JPH09289380A - Multilayer wiring board - Google Patents

Multilayer wiring board

Info

Publication number
JPH09289380A
JPH09289380A JP10015496A JP10015496A JPH09289380A JP H09289380 A JPH09289380 A JP H09289380A JP 10015496 A JP10015496 A JP 10015496A JP 10015496 A JP10015496 A JP 10015496A JP H09289380 A JPH09289380 A JP H09289380A
Authority
JP
Japan
Prior art keywords
organic resin
insulating layer
resin insulating
multilayer wiring
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10015496A
Other languages
Japanese (ja)
Inventor
Seiichi Takami
征一 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10015496A priority Critical patent/JPH09289380A/en
Publication of JPH09289380A publication Critical patent/JPH09289380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To thin the line width of wiring conductors and besides, make the diameter of through holes small, and wiring conductors above and below in high density, by forming organic resin insulating layers out of acid catalyst type photosensitive epoxy resin. SOLUTION: For an insulating substrate 1, a multilayer wiring consisting of an organic resin insulating layer 2 and a film wiring conductor 3 is arranged on the topside, and it works as a support member to support the multilayer wiring 4. Then, the organic resin insulating layer 2 of the multilayer wiring 4 consists of acid catalyst type of photosensitive epoxy resin, and paste-form acid catalyst type of photosensitive epoxy resin precursor is obtained by adding and mixing, for example, phenol novolak resin, etc., and also the acid catalyst type of photosensitive resin precursor is stuck in specified thickness to the top of the insulating substrate 1 by spin coating method or the like, and next this is exposed and developed to form a hole to serve as a through hole 5, and then, this is heated for 30-60min. at a temperature of 180 deg.C, and it is hardened completely, thus this is made.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多層配線基板に関
し、より詳細には混成集積回路装置や半導体素子を収容
する半導体素子収納用パッケージ等に使用される多層配
線基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer wiring board, and more particularly to a multilayer wiring board used for a hybrid integrated circuit device, a semiconductor element housing package for housing a semiconductor element, and the like.

【0002】[0002]

【従来の技術】従来、混成集積回路装置や半導体素子収
納用パッケージ等に使用される多層配線基板はその配線
導体がMoーMn法等の厚膜形成技術によって形成され
ている。
2. Description of the Related Art Conventionally, in a multilayer wiring board used for a hybrid integrated circuit device, a package for housing a semiconductor element, etc., its wiring conductor is formed by a thick film forming technique such as Mo--Mn method.

【0003】このMoーM法は通常、タングステン、モ
リブデン、マンガン等の高融点金属粉末に有機溶剤、溶
媒を添加混合し、ペースト状となした金属ペーストを生
セラミック体の外表面にスクリーン印刷法により所定パ
ターンに印刷塗布し、次ぎにこれを複数枚積層するとと
もに還元雰囲気中で焼成し、高融点金属粉末と生セラミ
ック体とを焼結一体化させる方法である。
The Mo-M method is usually a screen-printing method in which a high-melting metal powder of tungsten, molybdenum, manganese or the like is mixed with an organic solvent and a solvent to form a paste-like metal paste on the outer surface of the green ceramic body. Is applied in a predetermined pattern by printing, and then a plurality of these are laminated and fired in a reducing atmosphere to sinter and integrate the high melting point metal powder and the green ceramic body.

【0004】尚、前記配線導体が形成されるセラミック
体としては通常、酸化アルミニウム質焼結体やムライト
質焼結体等の酸化物系セラミックス、或いは表面に酸化
物膜を被着させた窒化アルミニウム質焼結体や炭化珪素
質焼結体等の非酸化物系セラミックが使用される。
Incidentally, the ceramic body on which the wiring conductor is formed is usually an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride having an oxide film adhered on the surface. Non-oxide ceramics such as a sintered compact or a silicon carbide sintered compact are used.

【0005】しかしながら、このMoーMn法を用いて
配線導体を形成した場合、配線導体は金属ペーストをス
クリーン印刷することにより形成されることから微細化
が困難で配線導体を高密度に形成することができないと
いう欠点を有していた。
However, when the wiring conductor is formed by using this Mo-Mn method, the wiring conductor is formed by screen-printing a metal paste. Therefore, it is difficult to miniaturize the wiring conductor and the wiring conductor can be formed at a high density. It had the drawback of not being able to.

【0006】そこで上記欠点を解消するために配線導体
を従来の厚膜形成技術で形成するのに変えて微細化が可
能な薄膜形成技術を用いて高密度に形成した多層配線基
板が使用されるようになってきた。
In order to solve the above-mentioned drawbacks, therefore, a multilayer wiring board is used which is formed at a high density by using a thin film forming technique capable of miniaturization instead of forming the wiring conductor by a conventional thick film forming technique. It's starting to happen.

【0007】かかる配線導体を薄膜形成技術により形成
した多層配線基板は、一般に酸化アルミニウム質焼結体
等から成るセラミックやガラス繊維を織り込んだガラス
布にエポキシ樹脂を含浸させて形成されるガラスエポキ
シ等から成る絶縁基板の上面にスピンコート法及び熱硬
化処理等によって形成されるエポキシ樹脂等の有機樹脂
から成る絶縁層と、銅やアルミニウム等の金属を無電解
メッキ法や蒸着法等の薄膜形成技術及びフォトリソグラ
フィー技術を採用することによって形成される薄膜配線
導体とを交互に積層させた構造を有している。
A multilayer wiring board in which such a wiring conductor is formed by a thin film forming technique is generally a glass epoxy formed by impregnating a glass cloth woven with ceramics or glass fibers made of an aluminum oxide sintered body or the like into an epoxy resin. An insulating layer made of organic resin such as epoxy resin formed on the upper surface of an insulating substrate made of, for example, by spin coating and thermosetting, and a thin film forming technique such as electroless plating or vapor deposition of metal such as copper or aluminum And a thin film wiring conductor formed by adopting a photolithography technique are alternately laminated.

【0008】またこの多層配線基板においては、積層さ
れた各有機樹脂絶縁層間に配設されている薄膜配線導体
が有機樹脂絶縁層に形成したスルーホールを介して電気
的に接続されており、各有機樹脂絶縁層へのスルーホー
ルの形成はまず各有機樹脂絶縁層上にレジスト材を塗布
するとともにこれに露光、現像を施すことによって所定
位置に所定形状の窓部を形成し、次に前記レジスト材の
窓部にエッチング液を配し、レジスト材の窓部に位置す
る有機樹脂絶縁層を除去して、有機樹脂絶縁層に穴(ス
ルーホール)を形成し、最後に前記レジスト材を有機樹
脂絶縁層上より剥離させ除去することによって行われて
いる。
In this multilayer wiring board, the thin film wiring conductors arranged between the laminated organic resin insulating layers are electrically connected to each other through the through holes formed in the organic resin insulating layer. The through holes are formed in the organic resin insulating layer by first applying a resist material on each organic resin insulating layer and exposing and developing the resist material to form a window portion of a predetermined shape at a predetermined position, and then the resist is formed. Disposing the etching solution in the window of the resist material, removing the organic resin insulating layer located in the window of the resist material, forming a hole (through hole) in the organic resin insulating layer, and finally applying the resist material to the organic resin. It is carried out by peeling and removing from the insulating layer.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この多
層配線基板は、有機樹脂絶縁層が熱硬化型のエポキシ樹
脂で形成されており、該有機樹脂絶縁層にスルーホール
を形成する場合、最終的には剥離除去されるレジスト材
を別途準備するとともにこれを有機樹脂絶縁層上に必ず
塗布しなければならず、スルーホールの形成に最終的に
は除去されるレジスト材を別途準備するとともに多くの
作業工程を必要として、製品としての多層配線基板を高
価とする欠点を招来した。
However, in this multilayer wiring board, the organic resin insulating layer is formed of a thermosetting epoxy resin, and when a through hole is formed in the organic resin insulating layer, the final result is Requires a separate resist material to be peeled off and must be applied on the organic resin insulation layer, and the resist material to be finally removed is required for forming the through holes, and many operations are required. This requires a process, which causes a drawback that the multilayer wiring board as a product becomes expensive.

【0010】尚、上記欠点に鑑み、有機樹脂絶縁層と成
るエポキシ樹脂を感光性としておき、該感光性エポキシ
樹脂に露光、現像処理を施すことによって有機樹脂絶縁
層に直接、スルーホールを形成することも考えられる。
In view of the above drawbacks, an epoxy resin to be an organic resin insulating layer is made photosensitive, and the photosensitive epoxy resin is exposed and developed to form a through hole directly in the organic resin insulating layer. It is also possible.

【0011】しかしながら、一般に使用されている感光
性エポキシ樹脂はエポキシアクリル系やアクリル系の樹
脂であり、その内部にアクリロイル基やアクリル基等の
官能基を有しており、これらの官能基が紫外線のエネル
ギーによりラジカル重合反応をして硬化するものであ
り、該紫外線のエネルギーによるアクリロイル基やアク
リル基等の官能基のラジカル重合反応による硬化ではエ
ポキシ樹脂前駆体の紫外線が照射される表面側から硬化
が進み該硬化されたエポキシ樹脂と未硬化のエポキシ樹
脂との境において屈折率の差が生じ、その結果、硬化途
中におけるエポキシ樹脂内で紫外線の回折、屈折、反射
が大きく起こり、良好なパターンコントラストが得られ
ないことから絶縁基板上に感光性エポキシ樹脂前駆体を
塗布するとともにこれに露光、現像処理を施してスルー
ホールを形成する際、露光処理の解像度の限界が約10
0μmとなって径の小さなスルーホールは形成すること
ができないという欠点を誘発する。
However, the generally used photosensitive epoxy resin is an epoxy acrylic or acrylic resin, and has functional groups such as acryloyl group and acrylic group inside thereof, and these functional groups are ultraviolet rays. It cures by radical polymerization reaction by the energy of the ultraviolet ray, and in the curing by the radical polymerization reaction of the functional group such as acryloyl group and acryl group by the energy of the ultraviolet ray, the epoxy resin precursor is cured from the surface side irradiated with the ultraviolet ray. As a result, a difference in refractive index occurs at the boundary between the cured epoxy resin and the uncured epoxy resin, and as a result, ultraviolet ray diffraction, refraction, and reflection occur largely in the epoxy resin during curing, resulting in good pattern contrast. Therefore, the photosensitive epoxy resin precursor should be applied on the insulating substrate and When exposed, to form a through hole by performing development processing, the limit of the exposure resolution is about 10
The diameter is 0 μm, which causes a drawback that a through hole having a small diameter cannot be formed.

【0012】[0012]

【課題を解決するための手段】本発明は上述の諸欠点に
鑑み案出されたもので、その目的は配線導体の線幅を細
く、且つスルーホールの径を30μm程度の小さいもの
として配線導体を上下に高密度に配線することができる
安価な多層配線基板を提供することにある。
SUMMARY OF THE INVENTION The present invention has been devised in view of the above-mentioned drawbacks, and its object is to reduce the line width of the wiring conductor and to make the diameter of the through hole as small as about 30 μm. An object of the present invention is to provide an inexpensive multilayer wiring board that can be vertically wired with high density.

【0013】本発明は、基板上に、有機樹脂絶縁層と薄
膜配線導体とを交互に積層するとともに上下に位置する
薄膜配線導体を有機樹脂絶縁層に設けたスルーホールを
介して電気的に接続して成る多層配線基板であって、前
記有機樹脂絶縁層を酸触媒型感光性エポキシ樹脂で形成
したことを特徴とするものである。
According to the present invention, the organic resin insulating layers and the thin film wiring conductors are alternately laminated on the substrate and the thin film wiring conductors located above and below are electrically connected through the through holes provided in the organic resin insulating layer. A multilayer wiring board obtained by the above, wherein the organic resin insulating layer is formed of an acid catalyst type photosensitive epoxy resin.

【0014】また本発明は前記積層された有機樹脂絶縁
層の各々の厚みを5μm乃至100μmとしたことを特
徴とするものである。
Further, the present invention is characterized in that each of the laminated organic resin insulating layers has a thickness of 5 μm to 100 μm.

【0015】更に本発明は前記積層された有機樹脂絶縁
層の各々の上面が中心線平均粗さ(Ra)で0.05μ
m≦Ra≦5μmであることを特徴とするものである。
Further, according to the present invention, the upper surface of each of the laminated organic resin insulating layers has a center line average roughness (Ra) of 0.05 μm.
m ≦ Ra ≦ 5 μm.

【0016】本発明の多層配線基板よれば、配線導体を
薄膜形成技術によって形成したことから配線の微細化が
可能となり、薄膜配線導体を極めて高密度に形成するこ
とが可能となる。また本発明の多層配線基板によれば、
有機樹脂絶縁層が酸触媒型の感光性エポキシ樹脂で形成
されており、該酸触媒型感光性エポキシ樹脂は露光時の
解像度が30μm程度であることから有機樹脂絶縁層に
径が30μm程度の微細なスルーホールを形成すること
ができ、これによって上下に配した微細な薄膜配線導体
を確実に電気的接続することが可能となる。
According to the multilayer wiring board of the present invention, since the wiring conductor is formed by the thin film forming technique, the wiring can be miniaturized, and the thin film wiring conductor can be formed with extremely high density. According to the multilayer wiring board of the present invention,
Since the organic resin insulating layer is formed of an acid catalyst type photosensitive epoxy resin, and the acid catalyst type photosensitive epoxy resin has a resolution of about 30 μm during exposure, the organic resin insulating layer has a fine diameter of about 30 μm. Through holes can be formed, which makes it possible to reliably electrically connect fine thin film wiring conductors arranged above and below.

【0017】更に本発明の多層配線基板によれば、有機
樹脂絶縁層を酸触媒型感光性エポキシ樹脂で形成したこ
とから各有機樹脂絶縁層はその前駆体に露光、現像を施
すことによってレジスト材を使用することなく、直接、
スルーホールを形成することができ、レジスト材を不要
して有機樹脂絶縁層にスルーホールを簡単に形成するこ
とが可能で製品としての多層配線基板を安価となすこと
ができる。
Further, according to the multilayer wiring board of the present invention, since the organic resin insulating layer is formed of the acid catalyst type photosensitive epoxy resin, each organic resin insulating layer is exposed to the precursor thereof and developed to form a resist material. Directly without using
The through hole can be formed, the resist material is not required, and the through hole can be easily formed in the organic resin insulating layer, and the multilayer wiring board as a product can be made inexpensive.

【0018】また更に本発明の多層配線基板によれば、
積層される有機樹脂絶縁層の各々の上面を中心線平均粗
さ(Ra)で0.05μm≦Ra≦5μmとしておくと
積層される上下の有機樹脂絶縁層を極めて強固に接合さ
せることができ、その結果、多層配線基板としての機能
を長期間にわたり維持することが可能となる。
Furthermore, according to the multilayer wiring board of the present invention,
When the upper surface of each of the laminated organic resin insulating layers is set to have a center line average roughness (Ra) of 0.05 μm ≦ Ra ≦ 5 μm, the upper and lower organic resin insulating layers to be laminated can be bonded very strongly, As a result, the function of the multilayer wiring board can be maintained for a long period of time.

【0019】[0019]

【発明の実施の形態】次に、本発明を添付図面に基づき
詳細に説明する。
Next, the present invention will be described in detail with reference to the accompanying drawings.

【0020】図1は、本発明の多層配線基板の一実施例
を示し、1は絶縁基板、2は有機樹脂絶縁層、3は薄膜
配線導体である。
FIG. 1 shows an embodiment of the multilayer wiring board of the present invention, in which 1 is an insulating substrate, 2 is an organic resin insulating layer, and 3 is a thin film wiring conductor.

【0021】前記絶縁基板1はその上面に有機樹脂絶縁
層2と薄膜配線導体3とから成る多層配線4が配設され
ており、該多層配線4を支持する支持部材として作用す
る。
On the upper surface of the insulating substrate 1, a multilayer wiring 4 composed of an organic resin insulating layer 2 and a thin film wiring conductor 3 is arranged, and it functions as a supporting member for supporting the multilayer wiring 4.

【0022】前記絶縁基板1は酸化アルミニウム質焼結
体やムライト質焼結体等の酸化物系セラミックス、或い
は表面に酸化物膜を有する窒化アルミニウム質焼結体、
炭化珪素質焼結体等の非酸化物系セラミックス、更には
ガラス繊維を織り込んだ布にエポキシ樹脂を含浸させた
ガラスエポキシ樹脂等の電気絶縁材料で形成されてお
り、例えば酸化アルミニウム質焼結体で形成されている
場合には、アルミナ(Al2 3 )、シリカ(Si
2 )、カルシア(CaO)、マグネシア(MgO)等
の原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿
状となすとともにこれを従来周知のドクターブレード法
やカレンダーロール法を採用することによってセラミッ
クグリーンシート(セラミック生シート)を形成し、し
かる後、前記セラミックグリーンシートに適当な打ち抜
き加工を施し、所定形状となすとともに高温(約160
0℃)で焼成することによって、或いはアルミナ等の原
料粉末に適当な有機溶剤、溶媒を添加混合して原料粉末
を調整するとともに該原料粉末をプレス成形機によって
所定形状に成形し、最後に前記成形体を約1600℃の
温度で焼成することによって製作される。
The insulating substrate 1 is an oxide ceramic such as an aluminum oxide sintered body or a mullite sintered body, or an aluminum nitride sintered body having an oxide film on its surface.
It is made of a non-oxide ceramic such as a silicon carbide sintered body, and an electrically insulating material such as a glass epoxy resin obtained by impregnating a cloth woven with glass fiber with an epoxy resin. For example, an aluminum oxide sintered body. In the case of being formed of, alumina (Al 2 O 3 ) and silica (Si
O 2 ), calcia (CaO), magnesia (MgO), and other raw material powders are mixed with an appropriate organic solvent and solvent to form a slurry, which is then applied by the well-known doctor blade method or calendar roll method. To form a ceramic green sheet (ceramic green sheet), and then subject the ceramic green sheet to an appropriate punching process to form a predetermined shape and a high temperature (about 160).
(0 ° C.) or by mixing a raw material powder such as alumina with an appropriate organic solvent and solvent to prepare the raw material powder, and molding the raw material powder into a predetermined shape by a press molding machine, and finally It is manufactured by firing the molded body at a temperature of about 1600 ° C.

【0023】また前記絶縁基板1はその上面に有機樹脂
絶縁層2と薄膜配線導体3とが交互に多層に配設されて
多層配線4が被着されており、該多層配線4を構成する
有機樹脂絶縁層2は上下に位置する薄膜配線導体3の電
気的絶縁を図る作用を為すとともに薄膜配線導体3は電
気信号を伝達するための伝達路として作用する。
On the upper surface of the insulating substrate 1, the organic resin insulating layers 2 and the thin-film wiring conductors 3 are alternately arranged in multiple layers and the multilayer wiring 4 is applied. The resin insulation layer 2 serves to electrically insulate the thin film wiring conductors 3 located above and below, and the thin film wiring conductor 3 also serves as a transmission path for transmitting an electric signal.

【0024】前記多層配線4の有機樹脂絶縁層2は、酸
触媒型の感光性エポキシ樹脂から成り、例えば、フェノ
ールノボラック樹脂、メチロールメラミン、ジアリルジ
アゾニウム塩にプロピレングリコールモノメチルエーテ
ルアセテートを添加混合してペースト状の酸触媒型感光
性エポキシ樹脂前駆体を得るとともに 該酸触媒型の感
光性エポキシ樹脂前駆体を絶縁基板1の上部にスピンコ
ート法やドクターブレード法等により所定厚みに被着さ
せ、次に、これを高圧水銀ランプ等を用いた露光機によ
り1〜3J/cm3 のエネルギーで所定の露光を行うと
ともにスプレー現像機等で現像して後述するスルーホー
ル5となる穴を形成し、しかる後、これを180℃の温
度で30〜60分加熱し、完全に硬化させることによっ
て形成される。
The organic resin insulation layer 2 of the multi-layer wiring 4 is made of an acid-catalyzed photosensitive epoxy resin. For example, phenol novolac resin, methylol melamine, diallyl diazonium salt is added and mixed with propylene glycol monomethyl ether acetate to form a paste. A photosensitive acid-catalyst-type photosensitive epoxy resin precursor is obtained, and the acid-catalyst-type photosensitive epoxy resin precursor is applied to the upper portion of the insulating substrate 1 by a spin coating method or a doctor blade method to a predetermined thickness. Then, this is subjected to predetermined exposure with an energy of 1 to 3 J / cm 3 by an exposing machine using a high-pressure mercury lamp and is developed with a spray developing machine to form a hole to be a through hole 5 which will be described later. It is formed by heating it at a temperature of 180 ° C. for 30 to 60 minutes to completely cure it.

【0025】更に前記多層配線4の有機樹脂絶縁層2は
その各々の所定位置にスルーホール5が形成されてお
り、該スルーホール5は有機樹脂絶縁層5を介して上下
に位置する薄膜配線導体の各々を電気的に接続する接続
路として作用する。
Further, the organic resin insulating layer 2 of the multi-layered wiring 4 has through holes 5 formed at respective predetermined positions, and the through holes 5 are thin film wiring conductors which are vertically arranged with the organic resin insulating layer 5 interposed therebetween. , And each of them acts as a connection path for electrically connecting them.

【0026】前記スルーホール5は有機絶縁樹脂層2が
酸触媒型の感光性エポキシ樹脂で形成されていることか
ら、前述した有機樹脂絶縁層2を形成する際に、絶縁基
板1上部に塗布された酸触媒型感光性エポキシ樹脂前駆
体に露光、現像を施すことによって有機樹脂絶縁層2に
直接、形成され、有機樹脂絶縁層2にスルーホール5を
形成するためのレジスト材を別途、準備する必要は全く
なく、これによって有機樹脂絶縁層2に簡単にスルーホ
ール5を形成することが可能となるととも製品としての
多層配線基板を安価となすことができる。
Since the organic insulating resin layer 2 is formed of an acid catalyst type photosensitive epoxy resin, the through hole 5 is applied to the upper part of the insulating substrate 1 when the organic resin insulating layer 2 is formed. The resist material for directly forming the through hole 5 in the organic resin insulating layer 2 by exposing and developing the acid-catalyzed photosensitive epoxy resin precursor is prepared separately. There is no need at all, which makes it possible to easily form the through holes 5 in the organic resin insulating layer 2 and to make the multilayer wiring board as a product inexpensive.

【0027】また前記各有機樹脂絶縁層2の上面には所
定パターンの薄膜配線導体3が配設されており、間に有
機樹脂絶縁層2を挟んで上下に位置する各薄膜配線導体
3はその各々が有機樹脂絶縁層2に形成したスルーホー
ル5内に配されている薄膜配線導体3を介して電気的に
接続されている。
Further, a thin film wiring conductor 3 having a predetermined pattern is provided on the upper surface of each organic resin insulating layer 2, and each thin film wiring conductor 3 located above and below with the organic resin insulating layer 2 interposed therebetween. Each is electrically connected through a thin film wiring conductor 3 arranged in a through hole 5 formed in the organic resin insulating layer 2.

【0028】前記各有機樹脂絶縁層2の上面及びスルー
ホール5内に配設される薄膜配線導体3は銅、ニッケ
ル、金、アルミニウム等の金属材料を無電解メッキ法や
蒸着法、スパッタリング法等の薄膜形成技術及びエッチ
ング加工技術を採用することによって形成され、例えば
銅で形成されている場合には、有機樹脂絶縁層2の上面
及びスルーホール5の内表面に硫酸銅0.06モル/リ
ットル、ホルマリン0.3モル/リットル、水酸化ナト
リウム0.35モル/リットル、エチレンジアミン四酢
酸0.35モル/リットルからなる無電解銅メッキ浴を
用いて厚さ1μm乃至40μmの銅層を被着させ、しか
る後、前記銅層をエッチング加工法により所定パターン
に加工することによって各有機樹脂絶縁層2間に配設さ
れる。この場合、薄膜配線導体3は薄膜形成技術により
形成されることから配線の微細化が可能であり、これに
よって薄膜配線導体3を極めて高密度に形成することが
可能となる。
The thin film wiring conductors 3 disposed on the upper surface of each organic resin insulating layer 2 and the through holes 5 are made of a metal material such as copper, nickel, gold, aluminum, etc. by electroless plating, vapor deposition, sputtering or the like. Is formed by adopting the thin film forming technology and the etching processing technology, and when it is made of copper, 0.06 mol / liter of copper sulfate is formed on the upper surface of the organic resin insulating layer 2 and the inner surface of the through hole 5. , Formalin 0.3 mol / l, sodium hydroxide 0.35 mol / l, ethylenediaminetetraacetic acid 0.35 mol / l, using an electroless copper plating bath to deposit a copper layer having a thickness of 1 μm to 40 μm. Thereafter, the copper layer is processed into a predetermined pattern by an etching processing method so as to be disposed between the organic resin insulating layers 2. In this case, since the thin-film wiring conductor 3 is formed by a thin-film forming technique, the wiring can be miniaturized, whereby the thin-film wiring conductor 3 can be formed at an extremely high density.

【0029】また前記各有機樹脂絶縁層間に配設される
薄膜配線導体3は、その各々が有機樹脂絶縁層2に設け
たスルーホール5を介して電気的に接続されており、該
スルーホール5は有機絶縁樹脂層2が酸触媒型の感光性
エポキシ樹脂で形成され、該酸触媒型の感光性エポキシ
樹脂は、まず酸触媒型のエポキシ樹脂前駆体に紫外線が
照射されると該前駆体は硬化しないものの紫外線のエネ
ルギーによりエポキシ樹脂前駆体中に熱によるエポキシ
樹脂前駆体の重合反応を促進させる触媒作用のあるルイ
ス酸等の触媒物質が形成され、次にこれに熱が印加され
ると該熱のエネルギーにより前記触媒物質が形成された
エポキシ樹脂前駆体が触媒物質の触媒作用により重合反
応し熱硬化するものであり、紫外線の照射により酸触媒
型エポキシ樹脂前駆体に触媒物質を形成させる際には硬
化が起こらないことから酸触媒型エポキシ樹脂前駆体内
で紫外線の回折、屈折、反射が大きく起こることはな
く、従って、エポキシ樹脂前駆体中に触媒物質がシャー
プなコントラストのパターンに形成され、また熱により
硬化させる際には該シャープなコントラストのパターン
で触媒物質が形成された部位のみが触媒物質の触媒作用
のもとで熱により重合硬化することから酸触媒型感光性
エポキシ樹脂前駆体に露光加熱処理を施した場合、その
解像度を約30μmとしてスルーホール5の径を約30
μmの微細なものとなすことができ、その結果、有機樹
脂絶縁層2を間に挟んで上下に配した微細な薄膜配線導
体3は同様に微細に形成したスルーホール5を介して確
実に電気的接続することが可能となる。
The thin film wiring conductors 3 disposed between the organic resin insulating layers are electrically connected to each other through the through holes 5 provided in the organic resin insulating layer 2. The organic insulating resin layer 2 is formed of an acid catalyst type photosensitive epoxy resin, and when the acid catalyst type photosensitive epoxy resin is first irradiated with ultraviolet rays to the acid catalyst type epoxy resin precursor, the precursor becomes Although it does not cure, a catalytic substance such as Lewis acid having a catalytic action for promoting the polymerization reaction of the epoxy resin precursor by heat is formed in the epoxy resin precursor by the energy of ultraviolet rays, and when heat is applied to the catalyst substance, The epoxy resin precursor, on which the catalyst substance is formed by heat energy, undergoes a polymerization reaction due to the catalytic action of the catalyst substance and is thermally cured. Since the curing does not occur when the catalyst substance is formed on the body, the diffraction, refraction and reflection of ultraviolet rays do not occur largely in the acid catalyst type epoxy resin precursor, and therefore the catalyst substance is sharp in the epoxy resin precursor. When a catalyst is formed with a high contrast pattern and is hardened by heat, only the portion where the catalyst substance is formed with the sharp contrast pattern is polymerized and hardened by heat under the catalytic action of the catalyst substance. When the mold-type photosensitive epoxy resin precursor is subjected to exposure heating treatment, the resolution is set to about 30 μm and the diameter of the through hole 5 is set to about 30
As a result, the fine thin film wiring conductors 3 vertically arranged with the organic resin insulating layer 2 interposed therebetween are surely electrically connected through the through holes 5 which are also finely formed. It becomes possible to make a physical connection.

【0030】尚、前記有機樹脂絶縁層2と薄膜配線導体
3とを交互に多層に配設して形成される多層配線4は各
有機樹脂絶縁層2の上面を中心線平均粗さ(Ra)で
0.05μm≦Ra≦5μmの粗面としておくと有機樹
脂絶縁層2と薄膜配線導体3との接合及び上下に位置す
る有機樹脂絶縁層2同士の接合を強固となすこができ
る。従って、前記多層配線4の各有機樹脂絶縁層2はそ
の上面にCHF3 、CF4、Ar等のガスを吹きつけリ
アクティブイオンエッチング処理をすること等によって
粗し、中心線平均粗さ(Ra)で0.05μm≦Ra≦
5μmの粗面としておくことが好ましい。
The multilayer wiring 4 formed by alternately arranging the organic resin insulating layers 2 and the thin film wiring conductors 3 in multiple layers has the center line average roughness (Ra) on the upper surface of each organic resin insulating layer 2. With a rough surface of 0.05 μm ≦ Ra ≦ 5 μm, the organic resin insulating layer 2 and the thin film wiring conductor 3 can be joined firmly and the organic resin insulating layers 2 located above and below can be firmly joined. Therefore, each organic resin insulating layer 2 of the multi-layer wiring 4 is roughened by spraying a gas such as CHF 3 , CF 4 , Ar or the like on its upper surface to perform a reactive ion etching process to obtain the center line average roughness (Ra). ) Is 0.05 μm ≦ Ra ≦
It is preferable to have a rough surface of 5 μm.

【0031】更に前記有機樹脂絶縁層2はその各々の厚
みが100μmを越えると感光性エポキシ樹脂前駆体に
露光、現像処理を施すことによってスルーホールとなる
穴を形成する際、その穴を鮮明に形成するのが困難とな
って、有機樹脂絶縁層2に所定のスルーホール5を形成
することができなくなる危険性を有し、また5μmm未
満となると有機樹脂絶縁層2の上面に上下に位置する有
機樹脂絶縁層2の接合強度を上げるための粗面加工を施
す際、有機樹脂絶縁層2に不要な穴が形成され上下に位
置する薄膜配線導体3に不要な電気的短絡を招来してし
まう危険性がある。従って、前記有機樹脂絶縁層2はそ
の各々の厚みを5μm乃至100μmの範囲としておく
ことが好ましい。
When the organic resin insulating layer 2 has a thickness of more than 100 μm, the photosensitive epoxy resin precursor is exposed and developed to form through-holes, and the holes are made clear. There is a risk that it becomes difficult to form the predetermined through holes 5 in the organic resin insulating layer 2, and if it is less than 5 μm, it will be positioned above and below the upper surface of the organic resin insulating layer 2. When roughening the organic resin insulating layer 2 to increase the bonding strength, unnecessary holes are formed in the organic resin insulating layer 2 and an unnecessary electrical short circuit is caused in the upper and lower thin film wiring conductors 3. There is a risk. Therefore, it is preferable that the thickness of each of the organic resin insulating layers 2 is in the range of 5 μm to 100 μm.

【0032】また更に前記多層配線4の各薄膜配線導体
2はその厚みが1μm未満となると各薄膜配線導体3の
電気抵抗が大きなものとなって各薄膜配線導体3に所定
の電気信号を伝達させることが困難なものとなり、また
40μmを越えると薄膜配線導体3を有機樹脂絶縁層2
に被着させる際、薄膜配線導体3内に大きな応力が内在
し、該内在応力によって薄膜配線導体3が有機樹脂絶縁
層2より剥離し易いものとなる。従って、前記多層配線
4の各薄膜配線導体2の厚みを1μm乃至40μmの範
囲としておくことが好ましい。
Further, when the thickness of each thin film wiring conductor 2 of the multilayer wiring 4 is less than 1 μm, the electric resistance of each thin film wiring conductor 3 becomes large and a predetermined electric signal is transmitted to each thin film wiring conductor 3. If the thickness exceeds 40 μm, the thin-film wiring conductors 3 are connected to the organic resin insulation layer 2
When adhered to, the large stress is internally present in the thin film wiring conductor 3, and the thin film wiring conductor 3 is easily separated from the organic resin insulating layer 2 due to the inherent stress. Therefore, it is preferable that the thickness of each thin-film wiring conductor 2 of the multilayer wiring 4 be in the range of 1 μm to 40 μm.

【0033】[0033]

【発明の効果】本発明の多層配線基板よれば、配線導体
を薄膜形成技術によって形成したことから配線の微細化
が可能となり、薄膜配線導体を極めて高密度に形成する
ことが可能となる。また本発明の多層配線基板によれ
ば、有機樹脂絶縁層が酸触媒型の感光性エポキシ樹脂で
形成されており、該酸触媒型感光性エポキシ樹脂は露光
時の解像度が30μm程度であることから有機樹脂絶縁
層に径が30μm程度の微細なスルーホールを形成する
ことができ、これによって上下に配した微細な薄膜配線
導体を確実に電気的接続することが可能となる。
According to the multilayer wiring board of the present invention, since the wiring conductor is formed by the thin film forming technique, the wiring can be miniaturized, and the thin film wiring conductor can be formed with extremely high density. Further, according to the multilayer wiring board of the present invention, the organic resin insulating layer is formed of an acid catalyst type photosensitive epoxy resin, and the acid catalyst type photosensitive epoxy resin has a resolution at the time of exposure of about 30 μm. It is possible to form fine through holes having a diameter of about 30 μm in the organic resin insulating layer, which makes it possible to reliably electrically connect fine thin film wiring conductors arranged above and below.

【0034】更に本発明の多層配線基板によれば、有機
樹脂絶縁層を酸触媒型感光性エポキシ樹脂で形成したこ
とから各有機樹脂絶縁層はその前駆体に露光、現像を施
すことによってレジスト材を使用することなく、直接、
スルーホールを形成することができ、レジスト材を不要
して有機樹脂絶縁層にスルーホールを簡単に形成するこ
とが可能で製品としての多層配線基板を安価となすこと
ができる。
Further, according to the multilayer wiring board of the present invention, since the organic resin insulating layer is formed of the acid catalyst type photosensitive epoxy resin, each organic resin insulating layer is subjected to exposure and development of its precursor to form a resist material. Directly without using
The through hole can be formed, the resist material is not required, and the through hole can be easily formed in the organic resin insulating layer, and the multilayer wiring board as a product can be made inexpensive.

【0035】また更に本発明の多層配線基板によれば、
積層される有機樹脂絶縁層の各々の上面を中心線平均粗
さ(Ra)で0.05μm≦Ra≦5μmとしておくと
積層される上下の有機樹脂絶縁層を極めて強固に接合さ
せることができ、その結果、多層配線基板としての機能
を長期間にわたり維持することが可能となる。
Furthermore, according to the multilayer wiring board of the present invention,
When the upper surface of each of the laminated organic resin insulating layers is set to have a center line average roughness (Ra) of 0.05 μm ≦ Ra ≦ 5 μm, the upper and lower organic resin insulating layers to be laminated can be bonded very strongly, As a result, the function of the multilayer wiring board can be maintained for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層配線基板の一実施例を示す断面図
である。
FIG. 1 is a sectional view showing one embodiment of a multilayer wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1・・・絶縁基板 2・・・有機樹脂絶縁層 3・・・薄膜配線導体 4・・・多層配線 5・・・スルーホール 6・・・溝 1 ... Insulating substrate 2 ... Organic resin insulating layer 3 ... Thin film wiring conductor 4 ... Multilayer wiring 5 ... Through hole 6 ... Groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に、有機樹脂絶縁層と薄膜配線導体
とを交互に積層するとともに上下に位置する薄膜配線導
体を有機樹脂絶縁層に設けたスルーホールを介して電気
的に接続して成る多層配線基板であって、前記有機樹脂
絶縁層を酸触媒型感光性エポキシ樹脂で形成したことを
特徴とする多層配線基板。
1. An organic resin insulating layer and a thin film wiring conductor are alternately laminated on a substrate, and the upper and lower thin film wiring conductors are electrically connected through through holes provided in the organic resin insulating layer. A multilayer wiring board comprising the organic resin insulation layer formed of an acid catalyst type photosensitive epoxy resin.
【請求項2】前記積層された有機樹脂絶縁層の各々の厚
みを5μm乃至100μmとしたことを特徴とする請求
項1に記載の多層配線基板。
2. The multilayer wiring board according to claim 1, wherein the thickness of each of the stacked organic resin insulating layers is 5 μm to 100 μm.
【請求項3】前記積層された有機樹脂絶縁層の各々の上
面が中心線平均粗さ(Ra)で0.05μm≦Ra≦5
μmであることを特徴とする請求項1に記載の多層配線
基板。
3. An upper surface of each of the laminated organic resin insulating layers has a center line average roughness (Ra) of 0.05 μm ≦ Ra ≦ 5.
The multilayer wiring board according to claim 1, wherein the thickness is μm.
JP10015496A 1996-04-22 1996-04-22 Multilayer wiring board Pending JPH09289380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10015496A JPH09289380A (en) 1996-04-22 1996-04-22 Multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10015496A JPH09289380A (en) 1996-04-22 1996-04-22 Multilayer wiring board

Publications (1)

Publication Number Publication Date
JPH09289380A true JPH09289380A (en) 1997-11-04

Family

ID=14266413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10015496A Pending JPH09289380A (en) 1996-04-22 1996-04-22 Multilayer wiring board

Country Status (1)

Country Link
JP (1) JPH09289380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060831A1 (en) * 1998-05-19 1999-11-25 Ibiden Co., Ltd. Printed circuit board and method of production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060831A1 (en) * 1998-05-19 1999-11-25 Ibiden Co., Ltd. Printed circuit board and method of production thereof
US6407345B1 (en) 1998-05-19 2002-06-18 Ibiden Co., Ltd. Printed circuit board and method of production thereof
US7332816B2 (en) 1998-05-19 2008-02-19 Ibiden Co., Ltd. Method of fabricating crossing wiring pattern on a printed circuit board
US7525190B2 (en) 1998-05-19 2009-04-28 Ibiden Co., Ltd. Printed wiring board with wiring pattern having narrow width portion
US8018046B2 (en) 1998-05-19 2011-09-13 Ibiden Co., Ltd. Printed wiring board with notched conductive traces
US8629550B2 (en) 1998-05-19 2014-01-14 Ibiden Co., Ltd. Printed wiring board with crossing wiring pattern

Similar Documents

Publication Publication Date Title
JPH09326556A (en) Multilayer wiring board and manufacture thereof
JPH09312472A (en) Multilayer wiring board and its manufacturing method
JPH09289380A (en) Multilayer wiring board
JP3071723B2 (en) Method for manufacturing multilayer wiring board
JPH1013019A (en) Method for manufacturing multilayer wiring board
JPH1027968A (en) Multilayer wiring board
JPH10340978A (en) Mounting structure for electronic component onto wiring board
JPH1093247A (en) Multilayer wiring board
JPH114080A (en) Multilayered wiring board
JP3872329B2 (en) Multilayer wiring board
JPH10322026A (en) Multilayered wiring board
JPH1131883A (en) Manufacture of multilayered wiring board
JPH09283936A (en) Multilayer wiring board
JPH09312479A (en) Multi-layer circuit board
JPH1197843A (en) Multilayered wiring board
JPH1126939A (en) Multilayered wiring board
JPH10322032A (en) Manufacture of multilayered wiring board
JPH1197847A (en) Multilayered wiring board
JPH1197848A (en) Multilayered wiring board
JPH104262A (en) Multilayer wiring substrate
JPH11233909A (en) Wiring board
JPH10163634A (en) Multilayer wiring board
JPH11168280A (en) Multilayer wiring board
JPH118470A (en) Multilevel interconnection board
JPH10341082A (en) Multilayered wiring board