JPH09298237A - Multilayer interconnection method of integrated circuit - Google Patents

Multilayer interconnection method of integrated circuit

Info

Publication number
JPH09298237A
JPH09298237A JP11393096A JP11393096A JPH09298237A JP H09298237 A JPH09298237 A JP H09298237A JP 11393096 A JP11393096 A JP 11393096A JP 11393096 A JP11393096 A JP 11393096A JP H09298237 A JPH09298237 A JP H09298237A
Authority
JP
Japan
Prior art keywords
wiring
layer
point
integrated circuit
direction wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11393096A
Other languages
Japanese (ja)
Inventor
Satoru Takahashi
悟 高橋
Tatsuyoshi Nakajima
達芳 中島
Kenichi Totani
謙一 戸谷
Kenji Shimonaka
健二 下中
Shinsaku Honchi
辰作 本地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKI TSUSHIN SYST KK
Oki Electric Industry Co Ltd
Original Assignee
OKI TSUSHIN SYST KK
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKI TSUSHIN SYST KK, Oki Electric Industry Co Ltd filed Critical OKI TSUSHIN SYST KK
Priority to JP11393096A priority Critical patent/JPH09298237A/en
Publication of JPH09298237A publication Critical patent/JPH09298237A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: Not only to lessen a time required for carrying out the multilayer interconnection of an integrated circuit but also to synchronize the integrated circuit on clock by a method wherein a wiring is provided in parallel with an X-direction wiring so as not to pass over a point O, provided that an intersection of an X-direction wiring and a Y-direction wiring in the top view of the wiring of the integrated circuit is represented by a point O. SOLUTION: Provided that an intersection of an X-direction wiring and a Y-direction wiring in the top view of the wiring of an integrated circuit is represented by a point O, a wiring is provided in parallel with the X-direction wiring so as not to pass over the point O. That is, an LSI wiring layer is composed of a zero layer 20 where gates 30 and terminals are provided, a first layer 21 where an X-direction wiring layer 31 is provided, a second layer 22 where a Y-direction wiring layer 32 is provided, a third layer 23 where a wiring layer 33 is provided in parallel with the X-direction wiring layer 31 and equipped with wirings arranged between the wirings of the X-direction wiring layer 31, and furthermore a fourth layer 24 where a wiring layer 34 is provided in parallel with the Y-direction wiring layer 32 and equipped with wirings arranged between the wirings of the X-direction wiring layer 31.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、集積回路の多層配
線方法に係り、特に、高速LSIにおける多層配線の多
層化方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring method for an integrated circuit, and more particularly to a multilayer wiring method for a high speed LSI.

【0002】[0002]

【従来の技術】一般に、従来のLSI(大規模集積回
路)の多層化構造は、AND,OR,NOT等の位置す
るゲート層が、最下層に位置し、その上に配線層が形成
されていた。図10はかかる従来のLSIの多層化構造
を示す模式図である。
2. Description of the Related Art Generally, in a conventional multi-layered structure of an LSI (Large Scale Integrated Circuit), a gate layer where AND, OR, NOT, etc. are located is located at the lowest layer, and a wiring layer is formed thereon. It was FIG. 10 is a schematic view showing a multilayer structure of such a conventional LSI.

【0003】この図に示すように、最下層のAND,O
R、NOT等の位置するゲート層1を第0層10とし、
その上層を順に、第1層11、第2層12・・・とす
る。真上から俯瞰し、X,Y,Z軸を基準として考える
と、第1層11はX方向の配線領域2から形成され、第
2層12はY方向の配線領域3、第3層13はX方向の
配線領域2と、交互に形成される。また、第1層11、
第3層13・・・の配線領域は、すべて同一の線上に重
なって見える。また、同様に第2層12、第4層14・
・・もすべて同一の線上に重なって見える。
As shown in this figure, AND, O of the lowermost layer
The gate layer 1 where R, NOT, etc. are located is the 0th layer 10,
The upper layers are referred to as a first layer 11, a second layer 12, ... When viewed from directly above and considering the X, Y, and Z axes as a reference, the first layer 11 is formed from the wiring region 2 in the X direction, the second layer 12 is formed in the wiring region 3 in the Y direction, and the third layer 13 is formed. The wiring regions 2 in the X direction are alternately formed. Also, the first layer 11,
The wiring regions of the third layer 13 ... All appear to overlap on the same line. Similarly, the second layer 12, the fourth layer 14,
.. also appear to overlap on the same line.

【0004】また、各層間は、X方向配線4とY方向配
線5の交点に、Z方向の配線であるビア(VIA)6を
用いて、接続されている。このような、配線層構成の基
で、配線長を削減し、またクロック同期等の可能な、効
率的な配線を形成する必要があり、様々なアルゴリズム
が考え出されてきた。
Further, each layer is connected to an intersection of the X-direction wiring 4 and the Y-direction wiring 5 by using a via (VIA) 6 which is a Z-direction wiring. Based on such a wiring layer structure, it is necessary to reduce the wiring length and form an efficient wiring capable of clock synchronization and the like, and various algorithms have been devised.

【0005】ここで、現在注目されている、配線問題の
ひとつにゼロ・スキュ(Zero−Skew)問題があ
る。これは、ある端子から幾つかの端子に配線する際
に、配線長を等しくすることによって、クロック同期を
実現する問題である。図11はその一例を示す3層構造
の多層化構造を示しており、図11(a)はその第0層
の平面図、図11(b)はその第1層の平面図、図11
(c)はその第2層の平面図、図11(d)はその各層
の合成図、図11(e)はその配線状態を示す図であ
る。
Here, one of the wiring problems that is currently receiving attention is the Zero-Skew problem. This is a problem of realizing clock synchronization by making the wiring lengths equal when wiring from a certain terminal to several terminals. 11 shows a multi-layered structure of a three-layer structure showing one example thereof, FIG. 11 (a) is a plan view of the 0th layer, FIG. 11 (b) is a plan view of the first layer, and FIG.
11C is a plan view of the second layer, FIG. 11D is a composite view of the layers, and FIG. 11E is a view showing the wiring state.

【0006】図11(e)に示すように、点Aから、点
Bと点Cと点Dに、等しい配線長の配線を施す場合、従
来のアルゴリズムによれば、点Bと点Cの中点(点Hと
する)を取り、点Bと点Cから点Hまでの配線を施す。
次に、中点(点H)から点Bもしくは点C間の配線長を
計算し、点Dから、任意の経路で同じ長さの配線を施し
た上で、点Iを生成する。ここで、点Hと点Iの中点
(点J)を取り、点Aから、点Jまでの配線を施す。そ
の結果、図11(e)に示すような配線となる。
As shown in FIG. 11 (e), when wirings having the same wiring length are provided from the point A to the point B, the point C and the point D, according to the conventional algorithm, the middle of the points B and C is used. A point (referred to as point H) is taken, and wiring from point B and point C to point H is provided.
Next, the wiring length between the midpoint (point H) and the point B or the point C is calculated, the wiring having the same length is provided from the point D on an arbitrary route, and then the point I is generated. Here, a midpoint (point J) between points H and I is taken, and wiring from point A to point J is provided. As a result, the wiring as shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の配線方法では、図12に示すように、点Bと点
Cの中点(点H)は、配線が存在しない領域にあり、そ
のような場合、それに近接する点H′を求める。次に、
中点(点H′)から点Bと点C間の配線長(L)と同じ
長さの配線を点Dから施し、延長点(点I)を生成し、
配線長の整合を行う。しかしながら、Lの長さの配線を
行い、点Iをどの点に生成しても、中点(点J)は、配
線の存在しない領域になる。
However, in the above-described conventional wiring method, as shown in FIG. 12, the midpoint (point H) of the points B and C is in the area where wiring does not exist. In that case, a point H'close to it is obtained. next,
A wiring having the same length as the wiring length (L) between the points B and C from the middle point (point H ′) is provided from the point D to generate an extension point (point I),
Match the wiring length. However, no matter where the wiring of length L is performed and the point I is generated at any point, the middle point (point J) is a region where no wiring exists.

【0008】このような場合、いかなる配線を施して
も、Zero−Skewを求めることは不可能であり、
配線問題の前段階の配置問題から再試行するか、厳密な
Zero−Skewを断念し、近似解を用いていた。こ
れは、時間的な面だけではなく、クロック同期の点にお
いても、望ましいことではなかった。本発明は、上記問
題点を除去し、配線時間の削減と共に、クロック同期を
行わせることができる集積回路の多層配線方法を提供す
ることを目的とする。
In such a case, it is impossible to obtain Zero-Skew by any wiring.
Retrying from the placement problem in the previous stage of the wiring problem, or giving up the strict Zero-Skew, the approximate solution was used. This is not desirable not only in terms of time but also in terms of clock synchronization. SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned problems, reduce the wiring time, and provide a multilayer wiring method for an integrated circuit, which can perform clock synchronization.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕集積回路の多層配線方法において、集積回路の配
線を真上からみて、X方向配線とY方向配線の交点を点
Oとした場合に、X方向配線と平行であり、かつ、点O
上を通過しない配線を施すようにしたものである。
In order to achieve the above-mentioned object, the present invention provides [1] a multilayer wiring method for an integrated circuit, wherein the wiring of the integrated circuit is viewed from directly above and the wiring of the X-direction wiring and the Y-direction wiring is When the intersection is point O, it is parallel to the X-direction wiring and
The wiring does not pass above.

【0010】このように、X軸方向の配線の細分化を図
ることにより、配線時間の削減と共に、クロック同期を
行わせることができる。 〔2〕集積回路の多層配線方法において、集積回路の配
線を真上からみて、X方向配線とY方向配線の交点を点
Oとした場合に、Y方向配線と平行であり、かつ、点O
上を通過しない配線を施すようにしたものである。
As described above, by subdividing the wiring in the X-axis direction, it is possible to reduce the wiring time and perform clock synchronization. [2] In the multilayer wiring method of the integrated circuit, when the wiring of the integrated circuit is viewed from directly above and the intersection point of the X-direction wiring and the Y-direction wiring is point O, it is parallel to the Y-direction wiring and the point O
The wiring does not pass above.

【0011】このように、Y軸方向の配線の細分化を図
ることにより、配線時間の削減と共に、クロック同期を
行わせることができる。 〔3〕集積回路の多層配線方法において、集積回路の配
線を真上からみて、X方向配線とY方向配線の交点を点
Oとした場合に、X方向配線と平行であり、かつ、点O
上を通過しない配線と、Y方向配線と平行であり、か
つ、点O上を通過しない配線を施すようにしたものであ
る。
By thus subdividing the wiring in the Y-axis direction, it is possible to reduce the wiring time and to perform clock synchronization. [3] In the multilayer wiring method of an integrated circuit, when the wiring of the integrated circuit is viewed from directly above and the intersection point of the X-direction wiring and the Y-direction wiring is point O, it is parallel to the X-direction wiring and point O
A wire that does not pass above and a wire that is parallel to the Y-direction wire and does not pass above the point O are provided.

【0012】このように、X軸及びY軸方向の配線の細
分化を図ることにより、配線時間の確実な削減と共に、
厳密なクロック同期を求めることが可能となる。特に、
クロック同期の難しい、高速ロジック回路の配線に有効
であり、より、高速な回路の設計が可能となる。 〔4〕集積回路の多層配線方法において、集積回路の配
線を真上からみて、X方向配線とY方向配線の交点を点
Oとした場合に、X方向配線、Y方向配線に対して一定
の角度を持ち、かつ、平行に複数の配線が、点O上を通
過しない配線を施すようにしたものである。
Thus, by subdividing the wiring in the X-axis and Y-axis directions, the wiring time can be reliably reduced, and
It becomes possible to obtain strict clock synchronization. Especially,
This is effective for wiring high-speed logic circuits where clock synchronization is difficult, and enables higher-speed circuit design. [4] In the multilayer wiring method of an integrated circuit, when the wiring of the integrated circuit is viewed from directly above and the intersection point of the X-direction wiring and the Y-direction wiring is point O, the X-direction wiring and the Y-direction wiring are fixed. A plurality of wirings having an angle and parallel to each other are provided so as not to pass over the point O.

【0013】このように、X軸及びY軸と斜行した配線
による細分化を図ることにより、配線時間の削減と共
に、クロック同期を行わせることができる。
As described above, by subdividing the wiring oblique to the X-axis and the Y-axis, the wiring time can be reduced and clock synchronization can be performed.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。本発明ではZero
−Skew問題を、完全に解決する手段として、LSI
の多層配線層構成からアプローチし、従来の配線に加え
て、X方向配線と平行であり、かつ他層のX方向配線
と、Y座標の位置のずれた配線を施した配線層、及びY
方向配線と平行であり、かつ、他層のY方向配線と、X
座標の位置のずれた配線を施した配線層を持つ、LSI
の多層配線層構成を提供する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present invention, Zero
-As a means to completely solve the Skew problem, LSI
In addition to the conventional wiring, the wiring layer which is parallel to the X-direction wiring and has a wiring whose Y coordinate position is shifted from the X-direction wiring of the other layer,
Parallel to the direction wiring, and in the Y direction wiring of another layer, and X
An LSI that has a wiring layer with wiring whose coordinates are displaced
To provide a multi-layer wiring layer configuration.

【0015】図1は、本発明の5層構造の多層化構造を
示しており、図1(a)はその第0層の平面図、図1
(b)はその第1層の平面図、図1(c)はその第2層
の平面図、図1(d)はその第3層の平面図、図1
(e)はその第4層の平面図、図1(f)はその各層の
合成図である。図1において、LSIの配線層構成は、
図1(a)に示すように、第0層20にゲート30及
び、端子を持ち、図1(b)に示すように、第1層21
にX方向配線層31、図1(c)に示すように、第2層
22にY方向配線層32、図1(d)に示すように、第
3層23としてX方向配線層31と平行であり、かつ、
第1層21のX方向配線層31のそれぞれの配線の間に
配線を施した配線層33、図1(e)に示すように、第
4層24としてY方向配線層32と平行であり、かつ、
第2層22のY方向配線32の間に、配線を施した配線
層34を持つ。図1(f)に示す25はそれらの合成平
面層を示している。
FIG. 1 shows a multi-layer structure of the five-layer structure of the present invention. FIG. 1 (a) is a plan view of the 0th layer, and FIG.
1B is a plan view of the first layer, FIG. 1C is a plan view of the second layer, and FIG. 1D is a plan view of the third layer.
FIG. 1E is a plan view of the fourth layer, and FIG. 1F is a composite view of the layers. In FIG. 1, the wiring layer configuration of the LSI is
As shown in FIG. 1A, the 0th layer 20 has a gate 30 and a terminal, and as shown in FIG.
In the X-direction wiring layer 31, the second layer 22 in the Y-direction wiring layer 32 as shown in FIG. 1C, and the third layer 23 as shown in FIG. And, and
A wiring layer 33 in which wiring is provided between the respective wirings of the X-direction wiring layer 31 of the first layer 21, and as shown in FIG. 1E, the fourth layer 24 is parallel to the Y-direction wiring layer 32, And,
A wiring layer 34 having wiring is provided between the Y-direction wirings 32 of the second layer 22. Reference numeral 25 shown in FIG. 1 (f) indicates a composite plane layer of them.

【0016】次に、図2乃至図8を用いて本発明の配線
方法(解法)について説明する。まず、図2に示すよう
な、配置において、起点1から点2,3,4,5,6,
7にZero−Skew配線を施す場合、任意の2点の
組(2と3,5と6,4と7)のZSP(Zero−S
kew Point)を設定する。次に、図3に示すよ
うに、この2点の組の中点(8,9,10)を取り、Z
SPから中点へ配線を施す。ここで中点(8,9,1
0)を、MP(Mark−Point)に置き換える。
Next, the wiring method (solution) of the present invention will be described with reference to FIGS. First, in the arrangement as shown in FIG. 2, from the starting point 1 to the points 2, 3, 4, 5, 6,
When the Zero-Skew wiring is applied to No. 7, ZSP (Zero-S) of an arbitrary pair of two points (2 and 3, 5 and 6, 4 and 7)
(key point). Next, as shown in FIG. 3, the midpoint (8, 9, 10) of this pair of two points is taken and Z
Wiring from SP to the midpoint. Here the midpoint (8, 9, 1
0) is replaced with MP (Mark-Point).

【0017】次に、図4に示すように、点2と点3と点
8からなる組と、点4と点7と点10からなる組を選択
し、中点(8)からZSP(2か3)までの配線長X
と、中点(10)からZSP(4か7)までの配線長Y
を比較する。XとYの差分が1.0と点2と点3と点8
の組が配線長が長いため、MP(10)から、配線長
1.0の配線(10から11)を、任意の経路で施し、
延長点(11)を生成し、配線長の長さを合わせる。
Next, as shown in FIG. 4, a set consisting of points 2, 3, and 8 and a set consisting of points 4, 7, and 10 are selected, and the middle point (8) to ZSP (2) are selected. Or wiring length X up to 3)
And the wiring length Y from the midpoint (10) to ZSP (4 or 7)
Compare. The difference between X and Y is 1.0, point 2, point 3 and point 8
Since the set has a long wiring length, the wiring (10 to 11) having the wiring length of 1.0 is applied from the MP (10) by an arbitrary route,
An extension point (11) is generated and the wiring lengths are matched.

【0018】次に、図5に示すように、MP(10)を
更新し、延長点(11)をMPに置き換え、MP(8と
11)間の中点(12)を取り、MPから配線を施す。
ここで、図6に示すように、中点(12)をMPに置き
換え、次に、点2と点3と点4と点7と点12の組と、
点5と点6と点9の組の配線長を比較する。差分が7.
5であり、点2と点3と点4と点7と点12の組の配線
長が長いため、MP(9)から、配線長7.5の配線
(9−13)を任意の経路で施し、延長点(13)を生
成し、配線長の整合を行う。
Next, as shown in FIG. 5, the MP (10) is updated, the extension point (11) is replaced with the MP, the midpoint (12) between the MPs (8 and 11) is taken, and the wiring is performed from the MP. Give.
Here, as shown in FIG. 6, the middle point (12) is replaced with MP, and then a set of point 2, point 3, point 4, point 7 and point 12,
The wiring lengths of the pairs of points 5, 6, and 9 are compared. Difference is 7.
5 and since the wiring length of the set of point 2, point 3, point 4, point 7, and point 12 is long, the wiring (9-13) having the wiring length of 7.5 is routed from MP (9) by an arbitrary route. Then, the extension point (13) is generated to match the wiring length.

【0019】次に、図7に示すように、延長点(13)
をMPに置き換え、MP間(12と13)の中点(1
4)へ配線する。最後に、図8に示すように、この中点
(14)をMPに置き換え、起点(1)から、配線を施
すことで、Zero−Skew配線が完成される。この
時、起点(1)からZSP(2と3と4と5と6と7)
までの配線長はすべて19.0となる。
Next, as shown in FIG. 7, the extension point (13)
Is replaced by MP, and the midpoint between MP (12 and 13) (1
Wire to 4). Finally, as shown in FIG. 8, the midpoint (14) is replaced with MP, and wiring is performed from the starting point (1) to complete the Zero-Skew wiring. At this time, from the starting point (1) to ZSP (2, 3 and 4, 5 and 6 and 7)
The wiring lengths up to are 19.0.

【0020】これらの配線を用いることにより、従来の
図12のZero−Skew配線は、図9のように求め
られる。従来の場合は、図12に示すように、中点を取
ることができず、配線不可能であったが、本発明の半配
線を用いれば簡単に配線が可能となる。また、本発明の
実施例の配線長は4となる。
By using these wirings, the conventional Zero-Skew wiring shown in FIG. 12 can be obtained as shown in FIG. In the conventional case, as shown in FIG. 12, the midpoint cannot be taken and the wiring is impossible, but the half wiring of the present invention can be used to easily perform the wiring. Further, the wiring length of the embodiment of the present invention is 4.

【0021】このように本発明によれば、半配線方式を
とることにより、配線時間の確実な削減と共に、厳密な
クロック同期を求めることが可能となる。特に、クロッ
ク同期の難しい、高速ロジック回路の配線に有効であ
り、より、高速な回路の設計が可能となる。図13は本
発明の他の実施例を示す5層構造の多層化構造を示す図
であり、図13(a)はその第0層の平面図、図13
(b)はその第1層の平面図、図13(c)はその第2
層の平面図、図13(d)はその第3層の平面図、図1
3(e)はその第4層の平面図、図13(f)はその各
層の合成図である。なお、図1と同じ部分については同
じ符号を付して、それらの説明は省略する。
As described above, according to the present invention, by adopting the half-wiring method, it is possible to reliably reduce the wiring time and to obtain strict clock synchronization. In particular, it is effective for wiring of a high-speed logic circuit in which clock synchronization is difficult, and a higher-speed circuit can be designed. FIG. 13 is a view showing a multi-layer structure of a five-layer structure showing another embodiment of the present invention, and FIG. 13 (a) is a plan view of the 0th layer thereof, and FIG.
FIG. 13B is a plan view of the first layer, and FIG.
FIG. 13D is a plan view of the third layer, and FIG.
3 (e) is a plan view of the fourth layer, and FIG. 13 (f) is a composite view of the respective layers. The same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0022】これらの図に示すように、この実施例で
は、第3層41をX軸からずらすとともに、45°傾け
た配線層51を形成し、第4層42をY軸からずらすと
ともに、45°傾けた配線層52を形成する。その合成
平面層43が示される。なお、上記実施例では5層構造
について述べたが、それ以上の多層形成を行う多層配線
に適用できることは言うまでもない。
As shown in these figures, in this embodiment, the third layer 41 is displaced from the X-axis, the wiring layer 51 inclined by 45 ° is formed, and the fourth layer 42 is displaced from the Y-axis. The inclined wiring layer 52 is formed. The composite plane layer 43 is shown. It should be noted that although the above-mentioned embodiment describes the five-layer structure, it is needless to say that the present invention can be applied to a multi-layer wiring for forming more multi-layers.

【0023】また、X軸、Y軸に平行な配線の細分化、
斜行配線による細分化を組み合わせて、より細分化され
た多層配線を行うようにしてもよい。更に、本発明は上
記実施例に限定されるものではなく、本発明の趣旨に基
づいて種々の変形が可能であり、これらを本発明の範囲
から排除するものではない。
Further, subdivision of wiring parallel to the X-axis and Y-axis,
Subdivided multilayer wiring may be performed by combining subdivisions using oblique wiring. Furthermore, the present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0024】[0024]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。 (1)請求項1記載の発明によれば、X軸方向の配線の
細分化を図ることにより、配線時間の削減と共に、クロ
ック同期を行わせることができる。
As described above, according to the present invention, the following effects can be obtained. (1) According to the first aspect of the invention, by subdividing the wiring in the X-axis direction, it is possible to reduce wiring time and perform clock synchronization.

【0025】(2)請求項2記載の発明によれば、Y軸
方向の配線の細分化を図ることにより、配線時間の削減
と共に、クロック同期を行わせることができる。 (3)請求項3記載の発明によれば、X軸及びY軸方向
の配線の細分化を図ることにより、配線時間の確実な削
減と共に、厳密なクロック同期を求めることが可能とな
る。特に、クロック同期の難しい、高速ロジック回路の
配線に有効であり、より高速な回路の設計が可能とな
る。
(2) According to the second aspect of the invention, by subdividing the wiring in the Y-axis direction, it is possible to reduce the wiring time and perform clock synchronization. (3) According to the third aspect of the invention, by subdividing the wiring in the X-axis and Y-axis directions, it is possible to reliably reduce the wiring time and to obtain strict clock synchronization. In particular, it is effective for wiring a high-speed logic circuit in which clock synchronization is difficult, and a higher-speed circuit can be designed.

【0026】(4)請求項4記載の発明によれば、X軸
及びY軸と斜行した配線により細分化を図ることによ
り、配線時間の削減と共に、クロック同期を行わせるこ
とができる。
(4) According to the fourth aspect of the present invention, the wiring time can be reduced and clock synchronization can be performed by subdividing the wiring obliquely to the X-axis and the Y-axis.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す5層構造の多層化構造を
示す図である。
FIG. 1 is a diagram showing a multilayer structure of a five-layer structure showing an embodiment of the present invention.

【図2】本発明の実施例の配線を施す場合の解法例(過
程1)を示す図である。
FIG. 2 is a diagram showing an example of a solution method (process 1) when wiring is provided according to the embodiment of the present invention.

【図3】本発明の実施例の配線を施す場合の解法例(過
程2)を示す図である。
FIG. 3 is a diagram showing an example of a solution method (process 2) when wiring is provided according to the embodiment of the present invention.

【図4】本発明の実施例の配線を施す場合の解法例(過
程3)を示す図である。
FIG. 4 is a diagram showing an example of a solution method (process 3) when wiring is provided according to the embodiment of the present invention.

【図5】本発明の実施例の配線を施す場合の解法例(過
程4)を示す図である。
FIG. 5 is a diagram showing an example of a solution method (process 4) in the case of providing the wiring according to the embodiment of the present invention.

【図6】本発明の実施例の配線を施す場合の解法例(過
程5)を示す図である。
FIG. 6 is a diagram showing a solution example (process 5) in the case of providing the wiring according to the embodiment of the present invention.

【図7】本発明の実施例の配線を施す場合の解法例(過
程6)を示す図である。
FIG. 7 is a diagram showing an example of a solution method (process 6) when wiring is provided according to the embodiment of the present invention.

【図8】本発明の実施例のZero−Skew配線の完
成図である。
FIG. 8 is a completed diagram of the Zero-Skew wiring according to the embodiment of the present invention.

【図9】本発明の実施例の配線例を示す図である。FIG. 9 is a diagram showing an example of wiring according to the embodiment of the present invention.

【図10】従来のLSIの多層化構造を示す模式図であ
る。
FIG. 10 is a schematic diagram showing a multilayer structure of a conventional LSI.

【図11】従来の3層構造の多層化構造を示す図であ
る。
FIG. 11 is a diagram showing a multi-layer structure of a conventional three-layer structure.

【図12】従来の多層化構造の配線の問題点を示す図で
ある。
FIG. 12 is a diagram showing a problem of wiring of a conventional multilayer structure.

【図13】本発明の他の実施例を示す5層構造の多層化
構造を示す図である。
FIG. 13 is a diagram showing a multilayer structure of a five-layer structure showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 第0層 21 第1層 22 第2層 23,41 第3層 24,42 第4層 25,43 合成平面層 30 ゲート 31 X方向配線層 32 Y方向配線層 33,34,51,52 配線層 20 0th layer 21 1st layer 22 2nd layer 23,41 3rd layer 24,42 4th layer 25,43 Composite plane layer 30 Gate 31 X direction wiring layer 32 Y direction wiring layer 33,34,51,52 Wiring layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸谷 謙一 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 下中 健二 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 本地 辰作 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenichi Toya 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (72) Kenji Shimonaka 1-7-12 Toranomon, Minato-ku, Tokyo In Oki Electric Industry Co., Ltd. (72) Inventor Tatsusaku Home 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 集積回路の配線を真上からみて、X方向
配線とY方向配線の交点を点Oとした場合に、X方向配
線と平行であり、かつ、点O上を通過しない配線を施す
ことを特徴とする集積回路の多層配線方法。
1. When the wiring of the integrated circuit is viewed from directly above and the point of intersection of the X-direction wiring and the Y-direction wiring is point O, wiring that is parallel to the X-direction wiring and does not pass over the point O is defined. A multi-layer wiring method for an integrated circuit, which is performed.
【請求項2】 集積回路の配線を真上からみて、X方向
配線とY方向配線の交点を点Oとした場合に、Y方向配
線と平行であり、かつ、点O上を通過しない配線を施す
ことを特徴とする集積回路の多層配線方法。
2. When the wiring of the integrated circuit is viewed from directly above and the point of intersection of the X-direction wiring and the Y-direction wiring is point O, a wiring that is parallel to the Y-direction wiring and does not pass over the point O is defined. A multi-layer wiring method for an integrated circuit, which is performed.
【請求項3】 集積回路の配線を真上からみて、X方向
配線とY方向配線の交点を点Oとした場合に、X方向配
線と平行であり、かつ、点O上を通過しない配線と、Y
方向配線と平行であり、かつ、点O上を通過しない配線
を施すことを特徴とする集積回路の多層配線方法。
3. A wiring which is parallel to the X-direction wiring and does not pass over the point O when the intersection of the X-direction wiring and the Y-direction wiring is point O when the wiring of the integrated circuit is viewed from directly above. , Y
A multilayer wiring method for an integrated circuit, characterized in that wiring parallel to the direction wiring and not passing over the point O is provided.
【請求項4】 集積回路の配線を真上からみて、X方向
配線とY方向配線の交点を点Oとした場合に、X方向配
線、Y方向配線に対して一定の角度を持ち、かつ、平行
に複数の配線が、点O上を通過しない配線を施すことを
特徴とする集積回路の多層配線方法。
4. When the wiring of the integrated circuit is viewed from directly above and the intersection of the X-direction wiring and the Y-direction wiring is point O, the wiring has a certain angle with respect to the X-direction wiring and the Y-direction wiring, and A multilayer wiring method for an integrated circuit, wherein a plurality of wirings are provided in parallel so as not to pass over the point O.
JP11393096A 1996-05-08 1996-05-08 Multilayer interconnection method of integrated circuit Withdrawn JPH09298237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11393096A JPH09298237A (en) 1996-05-08 1996-05-08 Multilayer interconnection method of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11393096A JPH09298237A (en) 1996-05-08 1996-05-08 Multilayer interconnection method of integrated circuit

Publications (1)

Publication Number Publication Date
JPH09298237A true JPH09298237A (en) 1997-11-18

Family

ID=14624763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11393096A Withdrawn JPH09298237A (en) 1996-05-08 1996-05-08 Multilayer interconnection method of integrated circuit

Country Status (1)

Country Link
JP (1) JPH09298237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077203A (en) * 1999-08-05 2001-03-23 Infineon Technologies Ag Integrated semiconductor chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077203A (en) * 1999-08-05 2001-03-23 Infineon Technologies Ag Integrated semiconductor chip
JP4629837B2 (en) * 1999-08-05 2011-02-09 インフィネオン テクノロジーズ アクチエンゲゼルシャフト Integrated semiconductor chip

Similar Documents

Publication Publication Date Title
US20030015773A1 (en) Semiconductor device
JP2002009160A (en) Automatic layout method of semiconductor integrated circuit, semiconductor integrated circuit manufactured by the method and recording medium recording the method
JP3026387B2 (en) Semiconductor integrated circuit
JPH09298237A (en) Multilayer interconnection method of integrated circuit
JPH04137652A (en) Semiconductor integrated circuit
JPH0693480B2 (en) Semiconductor integrated circuit device
US6269470B1 (en) Efficient routing of conductors between datapaths
JPH0738301A (en) Cross circuit of strip line
JP2929936B2 (en) Pattern Display Method for Multilayer Printed Circuit Board Design
JP2921387B2 (en) Method for forming signal line of semiconductor device
JP2896972B2 (en) Semiconductor device
JP2005085774A (en) Process for producing multilayer printed wiring board
JPS60201648A (en) Integrated circuit
JPH02278748A (en) Power supply wiring method
JP2620005B2 (en) Placement and wiring decision method
JP2888049B2 (en) Drawing editing device
JPH03227039A (en) Semiconductor integrated circuit
JPS62261146A (en) Wiring of semiconductor integrated circuit
JPH0786416A (en) Semiconductor integrated circuit device and its layout method
JPH0844776A (en) Method for designing clock wiring circuit of semiconductor integrated circuit
JPH1117003A (en) Wiring layer interconnecting component in semiconductor integrated circuit
JP2002100732A (en) Method for forming capacitive element
JP2000311944A (en) Wiring design method for semiconductor device
JPH0536844A (en) Semiconductor device
WO2006049097A1 (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805