JPH09302427A - Copper alloy for electronic equipment and its production - Google Patents

Copper alloy for electronic equipment and its production

Info

Publication number
JPH09302427A
JPH09302427A JP31352696A JP31352696A JPH09302427A JP H09302427 A JPH09302427 A JP H09302427A JP 31352696 A JP31352696 A JP 31352696A JP 31352696 A JP31352696 A JP 31352696A JP H09302427 A JPH09302427 A JP H09302427A
Authority
JP
Japan
Prior art keywords
less
copper alloy
total
content
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31352696A
Other languages
Japanese (ja)
Other versions
JP3519888B2 (en
Inventor
Tatsuhiko Eguchi
立彦 江口
Takao Hirai
崇夫 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP31352696A priority Critical patent/JP3519888B2/en
Publication of JPH09302427A publication Critical patent/JPH09302427A/en
Application granted granted Critical
Publication of JP3519888B2 publication Critical patent/JP3519888B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of short circuit between pins of lead frame, etc., and peeling of plating layer and to improve dimensional accuracy and die life at the time of punching. SOLUTION: This copper alloy for electronic equipment is a copper alloy having a composition consisting of, by weight, 0.1-0.4% Cr, 0.05-2.0% Sn, 0.05-2.0% Zn, 0.002-0.2%, in total, of one or more elements among Sr, Ba, and Bi, <0.2% (including 0%) Zr, <0.01% P, <0.005% S, <0.005% O2 , and the balance Cu with inevitable impurities or a copper alloy having a composition consisting of, by weight, 0.1-0.4% Cr, <0.2% Zr, 0.05-2.0% Sn, 0.05-2.0% Zn, 0.002-2.0%, in total, of one or more elements among Sr, Ba, and Bi, <0.01% P, <0.005% S, and <0.005% O2 , and the balance Cu with inevitable impurities. Further, the size of the crystallized substances or precipitates contained in the copper alloy and the crystalline grain size of the copper alloy are regulated to <3μm and <5μm, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気電子機器用の
リード材、端子材、コネクター材、スイッチ材、電極材
等に適した銅合金に関し、特にIC等の半導体素子用の
リードフレーム材に好適な電子機器用銅合金及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy suitable as a lead material, a terminal material, a connector material, a switch material, an electrode material and the like for electric and electronic equipment, and particularly to a lead frame material for semiconductor elements such as ICs. The present invention relates to a suitable copper alloy for electronic devices and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より、半導体のリードフレーム材や
端子材には、鉄系材料の他、電気伝導性及び熱伝導性に
優れるCu−Sn系、Cu−Fe系等の銅系材料が多く
用いられてきた。ところで、前記リードフレーム材等に
は、電気伝導性や熱伝導性に加えて、Ag等のめっき
性、半田接合性、打抜加工性又はエッチング加工性、表
面平滑性等に優れること、又実用的な価格であることが
求められている。そして、これら要求特性は、近年の半
導体機器の高密度集積化や小型化、或いは高密度実装化
が進むにつれてより厳しくなりつつある。特にリードフ
レーム材にあっては、近年、ピン数の多いリードフレー
ムの需要が増え、それに伴いピン間の間隔が狭くなる傾
向があり、この為打抜加工端面の精密さの向上も望まれ
ている。このような状況の中で、銅合金にはCu−Cr
系、Cu−Cr−Zr系、Cu−Cr−Sn系等の析出
硬化型銅合金が用いられるようになった。前記析出硬化
型銅合金は、Cr又はZrの析出を利用したものであ
り、強度と導電性等が良好にバランスした合金である。
2. Description of the Related Art Conventionally, many semiconductor lead frame materials and terminal materials include copper-based materials such as Cu-Sn system and Cu-Fe system, which are excellent in electric conductivity and thermal conductivity, in addition to iron-based materials. Has been used. By the way, in addition to electrical conductivity and thermal conductivity, the lead frame material and the like are excellent in plating property such as Ag, solder bondability, punching processability or etching processability, surface smoothness, etc. Price is required. Further, these required characteristics are becoming more severe as the recent high density integration and miniaturization of semiconductor devices or high density packaging progress. Particularly in the case of lead frame materials, in recent years, the demand for lead frames with a large number of pins has increased, and as a result, the spacing between pins has tended to become narrower. Therefore, it is desired to improve the precision of punched end faces. There is. Under such a circumstance, Cu-Cr is added to the copper alloy.
System, Cu-Cr-Zr system, Cu-Cr-Sn system and other precipitation hardening copper alloys have come to be used. The precipitation hardening type copper alloy utilizes precipitation of Cr or Zr, and is an alloy in which strength and conductivity are well balanced.

【0003】[0003]

【発明が解決しようとする課題】しかし前記析出硬化型
銅合金には、ピン間等で短絡が起き易い、打抜加工
材の寸法精度が低い、打抜金型の寿命が短い等の問題
があった。この為、本発明者等は、これらの原因につい
て鋭意研究を進めた。そして、前記については加工に
より延ばされた針状や板状析出物、析出物から成長した
ウイスカー、打抜加工時に発生する微小なバリや粉体等
が原因していること、又前記については合金元素の
析出に加え、結晶粒の大きさ、析出物(晶出物)の大き
さ等が原因していることを知見し、更に研究を進めて本
発明を完成させるに到った。本発明の目的は、リード
材、端子材、コネクター材等、特に多ピンリードフレー
ム材に適した電子機器用銅合金及びその製造方法を提供
することにある。
However, the precipitation hardening type copper alloy has problems that short circuits easily occur between pins, the dimensional accuracy of the punching material is low, and the life of the punching die is short. there were. Therefore, the inventors of the present invention conducted extensive research into these causes. And, regarding the above, it is caused by needle-like or plate-like precipitates elongated by processing, whiskers grown from the precipitates, minute burrs or powder generated during punching processing, and the above In addition to the precipitation of alloying elements, the inventors have found that the cause is the size of crystal grains, the size of precipitates (crystallized substances), etc., and have further researched to complete the present invention. It is an object of the present invention to provide a copper alloy for electronic devices, which is suitable for lead materials, terminal materials, connector materials, etc., especially multi-pin lead frame materials, and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
Crを 0.1〜0.4wt%、Snを0.05〜2.0wt%、Znを0.05
〜2.0wt%、Sr、Ba、Biの1種以上を総計で 0.002
〜0.2wt%、Zrを0.2wt%未満(0wt%を含む)含み、P
を0.01wt% 未満、Sを0.005wt%未満、O2 を0.005wt%未
満とし、残部Cu及び不可避不純物からなる銅合金、又
はCrを 0.1〜0.4wt%、Zrを0.2wt%未満、Snを0.05
〜2.0wt%、Znを0.05〜2.0wt%、Sr、Ba、Biの1
種以上を総計で 0.002〜0.2wt%含み、Pを0.01wt% 未
満、Sを0.005wt%未満、O2 を0.005wt%未満とし、残部
Cu及び不可避不純物からなる銅合金であって、前記銅
合金に含まれる晶出物又は析出物の大きさが 3μm未
満、前記銅合金の結晶粒度が 5μm未満であることを特
徴とする電子機器用銅合金である。
According to the first aspect of the present invention,
Cr 0.1-0.4wt%, Sn 0.05-2.0wt%, Zn 0.05
~ 2.0wt%, Sr, Ba, Bi one or more in total 0.002
~ 0.2wt%, Zr less than 0.2wt% (including 0wt%), P
Is less than 0.01 wt%, S is less than 0.005 wt%, O 2 is less than 0.005 wt%, and the balance is a copper alloy consisting of Cu and inevitable impurities, or Cr is 0.1 to 0.4 wt%, Zr is less than 0.2 wt%, and Sn is less than 0.2 wt%. 0.05
~ 2.0wt%, Zn 0.05-2.0wt%, 1 of Sr, Ba, Bi
A copper alloy containing 0.002 to 0.2 wt% in total, P less than 0.01 wt%, S less than 0.005 wt%, O 2 less than 0.005 wt%, and the balance Cu and inevitable impurities. The copper alloy for electronic devices is characterized in that the size of crystallized substances or precipitates contained in the alloy is less than 3 μm, and the grain size of the copper alloy is less than 5 μm.

【0005】請求項2記載の発明は、Crを 0.1〜0.4w
t%、Znを0.05〜2wt%、Co、Mg、Mn、Si、Sn
の1種以上を総計で0.01〜1wt%含み、更にPb、Biの
1種以上を総計で 0.005〜0.1wt%含み、Pの含有量を0.
01wt% 未満、S及びO2 の含有量をそれぞれ0.005wt%未
満とし、残部Cu及び不可避不純物からなる銅合金、又
はCrを 0.1〜0.4wt%、Zrを0.2wt%未満、Znを0.05
〜2wt%、Co、Mg、Mn、Si、Snの1種以上を総
計で0.01〜1wt%含み、更にPb、Biの1種以上を総計
で 0.005〜0.1wt%含み、P含有量を0.01wt% 未満、S及
びO2 の含有量をそれぞれ0.005wt%未満とし、残部Cu
及び不可避不純物からなる銅合金であって、前記銅合金
に含まれる晶出物又は析出物の大きさが3μm未満、前
記銅合金の結晶粒度が5μm未満であることを特徴とす
る電子機器用銅合金である。
According to the second aspect of the present invention, Cr is contained in an amount of 0.1 to 0.4 w.
t%, 0.05 to 2 wt% Zn, Co, Mg, Mn, Si, Sn
0.01 to 1 wt% in total, and 0.005 to 0.1 wt% in total for one or more Pb and Bi, and P content of 0.
Less than 01 wt%, S and O 2 contents of less than 0.005 wt%, respectively, and a copper alloy consisting of the balance Cu and unavoidable impurities, or Cr of 0.1 to 0.4 wt%, Zr of less than 0.2 wt%, Zn of 0.05.
~ 2wt%, 0.01 to 1wt% of Co, Mg, Mn, Si and Sn in total, 0.005 to 0.1wt% of Pb and Bi in total and 0.01wt% of P %, S and O 2 contents are each less than 0.005 wt%, and the balance Cu
And an unavoidable impurity, wherein the size of the crystallized substance or precipitate contained in the copper alloy is less than 3 μm, and the grain size of the copper alloy is less than 5 μm. It is an alloy.

【0006】請求項3記載の発明は、Crを 0.1〜0.4w
t%、Znを0.05〜2wt%、Co、Mg、Mn、Si、Sn
の1種以上を総計で0.01〜1wt%含み、更にPb、Biの
1種以上を総計で 0.005〜0.1wt%、Ca、Sr、Ba、
Teの1種以上を総計で 0.005〜0.2wt%含み(但しPb
とCaの共存を除く)、Pの含有量を0.01wt% 未満、S
及びO2 の含有量をそれぞれ0.005wt%未満とし、残部C
u及び不可避不純物からなる銅合金、又はCrを 0.1〜
0.4wt%、Zrを0.2wt%未満、Znを0.05〜2wt%、Co、
Mg、Mn、Si、Snの1種以上を総計で0.01〜1wt%
含み、更にPb、Biの1種以上を総計で 0.005〜0.1w
t%、Ca、Sr、Ba、Teの1種以上を総計で0.005
〜0.2wt%含み(但しPbとCaの共存を除く)、P含有
量を0.01wt% 未満、S及びO2 の含有量をそれぞれ0.00
5wt%未満とし、残部Cu及び不可避不純物からなる銅合
金であって、前記銅合金に含まれる晶出物又は析出物の
大きさが3μm未満、前記銅合金の結晶粒度が5μm未
満であることを特徴とする電子機器用銅合金である。
According to the third aspect of the invention, Cr is 0.1 to 0.4w.
t%, 0.05 to 2 wt% Zn, Co, Mg, Mn, Si, Sn
0.01 to 1 wt% in total, and 0.005 to 0.1 wt% in total for Ca, Sr, Ba, and Pb and Bi.
Includes 0.005 to 0.2 wt% of one or more of Te in total (however, Pb
(Excluding the coexistence of Ca and Ca), the content of P is less than 0.01 wt%, S
And the content of O 2 are each less than 0.005 wt% and the balance C
Copper alloy consisting of u and unavoidable impurities, or Cr of 0.1 to
0.4wt%, Zr less than 0.2wt%, Zn 0.05-2wt%, Co,
0.01 to 1 wt% of one or more of Mg, Mn, Si and Sn in total
In addition, 0.005 to 0.1w in total of one or more of Pb and Bi
0.005 of t%, one or more of Ca, Sr, Ba and Te in total
~ 0.2 wt% (excluding coexistence of Pb and Ca), P content less than 0.01 wt%, S and O 2 contents of 0.00
It is less than 5 wt% and is a copper alloy consisting of the balance Cu and unavoidable impurities, and the size of crystallized substances or precipitates contained in the copper alloy is less than 3 μm, and the grain size of the copper alloy is less than 5 μm. A characteristic copper alloy for electronic devices.

【0007】本発明の銅合金は、析出硬化型銅合金の合
金元素量、析出物等の大きさ、結晶粒度等を規定するこ
とにより、リードフレーム等のピン間の短絡、及び打抜
加工での寸法精度並びに金型寿命の改善を図ったもので
ある。
The copper alloy of the present invention can be used for short-circuiting between pins such as a lead frame and for punching by defining the alloying element amount of precipitation hardening type copper alloy, the size of precipitates, the grain size and the like. It is intended to improve the dimensional accuracy and mold life.

【0008】請求項4記載の発明は、Crを 0.1〜0.4w
t%、Snを0.05〜2.0wt%、Znを0.05〜2.0wt%、Sr、
Ba、Biの1種以上を総計で 0.002〜0.2wt%、Zrを
0.2wt%未満(0wt%を含む)含み、Pを0.01wt% 未満、
Sを0.005wt%未満、O2 を0.005wt%未満とし、残部Cu
及び不可避不純物からなる銅合金、又はCrを 0.1〜0.
4wt%、Zrを0.2wt%未満、Snを0.05〜2.0wt%、Znを
0.05〜2.0wt%、Sr、Ba、Biの1種以上を総計で
0.002〜0.2wt%含み、Pを0.01wt% 未満、Sを0.005wt%
未満、O2 を0.005wt%未満とし、残部Cu及び不可避不
純物からなる銅合金に、鋳造加工、熱間加工、冷間加工
を施すにあたり、前記鋳造加工時の冷却速度を5℃/秒
以上とし、前記鋳造加工にて得られる銅合金鋳塊を 850
〜1000℃に加熱して熱間加工し、熱間加工後10℃/秒以
上の速度で冷却し、次いで冷間加工を 300〜500 ℃で10
分〜24時間の熱処理を1回以上入れて行うことを特徴と
する請求項1記載の電子機器用銅合金の製造方法であ
る。
According to the invention of claim 4, Cr is 0.1 to 0.4 w.
t%, Sn 0.05 to 2.0 wt%, Zn 0.05 to 2.0 wt%, Sr,
0.002 to 0.2 wt% of Ba and Bi in total, Zr
Less than 0.2 wt% (including 0 wt%), less than 0.01 wt% P,
S less than 0.005 wt%, O 2 less than 0.005 wt%, balance Cu
And a copper alloy consisting of unavoidable impurities or Cr 0.1 to 0.
4wt%, Zr less than 0.2wt%, Sn 0.05-2.0wt%, Zn
0.05-2.0wt%, Sr, Ba, Bi one or more in total
0.002-0.2wt% included, P less than 0.01wt%, S 0.005wt%
Less, O 2 is less than 0.005 wt%, and when a copper alloy consisting of the balance Cu and unavoidable impurities is subjected to casting, hot working, and cold working, the cooling rate during the casting is 5 ° C./sec or more. , 850 the copper alloy ingot obtained by the casting process
Heat to ~ 1000 ℃, hot work, cool at a rate of 10 ℃ / sec or more after hot work, then cold work at 300-500 ℃ at 10 ℃ / sec.
The method for producing a copper alloy for an electronic device according to claim 1, wherein the heat treatment is carried out once or more for minutes to 24 hours.

【0009】請求項5記載の発明は、Crを 0.1〜0.4w
t%、Znを0.05〜2wt%、Co、Mg、Mn、Si、Sn
の1種以上を総計で0.01〜1wt%含み、更にPb、Biの
1種以上を総計で 0.005〜0.1wt%含み、Pの含有量を0.
01wt% 未満、S及びO2 の含有量をそれぞれ0.005wt%未
満とし、残部Cu及び不可避不純物からなる銅合金、又
はCrを 0.1〜0.4wt%、Zrを0.2wt%未満、Znを0.05
〜2wt%、Co、Mg、Mn、Si、Snの1種以上を総
計で0.01〜1wt%含み、更にPb、Biの1種以上を総計
で 0.005〜0.1wt%含み、P含有量を0.01wt% 未満、S及
びO2 の含有量をそれぞれ0.005wt%未満とし、残部Cu
及び不可避不純物からなる銅合金に、鋳造加工、熱間加
工、冷間加工を施すにあたり、前記鋳造加工時の冷却速
度を5℃/秒以上とし、前記鋳造加工にて得られる銅合
金鋳塊を 850〜1000℃に加熱して熱間加工し、熱間加工
後10℃/秒以上の速度で急冷し、次いで冷間加工および
300〜500 ℃で10分〜24時間の熱処理を少なくとも1回
入れることを特徴とする請求項2記載の電子機器用銅合
金の製造方法である。
According to the invention of claim 5, 0.1 to 0.4 w of Cr is added.
t%, 0.05 to 2 wt% Zn, Co, Mg, Mn, Si, Sn
0.01 to 1 wt% in total, and 0.005 to 0.1 wt% in total for one or more Pb and Bi, and P content of 0.
Less than 01 wt%, S and O 2 contents of less than 0.005 wt%, respectively, and a copper alloy consisting of the balance Cu and unavoidable impurities, or Cr of 0.1 to 0.4 wt%, Zr of less than 0.2 wt%, Zn of 0.05.
~ 2wt%, 0.01 to 1wt% of Co, Mg, Mn, Si and Sn in total, 0.005 to 0.1wt% of Pb and Bi in total and 0.01wt% of P %, S and O 2 contents are each less than 0.005 wt%, and the balance Cu
When performing casting, hot working, or cold working on a copper alloy consisting of unavoidable impurities, the cooling rate during the casting is set to 5 ° C./sec or more, and a copper alloy ingot obtained by the casting is obtained. Heat to 850 to 1000 ℃ and hot work, quench rapidly at a rate of 10 ℃ / s or more after hot working, then cold work and
The method for producing a copper alloy for electronic devices according to claim 2, wherein the heat treatment is performed at 300 to 500 ° C for 10 minutes to 24 hours at least once.

【0010】請求項6記載の発明は、Crを 0.1〜0.4w
t%、Znを0.05〜2wt%、Co、Mg、Mn、Si、Sn
の1種以上を総計で0.01〜1wt%含み、更にPb、Biの
1種以上を総計で 0.005〜0.1wt%、Ca、Sr、Ba、
Teの1種以上を総計で 0.005〜0.2wt%含み(但しPb
とCaの共存を除く)、Pの含有量を0.01wt% 未満、S
及びO2 の含有量をそれぞれ0.005wt%未満とし、残部C
u及び不可避不純物からなる銅合金、又はCrを 0.1〜
0.4wt%、Zrを0.2wt%未満、Znを0.05〜2wt%、Co、
Mg、Mn、Si、Snの1種以上を総計で0.01〜1wt%
含み、更にPb、Biの1種以上を総計で 0.005〜0.1w
t%、Ca、Sr、Ba、Teの1種以上を総計で0.005
〜0.2wt%含み(但しPbとCaの共存を除く)、更にP
含有量を0.01wt% 未満、S及びO2 の含有量をそれぞれ
0.005wt%未満とし、残部Cu及び不可避不純物からなる
銅合金に、鋳造加工、熱間加工、冷間加工を施すにあた
り、前記鋳造加工時の冷却速度を5℃/秒以上とし、前
記鋳造加工にて得られる銅合金鋳塊を 850〜1000℃に加
熱して熱間加工し、熱間加工後10℃/秒以上の速度で急
冷し、次いで冷間加工および 300〜500 ℃で10分〜24時
間の熱処理を少なくとも1回入れることを特徴とする請
求項3記載の電子機器用銅合金の製造方法である。
In the invention according to claim 6, 0.1 to 0.4 w of Cr is added.
t%, 0.05 to 2 wt% Zn, Co, Mg, Mn, Si, Sn
0.01 to 1 wt% in total, and 0.005 to 0.1 wt% in total for Ca, Sr, Ba, and Pb and Bi.
Includes 0.005 to 0.2 wt% of one or more of Te in total (however, Pb
(Excluding the coexistence of Ca and Ca), the content of P is less than 0.01 wt%, S
And the content of O 2 are each less than 0.005 wt% and the balance C
Copper alloy consisting of u and unavoidable impurities, or Cr of 0.1 to
0.4wt%, Zr less than 0.2wt%, Zn 0.05-2wt%, Co,
0.01 to 1 wt% of one or more of Mg, Mn, Si and Sn in total
In addition, 0.005 to 0.1w in total of one or more of Pb and Bi
0.005 of t%, one or more of Ca, Sr, Ba and Te in total
~ 0.2wt% (excluding coexistence of Pb and Ca), and further P
Content less than 0.01 wt%, S and O 2 content respectively
When performing casting, hot working, or cold working on a copper alloy containing less than 0.005 wt% and the balance Cu and unavoidable impurities, the cooling rate during casting is set to 5 ° C./sec or more, The obtained copper alloy ingot is heated to 850 to 1000 ℃ and hot-worked. After hot-working, it is rapidly cooled at a rate of 10 ℃ / sec or more, then cold-worked and 300 to 500 ℃ for 10 minutes to 24 seconds. The method for producing a copper alloy for an electronic device according to claim 3, wherein the heat treatment is performed at least once.

【0011】[0011]

【発明の実施の形態】本発明の銅合金において、Crは
銅中に析出し、銅の導電率をあまり低下させずに強度を
向上させる。その含有量を0.01〜0.4wt%に限定した理由
は、0.01wt%未満では十分な強度や耐熱性が得られず、
0.4wt%を超えると強度の向上が飽和する上、晶出物や析
出物が大きくなり、これらがリードフレーム端面から突
出して隣接するピン間又はリード間等での短絡を引き起
こす為である。ZrはCrと同様に銅中に析出し、銅の
導電率をあまり低下させずに強度を向上させる。その含
有量を0.2wt%未満に限定した理由は、0.2wt%以上では強
度の向上が飽和する上、析出物が粗大化し、Crと同様
にリードフレームの短絡現象の原因になる為である。S
nは強度向上に寄与する。その含有量を0.05〜2wt%に限
定した理由は、0.05wt% 未満ではその効果が十分に得ら
れず、2wt%を超えると銅中のCrやZrの固溶量を低下
させ、又CrやZrを含む晶出物や析出物のサイズが大
きくなり、短絡の原因になると共に、導電率の低下を招
く為である。Znは半田付性と半田めっき性の改善、つ
まり半田層の剥離防止に寄与する。その含有量を0.05〜
2wt%に限定した理由は、0.05wt% 未満ではその効果が十
分に得られず、2wt%を超えては半田付性が却って低下す
るようになる為である。
BEST MODE FOR CARRYING OUT THE INVENTION In the copper alloy of the present invention, Cr precipitates in copper and improves the strength without significantly lowering the conductivity of copper. The reason for limiting the content to 0.01 to 0.4 wt% is that if it is less than 0.01 wt%, sufficient strength and heat resistance cannot be obtained,
This is because if it exceeds 0.4 wt%, the improvement in strength is saturated and crystallized substances or precipitates become large, and these protrude from the end face of the lead frame and cause short circuits between adjacent pins or between leads. Like Cr, Zr is precipitated in copper and improves the strength of copper without significantly reducing the conductivity of copper. The reason for limiting the content to less than 0.2 wt% is that if the content is 0.2 wt% or more, the improvement in strength is saturated, and the precipitates become coarse, which causes a short circuit phenomenon of the lead frame, similar to Cr. S
n contributes to the improvement of strength. The reason for limiting the content to 0.05 to 2 wt% is that the effect is not sufficiently obtained if it is less than 0.05 wt%, and if it exceeds 2 wt%, the solid solution amount of Cr and Zr in copper is lowered, and This is because the size of crystallized substances and precipitates containing Zr becomes large, which causes a short circuit and causes a decrease in conductivity. Zn contributes to improvement of solderability and solder plating property, that is, prevention of peeling of the solder layer. Its content is 0.05 ~
The reason for limiting the content to 2 wt% is that if it is less than 0.05 wt%, the effect cannot be sufficiently obtained, and if it exceeds 2 wt%, the solderability is rather deteriorated.

【0012】請求項1記載の発明において、Sr、B
a、及びBiは打抜加工性を向上させる。ここで打抜加
工性は、打抜端面の寸法形状、バリの発生具合、
打抜金型の寿命等で評価される。前記Sr、Ba、又は
Biの1種以上の総含有量を 0.002〜0.2wt%に限定した
理由は、0.002wt%未満ではその効果が十分に得られず、
0.2wt%を超えると圧延加工時に割れ等が発生する為であ
る。
In the invention according to claim 1, Sr, B
a and Bi improve punching workability. The punching workability here means the dimension and shape of the punching end surface, the degree of burr generation,
It is evaluated by the life of the punching die. The reason why the total content of one or more of Sr, Ba, or Bi is limited to 0.002 to 0.2 wt% is that the effect is not sufficiently obtained if it is less than 0.002 wt%,
This is because if it exceeds 0.2 wt%, cracks or the like will occur during rolling.

【0013】請求項2記載の発明において、Co、M
g、Mn、Si、Snは、Cr又はCrとZrの均一微
細な析出を促進すると共に、強度向上にも寄与する。そ
の含有量を総計で0.01〜1wt%に限定した理由は、0.01wt
% 未満ではその効果が十分に得られず、1wt%を超えると
銅中のCrやZrの固溶量を低下させ、CrやZrを含
む析出物のサイズが大きくなり、短絡の原因となると共
に、導電率の低下を招く為である。Pb、Biの1種以
上が含有されると打抜加工性が向上する。ここで打抜加
工性は、前述の通り、打抜端面の寸法形状、バリの
発生具合、打抜金型の寿命等で評価される。Pb、B
iは単体でCuマトリックス中に分散し、、の改善
に寄与するが、特にの改善効果が顕著である。前記P
b、Biの1種以上の総含有量を0.005 〜0.1wt%に限定
した理由は、0.002wt%未満ではその効果が十分に得られ
ず、0.1wt%を超えると圧延加工時に割れ等の欠陥が発生
し生産性が低下する為である。
In the invention according to claim 2, Co, M
g, Mn, Si, and Sn promote uniform and fine precipitation of Cr or Cr and Zr, and also contribute to strength improvement. The reason for limiting the total content to 0.01-1 wt% is 0.01 wt
If it is less than%, the effect cannot be sufficiently obtained, and if it exceeds 1 wt%, the solid solution amount of Cr and Zr in copper is reduced, and the size of precipitates containing Cr and Zr becomes large, which causes a short circuit. This is because the conductivity is lowered. If one or more of Pb and Bi are contained, punching workability is improved. Here, the punching workability is evaluated by the dimension and shape of the punching end surface, the degree of burr generation, the life of the punching die, etc., as described above. Pb, B
Although i alone disperses in the Cu matrix and contributes to the improvement of i, the improvement effect is particularly remarkable. The P
The reason why the total content of at least one of b and Bi is limited to 0.005 to 0.1 wt% is that the effect is not sufficiently obtained if it is less than 0.002 wt%, and if it exceeds 0.1 wt%, defects such as cracks are generated during rolling. This is due to the decrease in productivity.

【0014】請求項3記載の発明において、Co、M
g、Mn、Si、Snの作用、及びその含有量の限定理
由は、請求項2の発明の場合と同じである。この発明
は、Pb、Biの1種以上に、Ca、Sr、Ba、Te
の1種以上を更に含有させて打抜加工性を一段と向上さ
せたものである。ここで打抜加工性は打抜端面の寸法
形状、バリの発生具合、打抜金型の寿命等で評価さ
れ、Pb、Biは単体でCuマトリックス中に分散し、
、の改善に寄与するが、特にの改善効果が顕著な
ことは前述の通りである。ここで新たに含有されるC
a、Sr、Ba、Teは、Cuとの金属間化合物を形成
し、それがCuマトリックス中に分散するため、、
の改善に寄与する。Pb、Biの1種以上と、Ca、S
r、Ba、Teの1種以上を適正量添加することで各種
のプレス性が改善される。但しPbとCaが共存すると
その効果が十分得られなくなる。前記Pb、Biの1種
以上の総含有量を 0.005〜0.1wt%に限定した理由は前述
の通りである。Ca、Sr、Ba、Teの1種以上の総
含有量を 0.005〜0.2wt%に限定した理由は、0.005wt%未
満ではその効果が十分に得られず、0.2wt%を超えると圧
延加工時に割れ等が発生し生産性が低下する為である。
In the invention according to claim 3, Co, M
The action of g, Mn, Si, and Sn and the reason for limiting the content are the same as in the case of the invention of claim 2. The present invention provides one or more of Pb and Bi with Ca, Sr, Ba and Te.
Further, at least one of the above is further contained to further improve the punching workability. Here, the punching workability is evaluated by the size and shape of the punching end surface, the degree of burr generation, the life of the punching die, etc., and Pb and Bi are dispersed alone in the Cu matrix,
As described above, the effect of improvement is particularly remarkable. C newly contained here
a, Sr, Ba, Te form an intermetallic compound with Cu, which is dispersed in the Cu matrix,
Contribute to the improvement of. One or more of Pb and Bi, and Ca and S
Various pressability is improved by adding an appropriate amount of one or more of r, Ba and Te. However, if Pb and Ca coexist, the effect cannot be sufficiently obtained. The reason why the total content of at least one of Pb and Bi is limited to 0.005 to 0.1 wt% is as described above. The reason why the total content of at least one of Ca, Sr, Ba and Te is limited to 0.005 to 0.2 wt% is that the effect is not sufficiently obtained if it is less than 0.005 wt%, and if it exceeds 0.2 wt% during rolling. This is because cracks and the like occur and productivity decreases.

【0015】本発明では、前記合金元素の他、通常の工
業用銅材料に微量含まれるP、S、O2 等の量も規定す
る。Pはその含有量を0.01wt% 未満に規定することで、
本発明合金におけるCr−P系等の晶出物の粗大化が抑
制されピン間等の短絡が防止される。特にPの含有量は
0.005wt%未満が望ましい。Sはその含有量を0.005wt%未
満に規定することで、Cr−S系、Zr−S系等の晶出
物の粗大化が抑制されピン間等の短絡が防止される。又
熱間加工性が向上する。特にSの含有量は0.002wt%未満
が望ましい。O2 は、その含有量が0.005wt%以上ではC
rやZrが酸化されて、析出硬化が十分に得られない
上、半田付性が低下する。特にO2 の含有量は0.002wt%
未満が望ましい。前述のように、P、S、O2 は、その
含有量を適切に規定することにより、CrやZrを含む
析出硬化型銅合金のリードフレーム材等としての特性を
大幅に改善し得るものである。このことは、本発明者等
が初めて見出したことである。
In the present invention, in addition to the above-mentioned alloying elements, the amounts of P, S, O 2 etc. contained in trace amounts in ordinary industrial copper materials are also defined. By defining the content of P to be less than 0.01 wt%,
In the alloy of the present invention, coarsening of crystallized substances such as Cr-P system is suppressed and short circuit between pins is prevented. Especially the content of P
Less than 0.005 wt% is desirable. By defining the content of S to be less than 0.005 wt%, coarsening of crystallized substances such as Cr—S type and Zr—S type is suppressed and short circuit between pins is prevented. Further, hot workability is improved. Particularly, the S content is preferably less than 0.002 wt%. O 2 is C when its content is 0.005 wt% or more.
R and Zr are oxidized, precipitation hardening cannot be sufficiently obtained, and solderability is deteriorated. Especially the content of O 2 is 0.002wt%
Less than is desirable. As described above, P, S, and O 2 can significantly improve the properties of a precipitation hardening copper alloy containing Cr or Zr as a lead frame material, etc., by properly defining the contents. is there. This is the first finding of the present inventors.

【0016】本発明で、銅合金中に含まれる晶出物又は
析出物の大きさを3μm未満に規定した理由は、晶出物
又は析出物の大きさが3μm以上では、前記晶出物又は
析出物は圧延加工中に針状化又は板状化されてリードの
端部から突出し、隣接するリードフレームのピン間やリ
ード間で短絡が起き易くなる為である。
In the present invention, the size of the crystallized substances or precipitates contained in the copper alloy is defined to be less than 3 μm, because the crystallized substances or the precipitates have a size of 3 μm or more. This is because the precipitate is formed into a needle shape or a plate shape during the rolling process and protrudes from the end portion of the lead, and a short circuit easily occurs between pins of the lead frame and between the leads.

【0017】請求項1記載の発明で、銅合金の結晶粒度
を5μm未満に規定した理由は、前記結晶粒度が5μm
以上ではSr、Ba、又はBiの打抜加工性の改善効果
が十分に得られない為である。又前記結晶粒度が5μm
未満だとエッチング加工面が平滑になりめっき性が向上
する利点がある。
In the invention of claim 1, the reason why the grain size of the copper alloy is specified to be less than 5 μm is that the grain size is 5 μm.
This is because the above-described effect of improving the punching workability of Sr, Ba, or Bi cannot be sufficiently obtained. The crystal grain size is 5 μm
If it is less than the above range, there is an advantage that the etched surface becomes smooth and the plating property is improved.

【0018】請求項2記載の発明で、銅合金の結晶粒度
を5μm未満に限定した理由は、5μm以上では、P
b、Biの1種以上を含有させて得られる打抜加工性の
改善効果が十分に得られない為である。また、結晶粒度
を5μm未満にすることによる効果は前述の通りであ
る。
In the invention of claim 2, the reason why the grain size of the copper alloy is limited to less than 5 μm is that P is 5 μm or more.
This is because the punching workability improving effect obtained by containing at least one of b and Bi cannot be sufficiently obtained. Further, the effect of setting the crystal grain size to less than 5 μm is as described above.

【0019】請求項3記載の発明で、銅合金の結晶粒度
を5μm未満に限定した理由は、5μm以上では、P
b、Biの1種以上、及びCa、Sr、Ba、Teの1
種以上を含有させて(但しPbとCaの共存を除く)得
られる打抜加工性の改善効果が十分に得られない為であ
る。また、結晶粒度を5μm未満にすることによる効果
は前述の通りである。
In the invention of claim 3, the reason why the grain size of the copper alloy is limited to less than 5 μm is that P is 5 μm or more.
b, one or more of Bi, and 1 of Ca, Sr, Ba, Te
This is because the effect of improving the punching workability obtained by containing at least one species (excluding the coexistence of Pb and Ca) cannot be sufficiently obtained. Further, the effect of setting the crystal grain size to less than 5 μm is as described above.

【0020】前記本発明の析出硬化型銅合金は、鋳造加
工、熱間加工、冷間加工が施されて所定形状に加工され
る。請求項3、4、5記載の発明で、前記鋳造加工時の
冷却速度を5℃/秒以上にする理由は、冷却速度が5℃
/秒未満では3μmを超える大きな晶出物(Cr、Cu
−Zr系等の種々の晶出物)が生成する為である。前記
鋳造加工にて得られる銅合金鋳塊の熱間加工温度を 850
〜1000℃に規定した理由は、 850℃未満ではCrやZr
の晶出物や析出物が大きくなって、最終的に本発明の条
件を満たさなくなり、1000℃を超えると酸化被膜が厚く
なり生産性を害する上、エネルギーコストの増大をもた
らす為である。前記熱間加工後の冷却を10℃/秒以上の
速度で行う理由は、前記冷却速度が10℃/秒未満ではC
rやZr等の晶出物や析出物が3μmを超える大きさに
成長する為である。前記冷間加工する際の熱処理を 300
〜500 ℃で10分〜24時間の条件に規定する理由は、前記
熱処理温度が 300℃未満又は10分未満では、銅合金中に
固溶したCr、Zrの微細な析出が不十分となり、リー
ドフレーム材等としての特性のバランスが崩れる為であ
る。又 500℃を超えると、結晶粒度が大きくなって打抜
加工性が低下し、又24時間を超えると、その効果が飽和
し不経済な為である。又、上述の熱処理を入れての冷間
加工後に、更に仕上冷間加工とやや低温(200〜 400℃)
での熱処理を施すと、曲げ加工性や異方性が改善され、
又内部応力が除去される。前記低温熱処理は、還元性雰
囲気か不活性雰囲気で行うのが望ましく、その熱処理方
法はバッチ式でもテンションアニーリング等の走間式で
も良い。必要に応じて熱処理前後にテンションレベラー
やローラーレベラー等の矯正を行っても良い。
The precipitation hardening type copper alloy of the present invention is cast, hot worked and cold worked into a predetermined shape. In the inventions according to claims 3, 4, and 5, the reason why the cooling rate during the casting process is 5 ° C / sec or more is that the cooling rate is 5 ° C.
If it is less than / sec, large crystallized substances exceeding 3 μm (Cr, Cu
This is because various crystallized substances such as -Zr type) are generated. The hot working temperature of the copper alloy ingot obtained by the casting process is 850
The reason for defining to 1000 ℃ is that Cr and Zr are below 850 ℃.
The reason for this is that the crystallized substances and precipitates of No. 1 become large and eventually the conditions of the present invention are not satisfied, and when the temperature exceeds 1000 ° C., the oxide film becomes thick and the productivity is impaired and the energy cost increases. The reason why the cooling after the hot working is performed at a rate of 10 ° C / sec or more is that when the cooling rate is less than 10 ° C / sec, C
This is because crystallized substances or precipitates such as r and Zr grow to a size exceeding 3 μm. The heat treatment during the cold working is 300
The reason why the condition of 10 minutes to 24 hours at ~ 500 ° C is specified is that if the heat treatment temperature is less than 300 ° C or less than 10 minutes, fine precipitation of Cr and Zr dissolved in the copper alloy becomes insufficient, and lead This is because the balance of characteristics as a frame material is lost. If it exceeds 500 ° C, the grain size becomes large and the punching workability deteriorates. If it exceeds 24 hours, the effect is saturated and it is uneconomical. Also, after cold working with the above heat treatment, finish cold working and slightly lower temperature (200-400 ℃)
Bending workability and anisotropy are improved by heat treatment at
Also, internal stress is removed. The low temperature heat treatment is preferably performed in a reducing atmosphere or an inert atmosphere, and the heat treatment method may be a batch type or a running type such as tension annealing. If necessary, straightening such as a tension leveler or a roller leveler may be performed before and after the heat treatment.

【0021】[0021]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す組成の合金を高周波溶解炉にて
溶解し、これを6℃/秒の冷却速度で、厚さ30mm、幅 1
00mm、長さ 150mmの鋳塊に鋳造した。次にこの鋳塊を 9
80℃で熱間圧延し、その後直ちに30℃/秒の速度で急冷
した。この熱延材の両面を各9mm面削して酸化被膜を除
去した後、厚さ0.33mmに冷間圧延した。次いで不活性雰
囲気中で 420℃で2時間熱処理し、更に仕上冷間圧延し
て厚さ 0.2mmの板材とし、これを不活性雰囲気中で 350
℃で2時間熱処理した。
The present invention will be described below in detail with reference to examples. (Example 1) An alloy having the composition shown in Table 1 was melted in a high frequency melting furnace, and this was cooled at a cooling rate of 6 ° C / second to a thickness of 30 mm and a width of 1 mm.
It was cast into an ingot with a length of 00 mm and a length of 150 mm. Next, ingot 9
It was hot-rolled at 80 ° C and then immediately quenched at a rate of 30 ° C / sec. Both surfaces of this hot rolled material were chamfered by 9 mm to remove the oxide film, and then cold rolled to a thickness of 0.33 mm. Then heat-treat at 420 ℃ for 2 hours in an inert atmosphere, and further finish cold-rolling to a plate with a thickness of 0.2 mm.
Heat treated at 2 ° C. for 2 hours.

【0022】このようにして得られた各々の板材につい
てリードフレームに要求される種々の特性を下記〜
の方法により調べた。結果を表2に示す。 晶出物、析出物、結晶粒の大きさ:顕微鏡観察(200
倍) により測定した。 引張強度:JISZ2241に準じて測定した。 導電率:JISH0505に準じて測定した。 エッチング加工面の突起物有無:圧延方向に対して垂
直方向に幅 0.5mmの試験片をエッチング加工により切出
し、エッチング加工面を顕微鏡観察(50倍) した。エッ
チング液には塩化第2鉄溶液を用いた。 半田濡れ性:10mm×50mmの試験片をロジン系(RMA) の
フラックスに5秒間浸漬後、 230℃の共晶半田(Pb-6
3wt%Sn)浴中に5秒間浸漬し、半田の濡れ具合を目視
観察した。濡れ面積が90%以上は良好、90%未満は不良
と判定した。 半田密着性:と同様に半田を付着させた試験片を大
気中で 150℃で1000時間加熱し、次いで 180度の密着曲
げと曲げ戻しを行ったのち、半田密着性を目視観察し
た。 打抜き性:SKD11製金型で1mm×5mmの角穴を開
け、5001回目から10000回目までの打抜き分から20個の
サンプルを無作為に抽出し、これらサンプルのバリの大
きさ(高さI)を測定した。又打抜き面を観察して破断
部の厚さaを計測し、試験片の厚さbに対する破断部割
合 (a/b)×100%を求めた。この割合は打抜き性の目安の
1つとされ、この値が大きい程、打抜き性は良好である
と言われ、歩留りが向上し精密な加工が行えると評価さ
れる。
The various characteristics required of the lead frame for each of the plate materials thus obtained are described below.
It investigated by the method of. Table 2 shows the results. Crystallized substances, precipitates, crystal grain size: Microscopic observation (200
Times). Tensile strength: Measured according to JIS Z2241. Conductivity: Measured according to JIS H0505. Presence or absence of protrusions on the etched surface: A test piece with a width of 0.5 mm was cut out by etching in the direction perpendicular to the rolling direction, and the etched surface was observed under a microscope (50 times). A ferric chloride solution was used as the etching solution. Solder wettability: A test piece of 10 mm x 50 mm was dipped in a rosin-based (RMA) flux for 5 seconds, and then eutectic solder (Pb-6
It was immersed in a 3 wt% Sn) bath for 5 seconds, and the wet condition of the solder was visually observed. A wet area of 90% or more was judged as good, and a wet area of less than 90% was judged as poor. Solder adhesion: The solder adhesion test piece was heated in the atmosphere at 150 ° C. for 1000 hours in the same manner as in (1) and then subjected to 180 degree contact bending and bending back, and then the solder adhesion was visually observed. Punching performance: A 1 mm x 5 mm square hole was opened with a SKD11 die, and 20 samples were randomly extracted from the punching times from the 5001st to 10,000th times, and the size (height I) of the burr of these samples was determined. It was measured. Further, the punched surface was observed to measure the thickness a of the fractured portion, and the ratio of the fractured portion (a / b) × 100% to the thickness b of the test piece was determined. This ratio is regarded as one of the criteria of punching property, and it is said that the larger this value is, the better the punching property is, and it is evaluated that the yield is improved and the precise processing can be performed.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表2より明らかなように、本発明例のNo.1
〜13は何れも優れた特性を示した。これに対し、比較例
のNo.14,17は共に強度が低かった。これは前者はCr量
が、後者はSn量がそれぞれ少ない為である。No.15,16
はエッチング加工面に突起物が認められた。これはCr
又はZr量が多い為である。これら突起物は短絡の原因
となりリードフレーム材として不適当である。No.18 は
Sn量が多い為、強度は高いが導電率が低かった。又エ
ッチング加工面に短絡の原因となる突起物が認められ
た。No.19 はZnが少ない為半田剥離が認められた。N
o.20 はZnが多い為半田濡れ性が低下した。No.21 は
打抜き試験でバリが大きく出た。これはSrとBiの総
量が少ない為である。又打抜き面における破断面の割合
も小さく、あまり精密な成形ができないものであった。
No.22 はSr、Ba、及びBiの総量が多い為熱間圧延
中に割れが生じた。No.23,24はP又はSが多い為、晶出
物が粗大化し、エッチング加工面に突起物が残った。N
o.25 はO2 が多い為十分な析出硬化が得られず強度が
低下した。又半田濡れ性にも劣った。
As is clear from Table 2, No. 1 of the invention example
All of ~ 13 exhibited excellent characteristics. On the other hand, Comparative Examples Nos. 14 and 17 both had low strength. This is because the former has a smaller amount of Cr and the latter has a smaller amount of Sn. No.15,16
A protrusion was observed on the etched surface. This is Cr
Alternatively, the amount of Zr is large. These protrusions cause a short circuit and are unsuitable as a lead frame material. Since No. 18 had a large amount of Sn, it had high strength but low conductivity. In addition, a protrusion that causes a short circuit was recognized on the etched surface. No. 19 had a small amount of Zn, and therefore solder peeling was observed. N
In o.20, the solder wettability deteriorated due to the large amount of Zn. No. 21 had a large burr in the punching test. This is because the total amount of Sr and Bi is small. Further, the ratio of the fractured surface to the punched surface was small, and it was impossible to perform very precise molding.
Since No. 22 had a large total amount of Sr, Ba, and Bi, cracking occurred during hot rolling. Nos. 23 and 24 contained a large amount of P or S, and thus the crystallized substances were coarsened and the protrusions remained on the etched surface. N
O.25 had a large amount of O 2 and thus sufficient precipitation hardening was not obtained and the strength decreased. It was also inferior in solder wettability.

【0026】(実施例2)表1に示す本発明合金のNo.
3,6,9,13 に、表3に示す条件にて鋳造、熱間圧延、冷
却、熱処理、冷間圧延を施し、得られた板材について、
実施例1と同じ方法により特性を調べた。結果を表4に
示す。尚、表1,2 に示したNo.3,6,9,13 は再掲した。
(Example 2) Nos. Of alloys of the present invention shown in Table 1
Casting, hot rolling, cooling, heat treatment, and cold rolling on 3,6,9,13 under the conditions shown in Table 3
The characteristics were examined by the same method as in Example 1. The results are shown in Table 4. Note that Nos. 3, 6, 9, and 13 shown in Tables 1 and 2 are reprinted.

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】表4より明らかなように、本発明例の No.
31〜36はいずれも優れた特性を示している。これに対
し、比較例のNo.41,48は鋳造時の冷却速度が遅かった
為、No.42 は熱間加工温度が低かった為、 No.43は熱間
加工後の冷却速度が遅かった為、いずれも晶出物や析出
物が粗大化し、これが熱間加工や冷間加工で針状化又は
板状化してエッチング加工面に突起物として残った。N
o.42,43は引張強度も低下した。No.44,47,49 は冷間加
工の際の熱処理温度が高かった為結晶粒度が大きくな
り、本発明例のNo.3,9,13 と比較して強度が低下し、バ
リが大きくなり、又破断部割合(精密加工性)が低下し
た。No.45 は熱間加工温度が1000℃を超えた為圧延材に
厚い酸化膜が形成された。No.45 の特性は本発明例のN
o.3と同等であり、1000℃を超える温度で熱間加工する
ことはエネルギーコストの上昇を招くだけで意味がない
ことが判る。No.46 は冷間加工後の焼鈍温度が低かった
為、強度と導電率が共に低下した。
As is clear from Table 4, No.
All of 31 to 36 show excellent characteristics. On the other hand, in Comparative Examples No. 41 and 48, the cooling rate during casting was slow, No. 42 had a low hot working temperature, and No. 43 had a slow cooling rate after hot working. Therefore, in both cases, crystallized substances and precipitates became coarse, and these were made acicular or plate-like by hot working or cold working and remained as projections on the etched surface. N
The tensile strength of o.42 and 43 also decreased. No.44,47,49 had a high grain size because the heat treatment temperature during cold working was high, resulting in lower strength and larger burrs than No.3,9,13 of the present invention. In addition, the ratio of fractured parts (precision workability) decreased. In No. 45, the hot working temperature exceeded 1000 ° C, so a thick oxide film was formed on the rolled material. The characteristics of No. 45 are N of the invention example.
It is equivalent to o.3, and it turns out that hot working at a temperature over 1000 ° C only increases the energy cost and is meaningless. In No. 46, the annealing temperature after cold working was low, so both strength and conductivity decreased.

【0030】(実施例3)表5に示す組成の合金を高周
波溶解炉にて溶解し、これを6℃/秒の冷却速度で、厚
さ30mm、幅100mm 、長さ150mm の鋳塊に鋳造した。次に
この鋳塊を 980℃で熱間圧延し、その後直ちに30℃/秒
の速度で急冷した。この熱延材の表面酸化被膜を除去す
るため厚さ9mmまで面削してから、厚さ0.33mmに冷間圧
延した。次いで、不活性雰囲気中で 440℃×2時間熱処
理し、更に仕上げ冷間圧延して厚さ0.2mm の板材とし、
これを不活性雰囲気中で 350℃で2時間熱処理した。こ
のようにして得られた各々の板材についてリードフレー
ムに要求される種々の特性(〜)を実施例1と同じ
方法により調べた。更にで打抜加工性を調べた金型を
再研磨したのち、再び打抜を行い、 50001回目から 550
00回目までの打抜き分から20個のサンプルを無作為に抽
出し、バリの大きさ(高さII)を測定した。このバリは
金型摩耗が激しい程大きくなり、金型寿命の指標とな
る。結果を表6に示す。なお、表5においてCo、M
g、Mn、Si、Snを第一群添加元素(一群元素)、
Pb、Biを第二群添加元素(二群元素)、Ca、S
r、Ba、Teを第三群添加元素(三群元素)とする。
Example 3 An alloy having the composition shown in Table 5 was melted in a high frequency melting furnace and cast into a ingot having a thickness of 30 mm, a width of 100 mm and a length of 150 mm at a cooling rate of 6 ° C./sec. did. Next, this ingot was hot-rolled at 980 ° C. and immediately thereafter rapidly cooled at a rate of 30 ° C./sec. In order to remove the oxide film on the surface of this hot rolled material, it was chamfered to a thickness of 9 mm and then cold rolled to a thickness of 0.33 mm. Next, heat-treat at 440 ℃ for 2 hours in an inert atmosphere, and further finish cold-rolling to a plate with a thickness of 0.2 mm.
This was heat-treated at 350 ° C. for 2 hours in an inert atmosphere. With respect to the respective plate materials thus obtained, various characteristics (-) required for the lead frame were examined by the same method as in Example 1. Furthermore, after re-polishing the die for which the punching workability was investigated, punching was performed again,
Twenty samples were randomly extracted from the punching up to the 00th time, and the size (height II) of the burr was measured. This burr becomes larger as the die wear becomes more severe and becomes an index of die life. Table 6 shows the results. In Table 5, Co, M
g, Mn, Si, Sn as the first group additive element (first group element),
Pb, Bi as the second group additive element (second group element), Ca, S
r, Ba, and Te are the third group additive elements (third group elements).

【0031】[0031]

【表5】 [Table 5]

【0032】[0032]

【表6】 [Table 6]

【0033】表6より明らかなように、本発明例の No.
51〜62はいずれも優れた特性を示した。これに対し比較
例のNo.63,66は共に強度が低かった。これは、前者はC
r量、後者は第一群添加元素量がそれぞれ少ないためで
ある。No.64,65はエッチング加工面に突起物が認められ
た。これは、Cr又はZr量が多い為である。これら突
起物は短絡の原因となり、リードフレーム材として不適
当である。No.67 は、第一群添加元素量が多い為、強度
は高いが導電率が低かった。又、エッチング加工面に短
絡の原因となる突起物が認められた。No.68 は、Znが
少ない為、半田剥離が認められた。No.69 は、Znが多
い為、半田濡れ性が低下した。。No.70 は、打抜試験で
打抜面での破断面の割合が小さく、バリが大きく発生し
た。又、金型寿命試験でのバリも大きかった。これは、
第二、第三群添加元素量が少ないためである。No.71,72
は、Pb、Bi、Ca、Sr、Ba、Te等の総量が多
い為、熱間圧延中に割れが生じた。No.73,74は、P又は
S量が多い為、晶出物が粗大化し、エッチング加工面に
突起物が認められた。更にNo.73 はPbとCaが共存し
ているため、打抜性(バリ高さI、II、破断部割合)向
上効果が十分に得られない。No.75 は、O2 量が多い
為、十分な析出硬化が得られず強度が低下した。又、半
田濡れ性も劣った。
As is clear from Table 6, No.
All of 51 to 62 showed excellent characteristics. In contrast, Comparative Examples Nos. 63 and 66 had low strength. The former is C
The amount of r and the latter are because the amounts of the first group additive elements are small. Nos. 64 and 65 had protrusions on the etched surface. This is because the amount of Cr or Zr is large. These protrusions cause a short circuit and are unsuitable as a lead frame material. In No. 67, the electrical conductivity was low although the strength was high due to the large amount of elements added in the first group. In addition, a protrusion that causes a short circuit was recognized on the etched surface. In No. 68, the amount of Zn was small, and therefore solder peeling was observed. No. 69 had a large amount of Zn, so the solder wettability deteriorated. . In No. 70, the ratio of the fracture surface on the punching surface was small and the burr was large in the punching test. Also, the burrs in the die life test were large. this is,
This is because the amount of the second and third group additive elements is small. No.71,72
Has a large total amount of Pb, Bi, Ca, Sr, Ba, Te, etc., so that cracking occurred during hot rolling. In Nos. 73 and 74, since the amount of P or S was large, the crystallized substances were coarsened and protrusions were recognized on the etched surface. Further, in No. 73, since Pb and Ca coexist, the effect of improving punchability (burr height I, II, fracture ratio) cannot be sufficiently obtained. In No. 75, the amount of O 2 was large, so that sufficient precipitation hardening could not be obtained and the strength decreased. Also, the solder wettability was poor.

【0034】(実施例4)表5に示す本発明合金No.53,
58,60,62を用いて、表7に記す条件にて鋳造、熱間圧
延、冷却、熱処理、冷間圧延を施し、得られた板材につ
いて、実施例1と同じ方法により特性を調べた。結果を
表8に示す。なお、表5、6に示した本発明例No.53,5
8,60,62を再掲した。
Example 4 Alloy No. 53 of the present invention shown in Table 5
Using 58, 60 and 62, casting, hot rolling, cooling, heat treatment and cold rolling were performed under the conditions shown in Table 7, and the properties of the obtained plate material were examined by the same method as in Example 1. Table 8 shows the results. Inventive Example Nos. 53 and 5 shown in Tables 5 and 6
Re-posted 8,60,62.

【0035】[0035]

【表7】 [Table 7]

【0036】[0036]

【表8】 [Table 8]

【0037】表8より明らかなように、本発明例の No.
81〜86はいずれも優れた特性を示している。これに対
し、比較例のNo.87,94は鋳造時の冷却速度が遅かった
為、 No.88は熱間加工温度が低かった為、 No.89は熱間
加工後の冷却速度が遅かった為、いずれも晶出物や析出
物が粗大化し、これが熱間加工や冷間加工で針状化又は
板状化してエッチング加工面に突起物が発生した。No.8
8,89は引張強度も低下した。No.90,93,95 は冷間加工の
際の熱処理温度が高かった為、結晶粒度が大きくなり、
本発明例のNo.53,60,62 と比較して引張り強度が低下
し、バリが大きく、又破断部割合、金型寿命試験後のバ
リも大きく増加した。No.91 は熱間加工温度が1000℃を
超えた為、圧延材に厚い酸化被膜が形成された。No.91
の特性は本発明例のNo.53 と同等であり、1000℃を超え
る温度で熱間加工することはエネルギーコストの上昇を
招くだけで意味がないことが判る。No.92 は熱間加工後
の焼鈍温度が低かった為、引張り強度と導電率が共に低
下した。
As is clear from Table 8, No.
All of 81 to 86 show excellent characteristics. On the other hand, in Comparative Examples No. 87 and 94, the cooling rate during casting was slow, No. 88 had a low hot working temperature, and No. 89 had a slow cooling rate after hot working. Therefore, in both cases, crystallized substances and precipitates were coarsened, which became needle-like or plate-like during hot working or cold working, resulting in protrusions on the etched surface. No.8
The tensile strength of 8,89 also decreased. No. 90, 93, 95 had a high heat treatment temperature during cold working, so the grain size increased,
Compared with No. 53, 60, 62 of the present invention example, the tensile strength decreased, the burr was large, and the fracture ratio and the burr after the die life test were also greatly increased. In No. 91, the hot working temperature exceeded 1000 ° C, so a thick oxide film was formed on the rolled material. No.91
The characteristics of No. 53 are equivalent to those of No. 53 of the present invention, and it is understood that hot working at a temperature exceeding 1000 ° C. only causes an increase in energy cost and is meaningless. In No. 92, the annealing temperature after hot working was low, so both the tensile strength and conductivity decreased.

【0038】[0038]

【発明の効果】以上に述べたように、本発明の電子機器
用銅合金は、強度や導電性の特性に優れ、また、半田付
性や打抜き性、エッチング性にも優れるものであるか
ら、電子機器の近年の傾向である高密度化、高集積化に
好適に対応できる。また、ピン数が多い、多ピンリード
フレームにも好適に適用できる。本発明はリードフレー
ムに好適なものであるが、リードフレームの他、端子、
コネクター、電極等、一般導電材料としても好適であ
る。このように本発明は工業上顕著な効果を奏するもの
である。
As described above, the copper alloy for electronic devices of the present invention is excellent in strength and conductivity, and is also excellent in solderability, punching property and etching property. It is possible to suitably cope with the recent trend toward higher density and higher integration of electronic equipment. Further, it can be suitably applied to a multi-pin lead frame having a large number of pins. The present invention is suitable for lead frames, but in addition to lead frames, terminals,
It is also suitable as a general conductive material such as a connector and an electrode. Thus, the present invention has an industrially remarkable effect.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Crを 0.1〜0.4wt%、Snを0.05〜2.0w
t%、Znを0.05〜2.0wt%、Sr、Ba、Biの1種以上
を総計で 0.002〜0.2wt%、Zrを0.2wt%未満(0wt%を
含む)含み、Pを0.01wt% 未満、S及びO2 の含有量を
それぞれ0.005wt%未満とし、残部Cu及び不可避不純物
からなる銅合金、又はCrを 0.1〜0.4wt%、Zrを0.2w
t%未満、Snを0.05〜2.0wt%、Znを0.05〜2.0wt%、S
r、Ba、Biの1種以上を総計で 0.002〜0.2wt%含
み、Pを 0.01wt%未満、S及びO 2 の含有量をそれぞれ
0.005wt%未満とし、残部Cu及び不可避不純物からなる
銅合金であって、前記銅合金に含まれる晶出物又は析出
物の大きさが 3μm未満、前記銅合金の結晶粒度が 5μ
m未満であることを特徴とする電子機器用銅合金。
1. Cr: 0.1 to 0.4 wt%, Sn: 0.05 to 2.0 w
t%, 0.05 to 2.0 wt% Zn, one or more of Sr, Ba, Bi
0.002 to 0.2 wt%, Zr less than 0.2 wt% (0 wt%
Included), P less than 0.01wt%, S and OTwoContent of
Less than 0.005 wt% each, balance Cu and unavoidable impurities
Copper alloy consisting of 0.1-0.4wt% Cr, 0.2w Zr
less than t%, Sn 0.05 to 2.0 wt%, Zn 0.05 to 2.0 wt%, S
Contains 0.002 to 0.2 wt% of one or more of r, Ba and Bi in total.
, P less than 0.01 wt%, S and O TwoContent of
Less than 0.005wt%, balance Cu and unavoidable impurities
A copper alloy, and a crystallized substance or precipitation contained in the copper alloy
The size of the object is less than 3μm, the grain size of the copper alloy is 5μ
A copper alloy for electronic devices, which is less than m.
【請求項2】 Crを 0.1〜0.4wt%、Znを0.05〜2wt
%、Co、Mg、Mn、Si、Snの1種以上を総計で
0.01〜1wt%含み、更にPb、Biの1種以上を総計で
0.005〜0.1wt%含み、Pの含有量を0.01wt% 未満、S及
びO2 の含有量をそれぞれ0.005wt%未満とし、残部Cu
及び不可避不純物からなる銅合金、又はCrを 0.1〜0.
4wt%、Zrを0.2wt%未満、Znを0.05〜2wt%、Co、M
g、Mn、Si、Snの1種以上を総計で0.01〜1wt%含
み、更にPb、Biの1種以上を総計で 0.005〜0.1wt%
含み、P含有量を0.01wt% 未満、S及びO2 の含有量を
それぞれ0.005wt%未満とし、残部Cu及び不可避不純物
からなる銅合金であって、前記銅合金に含まれる晶出物
又は析出物の大きさが3μm未満、前記銅合金の結晶粒
度が5μm未満であることを特徴とする電子機器用銅合
金。
2. Cr: 0.1-0.4 wt%, Zn: 0.05-2 wt%
%, One or more of Co, Mg, Mn, Si and Sn in total
0.01 to 1 wt% is included, and at least one of Pb and Bi is added in total.
0.005 to 0.1 wt%, P content less than 0.01 wt%, S content and O 2 content less than 0.005 wt% respectively, balance Cu
And a copper alloy consisting of unavoidable impurities or Cr 0.1 to 0.
4wt%, Zr less than 0.2wt%, Zn 0.05-2wt%, Co, M
0.01 to 1 wt% in total of one or more of g, Mn, Si and Sn, and 0.005 to 0.1 wt% in total of one or more of Pb and Bi
A copper alloy containing P, the content of P is less than 0.01 wt%, the contents of S and O 2 are each less than 0.005 wt%, and the balance Cu and unavoidable impurities. A copper alloy for electronic devices, wherein the size of the object is less than 3 μm, and the grain size of the copper alloy is less than 5 μm.
【請求項3】 Crを 0.1〜0.4wt%、Znを0.05〜2wt
%、Co、Mg、Mn、Si、Snの1種以上を総計で
0.01〜1wt%含み、更にPb、Biの1種以上を総計で
0.005〜0.1wt%、Ca、Sr、Ba、Teの1種以上を
総計で 0.005〜0.2wt%含み(但しPbとCaの共存を除
く)、Pの含有量を0.01wt% 未満、S及びO2 の含有量
をそれぞれ0.005wt%未満とし、残部Cu及び不可避不純
物からなる銅合金、又はCrを 0.1〜0.4wt%、Zrを0.
2wt%未満、Znを0.05〜2wt%、Co、Mg、Mn、S
i、Snの1種以上を総計で0.01〜1wt%含み、更にP
b、Biの1種以上を総計で 0.005〜0.1wt%、Ca、S
r、Ba、Teの1種以上を総計で0.005 〜0.2wt%含み
(但しPbとCaの共存を除く)、P含有量を0.01wt%
未満、S及びO2 の含有量をそれぞれ0.005wt%未満と
し、残部Cu及び不可避不純物からなる銅合金であっ
て、前記銅合金に含まれる晶出物又は析出物の大きさが
3μm未満、前記銅合金の結晶粒度が5μm未満である
ことを特徴とする電子機器用銅合金。
3. Cr: 0.1-0.4 wt%, Zn: 0.05-2 wt%
%, One or more of Co, Mg, Mn, Si and Sn in total
0.01 to 1 wt% is included, and at least one of Pb and Bi is added in total.
0.005 to 0.1 wt%, including one or more of Ca, Sr, Ba and Te in a total amount of 0.005 to 0.2 wt% (excluding coexistence of Pb and Ca), P content of less than 0.01 wt%, S and O Each of the contents of 2 is less than 0.005 wt%, the balance is a copper alloy consisting of Cu and unavoidable impurities, or Cr is 0.1 to 0.4 wt% and Zr is 0.
Less than 2wt%, 0.05 to 2wt% of Zn, Co, Mg, Mn, S
0.01 to 1 wt% in total of at least one of i and Sn, and P
b, Bi one or more in total 0.005-0.1wt%, Ca, S
Includes 0.005 to 0.2 wt% in total of one or more of r, Ba and Te (excluding coexistence of Pb and Ca), and contains P in 0.01 wt%
The content of S and O 2 is less than 0.005 wt%, and the balance is Cu and unavoidable impurities, and the size of crystallized substances or precipitates contained in the copper alloy is less than 3 μm. A copper alloy for electronic devices, wherein the crystal grain size of the copper alloy is less than 5 μm.
【請求項4】 Crを 0.1〜0.4wt%、Snを0.05〜2.0w
t%、Znを0.05〜2.0wt%、Sr、Ba、Biの1種以上
を総計で 0.002〜0.2wt%、Zrを0.2wt%未満(0wt%を
含む)含み、Pを0.01wt% 未満、Sを0.005wt%未満、O
2 を0.005wt%未満とし、残部Cu及び不可避不純物から
なる銅合金、又はCrを 0.1〜0.4wt%、Zrを0.2wt%未
満、Snを0.05〜2.0wt%、Znを0.05〜2.0wt%、Sr、
Ba、Biの1種以上を総計で 0.002〜0.2wt%含み、P
を0.01wt% 未満、Sを0.005wt%未満、O2 を0.005wt%未
満とし、残部Cu及び不可避不純物からなる銅合金に、
鋳造加工、熱間加工、冷間加工を施すにあたり、前記鋳
造加工時の冷却速度を5℃/秒以上とし、前記鋳造加工
にて得られる銅合金鋳塊を 850〜1000℃に加熱して熱間
加工し、熱間加工後10℃/秒以上の速度で冷却し、次い
で冷間加工を 300〜500 ℃で10分〜24時間の熱処理を1
回以上入れて行うことを特徴とする請求項1記載の電子
機器用銅合金の製造方法。
4. Cr: 0.1-0.4 wt%, Sn: 0.05-2.0 w
t%, Zn 0.05-2.0 wt%, Sr, Ba, Bi at least one 0.002-0.2 wt% in total, Zr less than 0.2 wt% (including 0 wt%), P less than 0.01 wt%, S less than 0.005 wt%, O
2 is less than 0.005 wt%, the balance is a copper alloy consisting of Cu and unavoidable impurities, or Cr is 0.1 to 0.4 wt%, Zr is less than 0.2 wt%, Sn is 0.05 to 2.0 wt%, Zn is 0.05 to 2.0 wt%, Sr,
Including 0.002 to 0.2 wt% in total of one or more of Ba and Bi, P
Is less than 0.01 wt%, S is less than 0.005 wt%, O 2 is less than 0.005 wt%, and the balance is a copper alloy consisting of Cu and inevitable impurities.
When performing casting, hot working, or cold working, the cooling rate during the casting is set to 5 ° C / sec or more, and the copper alloy ingot obtained by the casting is heated to 850 to 1000 ° C and heated. Cold working, cool at a rate of 10 ℃ / s or more after hot working, then cold work at 300 to 500 ℃ for 10 minutes to 24 hours heat treatment 1
The method for producing a copper alloy for an electronic device according to claim 1, wherein the method is performed more than once.
【請求項5】 Crを 0.1〜0.4wt%、Znを0.05〜2wt
%、Co、Mg、Mn、Si、Snの1種以上を総計で
0.01〜1wt%含み、更にPb、Biの1種以上を総計で
0.005〜0.1wt%含み、Pの含有量を0.01wt% 未満、S及
びO2 の含有量をそれぞれ0.005wt%未満とし、残部Cu
及び不可避不純物からなる銅合金、又はCrを 0.1〜0.
4wt%、Zrを0.2wt%未満、Znを0.05〜2wt%、Co、M
g、Mn、Si、Snの1種以上を総計で0.01〜1wt%含
み、更にPb、Biの1種以上を総計で 0.005〜0.1wt%
含み、P含有量を0.01wt% 未満、S及びO2 の含有量を
それぞれ0.005wt%未満とし、残部Cu及び不可避不純物
からなる銅合金に、鋳造加工、熱間加工、冷間加工を施
すにあたり、前記鋳造加工時の冷却速度を5℃/秒以上
とし、前記鋳造加工にて得られる銅合金鋳塊を 850〜10
00℃に加熱して熱間加工し、熱間加工後10℃/秒以上の
速度で急冷し、次いで冷間加工および 300〜500 ℃で10
分〜24時間の熱処理を少なくとも1回入れることを特徴
とする請求項2記載の電子機器用銅合金の製造方法。
5. 0.1 to 0.4 wt% of Cr and 0.05 to 2 wt% of Zn
%, One or more of Co, Mg, Mn, Si and Sn in total
0.01 to 1 wt% is included, and at least one of Pb and Bi is added in total.
0.005 to 0.1 wt%, P content less than 0.01 wt%, S content and O 2 content less than 0.005 wt% respectively, balance Cu
And a copper alloy consisting of unavoidable impurities or Cr 0.1 to 0.
4wt%, Zr less than 0.2wt%, Zn 0.05-2wt%, Co, M
0.01 to 1 wt% in total of one or more of g, Mn, Si and Sn, and 0.005 to 0.1 wt% in total of one or more of Pb and Bi
In addition, the P content is less than 0.01 wt%, the content of S and O 2 is less than 0.005 wt% respectively, and the casting, hot working, and cold working are performed on the copper alloy containing the balance Cu and unavoidable impurities. The cooling rate at the time of casting is set to 5 ° C./sec or more, and the copper alloy ingot obtained by the casting is 850 to 10
Heat to 00 ℃ to hot work, quench rapidly after hot working at a rate of 10 ℃ / s or more, then cold work and 10 to 300-500 ℃.
The method for producing a copper alloy for an electronic device according to claim 2, wherein the heat treatment for minutes to 24 hours is performed at least once.
【請求項6】 Crを 0.1〜0.4wt%、Znを0.05〜2wt
%、Co、Mg、Mn、Si、Snの1種以上を総計で
0.01〜1wt%含み、更にPb、Biの1種以上を総計で
0.005〜0.1wt%、Ca、Sr、Ba、Teの1種以上を
総計で 0.005〜0.2wt%含み(但しPbとCaの共存を除
く)、Pの含有量を0.01wt% 未満、S及びO2 の含有量
をそれぞれ0.005wt%未満とし、残部Cu及び不可避不純
物からなる銅合金、又はCrを 0.1〜0.4wt%、Zrを0.
2wt%未満、Znを0.05〜2wt%、Co、Mg、Mn、S
i、Snの1種以上を総計で0.01〜1wt%含み、更にP
b、Biの1種以上を総計で 0.005〜0.1wt%、Ca、S
r、Ba、Teの1種以上を総計で0.005 〜0.2wt%含み
(但しPbとCaの共存を除く)、更にP含有量を0.01
wt% 未満、S及びO2 の含有量をそれぞれ0.005wt%未満
とし、残部Cu及び不可避不純物からなる銅合金に、鋳
造加工、熱間加工、冷間加工を施すにあたり、前記鋳造
加工時の冷却速度を5℃/秒以上とし、前記鋳造加工に
て得られる銅合金鋳塊を 850〜1000℃に加熱して熱間加
工し、熱間加工後10℃/秒以上の速度で急冷し、次いで
冷間加工および 300〜500 ℃で10分〜24時間の熱処理を
少なくとも1回入れることを特徴とする請求項3記載の
電子機器用銅合金の製造方法。
6. Cr: 0.1-0.4 wt%, Zn: 0.05-2 wt%
%, One or more of Co, Mg, Mn, Si and Sn in total
0.01 to 1 wt% is included, and at least one of Pb and Bi is added in total.
0.005 to 0.1 wt%, including one or more of Ca, Sr, Ba and Te in a total amount of 0.005 to 0.2 wt% (excluding coexistence of Pb and Ca), P content of less than 0.01 wt%, S and O Each of the contents of 2 is less than 0.005 wt%, the balance is a copper alloy consisting of Cu and unavoidable impurities, or Cr is 0.1 to 0.4 wt% and Zr is 0.
Less than 2wt%, 0.05 to 2wt% of Zn, Co, Mg, Mn, S
0.01 to 1 wt% in total of at least one of i and Sn, and P
b, Bi one or more in total 0.005-0.1wt%, Ca, S
Includes 0.005 to 0.2 wt% in total of at least one of r, Ba, and Te (excluding coexistence of Pb and Ca), and further includes P content of 0.01
When performing casting, hot working, or cold working on a copper alloy containing less than wt% and contents of S and O 2 of less than 0.005 wt% respectively and the balance Cu and unavoidable impurities, cooling during the casting The speed is set to 5 ° C / sec or more, the copper alloy ingot obtained by the casting process is heated to 850 to 1000 ° C to perform hot working, and after hot working, rapidly cooled at a rate of 10 ° C / s or more, and then 4. The method for producing a copper alloy for electronic equipment according to claim 3, wherein cold working and heat treatment at 300 to 500 [deg.] C. for 10 minutes to 24 hours are performed at least once.
JP31352696A 1996-03-14 1996-11-25 Copper alloy for electronic equipment and method for producing the same Expired - Lifetime JP3519888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31352696A JP3519888B2 (en) 1996-03-14 1996-11-25 Copper alloy for electronic equipment and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5751996 1996-03-14
JP8-57519 1996-03-14
JP31352696A JP3519888B2 (en) 1996-03-14 1996-11-25 Copper alloy for electronic equipment and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09302427A true JPH09302427A (en) 1997-11-25
JP3519888B2 JP3519888B2 (en) 2004-04-19

Family

ID=26398579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31352696A Expired - Lifetime JP3519888B2 (en) 1996-03-14 1996-11-25 Copper alloy for electronic equipment and method for producing the same

Country Status (1)

Country Link
JP (1) JP3519888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482276B2 (en) * 2000-04-10 2002-11-19 The Furukawa Electric Co., Ltd. Copper alloy with punchability, and a manufacturing method thereof
US6783611B2 (en) * 2001-03-13 2004-08-31 Mitsubishi Materials Corporation Phosphorized copper anode for electroplating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482276B2 (en) * 2000-04-10 2002-11-19 The Furukawa Electric Co., Ltd. Copper alloy with punchability, and a manufacturing method thereof
US6783611B2 (en) * 2001-03-13 2004-08-31 Mitsubishi Materials Corporation Phosphorized copper anode for electroplating
KR100815141B1 (en) * 2001-03-13 2008-03-19 미츠비시 마테리알 가부시키가이샤 Phosphorized copper anode for electroplating

Also Published As

Publication number Publication date
JP3519888B2 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
JP4729680B2 (en) Copper-based alloy with excellent press punchability
TWI387657B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same
KR102126731B1 (en) Copper alloy sheet and method for manufacturing copper alloy sheet
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP2001294957A (en) Copper alloy for connector and its producing method
KR20150116825A (en) HIGH-STRENGTH Cu-Ni-Co-Si BASE COPPER ALLOY SHEET, PROCESS FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT
CN107208191B (en) Copper alloy material and method for producing same
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
KR100525024B1 (en) Copper alloy having excellent bendability and manufacturing method therefor
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP3418301B2 (en) Copper alloy for electrical and electronic equipment with excellent punching workability
JP3735005B2 (en) Copper alloy having excellent punchability and method for producing the same
JPH0718356A (en) Copper alloy for electronic equipment, its production and ic lead frame
JP3296709B2 (en) Thin copper alloy for electronic equipment and method for producing the same
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2000144284A (en) High-strength and high-conductivity copper-iron alloy sheet excellent in heat resistance
JP3519888B2 (en) Copper alloy for electronic equipment and method for producing the same
JPH0617209A (en) Manufacture of copper alloy for electrical and electronic apparatus
JPH10110228A (en) Copper alloy for electronic equipment and its production
JPH11323463A (en) Copper alloy for electrical and electronic parts
JPH10265873A (en) Copper alloy for electrical/electronic parts and its production
JP4175920B2 (en) High strength copper alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040130

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

EXPY Cancellation because of completion of term