JPH04267053A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH04267053A
JPH04267053A JP3050487A JP5048791A JPH04267053A JP H04267053 A JPH04267053 A JP H04267053A JP 3050487 A JP3050487 A JP 3050487A JP 5048791 A JP5048791 A JP 5048791A JP H04267053 A JPH04267053 A JP H04267053A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
battery
lithium secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3050487A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP3050487A priority Critical patent/JPH04267053A/en
Publication of JPH04267053A publication Critical patent/JPH04267053A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain the positive electrode active material for showing the operation voltage of about 4V and having the excellent flexibility in a charge- discharge cycle at a high degree of depth and in which change of crystal structure is small. CONSTITUTION:In a lithium secondary battery comprising a positive electrode, a negative electrode and electrolyte, the material showed with a general formula LixMyN2O2 is used as the positive electrode active material to obtain the described purpose. M means at least one kind selected among Fe, Co, Ni and N means at least one kind selected among Ti, V, Cr, Mn.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はリチウム二次電池に関す
るもので、さらに詳しくはその正極に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a positive electrode thereof.

【0002】0002

【従来の技術】リチウムを負極活物質として用いるリチ
ウム電池は、高電圧、高エネルギー密度及び高信頼性を
有する特長から広く一般に用いられるようになってきた
が、これらは1次電池である。最近では、2次電池の研
究も盛んに行われ、一部では実用化もされている。しか
し、これらの電池の特性は未だに十分ではない。
2. Description of the Related Art Lithium batteries using lithium as a negative electrode active material have come to be widely used because of their characteristics of high voltage, high energy density, and high reliability, but these are primary batteries. Recently, research on secondary batteries has been actively conducted, and some have even been put into practical use. However, the characteristics of these batteries are still not sufficient.

【0003】従来研究されてきた代表的な正極活物質と
してはMoS2 ,V2 O5 ,MnO2 ,NbS
e3 ,TiS2 などがある。これらの中で、特にM
nO2 は安価であるということから注目され、改質さ
れたマンガン酸化物が種々提案されている。例えば、特
開平2−183963号公報に開示されているが、これ
らのマンガン酸化物はいずれも作動電圧が3V程度であ
り、容量はさほど大きくない。
Typical positive electrode active materials that have been studied in the past include MoS2, V2O5, MnO2, and NbS.
e3, TiS2, etc. Among these, especially M
nO2 has attracted attention because it is inexpensive, and various modified manganese oxides have been proposed. For example, as disclosed in Japanese Patent Application Laid-Open No. 2-183963, all of these manganese oxides have an operating voltage of about 3 V and a not so large capacity.

【0004】そこで極最近では容量はマンガン酸化物と
同程度であるが、作動電圧が4V程度と高いLiCoO
2 が高電圧、高エネルギー密度を得られる活物質とし
て注目され研究されている。現在、4V近い作動電圧を
示すものとして知られている活物質としては、LiCo
O2 のほかにLiFeO2 ,LiNiO2 及びL
iMn2 O4 がある。これらの中でLiFeO2 
,LiCoO2 及びLiNiO2 はLiMn2 O
4 に比べて理論容量が大きく高エネルギー密度のリチ
ウム二次電池を得られる可能性がある。
[0004] Very recently, LiCoO, which has a capacity similar to that of manganese oxide but has a high operating voltage of about 4V, has been developed.
2 has been attracting attention and research as an active material that can provide high voltage and high energy density. Currently, LiCo is an active material known to exhibit an operating voltage close to 4V.
In addition to O2, LiFeO2, LiNiO2 and L
There is iMn2 O4. Among these, LiFeO2
, LiCoO2 and LiNiO2 are LiMn2O
It is possible to obtain a lithium secondary battery with a larger theoretical capacity and higher energy density than 4.

【0005】[0005]

【発明が解決しようとする課題】ところで、LiCoO
2 を用いて深い深度の充放電サイクル試験を行ったと
ころサイクルの進行に伴って容量が劣化することが判っ
た。これはリチウムの挿入脱離に伴う結晶構造の変化が
大きいために、活物質自身の可逆性が低下することと、
電極が膨張収縮を繰り返すうちに活物質と導電剤の接触
が不十分になることが原因であると考えられることから
、結晶構造の変化の小さいLiCoO2 を作製する必
要があるという問題点があった。
[Problem to be solved by the invention] By the way, LiCoO
When a deep charge/discharge cycle test was conducted using 2, it was found that the capacity deteriorated as the cycle progressed. This is because the reversibility of the active material itself decreases due to large changes in the crystal structure due to the intercalation and desorption of lithium.
This is thought to be caused by insufficient contact between the active material and the conductive agent as the electrode expands and contracts repeatedly, so there was a problem in that it was necessary to create LiCoO2 with a small change in crystal structure. .

【0006】本発明は上記問題点を解消するために、深
い深度での充放電サイクルにおいても可逆性に優れ、結
晶構造変化が少なく、4V前後の作動電圧を示す正極活
物質を提供することを目的とする。
[0006] In order to solve the above-mentioned problems, the present invention aims to provide a positive electrode active material that has excellent reversibility even in charge/discharge cycles at deep depths, has little change in crystal structure, and exhibits an operating voltage of around 4V. purpose.

【0007】[0007]

【課題を解決するための手段】本発明は正極、負極及び
電解質を具備するリチウム二次電池において、前記正極
の活物質が、一般式Lix My Nz O2 で表さ
れるものであることを特徴とするリチウム二次電池によ
って構成されるものである。但し、MはFe,Co,N
iの群から選ばれた少なくとも1種を表し、NはTi,
V,Cr,Mnの群から選ばれた少なくとも1種を表し
、X,Y,Zはそれぞれ 0.8≦X≦1.2 ,  
0.8≦Y+Z≦1.2 , 0<Y<1.2 ,0<
Z<1.2 の数値を表す。
[Means for Solving the Problems] The present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, characterized in that the active material of the positive electrode is represented by the general formula Lix My Nz O2. It is composed of a lithium secondary battery. However, M is Fe, Co, N
represents at least one species selected from the group i, N is Ti,
Represents at least one species selected from the group of V, Cr, and Mn, and X, Y, and Z are each 0.8≦X≦1.2,
0.8≦Y+Z≦1.2, 0<Y<1.2, 0<
Represents a numerical value of Z<1.2.

【0008】[0008]

【作  用】一般式Lix My Nz O2 で表さ
れる活物質を正極に用いることでサイクル特性が改善さ
れる理由は現在のところ明らかではないが、周期律表で
表される第一遷移金属中のTiからNiまでの元素はい
ずれも層状ロックソルト構造をもつリチウム−遷移金属
−酸素の三元系複合酸化物LiAO2 (AはTiから
Niまでの第一遷移金属)として存在しうる。つまりこ
れらの元素は、同じ構造を作るために容易に相互に置換
した形の多元系複合酸化物を得ることができると思われ
る。
[Function] The reason why the cycle characteristics are improved by using the active material represented by the general formula Lix My Nz O2 in the positive electrode is not clear at present, but it is All the elements from Ti to Ni can exist as a ternary composite oxide LiAO2 of lithium-transition metal-oxygen (A is the first transition metal from Ti to Ni) having a layered rock-salt structure. In other words, it seems possible to obtain a multi-element composite oxide in which these elements are easily substituted with each other to create the same structure.

【0009】このことから一般式Lix My Nz 
O2 で表される多元系複合酸化物は、Fe,Co,N
iの群から選ばれた少なくとも1種の元素が構造中に入
ることにより作動電圧が4V近くを示し、Ti,V,C
r,Mnの群から選ばれた少なくとも1種の元素が構造
中に入ることにより構造が安定化されたために良好なサ
イクル特性を示すものと考えている。
From this, the general formula Lix My Nz
The multi-component complex oxide represented by O2 includes Fe, Co, N
When at least one element selected from the group i is included in the structure, the operating voltage is close to 4V, and Ti, V, C
It is believed that the structure is stabilized by the inclusion of at least one element selected from the group consisting of r and Mn into the structure, thereby exhibiting good cycle characteristics.

【0010】なぜならば、Lix VO2 及びLix
 MnO2 の作動電圧はそれぞれ 2.5V及び2.
8 Vであり、 3.5V以上の高電圧を示すことはな
い。また、Lix MnO2 のサイクル特性は数百サ
イクルの範囲で良好である。
[0010] Because Lix VO2 and Lix
The working voltages of MnO2 are 2.5V and 2.5V, respectively.
8 V, and does not exhibit a high voltage of 3.5 V or higher. Furthermore, the cycle characteristics of Lix MnO2 are good within a range of several hundred cycles.

【0011】[0011]

【実施例】以下本発明の詳細について実施例に基づき説
明するが、本発明がこれら実施例に限定されるものでは
ないことは言うまでもない。
EXAMPLES The details of the present invention will be explained below based on Examples, but it goes without saying that the present invention is not limited to these Examples.

【0012】(実施例1)正極活物質の調製にあたって
は、市販特級試薬の炭酸リチウムと炭酸コバルトと二酸
化マンガンとをLi:Co:Mnのモル比が5:4:1
になるように秤量し、ボールミルで粉砕しながら十分混
合し、混合物をアルミナ坩堝に入れ空気中において65
0℃で5時間仮焼成した後、900℃で20時間焼成し
た。焼成後室温までゆっくり冷却し、粉砕したものを正
極活物質とした。得られた生成物のX線回折パターンは
生成物が単一相で得られていることを示した。
(Example 1) In preparing a positive electrode active material, commercially available special grade reagents such as lithium carbonate, cobalt carbonate, and manganese dioxide were mixed at a Li:Co:Mn molar ratio of 5:4:1.
Mix thoroughly while grinding with a ball mill, put the mixture in an alumina crucible, and leave it in the air at 65°C.
After pre-baking at 0°C for 5 hours, it was fired at 900°C for 20 hours. After firing, it was slowly cooled to room temperature, and the resulting powder was used as a positive electrode active material. The X-ray diffraction pattern of the product obtained showed that the product was obtained in a single phase.

【0013】このようにして得られたLiCo0.8 
Mn0.2O2 を正極活物質として電池の試作を行っ
た。電池の作製方法を以下に述べる。
LiCo0.8 thus obtained
A battery was prototyped using Mn0.2O2 as a positive electrode active material. The method for manufacturing the battery will be described below.

【0014】まず正極活物質とアセチレンブラック及び
ポリテトラフルオロエチエン粉末とを重量比85:10
:5で混合し、トルエンを加えて十分混練した。これを
ローラープレスにより厚み 0.8mmのシート状に成
形した。次にこれを16mmの円形に打ち抜き、減圧下
200℃で15時間熱処理し、LiCo0.8 Mn0
.2 O2 を活物質とした正極を得た。負極は厚み 
0.3mmのリチウム箔を直径15mmの円形に打ち抜
き、集電体を介して負極缶に圧着して用いた。非水電解
液にはγ−ブチロラクトンに1mol/1のLiBF4
 を溶解したものを用い、セパレータにはポリプロピレ
ン製微孔薄膜を用いた。上記正極、負極、電解液及びセ
パレータを用いて図1に示すような直径20mm、厚さ
1.6 mmのボタン型のリチウム電池を作製した。こ
の電池をA1とする。なお、図1において、1は絶縁リ
ング、2は負極集電体、3は負極、4は負極集電体、5
はセパレータ、6は正極、7は正極集電板である。
First, the positive electrode active material and acetylene black and polytetrafluoroethene powder were mixed in a weight ratio of 85:10.
: 5, toluene was added, and the mixture was thoroughly kneaded. This was molded into a sheet with a thickness of 0.8 mm using a roller press. Next, this was punched into a 16 mm circle and heat treated at 200°C under reduced pressure for 15 hours to form LiCo0.8 Mn0.
.. A positive electrode using 2 O2 as an active material was obtained. The thickness of the negative electrode
A 0.3 mm lithium foil was punched out into a circle with a diameter of 15 mm, and used by pressing it onto a negative electrode can via a current collector. The non-aqueous electrolyte contains 1 mol/1 LiBF4 in γ-butyrolactone.
A microporous thin film made of polypropylene was used as a separator. A button-shaped lithium battery with a diameter of 20 mm and a thickness of 1.6 mm as shown in FIG. 1 was produced using the above positive electrode, negative electrode, electrolyte, and separator. This battery is designated as A1. In addition, in FIG. 1, 1 is an insulating ring, 2 is a negative electrode current collector, 3 is a negative electrode, 4 is a negative electrode current collector, and 5
is a separator, 6 is a positive electrode, and 7 is a positive current collector plate.

【0015】(実施例2)二酸化マンガンの代わりに金
属バナジウムを用いたことを除いては、実施例1と同様
の工程で正極活物質を得た。さらにこの活物質を用いて
実施例1と同様の工程で電池を作製した。この電池をA
2とする。
(Example 2) A positive electrode active material was obtained in the same process as in Example 1, except that metal vanadium was used instead of manganese dioxide. Furthermore, a battery was produced using this active material in the same steps as in Example 1. This battery is A
Set it to 2.

【0016】(実施例3)正極活物質の調製にあたって
は、市販特級試薬の炭酸リチウムと炭酸コバルトと酸化
ニッケルと二酸化マンガンとをLi:Co:Ni:Mn
のモル比が5:2:2:1になるように秤量したことを
除いては、実施例1と同様の工程で正極活物質を得た。 さらにこの活物質を用いて実施例1と同様の工程で電池
を作製した。この電池をA3とする。
(Example 3) In preparing a positive electrode active material, commercially available special grade reagents such as lithium carbonate, cobalt carbonate, nickel oxide, and manganese dioxide were mixed into Li:Co:Ni:Mn
A positive electrode active material was obtained in the same manner as in Example 1, except that the molar ratio of the two was weighed to be 5:2:2:1. Furthermore, a battery was produced using this active material in the same steps as in Example 1. This battery is called A3.

【0017】(実施例4)正極活物質の調製にあたって
は、市販特級試薬の炭酸リチウムと炭酸コバルトと酸化
ニッケルと二酸化マンガンと金属バナジウムとをLi:
Co:Ni:Mn:Vのモル比が10:4:4:1:1
になるように秤量したことを除いては、実施例1と同様
の工程で正極活物質を得た。さらにこの活物質を用いて
実施例1と同様の工程で電池を作製した。この電池をA
4とする。
(Example 4) In preparing a positive electrode active material, commercially available special grade reagents such as lithium carbonate, cobalt carbonate, nickel oxide, manganese dioxide, and metal vanadium were mixed with Li:
The molar ratio of Co:Ni:Mn:V is 10:4:4:1:1
A positive electrode active material was obtained in the same process as in Example 1, except that it was weighed so that Furthermore, a battery was produced using this active material in the same steps as in Example 1. This battery is A
Set it to 4.

【0018】(比較例)市販特級試薬の炭酸リチウムと
炭酸コバルトとをLi:Coのモル比が1:1になるよ
うに秤量し、ボールミルで粉砕しながら十分混合し、混
合物をアルミナ坩堝に入れ空気中において650℃で5
時間仮焼成した後、950℃で20時間焼成した。焼成
後室温までゆっくり冷却し、粉砕したものを正極活物質
とした。得られた生成物のX線回折パターンをJCPD
Sカードに記載されたLiCoO2 のX線回折パター
ンと比較したところ、得られた生成物がLiCoO2 
であることが判った。このようにして得られた活物質を
用いて、実施例1と同様の工程で電池を作製した。この
電池をBとする。
(Comparative Example) Lithium carbonate and cobalt carbonate, which are commercially available special grade reagents, were weighed so that the molar ratio of Li:Co was 1:1, thoroughly mixed while pulverizing with a ball mill, and the mixture was placed in an alumina crucible. 5 at 650℃ in air
After being pre-baked for an hour, it was fired at 950°C for 20 hours. After firing, it was slowly cooled to room temperature, and the resulting powder was used as a positive electrode active material. The X-ray diffraction pattern of the obtained product was determined by JCPD.
When compared with the X-ray diffraction pattern of LiCoO2 written on the S card, the obtained product was found to be LiCoO2
It turned out to be. Using the active material thus obtained, a battery was produced in the same steps as in Example 1. This battery is called B.

【0019】このようにして作製した電池A1,A2,
A3,A4,Bを用いて、充放電サイクル試験を行った
。試験条件は、充電電流3mA,充電終止電圧4.5 
V、放電電流3mA、放電終止電圧3.0 Vとした。 この結果を図2に示した。
[0019] Batteries A1, A2, and
A charge/discharge cycle test was conducted using A3, A4, and B. Test conditions are charging current 3mA, charge end voltage 4.5
V, discharge current 3 mA, and discharge end voltage 3.0 V. The results are shown in FIG.

【0020】図2より、本発明電池A1〜A4はいずれ
も比較電池Bよりもサイクル特性が向上していることが
判る。また、A1〜A4はいずれも放電時の平均電圧が
3.5 Vから 4.0Vの間であり、活物質としての
エネルギー密度も従来のものに比べて大きいものとなっ
ている。
From FIG. 2, it can be seen that all of the batteries A1 to A4 of the present invention have better cycle characteristics than comparative battery B. Further, in all of A1 to A4, the average voltage during discharge is between 3.5 V and 4.0 V, and the energy density as an active material is also larger than that of conventional materials.

【0021】以上のように、本発明は広く一般式Lix
 My Nz O2 で表される多元系複合酸化物につ
いて応用が可能である。
As described above, the present invention broadly covers the general formula Lix
Application is possible to a multi-component complex oxide represented by My Nz O2.

【0022】[0022]

【発明の効果】上述した如く、一般式Lix My N
zO2 (但し、MはFe,Co,Niの群から選ばれ
た少なくとも1種を表し、NはTi,V,Cr,Mnの
群から選ばれた少なくとも1種を表す。X,Y,Zはそ
れぞれ 0.8≦X≦1.2 , 0.8≦Y+Z≦1
.2 ,0<Y<1.2 ,0<Z<1.2 の数値を
表す。)で表される正極活物質を用いた電池は、LiC
oO2 を正極活物質として用いた電池に比べて充放電
サイクルにともなう容量劣化が小さい。その結果、本発
明による正極と負極及び電解質とを具備したリチウム二
次電池は、従来のリチウム二次電池に比べサイクル特性
が大幅に改善されたエネルギー密度の大きいものとなる
[Effect of the invention] As mentioned above, the general formula Lix My N
zO2 (However, M represents at least one selected from the group of Fe, Co, and Ni; N represents at least one selected from the group of Ti, V, Cr, and Mn; X, Y, and Z are 0.8≦X≦1.2, 0.8≦Y+Z≦1, respectively
.. 2, 0<Y<1.2, 0<Z<1.2. ) A battery using a positive electrode active material represented by LiC
Compared to batteries using oO2 as the positive electrode active material, capacity deterioration due to charge/discharge cycles is small. As a result, a lithium secondary battery including a positive electrode, a negative electrode, and an electrolyte according to the present invention has significantly improved cycle characteristics and high energy density compared to conventional lithium secondary batteries.

【0023】なお、本発明は実施例に記載された負極、
電解質、セパレータ及び電池形状などに限定されるもの
ではなく、負極に有機焼成体を用いるものや、電解液、
セパレータの代わりに固体電解質を用いたものなどにも
適用可能である。
[0023] The present invention also applies to the negative electrodes described in the Examples,
It is not limited to electrolytes, separators, battery shapes, etc., but may also include those using an organic fired body for the negative electrode, electrolytes,
It is also applicable to those using solid electrolytes instead of separators.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のリチウム二次電池の断面図である。FIG. 1 is a cross-sectional view of a lithium secondary battery of the present invention.

【図2】本発明電池及び比較例電池のサイクル数と容量
保持率との関係図である。
FIG. 2 is a diagram showing the relationship between the number of cycles and the capacity retention rate of a battery of the present invention and a battery of a comparative example.

【符号の説明】[Explanation of symbols]

1  絶縁リング 2  負極集電板 3  負極 4  負極集電体 5  セパレータ 6  正極 7  正極集電板 1 Insulation ring 2 Negative electrode current collector plate 3 Negative electrode 4 Negative electrode current collector 5 Separator 6 Positive electrode 7 Positive electrode current collector plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  正極の活物質が、一般式Lix My
 Nz O2 で表されるものであることを特徴とする
リチウム二次電池。但し、MはFe,Co,Niの群か
ら選ばれた少なくとも1種を表し、NはTi,V,Cr
,Mnの群から選ばれた少なくとも1種を表す。
[Claim 1] The active material of the positive electrode has the general formula Lix My
A lithium secondary battery characterized by being represented by NzO2. However, M represents at least one species selected from the group of Fe, Co, and Ni, and N represents Ti, V, and Cr.
, Mn.
JP3050487A 1991-02-21 1991-02-21 Lithium secondary battery Pending JPH04267053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050487A JPH04267053A (en) 1991-02-21 1991-02-21 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050487A JPH04267053A (en) 1991-02-21 1991-02-21 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH04267053A true JPH04267053A (en) 1992-09-22

Family

ID=12860277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050487A Pending JPH04267053A (en) 1991-02-21 1991-02-21 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH04267053A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831408A (en) * 1994-05-13 1996-02-02 Matsushita Electric Ind Co Ltd Positive electrode for non-aqueous electrolyte lithium secondary battery and manufacture thereof
US6120707A (en) * 1997-06-19 2000-09-19 Matsushita Electric Industrial Co., Ltd. Secondary battery
EP1130665A1 (en) * 2000-03-03 2001-09-05 Nissan Motor Company, Limited Positive electrode material for battery and nonaqueous electrolyte secondary battery
EP1130664A1 (en) * 2000-03-03 2001-09-05 Nissan Motor Company, Limited Positive electrode material and cell for nonaqueous electrolyte secondary battery
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP2005251756A (en) * 2005-04-04 2005-09-15 Nippon Chem Ind Co Ltd Lithium secondary battery positive electrode active substance, its manufacturing method, and lithium secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8257865B2 (en) 2001-11-20 2012-09-04 Tdk Corporation Electrode active material, electrode, lithium-ion secondary battery, method of making electrode active material, and method of making lithium-ion secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
US10084187B2 (en) 2016-09-20 2018-09-25 Apple Inc. Cathode active materials having improved particle morphologies
US10141572B2 (en) 2016-03-14 2018-11-27 Apple Inc. Cathode active materials for lithium-ion batteries
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
US10597307B2 (en) 2016-09-21 2020-03-24 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US10615413B2 (en) 2013-03-12 2020-04-07 Apple Inc. High voltage, high volumetric energy density li-ion battery using advanced cathode materials
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210028A (en) * 1987-02-25 1988-08-31 Hitachi Maxell Ltd Method for synthesizing lithium manganese oxide solid solution
JPH03201368A (en) * 1989-10-06 1991-09-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210028A (en) * 1987-02-25 1988-08-31 Hitachi Maxell Ltd Method for synthesizing lithium manganese oxide solid solution
JPH03201368A (en) * 1989-10-06 1991-09-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831408A (en) * 1994-05-13 1996-02-02 Matsushita Electric Ind Co Ltd Positive electrode for non-aqueous electrolyte lithium secondary battery and manufacture thereof
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6120707A (en) * 1997-06-19 2000-09-19 Matsushita Electric Industrial Co., Ltd. Secondary battery
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
EP1130664A1 (en) * 2000-03-03 2001-09-05 Nissan Motor Company, Limited Positive electrode material and cell for nonaqueous electrolyte secondary battery
EP1130665A1 (en) * 2000-03-03 2001-09-05 Nissan Motor Company, Limited Positive electrode material for battery and nonaqueous electrolyte secondary battery
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8257865B2 (en) 2001-11-20 2012-09-04 Tdk Corporation Electrode active material, electrode, lithium-ion secondary battery, method of making electrode active material, and method of making lithium-ion secondary battery
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2005251756A (en) * 2005-04-04 2005-09-15 Nippon Chem Ind Co Ltd Lithium secondary battery positive electrode active substance, its manufacturing method, and lithium secondary battery
JP4487194B2 (en) * 2005-04-04 2010-06-23 日本化学工業株式会社 Lithium secondary battery positive electrode active material, method for producing the same, and lithium secondary battery
US10615413B2 (en) 2013-03-12 2020-04-07 Apple Inc. High voltage, high volumetric energy density li-ion battery using advanced cathode materials
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
US10128494B2 (en) 2014-08-01 2018-11-13 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
US10347909B2 (en) 2014-08-01 2019-07-09 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for li-ion batteries
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
US11362331B2 (en) 2016-03-14 2022-06-14 Apple Inc. Cathode active materials for lithium-ion batteries
US10164256B2 (en) 2016-03-14 2018-12-25 Apple Inc. Cathode active materials for lithium-ion batteries
US10141572B2 (en) 2016-03-14 2018-11-27 Apple Inc. Cathode active materials for lithium-ion batteries
US11870069B2 (en) 2016-03-14 2024-01-09 Apple Inc. Cathode active materials for lithium-ion batteries
US10297823B2 (en) 2016-09-20 2019-05-21 Apple Inc. Cathode active materials having improved particle morphologies
US10593941B2 (en) 2016-09-20 2020-03-17 Apple Inc. Cathode active materials having improved particle morphologies
US11114663B2 (en) 2016-09-20 2021-09-07 Apple Inc. Cathode active materials having improved particle morphologies
US10084187B2 (en) 2016-09-20 2018-09-25 Apple Inc. Cathode active materials having improved particle morphologies
US10597307B2 (en) 2016-09-21 2020-03-24 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US11462736B2 (en) 2016-09-21 2022-10-04 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries

Similar Documents

Publication Publication Date Title
JPH04267053A (en) Lithium secondary battery
JP3813001B2 (en) Non-aqueous secondary battery
JPH0746607B2 (en) Non-aqueous secondary battery
JP2000277116A (en) Lithium secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP2002289261A (en) Non-aqueous electrolyte secondary battery
JP3670864B2 (en) Lithium secondary battery
JP3536947B2 (en) Lithium secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
US6482546B1 (en) Rechargeable lithium battery
JPH0878006A (en) Lithium secondary battery
JP2586747B2 (en) Lithium secondary battery
JP2001243954A (en) Positive electrode material for lithium secondary battery
EP1109240B1 (en) Positive electrode material for lithium secondary battery
JPH04141954A (en) Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH04345759A (en) Non-aqueous solvent secondary battery
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JPH0878005A (en) Lithium secondary battery
JPH1064542A (en) Nonaqueous electrolyte secondary battery
JP3282495B2 (en) Non-aqueous electrolyte secondary battery
JPH0878009A (en) Lithium secondary battery