JPH09293506A - Manufacture of positive pole active material for nonaqueous electrolyte secondary battery - Google Patents

Manufacture of positive pole active material for nonaqueous electrolyte secondary battery

Info

Publication number
JPH09293506A
JPH09293506A JP8127700A JP12770096A JPH09293506A JP H09293506 A JPH09293506 A JP H09293506A JP 8127700 A JP8127700 A JP 8127700A JP 12770096 A JP12770096 A JP 12770096A JP H09293506 A JPH09293506 A JP H09293506A
Authority
JP
Japan
Prior art keywords
active material
nickel
secondary battery
lithium
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8127700A
Other languages
Japanese (ja)
Inventor
Kazuhito Komatsu
和仁 小松
Tsuneyoshi Kamata
恒好 鎌田
Shinya Kagei
慎也 蔭井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP8127700A priority Critical patent/JPH09293506A/en
Publication of JPH09293506A publication Critical patent/JPH09293506A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a positive pole active material for a nonaqueous electrolyte secondary battery having the specified composition, capable of increasing discharging capacity by baking in two steps a mixture of a compound obtained by replacing part of a nickel salt with a salt of Co or the like and a lithium salt in the specified condition. SOLUTION: As a nickel salt, nickel oxide or nickel hydroxide is used, and part of the nickel of the nickel salt is replaced with the salt of Co, Mn, Fe, V, Cr, Al, or Mg. A mixture of this compound and a lithium salt is baked in two steps, and a positive pole active material represented by the general formula of LiNi1- YMYO2 (M is at least one element selected from Co, Mn, Fe, V, Cr, Al, Mg, and 0<Y<=0.25) is synthesized. As the lithium salt, LiOH or LiNO3 is preferable. In the two step baking, a first step baking is conducted in an air flow at 590-690 deg.C for preferably 2-20 hours, and a second step baking is conducted in an oxygen flow at 700-850 deg.C for preferably 0.25-30 hours. Thereby, the positive active material with high characteristics is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
用正極活物質の製造方法に関し、詳しくは2段階の焼成
の温度およびその雰囲気を特定することによって、正極
活物質の特性向上を図り、非水電解液二次電池の放電容
量を改善した非水電解液二次電池用正極活物質の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, and more specifically, to improve the characteristics of the positive electrode active material by specifying the two-step firing temperature and the atmosphere thereof. The present invention relates to a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery in which the discharge capacity of the non-aqueous electrolyte secondary battery is improved.

【0002】[0002]

【従来の技術】従来より非水電解液二次電池用正極活物
質としてリチウム複合酸化物が用いられている。
2. Description of the Related Art Conventionally, a lithium composite oxide has been used as a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0003】しかしながら、コバルト酸リチウム(Li
CoO2 )では電池としての放電容量小さく、また供給
不安がある。このためニッケル酸リチウム(LiNiO
2 )を正極活物質として用いようとしたが、焼成条件に
より生成が不十分であったり、結晶性が低いことがあ
る。また、湿気に非常に弱く、露点の高い雰囲気では長
期保存にも耐えられないものであった。そのために電池
にしたとき放電容量が小さいという課題があった。
However, lithium cobalt oxide (Li
CoO 2 ) has a small discharge capacity as a battery, and there is concern about supply. Therefore, lithium nickel oxide (LiNiO
Although 2 ) was tried to be used as the positive electrode active material, it may be insufficiently formed or may have low crystallinity depending on the firing conditions. Further, it was extremely weak against moisture and could not withstand long-term storage in an atmosphere with a high dew point. Therefore, there is a problem that the discharge capacity of the battery is small.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記課題を
解決するもので、正極活物質の特性向上を図り、非水電
解液二次電池の放電容量を改善した非水電解液二次電池
用正極活物質を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is to solve the above problems, and aims to improve the characteristics of the positive electrode active material and improve the discharge capacity of the non-aqueous electrolyte secondary battery. It aims at providing the positive electrode active material for.

【0005】[0005]

【課題を解決するための手段】本発明の上記目的は、2
段階の焼成の温度およびその雰囲気を特定することによ
って達成される。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
This is achieved by specifying the temperature of the stage calcination and its atmosphere.

【0006】すなわち、本発明は、ニッケル塩として酸
化ニッケルまたは水酸化ニッケルを用い、そのニッケル
の一部をコバルト、マンガン、鉄、バナジウム、クロ
ム、アルミニウム、マグネシウムそれぞれの塩で置換し
た化合物とリチウム塩の混合物を2段階で焼成すること
により合成する一般式LiNi1-YY2 (M=C
o、Mn、Fe、V、Cr、Al、Mgから選ばれる少
なくとも1つの元素:0<Y≦0.25)で表わされる
非水電解液二次電池用正極活物質の製造方法であって、
第1段目の焼成を空気気流中で590〜690℃、第2
段目の焼成を酸素気流中で700〜850℃でそれぞれ
行なうことを特徴とする非水電解液二次電池用正極活物
質の製造方法にある。
That is, according to the present invention, nickel oxide or nickel hydroxide is used as a nickel salt, and a part of the nickel is replaced with a salt of cobalt, manganese, iron, vanadium, chromium, aluminum or magnesium, and a lithium salt. Of the general formula LiNi 1-Y M Y O 2 (M = C
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery represented by at least one element selected from o, Mn, Fe, V, Cr, Al and Mg: 0 <Y ≦ 0.25),
The first stage firing was performed at 590 to 690 ° C in the air stream at the second
The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery is characterized in that the second-stage firing is performed in an oxygen stream at 700 to 850 ° C., respectively.

【0007】[0007]

【発明の実施の形態】以下、本発明ををさらに詳細にす
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below.

【0008】本発明では、ニッケル塩として酸化ニッケ
ルまたは水酸化ニッケルを用い、そのニッケルの一部を
コバルト、マンガン、鉄、バナジウム、クロム、アルミ
ニウム、マグネシウムそれぞれの塩で置換した化合物と
リチウム塩の混合物を2段階で焼成することにより合成
する一般式LiNi1-YY2 (M=Co、Mn、F
e、V、Cr、Al、Mgから選ばれる少なくとも1つ
の元素:0<Y≦0.25)で表わされるリチウム複合
酸化物を得、これを非水電解液二次電池の正極活物質と
して用いる。
In the present invention, a mixture of a lithium salt and a compound in which nickel oxide or nickel hydroxide is used as the nickel salt, and a part of the nickel is replaced with cobalt, manganese, iron, vanadium, chromium, aluminum and magnesium salts, respectively. The general formula LiNi 1-Y M Y O 2 (M = Co, Mn, F
At least one element selected from e, V, Cr, Al and Mg: a lithium composite oxide represented by 0 <Y ≦ 0.25) is obtained and used as a positive electrode active material of a non-aqueous electrolyte secondary battery. .

【0009】ここにおいて、上記一般式中のYは0.2
5以下であることが必要であり、Yが0.25を超える
と従来と同程度の放電容量しか得られない。また、リチ
ウム塩としては水酸化リチウムおよび/または硝酸リチ
ウムが好ましく用いられる。
Here, Y in the above general formula is 0.2.
It is necessary to be 5 or less, and if Y exceeds 0.25, only a discharge capacity comparable to the conventional one can be obtained. Further, lithium hydroxide and / or lithium nitrate is preferably used as the lithium salt.

【0010】本発明では、ニッケル塩の一部を置換元素
で置換したものとリチウム塩との混合物を2段階で焼成
する。ここで第1段目の焼成を空気気流中で590〜6
90℃、好ましくは2〜20時間、第2段目の焼成を酸
素気流中で700〜850℃、好ましくは0.25〜3
0時間でそれぞれ行なう。このように焼成条件を変える
ことによって、第1段目の焼成によって、R−3mの基
本骨格をもつリチウム複合酸化物を形成し、第2段目の
焼成によって、結晶性を向上することができる。そし
て、このような焼成条件を逸脱した場合には、高い放電
容量や優れたサイクル特性を有する非水電解液二次電池
は得られない。
In the present invention, a mixture of a nickel salt partially substituted with a substituting element and a lithium salt is fired in two steps. Here, the first-stage firing is performed in an air stream at 590-6.
90 ° C., preferably 2 to 20 hours, second stage firing in an oxygen stream at 700 to 850 ° C., preferably 0.25 to 3
Perform each at 0 hours. By changing the firing conditions in this way, a lithium composite oxide having a basic skeleton of R-3m can be formed by the first-step firing, and the crystallinity can be improved by the second-step firing. . When the firing conditions are deviated from the above, a non-aqueous electrolyte secondary battery having a high discharge capacity and excellent cycle characteristics cannot be obtained.

【0011】なお、本発明におけるリチウムとニッケル
比は化学量論的に5%減から10%増でも同様な効果が
得られる。
The same effect can be obtained even if the ratio of lithium to nickel in the present invention is stoichiometrically decreased from 5% to 10%.

【0012】本発明の非水電解液二次電池(リチウム二
次電池)の一例を示す側断面図を図1に示す。同図にお
いて、1は負極端子、2は絶縁物、3は負極集電板、4
は負極材、5はセパレータ、6は正極合剤、7は正極端
子をそれぞれ示す。
FIG. 1 is a side sectional view showing an example of the non-aqueous electrolyte secondary battery (lithium secondary battery) of the present invention. In the figure, 1 is a negative electrode terminal, 2 is an insulator, 3 is a negative electrode current collector plate, 4
Is a negative electrode material, 5 is a separator, 6 is a positive electrode mixture, and 7 is a positive electrode terminal.

【0013】[0013]

【実施例】以下、実施例等に基づき本発明を具体的に説
明する。尚、本発明は以下に示す原料、電池構成等に限
定されるものではない。
EXAMPLES The present invention will be specifically described below based on Examples and the like. It should be noted that the present invention is not limited to the raw materials, the battery configuration, etc. shown below.

【0014】実施例1〜3 ニッケル塩としてコバルトで18モル%置換した水酸化
ニッケル、リチウム塩として水酸化リチウムをそれぞれ
ニッケルとリチウムのモル比が1対1になるように秤
量、混合して空気気流中、表1に示すそれぞれの温度で
焼成し、冷却後粉砕し再び酸素気流中、750℃で焼成
し、リチウム複合酸化物(正極活物質)を得た。焼成時
間はそれぞれ10時間とした。
Examples 1 to 3 Nickel hydroxide substituted with cobalt as a nickel salt by 18 mol% and lithium hydroxide as a lithium salt were weighed and mixed so that the molar ratio of nickel and lithium was 1: 1 respectively, and mixed with air. The mixture was baked in an air stream at each temperature shown in Table 1, cooled, pulverized, and again baked in an oxygen stream at 750 ° C. to obtain a lithium composite oxide (positive electrode active material). The firing time was 10 hours each.

【0015】放電容量の評価は図1に示したリチウム二
次電池を作製して行なった。すなわち、正極合剤には上
記リチウム複合酸化物85重量部に対して、アセチレン
ブラック10重量部およびフッ素樹脂系結着剤5重量部
の割合で混合したものを加重3tで加圧成型して直径1
0.6mmφのペレットとしたものを用いた。
The discharge capacity was evaluated by making the lithium secondary battery shown in FIG. That is, as the positive electrode mixture, a mixture of 85 parts by weight of the lithium composite oxide in an amount of 10 parts by weight of acetylene black and 5 parts by weight of a fluororesin-based binder was pressure-molded with a load of 3 t to obtain a diameter. 1
A pellet having a diameter of 0.6 mm was used.

【0016】電解液としてはプロピレンカーボネートと
1,2−ジメトキシエタンの1:1の混合溶媒中に1モ
ル/lになるようテトラフルオロホウ酸リチウム(Li
BF4 )を溶解したものを用い、セパレータに含ませて
使用した。
As an electrolytic solution, lithium tetrafluoroborate (Li) is mixed in a 1: 1 mixed solvent of propylene carbonate and 1,2-dimethoxyethane so as to be 1 mol / l.
A solution of BF 4 ) was used and used by being included in the separator.

【0017】負極材として金属リチウムを用い、正極合
剤に対して充分量(約2倍当量)となるように設計し
た。
Metallic lithium was used as the negative electrode material, and it was designed to be a sufficient amount (about twice the equivalent amount) with respect to the positive electrode mixture.

【0018】得られたリチウム二次電池を用いて充放電
電流密度1mA/cm2 、充電終止電圧4.3V、放電
終止電圧3.0Vの条件で充放電試験を行なった。結果
を表1に示した。
Using the obtained lithium secondary battery, a charge / discharge test was conducted under the conditions of a charge / discharge current density of 1 mA / cm 2 , a charge end voltage of 4.3V and a discharge end voltage of 3.0V. The results are shown in Table 1.

【0019】比較例1〜2 表1に示されるように、第1段目の焼成温度を550
℃、750℃として焼成し、その他の条件は実施例1と
同様にして正極活物質を得、実施例1と同様にリチウム
二次電池を作製し、充放電試験を行なった(比較例1〜
2)。結果を表1に示す。
Comparative Examples 1 and 2 As shown in Table 1, the firing temperature of the first stage was 550.
C., 750.degree. C., the other conditions were the same as in Example 1 to obtain a positive electrode active material, a lithium secondary battery was prepared in the same manner as in Example 1, and a charge / discharge test was conducted (Comparative Examples 1 to 1).
2). The results are shown in Table 1.

【0020】実施例4〜6 ニッケル塩としてコバルトで18モル%置換した水酸化
ニッケル、リチウム塩として水酸化リチウムをそれぞれ
ニッケルとリチウムのモル比が1対1になるように秤
量、混合して空気気流中、650℃で焼成し、冷却後粉
砕し再び酸素気流中、表1に示すそれぞれの温度で焼成
し、リチウム複合酸化物(正極活物質)を得た。焼成時
間はそれぞれ10時間とした。
Examples 4 to 6 Nickel hydroxide substituted with 18 mol% of cobalt as a nickel salt and lithium hydroxide as a lithium salt were weighed and mixed so that the molar ratio of nickel and lithium was 1: 1 respectively, and mixed with air. The mixture was fired at 650 ° C. in an air stream, cooled, pulverized, and fired again in an oxygen stream at each temperature shown in Table 1 to obtain a lithium composite oxide (positive electrode active material). The firing time was 10 hours each.

【0021】このようにして得られた正極活物質を用
い、実施例1と同様にリチウム二次電池を作製し、充放
電試験を行なった。結果を表1に示す。
Using the positive electrode active material thus obtained, a lithium secondary battery was prepared in the same manner as in Example 1 and a charge / discharge test was conducted. The results are shown in Table 1.

【0022】比較例3 表1に示されるように、第2段目の焼成温度を900℃
として焼成し、その他の条件は実施例4と同様にして正
極活物質を得、実施例1と同様にリチウム二次電池を作
製し、充放電試験を行なった。結果を表1に示す。
Comparative Example 3 As shown in Table 1, the firing temperature of the second step was 900 ° C.
Then, a positive electrode active material was obtained under the same conditions as in Example 4, except that the lithium secondary battery was prepared in the same manner as in Example 1 and subjected to a charge / discharge test. The results are shown in Table 1.

【0023】比較例4 表1に示されるように、第2段目の焼成温度を750
℃、かつその雰囲気を空気気流中として焼成し、その他
の条件は実施例4と同様にして正極活物質を得、実施例
1と同様にリチウム二次電池を作製し、充放電試験を行
なった。結果を表1に示す。
Comparative Example 4 As shown in Table 1, the second-stage firing temperature was set to 750.
The positive electrode active material was obtained in the same manner as in Example 4, except that the atmosphere was air-flowed at 0 ° C., and a lithium secondary battery was prepared in the same manner as in Example 1 and subjected to a charge / discharge test. . The results are shown in Table 1.

【0024】実施例7 表1に示されるように、ニッケル塩としてコバルト25
mol%置換した水酸化ニッケルを用いた以外は実施例
1と同様にして正極活物質を得、実施例1と同様にリチ
ウム二次電池を作製し、充放電試験を行なった。結果を
表1に示す。
Example 7 As shown in Table 1, cobalt 25 was used as a nickel salt.
A positive electrode active material was obtained in the same manner as in Example 1 except that nickel hydroxide substituted by mol% was used, and a lithium secondary battery was prepared in the same manner as in Example 1 and a charge / discharge test was conducted. The results are shown in Table 1.

【0025】比較例5 表1に示されるように、ニッケル塩としてコバルト30
mol%置換した水酸化ニッケルを用いた以外は実施例
1と同様にして正極活物質を得、実施例1と同様にリチ
ウム二次電池を作製し、充放電試験を行なった。結果を
表1に示す。
Comparative Example 5 As shown in Table 1, cobalt 30 was used as a nickel salt.
A positive electrode active material was obtained in the same manner as in Example 1 except that nickel hydroxide substituted by mol% was used, and a lithium secondary battery was prepared in the same manner as in Example 1 and a charge / discharge test was conducted. The results are shown in Table 1.

【0026】[0026]

【表1】 表1から明らかなように、実施例1〜3の第1段目の焼
成温度を一定範囲で焼成した場合、比較例1〜2に比べ
放電容量が優れている。
[Table 1] As is clear from Table 1, when the firing temperature of the first stage of Examples 1 to 3 is fired within a certain range, the discharge capacity is superior to that of Comparative Examples 1 and 2.

【0027】また、同様に、実施例4〜6の第2段目の
焼成温度を一定範囲で、しかも酸素気流中で行なった場
合には、比較例3〜4に比べ放電容量が優れている。
Similarly, when the second stage firing temperature of Examples 4 to 6 is performed within a fixed range and in an oxygen stream, the discharge capacities are superior to those of Comparative Examples 3 and 4. .

【0028】さらに実施例7と比較例5の対比から、置
換率を25mol%以下にすることによって放電容量が
優れていることが判る。
From the comparison between Example 7 and Comparative Example 5, it can be seen that the discharge capacity is excellent when the substitution rate is 25 mol% or less.

【0029】実施例8 実施例1で用いた原料混合物を第1段目の焼成として空
気気流中、650℃で焼成時間を種々変化させて焼成
し、第2段目の焼成は750℃とし、酸素気流中20時
間焼成し、リチウム複合酸化物(正極活物質)を得た。
Example 8 The raw material mixture used in Example 1 was fired in the air stream at 650 ° C. for various firing times as the first stage firing, and the second stage firing was performed at 750 ° C. The mixture was baked in an oxygen stream for 20 hours to obtain a lithium composite oxide (positive electrode active material).

【0030】このようにして得られた正極活物質を用
い、実施例1と同様にリチウム二次電池を作製し、充放
電試験を行なった。結果を図2に示す。
Using the positive electrode active material thus obtained, a lithium secondary battery was prepared in the same manner as in Example 1 and a charge / discharge test was conducted. The results are shown in FIG.

【0031】図2から明らかなように、第1段目の焼成
時間が2〜20時間の間で優れた放電容量が得られるこ
とが明らかである。
As is apparent from FIG. 2, it is clear that an excellent discharge capacity can be obtained when the firing time of the first stage is 2 to 20 hours.

【0032】実施例9 実施例1で用いた原料混合物を第1段目の焼成として空
気気流中650℃、10時間で焼成した後、第2段目の
焼成は酸素気流中750℃で焼成時間を種々変化させて
焼成し、リチウム複合酸化物(正極活物質)を得た。
Example 9 The raw material mixture used in Example 1 was fired in the air stream at 650 ° C. for 10 hours as the first stage firing, and then the second step was fired in the oxygen stream at 750 ° C. for a firing time. Were variously changed and fired to obtain a lithium composite oxide (positive electrode active material).

【0033】このようにして得られた正極活物質を用
い、実施例1と同様にリチウム二次電池を作製し、充放
電試験を行なった。結果を図3に示す。
Using the positive electrode active material thus obtained, a lithium secondary battery was prepared in the same manner as in Example 1 and a charge / discharge test was conducted. The results are shown in FIG.

【0034】図3から明らかなように、第2段目の焼成
が0.25〜30時間の間で優れた放電容量が得られる
ことが明らかである。
As is apparent from FIG. 3, it is clear that an excellent discharge capacity can be obtained in the second stage firing for 0.25 to 30 hours.

【0035】実施例10 各種リチウム塩を用いた場合の放電容量を示す。使用し
たリチウム塩は水酸化リチウム、酸化リチウム、硝酸リ
チウムおよび炭酸リチウムでありニッケルとの化学量論
比が1:1になるよう混合した後、第1段目の焼成を空
気気流中、650℃で10時間、第2段目の焼成を酸素
気流中、750℃で20時間焼成し、リチウム複合酸化
物(正極活物質)を得た。
Example 10 The discharge capacity when various lithium salts are used is shown. The lithium salts used were lithium hydroxide, lithium oxide, lithium nitrate and lithium carbonate. After mixing with nickel in a stoichiometric ratio of 1: 1, the first step was calcined in an air stream at 650 ° C. The second stage firing was performed in an oxygen stream at 750 ° C. for 20 hours to obtain a lithium composite oxide (positive electrode active material).

【0036】このようにして得られた正極活物質を用
い、実施例1と同様にリチウム二次電池を作製し、充放
電試験を行なった。結果を図4に示す。
Using the positive electrode active material thus obtained, a lithium secondary battery was prepared in the same manner as in Example 1 and a charge / discharge test was conducted. FIG. 4 shows the results.

【0037】図4から明らかなように、水酸化リチウム
または硝酸リチウムを用いたときに優れた放電容量が得
られていることが判る。
As is apparent from FIG. 4, it was found that excellent discharge capacity was obtained when lithium hydroxide or lithium nitrate was used.

【0038】[0038]

【発明の効果】以上説明したように、本発明の製造方法
によって正極活物質の特性が向上することから、高い放
電容量を有し、サイクル特性に優れた非水電解液二次電
池が得られる。
As described above, since the characteristics of the positive electrode active material are improved by the manufacturing method of the present invention, a non-aqueous electrolyte secondary battery having a high discharge capacity and excellent cycle characteristics can be obtained. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るリチウム二次電池の一例を示す
側断面図である。
FIG. 1 is a side sectional view showing an example of a lithium secondary battery according to the present invention.

【図2】 放電容量と第1段目焼成時間の関係を示すグ
ラフ。
FIG. 2 is a graph showing the relationship between the discharge capacity and the first-stage firing time.

【図3】 放電容量と第1段目焼成時間の関係を示すグ
ラフ。
FIG. 3 is a graph showing the relationship between discharge capacity and first stage firing time.

【図4】 リチウム原料における放電電圧と放電容量の
関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the discharge voltage and the discharge capacity of a lithium raw material.

【符号の説明】[Explanation of symbols]

1:負極端子、2:絶縁物、3:負極集電板、4:負極
材、5:セパレータ、6:正極合剤、7:正極端子。
1: Negative electrode terminal, 2: Insulator, 3: Negative electrode current collector plate, 4: Negative electrode material, 5: Separator, 6: Positive electrode mixture, 7: Positive electrode terminal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル塩として酸化ニッケルまたは水
酸化ニッケルを用い、そのニッケルの一部をコバルト、
マンガン、鉄、バナジウム、クロム、アルミニウム、マ
グネシウムそれぞれの塩で置換した化合物とリチウム塩
の混合物を2段階で焼成することにより合成する一般式
LiNi1-YY2 (M=Co、Mn、Fe、V、C
r、Al、Mgから選ばれる少なくとも1つの元素:0
<Y≦0.25)で表わされる電解液二次電池用正極活
物質の製造方法であって、第1段目の焼成を空気気流中
で590〜690℃、第2段目の焼成を酸素気流中で7
00〜850℃でそれぞれ行なうことを特徴とする非水
電解液二次電池用正極活物質の製造方法。
1. Nickel oxide or nickel hydroxide is used as a nickel salt, and a part of the nickel is cobalt,
A compound of the general formula LiNi 1 -Y M Y O 2 (M = Co, Mn, which is synthesized by firing a mixture of a compound substituted with salts of manganese, iron, vanadium, chromium, aluminum and magnesium and a lithium salt in two steps Fe, V, C
At least one element selected from r, Al, and Mg: 0
<Y ≦ 0.25), which is a method for producing a positive electrode active material for an electrolyte secondary battery, wherein the first-stage firing is performed in an air stream at 590 to 690 ° C., and the second-stage firing is oxygen. 7 in the airflow
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, which is performed at 00 to 850 ° C., respectively.
【請求項2】 前記第1段目の焼成を2〜20時間行な
い、第2段目の焼成を0.25〜30時間行なう請求項
1に記載の非水電解液二次電池用正極活物質の製造方
法。
2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the first stage firing is performed for 2 to 20 hours and the second stage firing is performed for 0.25 to 30 hours. Manufacturing method.
【請求項3】 前記リチウム塩として水酸化リチウムお
よび/または硝酸リチウムを用いる請求項1に記載の非
水電解液二次電池用正極活物質の製造方法。
3. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein lithium hydroxide and / or lithium nitrate is used as the lithium salt.
JP8127700A 1996-04-25 1996-04-25 Manufacture of positive pole active material for nonaqueous electrolyte secondary battery Pending JPH09293506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8127700A JPH09293506A (en) 1996-04-25 1996-04-25 Manufacture of positive pole active material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8127700A JPH09293506A (en) 1996-04-25 1996-04-25 Manufacture of positive pole active material for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09293506A true JPH09293506A (en) 1997-11-11

Family

ID=14966550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8127700A Pending JPH09293506A (en) 1996-04-25 1996-04-25 Manufacture of positive pole active material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09293506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162700A (en) * 2013-02-27 2014-09-08 Jgc Catalysts & Chemicals Ltd Laminar lithium composite oxide and method for manufacturing the same, anode active material for secondary battery including the laminar lithium composite oxide, anode for secondary battery including the same, and lithium ion secondary battery using the same as anode
WO2022034329A1 (en) * 2020-08-13 2022-02-17 Johnson Matthey Public Limited Company Process for preparing lithium nickel composite oxide, lithium nickel composite oxide, electrode material comprising it and method to prepare it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162700A (en) * 2013-02-27 2014-09-08 Jgc Catalysts & Chemicals Ltd Laminar lithium composite oxide and method for manufacturing the same, anode active material for secondary battery including the laminar lithium composite oxide, anode for secondary battery including the same, and lithium ion secondary battery using the same as anode
WO2022034329A1 (en) * 2020-08-13 2022-02-17 Johnson Matthey Public Limited Company Process for preparing lithium nickel composite oxide, lithium nickel composite oxide, electrode material comprising it and method to prepare it

Similar Documents

Publication Publication Date Title
US6613479B2 (en) Positive electrode material and battery for nonaqueous electrolyte secondary battery
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH1167209A (en) Lithium secondary battery
JPH04267053A (en) Lithium secondary battery
JP2002151070A (en) Nonaqueous electrolyte secondary battery
JPH10188986A (en) Manufacture of positive electrode active material for lithium secondary battery
JP4274801B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2020524384A (en) Method for manufacturing positive electrode active material
JPH09270259A (en) Electrode and lithium secondary battery
US7771875B2 (en) Positive electrodes for rechargeable batteries
JP2000100434A (en) Lithium secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3086297B2 (en) Non-aqueous solvent secondary battery
JP2005267956A (en) Non-aqueous electrolyte secondary battery and positive electrode material therefor
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
JPH09293506A (en) Manufacture of positive pole active material for nonaqueous electrolyte secondary battery
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP2002260660A (en) Positive electrode material for nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP2000040512A (en) Manufacture of positive electrode material for lithium secondary battery
JPH08185863A (en) Positive electrode active material for lithium secondary battery and secondary battery using it
JPH06310145A (en) Manufacture of nickel acid lithium for lithium secondary battery
KR102618005B1 (en) Method for manufacturing positive electrode active material
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
KR100578865B1 (en) A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same