerated scattered particles are discharged to the outside of the vacuum container by being taken into the duct connected to the vacuum exhaust device and exhausted, or by being exhausted by the vacuum exhaust device connected to the vacuum container. To be done.

【0018】このとき、標的部材の励起エネルギービー
ム照射位置から見た所定の立体角範囲に放出される飛散
粒子、少なくとも該照射位置の法線方向(即ち、飛散粒
子放出量が最も多い方向)に放出される飛散粒子は、ダ
クト内部に向かって放出されるので、ダクト内部に取り
込まれて、真空排気装置により真空容器外に排出され
る。
At this time, scattered particles emitted in a predetermined solid angle range viewed from the irradiation position of the excitation energy beam of the target member, at least in the normal direction of the irradiation position (that is, the direction in which the scattered particle emission amount is the largest). Since the emitted particles are emitted toward the inside of the duct, they are taken into the inside of the duct and discharged to the outside of the vacuum container by the vacuum exhaust device.

【0019】また、このとき、プラズマ周辺からダクト
内に向かってガス流が形成される。そのため、前記立体
角範囲以外に放出または散乱される飛散粒子であり、ガ
ス分子との衝突により減速された飛散粒子は、前記ガス
流にのってダクト内に取り込まれ、真空排気装置により
真空容器外に排出される。即ち、本発明のX線装置(請
求項4)によれば、飛散粒子の速度を導入ガスにより減
衰させ、更にその飛散粒子を真空排気装置に接続された
ダクトにより真空容器外に排出するので、前記飛散粒子
の衝突、付着、堆積を抑制する効果及び光学素子の損傷
及び性能低下を防止する効果を増大させることができ
る。
At this time, a gas flow is formed from the periphery of the plasma into the duct. Therefore, the scattered particles that are emitted or scattered outside the solid angle range and are decelerated by the collision with gas molecules are taken into the duct along the gas flow, and the vacuum container is evacuated by the vacuum exhaust device. It is discharged outside. That is, according to the X-ray apparatus (Claim 4) of the present invention, the velocity of the scattered particles is attenuated by the introduced gas, and the scattered particles are discharged to the outside of the vacuum container by the duct connected to the vacuum exhaust device. It is possible to increase the effect of suppressing the collision, adhesion and deposition of the scattered particles and the effect of preventing damage and performance deterioration of the optical element.

【0020】また、本発明のX線装置においては、励起
エネルギービームを真空容器内に導入するための窓、及
び/または真空容器内に設置された光学素子に、飛散粒
子が衝突、付着または堆積するのを防止するための別ダ
クトをそれぞれ設けることが好ましい(請求項5)。か
かる別ダクトを設けることにより、前記立体角範囲以外
に放出または散乱されて真空容器内に浮遊、拡散してい
る飛散粒子が前記窓及び/または光学素子に衝突、付着
または堆積するのを防止することができるので、光学素
子の損傷及び性能低下を防止する効果をさらに増大させ
ることができる。
Further, in the X-ray apparatus of the present invention, scattered particles collide with, adhere to or accumulate on a window for introducing the excitation energy beam into the vacuum container and / or an optical element installed in the vacuum container. It is preferable to provide separate ducts for preventing the above-mentioned problems (Claim 5). By providing such a separate duct, it is possible to prevent flying particles, which are emitted or scattered outside the solid angle range and are floating or diffusing in the vacuum container, from colliding, adhering or accumulating on the window and / or the optical element. Therefore, it is possible to further increase the effect of preventing damage to the optical element and performance degradation.

【0021】また、前記別ダクトには、ガス導入口を設
けることが好ましい(請求項6)。このガス導入口から
別ダクト内にガスを導入することにより、別ダクト内に
入り込んできた飛散粒子が導入したガス分子との衝突に
より減速、停止させられ、別ダクト外に排出される。そ
して、排出された飛散粒子は、前記真空排気装置に接続
されたダクトに取り込まれて排気されることにより、或
いは、真空容器に接続されている真空排気装置により排
気されることにより、真空容器外に排出される。
Further, it is preferable that a gas inlet is provided in the separate duct (claim 6). By introducing the gas from the gas introduction port into the different duct, the scattered particles that have entered the different duct are decelerated and stopped due to collision with the introduced gas molecules, and are discharged to the outside of the different duct. Then, the discharged scattered particles are taken out of the vacuum container by being taken into a duct connected to the vacuum exhaust device and exhausted, or by being exhausted by a vacuum exhaust device connected to the vacuum container. Is discharged to.

【0022】即ち、本発明のX線装置(請求項6)によ
れば、別ダクト内に入り込んできた飛散粒子が光学素子
に衝突、付着、堆積する確率が非常に低いので、光学素
子の損傷及び性能低下を防止する効果をさらに一層増大
させることができる。また、前記別ダクト内にバッフル
を設けることが好ましい(請求項7)。別ダクト内に入
り込んできた飛散粒子が前記バッフルにより遮られて、
光学素子への衝突、付着、堆積が防止されるので、光学
素子の損傷及び性能低下を防止する効果を増大させるこ
とができる。
That is, according to the X-ray apparatus of the present invention (claim 6), the probability that the scattered particles that have entered the separate duct will collide with, adhere to, or be deposited on the optical element is very low, so that the optical element is damaged. Also, the effect of preventing performance degradation can be further increased. Moreover, it is preferable to provide a baffle in the separate duct (claim 7). The scattered particles that have entered the separate duct are blocked by the baffle,
Since collision, adhesion, and deposition on the optical element are prevented, the effect of preventing damage and performance deterioration of the optical element can be increased.

【0023】また、本発明のX線装置においては、飛散
粒子を遮蔽する飛散粒子遮蔽部材をプラズマの近傍に設
け、かつ、該飛散粒子遮蔽部材に励起エネルギービーム
が通過する第1開口部、取り出されるX線が通過する第
2開口部、及び前記ダクトの内部に向かう飛散粒子が通
過する第3開口部を設けることが好ましい(請求項
8)。
Further, in the X-ray apparatus of the present invention, a scattered particle shielding member for shielding scattered particles is provided in the vicinity of the plasma, and the first opening through which the excitation energy beam passes through the scattered particle shielding member is taken out. It is preferable to provide a second opening through which the X-rays that pass through and a third opening through which particles that fly toward the inside of the duct pass.

【0024】かかる飛散粒子遮蔽部材を設けることによ
り、不都合な方向への飛散粒子の放出がなくなるので、
光学素子の損傷及び性能低下を防止する効果を増大させ
ることができる。また、真空容器内にガスを導入する場
合でも、飛散粒子遮蔽部材を設けることにより、ガス分
子との衝突により散乱して真空容器を浮遊、拡散する飛
散粒子の量が減少するので、光学素子の損傷及び性能低
下を防止する効果を増大させることができる。
By providing such a scattered particle shielding member, the emission of scattered particles in an inconvenient direction is eliminated,
The effect of preventing damage to the optical element and performance degradation can be increased. Further, even when introducing a gas into the vacuum container, by providing a scattered particle shielding member, the amount of scattered particles scattered by collision with gas molecules and floating and diffusing in the vacuum container is reduced. The effect of preventing damage and performance degradation can be increased.

【0025】また、本発明のX線装置においては、飛散
粒子の放出量の方向分布を制御する飛散粒子制御部材を
前記プラズマの近傍に設けることが好ましい(請求項
9)。さらに、前記飛散粒子制御部材に、前記X線を取
り出す方向への前記飛散粒子の放出量を低減させ、かつ
前記ダクトの内部に向かう飛散粒子の放出量を増大させ
る形状部分を設けることが好ましい(請求項10)。
Further, in the X-ray apparatus of the present invention, it is preferable to provide a scattered particle control member for controlling the directional distribution of the emitted amount of the scattered particles in the vicinity of the plasma (claim 9). Further, it is preferable that the scattered particle control member is provided with a shape portion that reduces the amount of the scattered particles emitted in the direction in which the X-rays are taken out and increases the amount of the scattered particles that are directed toward the inside of the duct ( Claim 10).

【0026】かかる飛散粒子制御部材をプラズマ近傍に
設けることにより、例えば、飛散粒子放出量の角度分布
を標的部材の励起エネルギービーム照射位置における法
線方向(標的面の法線方向)に集中させ、それ以外の方
向への放出量を減少させることができる。そのため、励
起エネルギービームの入射方向や、X線取り出し方向へ
の飛散粒子放出量が少なくなり、その方向に配置されて
いる光学素子に飛散粒子が衝突、付着、堆積する確率を
低減できる。
By providing such a scattered particle control member in the vicinity of the plasma, for example, the angular distribution of the scattered particle emission amount is concentrated in the normal direction at the excitation energy beam irradiation position of the target member (the normal direction of the target surface), The amount discharged in other directions can be reduced. Therefore, the amount of scattered particles emitted in the incident direction of the excitation energy beam or in the X-ray extraction direction is reduced, and the probability that scattered particles collide, adhere, or accumulate on the optical element arranged in that direction can be reduced.

【0027】しかも、放出量が増大する方向(例えば、
法線方向)へと向かう飛散粒子は、ダクト内に取り込ま
れたり、真空容器外に排出されるので、かかる飛散粒子
がガス分子との衝突により散乱、拡散、浮遊して、周辺
に配置されている光学素子に衝突、付着、堆積すること
を防止できる。即ち、本発明のX線装置(請求項9、1
0)によれば、光学素子の損傷及び性能低下を防止する
効果を増大させることができる。
Moreover, the direction in which the release amount increases (for example,
Particles flying toward the (normal direction) are taken into the duct or discharged to the outside of the vacuum container, so these particles are scattered, diffused, and suspended by collision with gas molecules, and are scattered around. It is possible to prevent the optical element from colliding with, adhering to, or accumulating. That is, the X-ray apparatus of the present invention (claims 1, 1)
According to 0), it is possible to increase the effect of preventing damage to the optical element and performance degradation.

【0028】以下、本発明を実施例により更に詳細に説
明するが、本発明はこれらの例に限定されるものではな
い。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0029】[0029]

【実施例】【Example】

〔実施例1〕図1は本実施例のX線発生装置の概略構成
図である。レーザー光(励起エネルギービームの一例)
103は、集光光学素子(不図示)により、窓102を
通して標的部材104上に集光され、プラズマ105を
生成する。
[Embodiment 1] FIG. 1 is a schematic configuration diagram of an X-ray generator according to the present embodiment. Laser light (an example of excitation energy beam)
103 is condensed on the target member 104 through the window 102 by a condensing optical element (not shown) to generate plasma 105.

【0030】このプラズマから発生したX線の一部10
7を可視光カットX線透過膜(例えばBe膜)108を
透過させた後、他のX線光学素子(例えばX線多層膜ミ
ラーなど)へと導いている。本実施例においては、飛散
粒子106の放出量がもっとも多い、標的部材104の
レーザー照射位置(部位)における標的面の法線方向に
中心軸を有するダクト109を設置して飛散粒子をダク
ト内に取り込み、散乱部材110により散乱させて、ダ
クト内で多数回反射させる。
Part of X-rays generated from this plasma 10
After passing through the visible light cut X-ray transmission film (for example, Be film) 108, it is guided to another X-ray optical element (for example, X-ray multilayer film mirror). In this embodiment, the duct 109 having the central axis in the normal line direction of the target surface at the laser irradiation position (site) of the target member 104, which has the largest emission amount of the scattered particles 106, is installed, and the scattered particles are introduced into the duct. It is taken in, scattered by the scattering member 110, and reflected many times in the duct.

【0031】ダクト内で多数回反射を繰り返しているう
ちに、飛散粒子はその運動エネルギーを失い、ダクト内
壁に付着するか、或いはダクト内に堆積する。このと
き、ダクト内部に図1に示すようなバッフルを設けるこ
とにより、一旦ダクト内に入った飛散粒子は外部に出に
くくなるので、効率的に飛散粒子をダクト内に捕獲でき
る。
While being repeatedly reflected in the duct many times, the scattered particles lose their kinetic energy and adhere to the inner wall of the duct or accumulate in the duct. At this time, by providing the baffle as shown in FIG. 1 inside the duct, the scattered particles once entering the duct are less likely to come out, so that the scattered particles can be efficiently captured in the duct.

【0032】ダクト109は、レーザー光103及び取
り出すX線107を遮らない状態にて、標的部材104
にできる限り接近させて設けている。即ち、ダクト10
9をこのように設置することにより、飛散粒子の取り込
み立体角が大きくなって、殆どの飛散粒子は、ダクト1
09内に入射することになる。従って、本実施例のX線
発生装置によれば、真空容器内に配置された光学素子
(レーザー光導入窓102、可視光カットX線透過膜1
08)への飛散粒子の衝突、付着、堆積を十分に抑制す
ることが可能であり、その結果、光学素子の損傷及び性
能低下を十分に防止することができる。
The duct 109 does not block the laser beam 103 and the X-ray 107 to be extracted, and the target member 104.
It is installed as close as possible to. That is, the duct 10
By installing 9 in this way, the solid angle of entrainment of scattered particles becomes large, and most of the scattered particles are
It will be incident within 09. Therefore, according to the X-ray generator of the present embodiment, the optical element (laser light introduction window 102, visible light cut X-ray transmission film 1) arranged in the vacuum container is provided.
It is possible to sufficiently suppress the collision, adhesion, and deposition of the scattered particles on the surface 08), and as a result, it is possible to sufficiently prevent the optical element from being damaged and the performance from being deteriorated.

【0033】本実施例ではダクト内部に散乱部材110
を設けたが、ゴムなどの弾性体を捕獲部材として設け、
該部材に飛散粒子を衝突させることにより、飛散粒子を
捕獲するようにしても良い。 〔実施例2〕図2は本実施例のX線発生装置の概略構成
図である。
In this embodiment, the scattering member 110 is provided inside the duct.
However, an elastic body such as rubber is provided as a capture member,
The scattered particles may be captured by colliding them with the scattered particles. [Embodiment 2] FIG. 2 is a schematic configuration diagram of an X-ray generator according to the present embodiment.

【0034】レーザー光(励起エネルギービームの一
例)203は、集光光学素子(不図示)により、窓20
2を通して標的部材204上に集光され、プラズマ20
5を生成する。このプラズマから発生したX線の一部2
07を可視光カットX線透過膜(例えばBe膜)208
を透過させた後、他のX線光学素子(例えばX線多層膜
ミラーなど)へと導いている。
Laser light (an example of an excitation energy beam) 203 is emitted from the window 20 by a condensing optical element (not shown).
2 is focused on the target member 204 through the plasma 20
5 is generated. Part of X-rays generated from this plasma 2
07 is a visible light cut X-ray transmission film (eg, Be film) 208
After being transmitted, it is guided to another X-ray optical element (for example, an X-ray multilayer mirror).

【0035】本実施例においては、飛散粒子206の放
出量がもっとも多い、標的部材204のレーザー照射位
置(部位)における標的面の法線方向に中心軸を有する
ダクト209を設置して飛散粒子をダクト内に取り込
み、第1の真空排気装置(不図示)により真空容器外に
飛散粒子を排出している。真空容器201内は予め、真
空容器201に直接接続されている第2の真空排気装置
(不図示)により所定の真空度まで排気され、その後は
真空容器201と第2真空排気装置をつなぐバルブが閉
められて、ダクト209に接続されている第1真空排気
装置により排気される。
In the present embodiment, the duct 209 having the central axis in the direction normal to the target surface at the laser irradiation position (site) of the target member 204 where the emitted amount of the scattered particles 206 is the largest is installed to disperse the scattered particles. The particles are taken into the duct and scattered particles are discharged to the outside of the vacuum container by a first vacuum exhaust device (not shown). The inside of the vacuum container 201 is evacuated to a predetermined vacuum degree in advance by a second vacuum exhaust device (not shown) directly connected to the vacuum container 201, and then a valve connecting the vacuum container 201 and the second vacuum exhaust device is installed. It is closed and exhausted by the first vacuum exhaust device connected to the duct 209.

【0036】ダクト209は、レーザー光203及び取
り出すX線207を遮らない状態にて、標的部材204
にできる限り接近させて設けている。即ち、ダクト20
9をこのように設置することにより、飛散粒子の取り込
み立体角が大きくなって、殆どの飛散粒子はダクト20
9内に入射することになる。そして、ダクト209内に
入った飛散粒子は、第1真空排気装置により真空容器2
01外へ排出される。
The duct 209 does not block the laser beam 203 and the X-ray 207 to be extracted, and the target member 204.
It is installed as close as possible to. That is, the duct 20
By installing 9 in this way, the solid angle at which the scattered particles are taken in is increased, and most of the scattered particles are in the duct 20.
It will be incident within 9. The scattered particles that have entered the duct 209 are evacuated to the vacuum container 2 by the first vacuum exhaust device.
01 is discharged to the outside.

【0037】従って、本実施例のX線発生装置によれ
ば、真空容器内に配置された光学素子(レーザー光導入
窓202、可視光カットX線透過膜208)への飛散粒
子の衝突、付着、堆積を十分に抑制することが可能であ
り、その結果、光学素子の損傷及び性能低下を十分に防
止することができる。 〔実施例3〕図3は本実施例のX線発生装置の概略構成
図である。
Therefore, according to the X-ray generator of this embodiment, the scattered particles collide with and adhere to the optical elements (laser light introduction window 202, visible light cut X-ray transmission film 208) arranged in the vacuum container. As a result, it is possible to sufficiently suppress the deposition, and as a result, it is possible to sufficiently prevent the damage and performance deterioration of the optical element. [Embodiment 3] FIG. 3 is a schematic configuration diagram of an X-ray generator according to the present embodiment.

【0038】本実施例でも実施例1と同様に、飛散粒子
306が多く放出される標的面の法線方向に中心軸を有
するダクト309を標的部材304にできる限り接近さ
せて設けているので、飛散粒子の取り込み立体角が大き
くなって、殆どの飛散粒子は、ダクト309内に入射し
て取り込まれることになる。そして、ダクト309内に
入った飛散粒子は、真空排気装置により真空容器301
外へ排出される。
In this embodiment as well, as in the first embodiment, since the duct 309 having the central axis in the direction normal to the target surface from which many scattered particles 306 are emitted is provided as close to the target member 304 as possible, Inclusion of scattered particles The solid angle becomes large, and most of the scattered particles are incident on and taken into the duct 309. Then, the scattered particles that have entered the duct 309 are evacuated by the vacuum exhaust device 301 to the vacuum container 301.
It is discharged outside.

【0039】本実施例では、真空容器301にガス導入
口310を設けて、このガス導入口からガスを真空容器
301内に導入している他は、実施例2のX線発生装置
と全く同一の構成を有する。導入するガスとしては、希
ガス(He,Ne,Ar,Kr,Xe,Rn)や窒素、
酸素、空気などが使用可能であるが、これらに限定され
るものではない。
In this embodiment, the gas introducing port 310 is provided in the vacuum container 301, and the gas is introduced into the vacuum container 301 from this gas introducing port. It has the configuration of. As a gas to be introduced, a rare gas (He, Ne, Ar, Kr, Xe, Rn) or nitrogen,
Oxygen, air, etc. can be used, but not limited to these.

【0040】真空容器内のガスの圧力は、レーザー光が
標的に到達する前にブレークダウンせずに、使用しよう
としている波長のX線の透過率が十分に高く、しかも飛
散粒子を効果的に減速できる圧力であれば良く、例えば
0.001〜数十Torr程度である。真空容器301内に
ガスを充填させることにより、飛散粒子はガス分子と衝
突を繰り返し、次第にその速度を低下させるとともに、
ランダムな方向に散乱される。
The gas pressure in the vacuum container is such that the laser light does not break down before reaching the target, the transmittance of the X-ray of the wavelength to be used is sufficiently high, and the scattered particles are effective. Any pressure that can decelerate, for example,
It is about 0.001 to several tens of Torr. By filling the gas in the vacuum container 301, the scattered particles repeatedly collide with gas molecules, gradually reducing the speed, and
Scattered in random directions.

【0041】前述したように、実施例2と同様に、殆ど
の飛散粒子306はダクト309内に取り込まれて、真
空容器外に排出されるので、真空容器301内に拡散、
浮遊する飛散粒子の量は低減される。さらに、ガスを導
入口310から導入すると共にダクト309から真空排
気装置により排気しているので、プラズマ305近傍か
らダクト309内に向かってガス流311が生じる。
As described above, as in the second embodiment, most of the scattered particles 306 are taken into the duct 309 and discharged to the outside of the vacuum container, so that they diffuse into the vacuum container 301.
The amount of airborne particles is reduced. Further, since the gas is introduced from the inlet 310 and is exhausted from the duct 309 by the vacuum exhaust device, a gas flow 311 is generated from the vicinity of the plasma 305 into the duct 309.

【0042】そして、ダクト309外に放出または散乱
され、ガスにより減速されて拡散、浮遊している飛散粒
子がガス流311にのってダクト309内に吸い込まれ
る。ダクト内に吸い込まれて取り込まれた飛散粒子は、
ダクトに接続された真空排気装置により真空容器外に排
出される。そのため、本実施例では、真空容器301内
に拡散、浮遊する飛散粒子を実施例2よりもさらに低減
して、光学素子(レーザー光導入窓302、可視光カッ
トX線透過膜308)に衝突、付着、堆積する飛散粒子
の量をさらに低減できる。
Then, the scattered particles that are emitted or scattered outside the duct 309, are decelerated by the gas and are diffused and suspended are sucked into the duct 309 along the gas flow 311. The scattered particles sucked into the duct and taken in are
It is discharged to the outside of the vacuum container by a vacuum exhaust device connected to the duct. Therefore, in the present embodiment, scattered particles that are diffused and suspended in the vacuum container 301 are further reduced as compared with the second embodiment, and collide with the optical element (laser light introduction window 302, visible light cut X-ray transmission film 308), The amount of scattered particles that adhere and accumulate can be further reduced.

【0043】即ち、本実施例のX線発生装置によれば、
飛散粒子の速度を導入ガスにより減衰させ、更にその飛
散粒子を真空排気装置に接続されたダクトにより真空容
器外に排出するので、真空容器内に配置された光学素子
への飛散粒子の衝突、付着、堆積をさらに抑制して、光
学素子の損傷及び性能低下を防止する効果を増大させる
ことができる。 〔実施例4〕図4は本実施例のX線発生装置の概略構成
図である。
That is, according to the X-ray generator of this embodiment,
The velocity of the scattered particles is attenuated by the introduced gas, and the scattered particles are discharged to the outside of the vacuum container by the duct connected to the vacuum exhaust device, so that the scattered particles collide with and adhere to the optical element arranged in the vacuum container. Further, it is possible to further suppress the deposition and increase the effect of preventing damage to the optical element and performance deterioration. [Embodiment 4] FIG. 4 is a schematic configuration diagram of an X-ray generator according to the present embodiment.

【0044】本実施例のX線発生装置は、レーザー光導
入窓402及び可視光カットX線透過膜408を覆う別
ダクト413、412をそれぞれ設けた他は、実施例3
のX線装置と全く同一の構成を有する。本実施例では、
この様に光学素子の周囲を別ダクトで覆うことにより真
空容器内に拡散、浮遊する飛散粒子が、周囲から回り込
み、これら光学素子に衝突、付着、堆積するのを抑制す
る効果がある。
The X-ray generator of this embodiment is different from that of the third embodiment except that separate ducts 413 and 412 for covering the laser light introducing window 402 and the visible light cutting X-ray transmitting film 408 are provided.
The X-ray apparatus has exactly the same configuration. In this embodiment,
By covering the periphery of the optical element with another duct in this manner, it is possible to prevent scattered particles that are diffused and suspended in the vacuum container from coming from the periphery and colliding, adhering, and accumulating on these optical elements.

【0045】即ち、本実施例のX線発生装置によれば、
ダクト内部に向かって飛散粒子が放出される前記立体角
範囲以外に放出または散乱されて真空容器内に浮遊、拡
散している飛散粒子が前記窓及び/または光学素子に衝
突、付着または堆積するのを防止することができるの
で、光学素子の損傷及び性能低下を防止する効果をさら
に増大させることができる。 〔実施例5〕図5は本実施例のX線発生装置の概略構成
図である。
That is, according to the X-ray generator of this embodiment,
The scattered particles that are emitted or scattered outside the solid angle range where the scattered particles are emitted toward the inside of the duct and are floating and diffusing in the vacuum container collide with, adhere to or accumulate on the window and / or the optical element. Therefore, the effect of preventing damage to the optical element and performance degradation can be further increased. [Embodiment 5] FIG. 5 is a schematic configuration diagram of an X-ray generator according to the present embodiment.

【0046】本実施例のX線発生装置は、レーザー光導
入窓502及び可視光カットX線透過膜508を覆うよ
うに取り付けた別ダクト513、512にガス導入口5
10をそれぞれ設けた他は、実施例4のX線装置と全く
同一の構成を有する。本実施例では、ガス導入口510
から別ダクト512、513内にガスを導入することに
より、別ダクト内に入り込んできた飛散粒子が導入した
ガス分子との衝突により減速、停止させられ、別ダクト
外に排出される。そして、排出された飛散粒子は、前記
真空排気装置に接続されたダクト509に取り込まれ、
真空容器外へ排出される。
In the X-ray generator of this embodiment, the gas introduction port 5 is provided in separate ducts 513 and 512 attached so as to cover the laser light introduction window 502 and the visible light cut X-ray transmission film 508.
The X-ray apparatus has the same configuration as that of the X-ray apparatus according to the fourth embodiment except that the respective 10 are provided. In this embodiment, the gas inlet 510
By introducing the gas into the separate ducts 512 and 513 from the above, the scattered particles that have entered the separate duct are decelerated and stopped due to the collision with the introduced gas molecules, and are discharged to the outside of the separate duct. Then, the discharged scattered particles are taken into the duct 509 connected to the vacuum exhaust device,
It is discharged to the outside of the vacuum container.

【0047】即ち、本実施例のX線発生装置によれば、
別ダクト内に入り込んできた飛散粒子が光学素子に衝
突、付着、堆積する確率が非常に低いので、光学素子の
損傷及び性能低下を防止する効果をさらに一層増大させ
ることができる。 〔実施例6〕図6は本実施例のX線発生装置の概略構成
図である。
That is, according to the X-ray generator of this embodiment,
The probability that scattered particles that have entered the separate duct will collide with, adhere to, or accumulate on the optical element is very low, so that the effect of preventing damage to the optical element and performance degradation can be further increased. [Sixth Embodiment] FIG. 6 is a schematic configuration diagram of an X-ray generator according to the present embodiment.

【0048】本実施例のX線発生装置は、飛散粒子60
6を遮蔽する飛散粒子遮蔽部材612をプラズマ605
の近傍に設け、かつ該飛散粒子遮蔽部材612にレーザ
ー光603が通過する第1開口部、取り出されるX線6
07が通過する第2開口部、及びダクト609の内部に
向かう飛散粒子が通過する第3開口部を設けた他は、実
施例3のX線装置と全く同一の構成を有する。
The X-ray generator according to this embodiment uses scattered particles 60.
6, the scattered particle shielding member 612 for shielding the plasma 6
And a first opening through which the laser beam 603 passes through the scattered particle shielding member 612, and the X-ray 6 to be extracted.
The X-ray apparatus has exactly the same configuration as the X-ray apparatus of the third embodiment except that a second opening through which 07 passes and a third opening through which scattered particles toward the inside of the duct 609 pass are provided.

【0049】かかる飛散粒子遮蔽部材612を設けるこ
とにより、真空容器601内に放出される飛散粒子の出
口を部材612に開けられた開口だけに制限して、不都
合な方向への飛散粒子の放出がなくなるので、真空容器
601内に散乱して拡散、浮遊する飛散粒子量を低減で
きる。そのため、飛散粒子が光学素子(レーザー光導入
窓602、可視光カットX線透過膜608)に衝突、付
着、堆積するのを抑制して、光学素子の損傷及び性能低
下を防止する効果を増大させることができる。
By providing such a scattered particle shielding member 612, the outlet of the scattered particles discharged into the vacuum container 601 is limited to only the opening formed in the member 612, so that the scattered particles can be discharged in an inconvenient direction. Since it is eliminated, it is possible to reduce the amount of scattered particles scattered, diffused, and suspended in the vacuum container 601. Therefore, scattering particles are prevented from colliding with, adhering to, and accumulating on the optical element (laser light introduction window 602, visible light cut X-ray transmission film 608), and the effect of preventing damage to the optical element and performance deterioration is increased. be able to.

【0050】また、真空容器内にガスを導入する場合で
も、飛散粒子遮蔽部材612を設けることにより、ガス
分子との衝突により散乱して真空容器を浮遊、拡散する
飛散粒子の量が減少するので、光学素子の損傷及び性能
低下を防止する効果を増大させることができる。なお、
本実施例では、X線取り出し用の開口は1カ所であった
が、複数あってもかまわない。 〔実施例7〕図7(b)は本実施例のX線発生装置の概
略構成図である。
Even when the gas is introduced into the vacuum container, by providing the scattered particle shielding member 612, the amount of scattered particles scattered by the collision with gas molecules and floating and diffusing in the vacuum container is reduced. The effect of preventing damage to the optical element and performance degradation can be increased. In addition,
In this embodiment, there is one opening for X-ray extraction, but there may be a plurality of openings. [Embodiment 7] FIG. 7B is a schematic configuration diagram of an X-ray generator of the present embodiment.

【0051】本実施例のX線発生装置は、飛散粒子70
6の放出量の方向分布を制御する飛散粒子制御部材71
4であり、X線707を取り出す方向への飛散粒子の放
出量を低減させ、かつダクト709の内部に向かう飛散
粒子の放出量を増大させる形状部分(図7aの斜視断面
参照)を有する飛散粒子制御部材714をプラズマ70
5の近傍に設けた他は、実施例5のX線発生装置と全く
同一の構成を有する。
The X-ray generator according to this embodiment uses scattered particles 70
Scattering particle control member 71 for controlling the directional distribution of the discharge amount of 6
4 is a scattering particle having a shape portion (see a perspective cross-section of FIG. 7a) that reduces the amount of scattering particles emitted in the direction of extracting X-rays 707 and increases the amount of scattering particles that are directed toward the inside of duct 709. Control member 714 plasma 70
5, the X-ray generator of the fifth embodiment has the same structure as that of the X-ray generator of the fifth embodiment.

【0052】かかる飛散粒子制御部材714をプラズマ
705近傍に設けることにより、飛散粒子放出量の角度
分布を標的部材704のレーザー光照射位置における法
線方向(標的面の法線方向)に集中させ、それ以外の方
向への放出量を減少させることができる。即ち、プラズ
マ705及び/または標的部材704から放出される飛
散粒子と飛散粒子制御部材714との衝突により、或い
は飛散粒子との衝突により飛散粒子制御部材714から
放出された粒子と飛散粒子の衝突等により、放出される
飛散粒子量の角度分布は、標的面の法線方向に鋭い指向
性を示すようになり、法線から大きな角度の方向(例え
ば45°以上)への飛散粒子量は減少する。
By providing the scattered particle control member 714 in the vicinity of the plasma 705, the angular distribution of the scattered particle emission amount is concentrated in the normal direction of the laser light irradiation position of the target member 704 (the normal direction of the target surface), The amount discharged in other directions can be reduced. That is, the collision between the flying particles emitted from the plasma 705 and / or the target member 704 and the flying particle control member 714, or the collision of the flying particles with the flying particles control member 714, etc. As a result, the angular distribution of the amount of scattered particles emitted shows a sharp directivity in the direction of the normal to the target surface, and the amount of scattered particles in the direction of a large angle (for example, 45 ° or more) from the normal decreases. .

【0053】そのため、レーザー光703の入射方向
や、X線707の取り出し方向への飛散粒子放出量が少
なくなり、別ダクト712、713内へ入り込む飛散粒
子量が減少して、飛散粒子が光学素子(レーザー光導入
窓702、可視光カットX線透過膜708)に衝突、付
着、堆積する確率を低減できる。しかも、放出量が増大
する法線方向へと向かう飛散粒子は、真空排気装置に接
続されたダクト709に取り込まれ、真空容器701外
に排出されるので、かかる飛散粒子がガス分子との衝突
により散乱、拡散、浮遊して、周辺に配置されている光
学素子に衝突、付着、堆積することを防止できる。
Therefore, the amount of scattered particles emitted in the incident direction of the laser beam 703 and the extraction direction of the X-ray 707 is reduced, the amount of scattered particles entering the separate ducts 712 and 713 is reduced, and the scattered particles are an optical element. It is possible to reduce the probability of colliding, adhering, or accumulating on (laser light introduction window 702, visible light cut X-ray transmission film 708). Moreover, the scattered particles heading in the direction of the normal to which the amount of emission increases are taken into the duct 709 connected to the vacuum exhaust device and discharged to the outside of the vacuum container 701. Therefore, the scattered particles collide with gas molecules. It can be prevented from scattering, diffusing, and floating and colliding, adhering, and accumulating on the optical elements arranged in the periphery.

【0054】即ち、本実施例のX線発生装置によれば、
光学素子の損傷及び性能低下を防止する効果をさらに増
大させることができる。 〔実施例8〕図8は本実施例のX線発生装置の概略構成
図である。本実施例のX線発生装置は、光学素子を覆う
別ダクト812、813の内部にバッフルを設けた他
は、実施例7のX線発生装置と全く同一の構成を有す
る。
That is, according to the X-ray generator of this embodiment,
The effect of preventing damage to the optical element and performance degradation can be further increased. [Embodiment 8] FIG. 8 is a schematic diagram of an X-ray generator according to the present embodiment. The X-ray generator of this embodiment has exactly the same structure as the X-ray generator of Embodiment 7 except that baffles are provided inside the separate ducts 812 and 813 that cover the optical elements.

【0055】別ダクト内部にバッフルを設けることによ
り、別ダクト内に入り込んできた飛散粒子が前記バッフ
ルにより遮られて、光学素子への衝突、付着、堆積が防
止されるので、光学素子の損傷及び性能低下を防止する
効果をさらに増大させることができる。以上の実施例で
は、標的部材の形状は板状であったが、テープ状、ロッ
ド状、線状、箔状でもかまわない。また、ダクトの形状
は、円筒状、円錐筒状、または立方体(筒状)でも良い
(任意形状でよい)。
By providing the baffle inside the separate duct, the scattered particles that have entered the separate duct are blocked by the baffle to prevent the particles from colliding with, adhering to, or accumulating on the optical element. The effect of preventing performance deterioration can be further increased. In the above examples, the target member has a plate shape, but may have a tape shape, a rod shape, a linear shape, or a foil shape. Moreover, the shape of the duct may be a cylindrical shape, a conical cylindrical shape, or a cube (cylindrical shape) (it may be any shape).

【0056】[0056]

【発明の効果】以上のように、本発明のX線発生装置
(請求項1〜10)によれば、真空容器内に配置された光
学素子、特にプラズマ近傍に配置された光学素子への飛
散粒子の衝突、付着、堆積を十分に抑制することが可能
であり、その結果、光学素子の損傷及び性能低下を十分
に防止することができる。
As described above, according to the X-ray generator of the present invention (claims 1 to 10), the scattering to the optical element arranged in the vacuum container, particularly to the optical element arranged in the vicinity of the plasma. It is possible to sufficiently suppress collision, adhesion, and accumulation of particles, and as a result, it is possible to sufficiently prevent damage to the optical element and performance deterioration.

【0057】また、本発明のX線装置(請求項4)によ
れば、飛散粒子の速度を導入ガスにより減衰させ、更に
その飛散粒子を真空排気装置に接続されたダクトにより
真空容器外に排出するので、前記飛散粒子の衝突、付
着、堆積を抑制する効果及び光学素子の損傷及び性能低
下を防止する効果を増大させることができる。また、本
発明のX線装置(請求項5)によれば、ダクト内部に向
かって飛散粒子が放出される前記立体角範囲以外に放出
または散乱されて真空容器内に浮遊、拡散している飛散
粒子が前記窓及び/または光学素子に衝突、付着または
堆積するのを防止することができるので、光学素子の損
傷及び性能低下を防止する効果をさらに増大させること
ができる。
Further, according to the X-ray apparatus of the present invention (claim 4), the velocity of the scattered particles is attenuated by the introduced gas, and the scattered particles are discharged to the outside of the vacuum container by the duct connected to the vacuum exhaust device. Therefore, the effect of suppressing the collision, adhesion, and deposition of the scattered particles and the effect of preventing damage and performance deterioration of the optical element can be increased. Further, according to the X-ray device of the present invention (claim 5), the scattering particles are emitted or scattered outside the solid angle range in which the scattered particles are discharged toward the inside of the duct, and are scattered or scattered in the vacuum container. Since the particles can be prevented from colliding with, adhering to, or accumulating on the window and / or the optical element, the effect of preventing damage to the optical element and deterioration of the performance can be further increased.

【0058】また、本発明のX線装置(請求項6)によ
れば、別ダクト内に入り込んできた飛散粒子が光学素子
に衝突、付着、堆積する確率が非常に低いので、光学素
子の損傷及び性能低下を防止する効果をさらに一層増大
させることができる。また、本発明のX線装置(請求項
7)によれば、別ダクト内に入り込んできた飛散粒子が
前記バッフルにより遮られて、光学素子への衝突、付
着、堆積が防止されるので、光学素子の損傷及び性能低
下を防止する効果を増大させることができる。
Further, according to the X-ray apparatus of the present invention (claim 6), the probability that the scattered particles that have entered the separate duct will collide with, adhere to, or accumulate on the optical element is very low, so the optical element is damaged. Also, the effect of preventing performance degradation can be further increased. Further, according to the X-ray apparatus of the present invention (claim 7), the scattered particles that have entered the separate duct are blocked by the baffle to prevent collision, adhesion and deposition on the optical element. The effect of preventing damage to the device and performance degradation can be increased.

【0059】また、本発明のX線装置(請求項8)によ
れば、不都合な方向への飛散粒子の放出がなくなるの
で、光学素子の損傷及び性能低下を防止する効果を増大
させることができる。また、真空容器内にガスを導入す
る場合でも、飛散粒子遮蔽部材を設けることにより、ガ
ス分子との衝突により散乱して真空容器を浮遊、拡散す
る飛散粒子の量が減少するので、光学素子の損傷及び性
能低下を防止する効果を増大させることができる。
Further, according to the X-ray apparatus of the present invention (claim 8), since the scattering particles are not emitted in an inconvenient direction, it is possible to increase the effect of preventing damage to the optical element and performance deterioration. . Further, even when introducing a gas into the vacuum container, by providing a scattered particle shielding member, the amount of scattered particles scattered by collision with gas molecules and floating and diffusing in the vacuum container is reduced. The effect of preventing damage and performance degradation can be increased.

【0060】また、本発明のX線装置(請求項9、10)
によれば、光学素子の損傷及び性能低下を防止する効果
を増大させることができる。
The X-ray apparatus of the present invention (claims 9 and 10)
According to this, it is possible to increase the effect of preventing damage and performance deterioration of the optical element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は実施例1のX線発生装置の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of an X-ray generator according to a first embodiment.

【図2】は実施例2のX線発生装置の概略構成図であ
る。
FIG. 2 is a schematic configuration diagram of an X-ray generator according to a second embodiment.

【図3】は実施例3のX線発生装置の概略構成図であ
る。
FIG. 3 is a schematic configuration diagram of an X-ray generator according to a third embodiment.

【図4】は実施例4のX線発生装置の概略構成図であ
る。
FIG. 4 is a schematic configuration diagram of an X-ray generator according to a fourth embodiment.

【図5】は実施例5のX線発生装置の概略構成図であ
る。
FIG. 5 is a schematic configuration diagram of an X-ray generator according to a fifth embodiment.

【図6】は実施例6のX線発生装置の概略構成図であ
る。
FIG. 6 is a schematic configuration diagram of an X-ray generator according to a sixth embodiment.

【図7】は実施例7のX線発生装置の概略構成図(b)
と、部材714の断面斜視図(a)である。
FIG. 7 is a schematic configuration diagram (b) of an X-ray generator according to a seventh embodiment.
FIG. 7A is a sectional perspective view of the member 714.

【図8】は実施例8のX線発生装置の概略構成図であ
る。
FIG. 8 is a schematic configuration diagram of an X-ray generator according to an eighth embodiment.

【主要部分の符号の説明】[Description of Signs of Main Parts]

101,201,301,401,501,601,7
01,801…真空容器 102,202,302,402,502,602,7
02,802…レーザー光導入窓 103,203,303,403,503,603,7
03,803…レーザー光 104,204,304,404,504,604,7
04,804…標的部材 105,205,305,405,505,605,7
05,805…プラズマ 106,206,306,406,506,606,7
06,806…飛散粒子 107,207,307,407,507,607,7
07,807…利用する(取り出す)X線 108,208,308,408,508,608,7
08,808…可視光カットX線透過膜 109,209,309,409,509,609,7
09,809…ダクト 110…散乱部材 310,410,510,610,710,810…ガ
ス導入口 311,411,511,611,711,811…ガ
ス流 412,512,712,812…別ダクト 612…飛散粒子遮蔽部材 413,513,713,813…別ダクト 714,814…飛散粒子制御部材 以上
101, 201, 301, 401, 501, 601, 7
01,801 ... Vacuum container 102,202,302,402,502,602,7
02, 802 ... Laser light introduction window 103, 203, 303, 403, 503, 603, 7
03,803 ... Laser light 104,204,304,404,504,604,7
04,804 ... Target member 105,205,305,405,505,605,7
05,805 ... Plasma 106,206,306,406,506,606,7
06,806 ... Scattered particles 107,207,307,407,507,607,7
07,807 ... X-rays to be used (extracted) 108, 208, 308, 408, 508, 608, 7
08,808 ... Visible light cut X-ray transmission film 109, 209, 309, 409, 509, 609, 7
09,809 ... Duct 110 ... Scattering member 310, 410, 510, 610, 710, 810 ... Gas inlet 311, 411, 511, 611, 711, 811 ... Gas flow 412, 512, 712, 812 ... Separate duct 612 ... Scattered particle shielding member 413, 513, 713, 813 ... Separate duct 714, 814 ... Scattered particle control member

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 減圧された真空容器内の標的部材に励起
エネルギービームを照射してプラズマを形成させ、該プ
ラズマからX線を取り出すX線発生装置において、 前記標的部材から放出される飛散粒子を取り込むダクト
であり、少なくとも前記標的部材の前記励起エネルギー
ビーム照射位置における法線方向に放出される飛散粒子
を取り込むダクトを設け、さらに該ダクトの内部に前記
飛散粒子を散乱させる散乱部材、及び/または前記飛散
粒子を捕獲する捕獲部材を設けたことを特徴とするX線
発生装置。
1. An X-ray generator for generating plasma by irradiating a target member in a depressurized vacuum container with an excitation energy beam and extracting X-rays from the plasma, wherein scattered particles emitted from the target member are A duct for taking in, at least a duct for taking in scattered particles emitted in the normal direction at the excitation energy beam irradiation position of the target member, and a scattering member for scattering the scattered particles inside the duct, and / or An X-ray generator comprising a trapping member for trapping the scattered particles.
【請求項2】 減圧された真空容器内の標的部材に励起
エネルギービームを照射してプラズマを形成させ、該プ
ラズマからX線を取り出すX線発生装置において、 前記標的部材から放出される飛散粒子を取り込むダクト
であり、少なくとも前記標的部材の前記励起エネルギー
ビーム照射位置における法線方向に放出される飛散粒子
を取り込むダクトを設けて、該ダクトを真空排気装置に
接続したことを特徴とするX線発生装置。
2. An X-ray generator for irradiating an excitation energy beam to a target member in a depressurized vacuum container to form plasma and extracting X-rays from the plasma, wherein scattered particles emitted from the target member are X-ray generation, which is a duct for taking in, and is provided with a duct for taking in scattered particles emitted in a direction normal to at least the excitation energy beam irradiation position of the target member, and connecting the duct to a vacuum exhaust device. apparatus.
【請求項3】 前記ダクトの内部に前記飛散粒子を散乱
させる散乱部材、及び/または前記飛散粒子を捕獲する
捕獲部材を設けたことを特徴とする請求項2記載のX線
発生装置。
3. The X-ray generation apparatus according to claim 2, wherein a scattering member that scatters the scattered particles and / or a trapping member that traps the scattered particles are provided inside the duct.
【請求項4】 前記真空容器内にガスを導入するガス導
入口を前記真空容器に設けたことを特徴とする請求項1
〜3記載のX線発生装置。
4. The vacuum container is provided with a gas inlet for introducing gas into the vacuum container.
X-ray generator of statement.
【請求項5】 前記励起エネルギービームを前記真空容
器内に導入するための窓、及び/または前記真空容器内
に設置された光学素子に、前記飛散粒子が衝突、付着ま
たは堆積するのを防止するための別ダクトをそれぞれ設
けたことを特徴とする請求項1〜4記載のX線発生装
置。
5. The scattered particles are prevented from colliding, adhering or accumulating on a window for introducing the excitation energy beam into the vacuum container and / or an optical element installed in the vacuum container. An X-ray generator according to any one of claims 1 to 4, wherein separate ducts for each are provided.
【請求項6】 前記別ダクトにガス導入口を設けたこと
を特徴とする請求項5記載のX線発生装置。
6. The X-ray generator according to claim 5, wherein a gas inlet is provided in the separate duct.
【請求項7】 前記別ダクト内にバッフルを設けたこと
を特徴とする請求項5または6記載のX線発生装置。
7. The X-ray generator according to claim 5, wherein a baffle is provided in the separate duct.
【請求項8】 前記飛散粒子を遮蔽する飛散粒子遮蔽部
材を前記プラズマの近傍に設け、かつ該飛散粒子遮蔽部
材に前記励起エネルギービームが通過する第1開口部、
前記X線が通過する第2開口部、及び前記ダクトの内部
に向かう飛散粒子が通過する第3開口部を設けたことを
特徴とする請求項1〜7記載のX線発生装置。
8. A first opening for providing a scattering particle shielding member for shielding the scattering particles in the vicinity of the plasma, and passing the excitation energy beam through the scattering particle shielding member,
The X-ray generator according to claim 1, further comprising: a second opening through which the X-rays pass, and a third opening through which particles scattered toward the inside of the duct pass.
【請求項9】 前記飛散粒子の放出量の方向分布を制御
する飛散粒子制御部材を前記プラズマの近傍に設けたこ
とを特徴とする請求項1〜8記載のX線発生装置。
9. The X-ray generator according to claim 1, wherein a scattered particle control member for controlling the directional distribution of the emitted amount of the scattered particles is provided in the vicinity of the plasma.
【請求項10】 前記飛散粒子制御部材は、前記X線を取
り出す方向への前記飛散粒子の放出量を低減させ、かつ
前記ダクトの内部に向かう飛散粒子の放出量を増大させ
る形状部分を有することを特徴とする請求項9記載のX
線発生装置。
10. The scattered particle control member has a shape portion that reduces the emitted amount of the scattered particles in the direction of extracting the X-rays and increases the emitted amount of the scattered particles toward the inside of the duct. X according to claim 9, characterized in that
Line generator.
JP7313964A 1995-12-01 1995-12-01 X-ray generating device Pending JPH09161991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7313964A JPH09161991A (en) 1995-12-01 1995-12-01 X-ray generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7313964A JPH09161991A (en) 1995-12-01 1995-12-01 X-ray generating device

Publications (1)

Publication Number Publication Date
JPH09161991A true JPH09161991A (en) 1997-06-20

Family

ID=18047608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7313964A Pending JPH09161991A (en) 1995-12-01 1995-12-01 X-ray generating device

Country Status (1)

Country Link
JP (1) JPH09161991A (en)

Similar Documents

Publication Publication Date Title
EP2984907B1 (en) Debris protection system for reflective optic utilizing gas flow
US6377651B1 (en) Laser plasma source for extreme ultraviolet lithography using a water droplet target
JP2002313598A (en) Debris eliminator, light source and exposure device
TW201630477A (en) Plasma-based light source
KR102649379B1 (en) Plasma light source generated by high-intensity laser
JPH09320792A (en) X-ray generator
JP2000091096A (en) X-ray generator
RU2743572C1 (en) High-brightness source of short-wave radiation (options)
JP3790814B2 (en) Method and apparatus for removing scattered matter in X-ray irradiation apparatus
JPH09161991A (en) X-ray generating device
US7079224B2 (en) Arrangement for debris reduction in a radiation source based on a plasma
JP3666055B2 (en) X-ray generator and X-ray exposure apparatus
JP2000098094A (en) X-ray generator
US11252810B2 (en) Short-wavelength radiation source with multisectional collector module and method of collecting radiation
JPH10223395A (en) X-ray generator
EP4209120A1 (en) Short- wavelength radiation source with multisectional collector module
KR20230104856A (en) Short wavelength radiation source with multi-section collector module
JP3497447B2 (en) X-ray generator and method
Alnaimi Development of a low-debris laser driven tape drive soft x-ray source
WO2005075700A1 (en) Pulsed protection window for applications in pulsed laser deposition
JPH09148092A (en) X-ray generator
RU2776025C1 (en) High-brightness source based on laser plasma and method of generation and collection of radiation
US20220132647A1 (en) High-brightness laser produced plasma source and method of generation and collection radiation
JPH1055899A (en) X-ray generator
JPH08162287A (en) X-ray generating apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621