JPH09288400A - Contact electrifying member and contact electrifying device - Google Patents

Contact electrifying member and contact electrifying device

Info

Publication number
JPH09288400A
JPH09288400A JP8100954A JP10095496A JPH09288400A JP H09288400 A JPH09288400 A JP H09288400A JP 8100954 A JP8100954 A JP 8100954A JP 10095496 A JP10095496 A JP 10095496A JP H09288400 A JPH09288400 A JP H09288400A
Authority
JP
Japan
Prior art keywords
resin
magnetic particles
molecular weight
contact charging
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8100954A
Other languages
Japanese (ja)
Other versions
JP3372749B2 (en
Inventor
Marekatsu Mizoe
希克 溝江
Shuichi Aida
修一 會田
Takeshi Takiguchi
剛 瀧口
Fumihiro Arataira
文弘 荒平
Yoshifumi Hagino
祥史 杷野
Tsutomu Kukimoto
力 久木元
Tomoji Ishihara
友司 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10095496A priority Critical patent/JP3372749B2/en
Publication of JPH09288400A publication Critical patent/JPH09288400A/en
Application granted granted Critical
Publication of JP3372749B2 publication Critical patent/JP3372749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact electrifying member which has improved electrification property and can maintain resistance against spent for a long term, and thereby, which can maintain good electrification, and to provide a contact electrifying device using this contact electrifying member. SOLUTION: This electrifying member has a conductive member and magnetic particles held by the conductive member and is disposed in contact with the body to be electrified. By applying voltage on the conductive member, the objective body is electrified. In this method, the diameter of the magnetic particles corresponding to 50% of the volume distribution is between >=10μm and <=100μm, and the diameter ratio of particles corresponding to 50% volume distribution to 5% volume distribution is >=1.40. The volume resistance of the magnetic particles is controlled to >=1×10<4> Ωcm and <=1×10<11> Ωcm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被帯電体(電子写
真感光体)に接触配置され電圧を印加することにより被
帯電体を帯電させる接触帯電部材、及び被帯電体と被帯
電体を接触帯電する帯電部材を有し帯電部材に電圧を印
加することにより被帯電体を帯電させる接触帯電装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact charging member which is disposed in contact with an object to be charged (electrophotographic photoreceptor) to charge the object to be charged by applying a voltage, and a contact member and an object to be charged. The present invention relates to a contact charging device that has a charging member that charges and charges a member to be charged by applying a voltage to the charging member.

【0002】[0002]

【従来の技術】従来電子写真法としてはー般には以下の
方法が用いられる。
2. Description of the Related Art The following methods are generally used as conventional electrophotographic methods.

【0003】すなわち、帯電手段及び画像露光手段によ
り感光体上に静電気的潜像を形成し、次いで該潜像をト
ナ一で現像を行って可視像(トナー画像)とし、紙等の
転写材にトナー画像を転写した後、熱・圧力等により転
写材上にトナー画像を定着して複写物を得るものであ
る。この際、転写材上に転写されずに感光体上に残った
トナー粒子はクリーニング工程により感光体上より除去
される。
That is, an electrostatic latent image is formed on a photoconductor by a charging means and an image exposing means, and then the latent image is developed by a toner to form a visible image (toner image). After the toner image is transferred onto, the toner image is fixed on the transfer material by heat, pressure or the like to obtain a copy. At this time, toner particles remaining on the photoconductor without being transferred onto the transfer material are removed from the photoconductor by a cleaning process.

【0004】電子写真感光体においては、光導電性物質
として種々の有機光導電性物質が開発され、特に電荷発
生層と電荷輸送層を積層した機能分離型が複写機、プリ
ンター、ファクシミリ等に搭載されている。
In the electrophotographic photoreceptor, various organic photoconductive substances have been developed as photoconductive substances, and in particular, a function separation type in which a charge generation layer and a charge transport layer are laminated is installed in a copying machine, a printer, a facsimile or the like. Has been done.

【0005】このような電子写真装置の帯電手段として
は、コロナ放電を利用した手段から現在では接触帯電手
段が多く用いられるようになっている。
As a charging means for such an electrophotographic apparatus, a contact charging means is now widely used from a means utilizing corona discharge.

【0006】接触帯電とは、例えばローラ、ブレードな
どの帯電部材を感光体表面に当接させ、その接触部分近
傍でパッシェンの法則で解釈されるような放電を形成
し、感光体を帯電させる方法であり、従来のコロナ放電
に比べオゾン発生を極力抑えることが可能になった。こ
の中でも特に帯電部材として帯電口ーラを用いたローラ
帯電方式が、帯電の安定性という点から好ましく用いら
れている。
Contact charging is a method in which a charging member such as a roller or a blade is brought into contact with the surface of a photosensitive member, and a discharge as interpreted by Paschen's law is formed in the vicinity of the contact portion to charge the photosensitive member. Therefore, it is possible to suppress the generation of ozone as much as possible compared with the conventional corona discharge. Among them, the roller charging method using a charging roller as a charging member is preferably used from the viewpoint of charging stability.

【0007】このような接触帯電は帯電部材から被帯電
体への放電によって行われるため、あるしきい値電圧以
上の電圧を印加する必要がある。
Since such contact charging is performed by discharging from the charging member to the body to be charged, it is necessary to apply a voltage higher than a certain threshold voltage.

【0008】例えば、感光層の厚さが約25μmの有機
光導電性物質を含有する感光体に対して帯電ローラを当
接させた場合、約640V以上の電圧を印加すれば感光
体の表面電位が上昇し始め、それ以降は印加電圧に対し
て傾き1の線形で感光体表面電位が増加する(以後この
しきい値電圧を帯電開始電圧Vthと定義する)。
For example, when a charging roller is brought into contact with a photosensitive body containing an organic photoconductive substance having a photosensitive layer thickness of about 25 μm, the surface potential of the photosensitive body can be increased by applying a voltage of about 640 V or more. Starts to rise, and thereafter, the photosensitive member surface potential increases linearly with an inclination of 1 with respect to the applied voltage (hereinafter, this threshold voltage is defined as the charging start voltage Vth).

【0009】つまり、感光体表面電位Vdを得るために
帯電ローラにはVd+Vthという直流電圧が最低限必
要となる。また、環境変動等によって帯電ローラの抵抗
値が変動することがあり、感光体の電位を長期的に所望
の値に保つためには高価な装置を必要とすることもあっ
た。
That is, a minimum DC voltage of Vd + Vth is required for the charging roller in order to obtain the photoreceptor surface potential Vd. Further, the resistance value of the charging roller may fluctuate due to environmental fluctuations, etc., and an expensive device may be required to keep the potential of the photoconductor at a desired value for a long period of time.

【0010】このため、更なる帯電の均一化を図るため
には特開昭63−149669号公報に開示されるよう
に、所望のVdに相当する直流電圧に2×Vth以上の
ピーク間電圧を持つ交流電圧を重畳した電圧を帯電ロー
ラに印加するDC+AC帯電方式が採用されるようにな
った。
Therefore, in order to make the charging even more uniform, a peak-to-peak voltage of 2 × Vth or more is applied to the DC voltage corresponding to the desired Vd, as disclosed in Japanese Patent Laid-Open No. 63-149669. A DC + AC charging method has been adopted in which a voltage superposed with the AC voltage is applied to the charging roller.

【0011】これは、交流電圧による電位のならし効果
を目的としたものであり被帯電体の電位は交流電圧の中
央であるVdに収束し、環境等の外乱には影響されにく
い特徴がある。
This is for the purpose of leveling the potential by the AC voltage, and the potential of the charged body converges on Vd which is the center of the AC voltage, and is characterized in that it is hardly affected by external disturbances. .

【0012】しかしながら、このような帯電方法におい
てもその本質的な帯電機構は帯電部材から感光体への放
電現象を用いているため、先に述べたように帯電に必要
とされる電圧は感光体表面電位以上の値が必要とされ
る。また、帯電部材と感光体の間では、交流電圧の電界
に起因した振動により騒音(以下交流帯電音)が発生す
る場合もあった。また、感光体を長期使用した場合、放
電により表面劣化が起こることもあった。
However, even in such a charging method, since the essential charging mechanism uses the discharging phenomenon from the charging member to the photoconductor, as described above, the voltage required for charging is the photoconductor. A value above the surface potential is required. Further, noise (hereinafter referred to as AC charging sound) may be generated between the charging member and the photoconductor due to vibration caused by the electric field of AC voltage. Further, when the photoconductor is used for a long period of time, surface deterioration may occur due to discharge.

【0013】そこで、より帯電効率の良い帯電方法とし
て、感光体へ電荷を直接注入する所謂注入帯電が近年報
告されている。
Therefore, as a charging method with higher charging efficiency, so-called injection charging in which charges are directly injected into a photosensitive member has been reported in recent years.

【0014】この注入帯電は、帯電ローラ、帯電繊維ブ
ラシ、帯電磁気ブラシ等の接触帯電部材に電圧を印加
し、感光体表面にあるトラップ準位に電荷を注入する帯
電方法である。詳しくは、Japan Hardcop
y 92年論文集P287の「導電性ローラを用いた接
触帯電特性」等に記載があるように、暗所絶縁性の感光
体に対して、低抵抗の帯電部材に電圧を印加し注入帯電
を行う方法であり、帯電部材の抵抗値が十分に低く、更
には帯電部材表面に導電性を有する物質(導電フィラー
等)が十分に露出していることが条件になっている。こ
のため、前記の文献においても帯電部材としてはアルミ
箔や高湿環境下で十分抵抗値が下がったイオン導電性の
帯電部材が好ましいとされている。本発明者等の検討に
よれば感光体に対して十分な電荷注入が可能な帯電部材
の抵抗値は1×l03 Ωcm以下であり、これ以上では
印加電圧と帯電電位の間に差が生じ始め帯電電位の収束
性に問題が生じることが分かっている。
This injection charging is a charging method in which a voltage is applied to a contact charging member such as a charging roller, a charging fiber brush, a charging magnetic brush or the like, and charges are injected into the trap level on the surface of the photoconductor. For more information, see Japan Hardcop
y As described in “Contact Charging Characteristics Using Conductive Rollers” in 1992, P287, “Charge Characteristics Using Conductive Roller”, a voltage is applied to a low resistance charging member for a photoconductor having a dark insulating property to perform injection charging. This method is performed on condition that the resistance value of the charging member is sufficiently low and that the conductive material (conductive filler or the like) is sufficiently exposed on the surface of the charging member. For this reason, in the above-mentioned documents, it is said that the charging member is preferably an aluminum foil or an ion conductive charging member having a sufficiently low resistance value in a high humidity environment. According to the study by the present inventors, the resistance value of the charging member capable of sufficiently injecting charge into the photoconductor is 1 × 10 3 Ωcm or less, and above this, a difference occurs between the applied voltage and the charging potential. It has been found that there is a problem in the convergence of the charging potential at the beginning.

【0015】しかしながら、このような抵抗値の低い帯
電部材を実際に使用すると、感光体表面に生じた傷、ピ
ンホール等に対して注入帯電部材から過大なリーク電流
が流れ込み、周辺の帯電不良や、ピンホールの拡大、帯
電部材の通電破壊が生じ易い。
However, when such a charging member having a low resistance value is actually used, an excessive leak current flows from the injection charging member to the scratches, pinholes, etc. formed on the surface of the photosensitive member, and charging defects in the periphery and the like occur. It is easy for the pinhole to expand and the charging member to be damaged by electricity.

【0016】これを防止するためには帯電部材の抵抗値
をl×l04 Ωcm程度以上にする必要があるが、この
抵抗値の帯電部材では先に述べたように感光体への電荷
注入が低下し帯電が行われないという矛盾が生じてしま
う。
In order to prevent this, it is necessary that the resistance value of the charging member is about 1 × 10 4 Ωcm or more. However, in the charging member having this resistance value, the charge injection into the photosensitive member is as described above. There is a contradiction that the charge is lowered and charging is not performed.

【0017】そこで、接触方式の帯電部材もしくは接触
帯電装置について上記のような問題点を解消することが
望まれていた。
Therefore, it has been desired to solve the above problems in the contact type charging member or the contact charging device.

【0018】また、被帯電体に接触させる接触帯電部材
は、帯電部材の汚れ(スペント)が発生し、長期使用に
より帯電性が低下することがあり、これにより画像不良
が生じることもあった。帯電部材のスペントは、転写さ
れずに感光体上に付着したトナー等がクリーニング部で
除去されずに通過し、これが接触帯電部材に取り込ま
れ、帯電部材との摩擦によって帯電部材表面に付着する
ために生じると考えられている。
Further, the contact charging member brought into contact with the member to be charged may cause stains (spents) on the charging member, resulting in a decrease in chargeability after long-term use, which may cause image defects. The spent toner of the charging member passes through the cleaning member without being removed by the cleaning unit, such as toner that has not been transferred and adheres to the surface of the charging member due to friction with the charging member. It is believed to occur in.

【0019】一般にスペント対策としては、帯電部材に
耐スペント性を有する樹脂を被覆することが行われてい
る。しかし、耐スペント性の優れた樹脂は芯材としての
帯電部材に対し、密着性が十分ではないことが多く、耐
久により被膜が剥がれ、スペントが再発したり脱落した
被膜破片が感光体や現像器を汚染することもあった。
Generally, as a countermeasure against the spent, the charging member is coated with a resin having spent resistance. However, the resin with excellent spent resistance often does not have sufficient adhesion to the charging member as the core material, and the film is peeled off due to durability, and the spent chips are regenerated or the film fragments that have come off are removed from the photoreceptor or the developing device. Sometimes polluted.

【0020】従って、接触帯電においては帯電性を向上
させ、またスペントによる帯電劣化を長期にわたって防
止することが急務であった。
Therefore, in contact charging, there is an urgent need to improve the charging property and prevent charging deterioration due to spent for a long period of time.

【0021】また同様に被帯電体への電荷注入による帯
電においても帯電性の向上及び帯電劣化の長期的な防止
が急務であった。
Similarly, also in charging by injecting charges into the body to be charged, there is an urgent need to improve the charging property and prevent charging deterioration for a long period of time.

【0022】[0022]

【発明が解決しようとする課題】本発明の目的は、帯電
性を向上させ、また長期にわたって耐スペント性を発揮
し良好な帯電を維持することのできる接触帯電部材、及
びこれを有する接触帯電装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the charging property, and also to provide a contact charging member capable of exhibiting spent resistance for a long period of time and maintaining good charging, and a contact charging device having the same. To provide.

【0023】[0023]

【課題を解決するための手段】上記目的を達成すべく、
請求項1記載の発明は、導電性部材と該導電性部材に支
持された磁性粒子を有しており被帯電体に接触配置さ
れ、該導電性部材に電圧を印加することにより該被帯電
体を帯電させる接触帯電部材において、該磁性粒子の体
積分布の50%径が10μm以上100μm以下であ
り、かつ、体積分布の50%径と体積分布の5%径の比
が1.40以上であり、該磁性粒子の体積抵抗が1×1
4 Ωcm以上1×1011Ωcm以下であることを特徴
とする。
In order to achieve the above object,
According to a first aspect of the present invention, there is provided a conductive member and magnetic particles supported by the conductive member, and the magnetic particles are arranged in contact with a member to be charged, and the member to be charged is applied by applying a voltage to the conductive member. In the contact charging member for charging, the 50% diameter of the volume distribution of the magnetic particles is 10 μm or more and 100 μm or less, and the ratio of the 50% diameter of the volume distribution to the 5% diameter of the volume distribution is 1.40 or more. , The volume resistance of the magnetic particles is 1 × 1
It is characterized in that it is not less than 0 4 Ωcm and not more than 1 × 10 11 Ωcm.

【0024】請求項2記載の発明は、上記請求項1記載
の発明において、該磁性粒子の体積分布の50%径が1
0μm以上60μm以下であることを特徴とする。
According to a second aspect of the present invention, in the above-mentioned first aspect, the 50% diameter of the volume distribution of the magnetic particles is 1
It is characterized by being 0 μm or more and 60 μm or less.

【0025】請求項3記載の発明は、上記請求項1、2
記載の発明において、該磁性粒子の体積分布の50%径
と体積分布の5%径の比が1.55以上5.00以下で
あることを特徴とする。
The invention according to claim 3 is the same as claim 1 or 2 above.
In the invention described above, the ratio of the 50% diameter of the volume distribution of the magnetic particles to the 5% diameter of the volume distribution is 1.55 or more and 5.00 or less.

【0026】請求項4記載の発明は、上記請求項1記載
の発明において、該磁性粒子の表面層が、GPCクロマ
トグラムのメインピークの分子量P1が10000以上
である樹脂を含有することを特徴とする。
The invention according to claim 4 is characterized in that, in the invention according to claim 1, the surface layer of the magnetic particles contains a resin having a molecular weight P1 of 10,000 or more at the main peak of the GPC chromatogram. To do.

【0027】請求項5記載の発明は、上記請求項4記載
の発明において、該磁性粒子の表面層の樹脂のGPCク
ロマトグラムが、メインピークの低分子量側に少なくと
も1つのピークまたはショルダーを有することを特徴と
する。
In the invention according to claim 5, in the invention according to claim 4, the GPC chromatogram of the resin in the surface layer of the magnetic particles has at least one peak or shoulder on the low molecular weight side of the main peak. Is characterized by.

【0028】請求項6記載の発明は、上記請求項4、5
記載の発明において、該磁性粒子の表面層の樹脂のGP
Cクロマトグラムのメインピークの分子量P1と、低分
子量側のピークまたはショルダーの分子量P2の比P
1:P2が3:1〜100:1であることを特徴とす
る。
The invention according to claim 6 is the same as claims 4 and 5 above.
In the invention described above, GP of the resin of the surface layer of the magnetic particles
The ratio P of the molecular weight P1 of the main peak of the C chromatogram and the molecular weight P2 of the peak or shoulder on the low molecular weight side
1: P2 is 3: 1 to 100: 1.

【0029】請求項7記載の発明は、上記請求項5、6
記載の発明において、該磁性粒子の表面層の樹脂のGP
Cクロマトグラムのメインピークの分子量が30000
〜400000であり、少なくとも1つの低分子量側の
ピークまたはショルダーの分子量が3000〜3000
0であることを特徴とする。
The invention according to claim 7 is the same as claim 5 or 6 above.
In the invention described above, GP of the resin of the surface layer of the magnetic particles
The molecular weight of the main peak of C chromatogram is 30,000
Is about 400000, and the molecular weight of at least one peak or shoulder on the low molecular weight side is 3000 to 3000.
It is characterized by being 0.

【0030】請求項8記載の発明は、上記請求項4、
5、6、7記載の発明において、該磁性粒子の表面層の
樹脂の重量平均分子量Mwが50000〜70000
0、数平均分子量Mnが5000〜50000であり、
Mw/Mnが10以上であることを特徴とする。
The invention according to claim 8 is the above-mentioned claim 4,
In the inventions described in 5, 6, and 7, the weight average molecular weight Mw of the resin of the surface layer of the magnetic particles is 50,000 to 70,000.
0, the number average molecular weight Mn is 5,000 to 50,000,
It is characterized in that Mw / Mn is 10 or more.

【0031】請求項9記載の発明は、上記請求項4、
5、6、7、8記載の発明において、該磁性粒子の表面
層の樹脂が少なくともフッ素系樹脂、アクリル系樹脂、
シリコーン系樹脂及びポリオレフィン系樹脂から選ばれ
る1種以上の樹脂であることを特徴とする。
The invention according to claim 9 is the above-mentioned claim 4,
In the inventions described in 5, 6, 7, and 8, the resin of the surface layer of the magnetic particles is at least a fluorine resin, an acrylic resin,
It is characterized by being one or more kinds of resins selected from silicone resins and polyolefin resins.

【0032】請求項10記載の発明は、上記請求項4、
5、6、7、8、9記載の発明において、該磁性粒子の
表面層の樹脂がポリオレフィン系樹脂であることを特徴
とする。
The invention according to claim 10 is the above-mentioned claim 4,
In the invention described in 5, 6, 7, 8, and 9, the resin of the surface layer of the magnetic particles is a polyolefin resin.

【0033】請求項11記載の発明は、上記請求項4、
5、6、7、8、9、10記載の発明において、該磁性
粒子の表面層の樹脂が導電性粒子を含有していることを
特徴とする。
The invention according to claim 11 is the above-mentioned claim 4,
The invention described in 5, 6, 7, 8, 9, and 10 is characterized in that the resin of the surface layer of the magnetic particles contains conductive particles.

【0034】請求項12記載の発明は、被帯電体と、導
電性部材と該導電性部材に支持された磁性粒子有してお
り該被帯電体に接触配置される帯電部材を有し、該導電
性部材に電圧を印加することにより該被帯電体を帯電さ
せる接触帯電装置において、該磁性粒子の体積分布の5
0%径が10μm以上100μm以下であり、かつ、体
積分布の50%径と体積分布の5%径の比が1.40以
上であり、該磁性粒子の体積抵抗が1×104 Ωcm以
上1×1011Ωcm以下であることを特徴とする。
According to a twelfth aspect of the present invention, there is provided a charged member, a conductive member, and a charging member having magnetic particles supported by the conductive member and arranged in contact with the charged member. In a contact charging device that charges a body to be charged by applying a voltage to a conductive member, the volume distribution of the magnetic particles is 5
The 0% diameter is 10 μm or more and 100 μm or less, the ratio of the 50% diameter of the volume distribution to the 5% diameter of the volume distribution is 1.40 or more, and the volume resistance of the magnetic particles is 1 × 10 4 Ωcm or more 1. It is characterized in that it is not more than × 10 11 Ωcm.

【0035】請求項13記載の発明は、上記請求項12
記載の発明において、該磁性粒子の体積分布の50%径
が10μm以上60μm以下であることを特徴とする。
The invention according to claim 13 is the above-mentioned claim 12.
In the invention described above, the 50% diameter of the volume distribution of the magnetic particles is 10 μm or more and 60 μm or less.

【0036】請求項14記載の発明は、上記請求項1
2、13記載の発明において、該磁性粒子の体積分布の
50%径と体積分布の5%径の比が1.55以上5.0
0以下であることを特徴とする。
The invention according to claim 14 is the above-mentioned claim 1.
In the inventions 2 and 13, the ratio of the 50% diameter of the volume distribution of the magnetic particles to the 5% diameter of the volume distribution is 1.55 or more and 5.0.
It is characterized by being 0 or less.

【0037】請求項15記載の発明は、上記請求項12
記載の発明において、該磁性粒子の表面層が、GPCク
ロマトグラムのメインピークの分子量P1が10000
以上である樹脂を含有することを特徴とする。
The invention according to claim 15 is the above-mentioned claim 12.
In the invention described above, the surface layer of the magnetic particles has a molecular weight P1 of 10,000 at the main peak of the GPC chromatogram.
It is characterized by containing the above resin.

【0038】請求項16記載の発明は、上記請求項15
記載の発明において、該磁性粒子の表面層の樹脂のGP
Cクロマトグラムが、メインピークの低分子量側に少な
くとも1つのピークまたはショルダーを有することを特
徴とする。
The invention according to claim 16 is the above-mentioned claim 15.
In the invention described above, GP of the resin of the surface layer of the magnetic particles
The C chromatogram is characterized by having at least one peak or shoulder on the low molecular weight side of the main peak.

【0039】請求項17記載の発明は、上記請求項1
5、16記載の発明において、該磁性粒子の表面層の樹
脂のGPCクロマトグラムのメインピークの分子量P1
と、低分子量側のピークまたはショルダーの分子量P2
の比P1:P2が3:1〜100:1であることを特徴
とする。
The invention according to claim 17 is the above-mentioned claim 1.
In the inventions 5 and 16, the molecular weight P1 of the main peak of the GPC chromatogram of the resin in the surface layer of the magnetic particles
And the molecular weight P2 of the peak or shoulder on the low molecular weight side
Ratio P1: P2 of 3: 1 to 100: 1.

【0040】請求項18記載の発明は、上記請求項1
5、16、17記載の発明において、該磁性粒子の表面
層の樹脂のGPCクロマトグラムのメインピークの分子
量が30000〜400000であり、少なくとも1つ
の低分子量側のピークまたはショルダーの分子量が30
00〜30000であることを特徴とする。
The invention according to claim 18 is the above-mentioned claim 1.
In the inventions described in 5, 16, and 17, the molecular weight of the main peak of the GPC chromatogram of the resin in the surface layer of the magnetic particles is 30,000 to 400,000, and the molecular weight of at least one peak or shoulder on the low molecular weight side is 30.
It is characterized by being in the range of 00 to 30,000.

【0041】請求項19記載の発明は、上記請求項1
5、16、17、18記載の発明において、該磁性粒子
の表面層の樹脂の重量平均分子量Mwが50000〜7
00000、数平均分子量Mnが5000〜50000
であり、Mw/Mnが10以上であることを特徴とす
る。
The invention according to claim 19 is the above-mentioned claim 1.
5, 16, 17, 18, the weight average molecular weight Mw of the resin of the surface layer of the magnetic particles is 50,000 to 7
00000, number average molecular weight Mn is 5,000 to 50,000
And Mw / Mn is 10 or more.

【0042】請求項20記載の発明は、上記請求項1
5、16、17、18、19記載の発明において、該磁
性粒子の表面層の樹脂が少なくともフッ素系樹脂、アク
リル系樹脂、シリコーン系樹脂及びポリオレフィン系樹
脂から選ばれる1種以上の樹脂であることを特徴とす
る。
The invention according to claim 20 is the above-mentioned claim 1.
In the inventions described in 5, 16, 17, 18, and 19, the resin of the surface layer of the magnetic particles is at least one resin selected from at least a fluorine resin, an acrylic resin, a silicone resin, and a polyolefin resin. Is characterized by.

【0043】請求項21記載の発明は、上記請求項1
5、16、17、18、19、20記載の発明におい
て、該磁性粒子の表面層の樹脂がポリオレフィン系樹脂
であることを特徴とする。
The invention according to claim 21 is the above-mentioned claim 1.
In the invention described in 5, 16, 17, 18, 19, and 20, the resin of the surface layer of the magnetic particles is a polyolefin resin.

【0044】請求項22記載の発明は、上記請求項1
5、16、17、18、19、20、21記載の発明に
おいて、該磁性粒子の表面層の樹脂が導電性粒子を含有
していることを特徴とする。
The invention according to claim 22 is the above-mentioned claim 1.
In the invention described in 5, 16, 17, 18, 19, 20, and 21, the resin of the surface layer of the magnetic particles contains conductive particles.

【0045】請求項23記載の発明は、上記請求項12
記載の発明において、該被帯電体の表面層が電荷注入層
であることを特徴とする。
The invention according to claim 23 is the above-mentioned claim 12.
In the invention described above, the surface layer of the member to be charged is a charge injection layer.

【0046】請求項24記載の発明は、上記請求項23
記載の発明において、該電荷注入層が導電性粒子及び結
着樹脂を含有することを特徴とする。
The invention according to claim 24 is the above-mentioned claim 23.
In the invention described above, the charge injection layer contains conductive particles and a binder resin.

【0047】請求項25記載の発明は、上記請求項23
記載の発明において、該電荷注入層が無機半導体層であ
ることを特徴とする。
The invention of claim 25 is the same as claim 23.
In the invention described above, the charge injection layer is an inorganic semiconductor layer.

【0048】[0048]

【発明の実施の形態】本発明における接触帯電部材は、
磁性中抵抗物質を磁気によって穂立ちさせて、この磁気
ブラシを感光体に接触させて帯電させる。
BEST MODE FOR CARRYING OUT THE INVENTION The contact charging member according to the present invention is
A magnetic medium resistance material is magnetically erected, and this magnetic brush is brought into contact with a photoreceptor to be charged.

【0049】従って、帯電部材に含有される磁性粒子と
しては鉄、コバルト及びニッケル等の強磁性を示す元素
を含む合金あるいは化合物等が用いられる。このような
磁性粒子については任意の抵抗範囲に調整することが可
能であり、例えば酸化処理や還元処理等により達成する
ことができる。具体的には組成調整したフェライト、水
素還元処理したZn−Cuフェライト及び酸化処理した
マグネタイト等を挙げることができる。
Therefore, as the magnetic particles contained in the charging member, an alloy or compound containing an element exhibiting ferromagnetism such as iron, cobalt and nickel is used. Such magnetic particles can be adjusted within an arbitrary resistance range, and can be achieved by, for example, an oxidation treatment or a reduction treatment. Specific examples thereof include composition-adjusted ferrite, hydrogen-reduced Zn-Cu ferrite, and oxidized magnetite.

【0050】本発明は、体積分布径2.2μm以上の磁
性粒子において、体積分布50%径が10μm以上10
0μm以下であり、かつ体積分布50%径と体積分布5
%径の比(以降、粒径比と記す))が1.40以上であ
ることを特徴とするものであり、より好ましくは体積分
布50%径は10μm以上60μm以下、粒径比は1.
55以上5.00以下である。
The present invention relates to magnetic particles having a volume distribution diameter of 2.2 μm or more and having a volume distribution 50% diameter of 10 μm or more.
0 μm or less and 50% volume distribution diameter and volume distribution 5
% Ratio (hereinafter referred to as particle size ratio)) is 1.40 or more, and more preferably, the volume distribution 50% size is 10 μm or more and 60 μm or less, and the particle size ratio is 1.
It is 55 or more and 5.00 or less.

【0051】接触帯電では、感光体との接触性向上が帯
電能を高める重要な要素であり、その達成手段として上
記の粒径及び粒径比の範囲にある磁性粒子を用いること
が有効である。
In the contact charging, improvement of the contact property with the photoconductor is an important factor for enhancing the charging ability, and it is effective to use magnetic particles having the above-mentioned particle diameter and particle diameter ratio range as a means for achieving this. .

【0052】すなわち、上記粒度分布をもつ磁性粒子の
場合、体積分布50%径よりも小さい粒径の磁性粒子
は、補助粒子として磁性粒子間を移動し付着(磁力によ
る拘束)することができるので、以下のような効果が得
られる。 1)磁性粒子と感光体との接触面をより密接に接触させ
る。 2)磁性粒子間を密にし、磁気ブラシ内の抵抗を均一に
する。 3)磁性粒子表面に付着する現像剤等のスペントを防止
することができる。
That is, in the case of the magnetic particles having the above particle size distribution, the magnetic particles having a particle size smaller than the 50% volume distribution can move between the magnetic particles as auxiliary particles to be attached (constrained by magnetic force). The following effects can be obtained. 1) The contact surface between the magnetic particles and the photoconductor is brought into closer contact. 2) Make the magnetic particles dense and make the resistance in the magnetic brush uniform. 3) It is possible to prevent the spent of the developer and the like adhering to the surface of the magnetic particles.

【0053】ここで、粒径比が1.40未満では補助粒
子としての効果が低下し、低温低湿条件下で帯電不良が
発生することがある。また、体積分布の小粒径側におい
て、体積分布径が2.2μm未満である磁性粒子は感光
体に付着することがあり、このような場合には感光体の
削れを引き起こす要因にもなる。
Here, if the particle size ratio is less than 1.40, the effect as auxiliary particles decreases, and charging failure may occur under low temperature and low humidity conditions. On the small particle size side of the volume distribution, magnetic particles having a volume distribution diameter of less than 2.2 μm may adhere to the photoconductor, and in such a case, it may cause abrasion of the photoconductor.

【0054】ここで、磁性粒子の体積分布径はレーザー
回折式粒度分布測定装置HEROS(日本電子(株)
製)を用いて、0.05μm〜200μmの範囲を32
対数分割して測定した。
Here, the volume distribution diameter of the magnetic particles is measured by a laser diffraction type particle size distribution measuring device HEROS (JEOL Ltd.).
Manufactured), and a range of 0.05 μm to 200 μm is set to 32.
The measurement was performed by logarithmic division.

【0055】本発明に用いられる磁性粒子は、体積抵抗
値はl×l04 Ωcm以上l×l0 11Ωcm以下であ
る。抵抗値がl×l04 Ωcm未満ではピンホールリー
クが生じ易く、l×l011Ωcmを超えると高速機や低
湿度条件下で良好な帯電が困難になる。
The magnetic particles used in the present invention have a volume resistance
The value is l × 10Four Ωcm or more l × l0 11Ωcm or less
You. Resistance value is l × 10Four Pinholey below Ωcm
Is likely to occur, l × 1011If it exceeds Ωcm, it will
Good charging becomes difficult under humidity conditions.

【0056】ここで、磁性粒子の体積抵抗値は、2つの
電極を配置したセルに粒子を充填した後、電極間に電圧
を印加し、その時流れる電流値から算出した。なお、測
定条件は、23℃、65%、充填粒子とセルとの接触面
積S=2cm2 、厚みd=1mm、上部電極の荷重l0
kg、印加電圧l00Vである。
Here, the volume resistance value of the magnetic particles was calculated from the value of current flowing at the time when a voltage was applied between the electrodes after the particles were filled in a cell in which two electrodes were arranged. The measurement conditions were 23 ° C. and 65%, the contact area between the filling particles and the cell S = 2 cm 2 , the thickness d = 1 mm, and the load 10 of the upper electrode.
kg, applied voltage 100V.

【0057】本発明においては、磁性粒子表面に特定の
分子量分布を有する樹脂を被覆することが好ましい。
In the present invention, it is preferable to coat the surface of the magnetic particles with a resin having a specific molecular weight distribution.

【0058】すなわち、本発明で用いる被覆樹脂は、G
PCクロマトグラムのメインピークの分子量(P1)が
10000以上で、そのメインピークの低分子量側に少
なくとも1つのピークまたはショルダーを有することが
好ましい。高分子量側のメインピークは樹脂の耐摩耗性
を向上させると共に、トナー等による表面のスペントを
防止する。そして、低分子量側のサブピークまたはショ
ルダーは磁性粒子コアと樹脂との密着性を向上させ、磁
性粒子からの被覆樹脂の剥れを防止する効果がある。こ
れらの相乗効果で大きなシェアのかかり易い帯電部材の
磁性粒子においても磁性粒子の劣化が少なく、長期の耐
久によっても均一な帯電が得られ、良好な画像を得るこ
とが可能となる。
That is, the coating resin used in the present invention is G
It is preferable that the main peak of the PC chromatogram has a molecular weight (P1) of 10,000 or more, and at least one peak or shoulder is on the low molecular weight side of the main peak. The main peak on the high molecular weight side improves the abrasion resistance of the resin and prevents the surface from being spent by toner or the like. The sub-peak or shoulder on the low molecular weight side has the effect of improving the adhesion between the magnetic particle core and the resin and preventing the coating resin from peeling off from the magnetic particles. Even when the magnetic particles of the charging member are likely to have a large share due to the synergistic effect, the deterioration of the magnetic particles is small, uniform charging can be obtained even by long-term durability, and a good image can be obtained.

【0059】具体的には、メインピークの分子量(P
1)は30000〜400000であり、同時に長期的
なシェアー条件下における被覆樹脂の密着性(剥がれ)
の立場から少なくとも1つの低分子量側のピークまたは
ショルダーの分子量が3000〜30000であること
が好ましい。ここで、GPCクロマトグラムの微分曲線
の変極点をもってピーク/ショルダーの位置とした。
Specifically, the molecular weight of the main peak (P
1) is 30,000 to 400,000, and at the same time the adhesion (peel) of the coating resin under long-term shear conditions
From the standpoint of, the molecular weight of at least one peak or shoulder on the low molecular weight side is preferably 3,000 to 30,000. Here, the inflection point of the differential curve of the GPC chromatogram was defined as the peak / shoulder position.

【0060】また、重量平均分子量Mwは50000〜
700000、数平均分子量Mnは5000〜5000
0の範囲にあり、Mw/Mnが10以上であること、更
には、Z平均分子量Mzが1000000〜50000
00の範囲にあることが好ましい。
The weight average molecular weight Mw is 50,000-
700,000, number average molecular weight Mn is 5000 to 5000
0, the Mw / Mn is 10 or more, and the Z-average molecular weight Mz is 1,000,000 to 50,000.
It is preferably in the range of 00.

【0061】3000未満に低分子量側のピークまたは
ショルダーを持つ樹脂では耐摩耗性に対する効果が低下
することがあり、また30000を超えると磁性粒子表
面から被覆樹脂が剥がれ(脱離)易くなる傾向がある。
A resin having a peak or shoulder on the low molecular weight side of less than 3,000 may have a reduced effect on abrasion resistance, while a resin having a peak or shoulder of less than 3,000 tends to cause the coating resin to easily peel off (release) from the surface of the magnetic particles. is there.

【0062】同様に、数平均分子量Mn、重量平均分子
量Mw、Z平均分子量Mz、Mw/Mnが上記の範囲に
あることが、樹脂の耐摩耗性、剥がれ防止、トナー等の
スペント防止に非常に有効であるが、より好ましくは、
メインピークの分子量が50000〜300000、低
分子量側のピークまたはショルダーの分子量が3000
〜15000、重量平均分子量Mwが100000〜5
00000、数平均分子量Mnが7000〜4000
0、Mw/Mnが20以上である。
Similarly, when the number average molecular weight Mn, the weight average molecular weight Mw, the Z average molecular weight Mz, and Mw / Mn are in the above ranges, it is very useful for abrasion resistance of the resin, prevention of peeling, and prevention of spent of toners. Effective, but more preferably
The main peak has a molecular weight of 50,000 to 300,000, and the low molecular weight peak or shoulder has a molecular weight of 3,000.
˜15,000, weight average molecular weight Mw is 100,000 to 5
00000, number average molecular weight Mn is 7,000 to 4,000
0, Mw / Mn is 20 or more.

【0063】また、該メインピークの分子量P1と、低
分子量側のピークまたはショルダーの分子量P2の比が
3:1〜100:1であることが磁性粒子への樹脂の密
着性と耐摩耗性の両立の観点から好ましく、より長期的
な効果を発揮するためには5:1〜50:1であること
が好ましい。
Further, the ratio of the molecular weight P1 of the main peak to the molecular weight P2 of the peak or shoulder on the low molecular weight side is 3: 1 to 100: 1 so that the adhesion of the resin to the magnetic particles and the abrasion resistance can be improved. It is preferable from the viewpoint of compatibility and is preferably 5: 1 to 50: 1 in order to exert a long-term effect.

【0064】本発明に用いる被覆樹脂としては、例え
ば、ナイロンー6、ナイロンー12、ナイロンー46、
アラミド類等のポリアミド系樹脂、PET等のポリエス
テル系樹脂、PEやPP等のポリオレフィン系樹脂、エ
ポキシ系樹脂、メチルシリコーン、メチルフェニルシリ
コーン、シリコーンアクリル等のシリコーン系樹脂、塩
化ビニール系樹脂、ポリウレタン系樹脂、ポリテトラフ
ルオロエチレン、テトラフルオロエチレンパーフルオロ
アルキルビニルエーテル共重合体、ポリビニリデンフル
オライド等のフッ素系樹脂、ポリカーボネート系樹脂、
メラミン系樹脂、スチロール系樹脂、ポリメタクリル酸
エステル等のアクリル系樹脂、ポリアセタール系樹脂、
酢酸ビニール系樹脂、フェノール系樹脂等が挙げられ
る。
Examples of the coating resin used in the present invention include nylon-6, nylon-12, nylon-46,
Polyamide resin such as aramids, polyester resin such as PET, polyolefin resin such as PE and PP, epoxy resin, methyl silicone, methylphenyl silicone, silicone resin such as silicone acryl, vinyl chloride resin, polyurethane resin Resin, polytetrafluoroethylene, tetrafluoroethylene perfluoroalkyl vinyl ether copolymer, fluorine resin such as polyvinylidene fluoride, polycarbonate resin,
Melamine resin, styrene resin, acrylic resin such as polymethacrylic acid ester, polyacetal resin,
Examples thereof include vinyl acetate resin and phenol resin.

【0065】これらの中でも、より長期的なスペント防
止の立場から、少なくともフッ素系樹脂、アクリル系樹
脂、シリコーン系樹脂及びポリオレフィン系樹脂から選
ばれる1種以上からなることが好ましく、より好ましく
は最も耐摩耗性に優れるポリオレフィン系樹脂である。
Of these, from the standpoint of preventing the spent for a longer period of time, it is preferable that at least one selected from the group consisting of fluorine-based resins, acrylic resins, silicone-based resins and polyolefin-based resins is used. It is a polyolefin resin with excellent abrasion resistance.

【0066】本発明に用いる磁性粒子の表面層は必ずし
も磁性粒子のコア材表面層を完全に被覆する必要はな
く、上記効果が得られる範囲でコア材が露出していても
よい。つまり、表面層が不連続に形成されていてもよ
い。
The surface layer of the magnetic particles used in the present invention does not necessarily have to completely cover the surface layer of the core material of the magnetic particles, and the core material may be exposed to the extent that the above effects can be obtained. That is, the surface layer may be formed discontinuously.

【0067】本発明に用いる磁性粒子を被覆する樹脂
は、前記した磁性粒子の抵抗領域を満足する範囲内で導
電性粒子を分散させることができる。
The resin for coating the magnetic particles used in the present invention can disperse the conductive particles within a range satisfying the resistance region of the magnetic particles.

【0068】このような導電性粒子としては、例えば
鉄、銅、銀等の金属粉体、酸化亜鉛、酸化すず、酸化チ
タン、硫化銅等の複合金属粉、カーボンブラック等の導
電性カーボン、ポリピロール等の電子共役性ポリマー等
を挙げることができる。中でもカーボンブラック等の導
電性カーボンが好ましい。
Examples of such conductive particles include metal powder of iron, copper, silver, etc., composite metal powder of zinc oxide, tin oxide, titanium oxide, copper sulfide, etc., conductive carbon such as carbon black, polypyrrole. And the like, electron-conjugated polymers and the like. Of these, conductive carbon such as carbon black is preferable.

【0069】本発明における樹脂被覆層は、コア芯材の
量に対し被覆層固形分が0.1〜20重量%であること
が好ましい。0.1重量%未満では被覆効果が十分では
なく、20重量%を越えると流動性や電極スリーブとの
付着力が低下し、長期的な均一帯電性を得るのが困難に
なることがある。また、コストアップにもつながる。
The resin coating layer in the present invention preferably has a coating layer solid content of 0.1 to 20% by weight based on the amount of the core material. If it is less than 0.1% by weight, the coating effect is not sufficient, and if it exceeds 20% by weight, the fluidity and the adhesive force with the electrode sleeve are lowered, and it may be difficult to obtain long-term uniform charging property. It also leads to higher costs.

【0070】ここで、本発明のポリオレフィン系樹脂の
分子量測定は以下の方法で行った。
The molecular weight of the polyolefin resin of the present invention was measured by the following method.

【0071】装置は、ウォーターズ社製ゲルパーミエイ
ションクロマトグラフィ(GPC)測定装置、GPC−
150Cを使用し、次に示す条件で測定した。
The apparatus is a gel permeation chromatography (GPC) measuring apparatus manufactured by Waters, GPC-
Using 150C, the measurement was performed under the following conditions.

【0072】 カラム:Shodex HT−806M 2本 (プレカラム Shodex HT−800P 1本) 温度:ポリエチレン樹脂の場合 145℃ その他の樹脂 40℃ 溶媒:ポリエチレン樹脂の場合 o−ジクロロベンゼン (0.1%アイオノール添加) その他の樹脂 テトラヒドロフラン 流速:1.0ml/min 試料:0.15%の試料を0.4ml注入Column: Shodex HT-806M 2 pieces (pre-column Shodex HT-800P 1 piece) Temperature: In the case of polyethylene resin 145 ° C. Other resin 40 ° C. Solvent: In case of polyethylene resin o-dichlorobenzene (addition of 0.1% ionol) ) Other resins Tetrahydrofuran Flow rate: 1.0 ml / min Sample: 0.4 ml of 0.15% sample injected

【0073】磁性粒子被覆後の樹脂の分子量測定の場合
は、キシレン溶媒を用いて20時間磁性粒子のソックス
レー抽出を行い、抽出液よりキシレンをエバポレーター
等で除去、乾燥した後、得られた固形分を試料として用
いた。
In the case of measuring the molecular weight of the resin coated with magnetic particles, Soxhlet extraction of magnetic particles was carried out for 20 hours using a xylene solvent, xylene was removed from the extract by an evaporator, etc., and the solid content obtained was dried. Was used as a sample.

【0074】また、試料の分子量算出にあったては単分
散ポリスチレン標準試料により作成した分子量較正曲線
を使用し算出した。
The molecular weight of the sample was calculated by using a molecular weight calibration curve prepared from a monodisperse polystyrene standard sample.

【0075】[磁性粒子の製造例] (磁性粒子製造例1〜5)以下の体積分布50%径及び
5%径を有するCu−Znフェライトを調製した。
[Production Example of Magnetic Particles] (Magnetic Particle Production Examples 1 to 5) Cu—Zn ferrites having the following volume distributions of 50% diameter and 5% diameter were prepared.

【0076】 [0076]

【0077】(磁性粒子製造例6)熱キシレン溶媒10
0重量部中にピーク分子量4000のポリエチレン樹脂
0.1重量部及びピーク分子量100000のポリエチ
レン樹脂0.9重量部を添加、混合し、磁性粒子被覆溶
液を作成した。混合樹脂全体としてはMn=1300
0、Mw=370000、Mw/Mn=28.5であっ
た。この被覆溶液を、上記の磁性粒子1に樹脂被覆量が
磁性粒子に対し1重量部となるようスピラコーターで塗
布し、体積抵抗値が8×107 Ωcmの磁性粒子6を得
た。
(Magnetic Particle Production Example 6) Hot xylene solvent 10
0.1 part by weight of a polyethylene resin having a peak molecular weight of 4000 and 0.9 part by weight of a polyethylene resin having a peak molecular weight of 100,000 were added and mixed in 0 part by weight to prepare a magnetic particle coating solution. Mn = 1300 for the entire mixed resin
0, Mw = 370,000 and Mw / Mn = 28.5. This coating solution was applied to the above-mentioned magnetic particles 1 by a spir coater so that the resin coating amount was 1 part by weight with respect to the magnetic particles to obtain magnetic particles 6 having a volume resistance value of 8 × 10 7 Ωcm.

【0078】ここで、体積分布は、体積分布50%径
(D50)=25.51、体積分布5%径(D5)=1
6.06、D50/D5=1.59である。
Here, the volume distribution is as follows: volume distribution 50% diameter (D50) = 25.51, volume distribution 5% diameter (D5) = 1.
6.06 and D50 / D5 = 1.59.

【0079】(磁性粒子製造例7)上記磁性粒子製造例
6と同様な方法により以下の分子量分布をもつポリエチ
レン樹脂を磁性粒子2に被覆し、体積抵抗が9×107
Ωcmである磁性粒子7を得た。
(Magnetic Particle Production Example 7) A polyethylene resin having the following molecular weight distribution was coated on the magnetic particles 2 in the same manner as in the above-mentioned magnetic particle production example 6, and the volume resistance was 9 × 10 7.
Magnetic particles 7 of Ωcm were obtained.

【0080】分子量分布は、メインピーク分子量500
00、Mn=9000、Mw=140000、Mw/M
n=15.6で。ここで体積分布は、D50=27.7
7、D5=14.21、D50/D5=1.95であ
る。
The molecular weight distribution is 500 for the main peak molecular weight.
00, Mn = 9000, Mw = 140,000, Mw / M
At n = 15.6. Here, the volume distribution is D50 = 27.7.
7, D5 = 14.21, and D50 / D5 = 1.95.

【0081】(磁性粒子製造例8)上記磁性粒子製造例
6と同様な方法によりピーク分子量4000のポリエチ
レン樹脂0.1重量部、ピーク分子量100000のポ
リエチレン樹脂0.9重量部及び導電性カーボン0.2
部を混合し、磁性粒子3に被覆し、磁性粒子8を得た。
(Magnetic Particle Production Example 8) By the same method as in the above-mentioned magnetic particle production example 6, 0.1 part by weight of a polyethylene resin having a peak molecular weight of 4000, 0.9 part by weight of a polyethylene resin having a peak molecular weight of 100,000 and conductive carbon of 0.1. Two
Parts were mixed and coated on the magnetic particles 3 to obtain magnetic particles 8.

【0082】ここで混合樹脂全体としてはMn=130
00、Mw=370000、Mw/Mn=28.5、体
積抵抗値は、5×107 Ωcm、体積分布は、D50=
29.97、D5=18.68、D50/D5=1.6
0である。
Here, Mn = 130 as the whole mixed resin.
00, Mw = 370000, Mw / Mn = 28.5, volume resistance value is 5 × 10 7 Ωcm, and volume distribution is D50 =
29.97, D5 = 18.68, D50 / D5 = 1.6
0.

【0083】(磁性粒子製造例9)以下の分子量分布を
もつポリパーフロロアルキルメタクリレート−ポリメチ
ルメタクリレート共重合体及びメチルメタクリレート−
ブチルアクリレート共重合体をそれぞれ5重量部ずつト
ルエン−メチルエチルケトン(1:1)混合溶媒に混合
しスピラコーターを用いて磁性粒子1に被覆し、体積抵
抗が9×107 Ωcmである磁性粒子9を得た。 分子量分布;メインピーク分子量28000のポリパー
フロロアルキルメタクリレート−ポリメチルメタクリレ
ート共重合体及びピーク分子量3800のメチルメタク
リレート−ブチルアクリレート共重合体、混合樹脂とし
てMn=6000、Mw=40000、Mw/Mn=
6.7。
(Magnetic Particle Production Example 9) Polyperfluoroalkylmethacrylate-polymethylmethacrylate copolymer and methylmethacrylate-having the following molecular weight distributions:
5 parts by weight of each of the butyl acrylate copolymers were mixed in a toluene-methylethylketone (1: 1) mixed solvent, and the magnetic particles 1 were coated with a spira coater to obtain magnetic particles 9 having a volume resistance of 9 × 10 7 Ωcm. Obtained. Molecular weight distribution: Main peak molecular weight 28,000 polyperfluoroalkylmethacrylate-polymethylmethacrylate copolymer and peak molecular weight 3800 methylmethacrylate-butylacrylate copolymer, mixed resin Mn = 6000, Mw = 40,000, Mw / Mn =
6.7.

【0084】ここで体積分布は、D50=26.11、
D5=16.54、D50/D5=1.57である。
Here, the volume distribution is D50 = 26.11,
D5 = 16.54 and D50 / D5 = 1.57.

【0085】(磁性粒子製造例10)上記磁性粒子製造
例8と同様な方法により以下の分子量分布をもつフッ素
樹脂(ポリパーフロロアルキルメタクリレート−ポリメ
チルメタクリレート共重合体)を磁性粒子2に被覆し、
体積抵抗が1×108 Ωcmである磁性粒子10を得
た。
(Magnetic Particle Production Example 10) Magnetic particles 2 were coated with a fluororesin (polyperfluoroalkylmethacrylate-polymethylmethacrylate copolymer) having the following molecular weight distribution in the same manner as in the above-mentioned magnetic particle production example 8. ,
Magnetic particles 10 having a volume resistance of 1 × 10 8 Ωcm were obtained.

【0086】ここで、分子量分布は、メインピークの分
子量28000、Mn=6000、Mw=65000、
Mw/Mn=10.8であり、体積分布はD50=2
8.72、D5=17.66、D50/D5=1.62
である。
Here, the molecular weight distribution is as follows: molecular weight of main peak 28,000, Mn = 6000, Mw = 65,000,
Mw / Mn = 10.8, volume distribution is D50 = 2
8.72, D5 = 17.66, D50 / D5 = 1.62
It is.

【0087】(磁性粒子製造例11)磁性粒子製造例6
において、ピーク分子量15000のポリエチレン樹脂
を用いた以外は全て磁性粒子製造例6と同様な方法で行
い、磁性粒子11を得た。
(Magnetic Particle Production Example 11) Magnetic Particle Production Example 6
In the above, except that a polyethylene resin having a peak molecular weight of 15,000 was used, the same procedure as in magnetic particle production example 6 was carried out to obtain magnetic particles 11.

【0088】ここで体積抵抗値は8×107 Ωcmであ
り、体積分布は、D50=25.35、D5=15.9
2、D50/D5=1.59である。
Here, the volume resistance value is 8 × 10 7 Ωcm, and the volume distribution is D50 = 25.35, D5 = 15.9.
2, D50 / D5 = 1.59.

【0089】(磁性粒子製造例12)前記磁性粒子製造
例6と同様な方法により以下の分子量分布をもつポリエ
チレン樹脂を磁性粒子1に被覆し、体積抵抗が9×10
7 Ωcmである磁性粒子12を得た。
(Magnetic Particle Production Example 12) A polyethylene resin having the following molecular weight distribution was coated on the magnetic particles 1 in the same manner as in the above-mentioned magnetic particle production example 6, and the volume resistance was 9 × 10.
Magnetic particles 12 having a resistance of 7 Ωcm were obtained.

【0090】分子量分布は、ピーク分子量4000、M
n=3000、Mw=12000、Mw/Mn=4.0
である。
The molecular weight distribution has a peak molecular weight of 4000, M
n = 3000, Mw = 12000, Mw / Mn = 4.0
It is.

【0091】ここで体積分布は、D50=26.01、
D5=16.62、D50/D5=1.56である。
Here, the volume distribution is D50 = 26.01,
D5 = 16.62 and D50 / D5 = 1.56.

【0092】(磁性粒子製造例13〜16)以下の体積
分布50%径および5%径を有するCu−Znフェライ
トを調製した。
(Magnetic Particle Production Examples 13 to 16) Cu-Zn ferrites having the following volume distribution of 50% diameter and 5% diameter were prepared.

【0093】 [感光体の製造例] (感光体製造例1)感光体は負帯電用の有機光導電性物
質を用いた感光体であり、φ30mmのアルミニウム製
のシリンダー上に各機能層を設けた。
[0093] [Production Example of Photoreceptor] (Photoreceptor Production Example 1) The photoreceptor is a photoreceptor using an organic photoconductive substance for negative charging, and each functional layer was provided on a cylinder made of aluminum having a diameter of 30 mm.

【0094】第1層は導電層であり、アルミニウムシリ
ンダーの欠陥等をならすため、またレーザ露光の反射に
よるモアレの発生を防止するために設けられている厚さ
約20μmの導電性粒子分散樹脂層である。
The first layer is a conductive layer and is a conductive particle-dispersed resin layer having a thickness of about 20 μm, which is provided to smooth defects such as aluminum cylinders and to prevent moire due to reflection of laser exposure. Is.

【0095】第2層は正電荷注入防止層(下引層)であ
り、アルミニウム支持体から注入された正電荷が感光体
表面に帯電された負電荷を打ち消すのを防止する役割を
果たし、メトキシメチル化ナイロンによってl06 Ωc
m程度に抵抗調整された厚さ約1μmの中抵抗層であ
る。
The second layer is a positive charge injection preventing layer (undercoat layer), which plays a role of preventing the positive charges injected from the aluminum support from canceling out the negative charges charged on the surface of the photoconductor, and serves as a methoxy layer. 10 6 Ωc by methylated nylon
This is a middle resistance layer having a thickness of about 1 μm, the resistance of which is adjusted to about m.

【0096】第3層は電荷発生層であり、ジスアゾ系の
顔料を樹脂に分散した厚さ約0.3μmの層であり、レ
ーザ露光を受けることによって正負の電荷対を発生す
る。
The third layer is a charge generation layer, which is a layer having a thickness of about 0.3 μm in which a disazo pigment is dispersed in a resin, and generates positive and negative charge pairs by being exposed to laser.

【0097】第4層は電荷輸送層であり、ポリカーボネ
ート樹脂にヒドラジンを分散した厚約25μmの層であ
り、P型半導体である。従って、感光体表面に帯電され
た負電荷はこの層を移動することはできず、電荷発生層
で発生した正電荷のみを感光体表面に輪送することがで
きる。
The fourth layer is a charge transport layer, which is a layer having a thickness of about 25 μm in which hydrazine is dispersed in a polycarbonate resin and is a P-type semiconductor. Therefore, the negative charges charged on the surface of the photoconductor cannot move in this layer, and only the positive charges generated in the charge generation layer can be transferred to the surface of the photoconductor.

【0098】これを感光体1(体積抵抗は2×1015Ω
cm)とする。
Photosensitive material 1 (volume resistance: 2 × 10 15 Ω
cm).

【0099】(感光体製造例2)感光体製造例1におい
て、第4層の表面に電荷注入層として、光硬化性のアク
リル樹脂にSnO2 超微粒子、更に粒径約0.25μm
の四フッ化エチレン樹脂粒子を分散した。
(Photoreceptor Production Example 2) In the photoreceptive production example 1, as the charge injection layer on the surface of the fourth layer, a photocurable acrylic resin, SnO 2 ultrafine particles, and a particle size of about 0.25 μm are used.
Of the tetrafluoroethylene resin particles were dispersed.

【0100】具体的にはアンチモンをドーピングし低抵
抗化した粒径約0.03μmのSnO2 粒子を樹脂に対
して100重量%、更に四フッ化エチレン樹脂粒子を2
0重量%、分散剤をl.2重量%分散した。このように
して調製した塗工液をスプレー塗工法にて厚さ約2.5
μmに塗工して電荷注入層とした。
Specifically, antimony-doped SnO 2 particles having a resistance of about 0.03 μm and reduced in resistance are 100% by weight based on the resin, and tetrafluoroethylene resin particles are added in an amount of 2%.
0% by weight, dispersant: 2% by weight dispersed. The coating solution prepared in this way was spray coated to a thickness of about 2.5.
It was applied to a thickness of μm to form a charge injection layer.

【0101】これにより感光体表面層の体積抵抗値は4
×1012Ωcmになった。
As a result, the volume resistance value of the surface layer of the photoconductor is 4
It became × 10 12 Ωcm.

【0102】これを感光体2とする。This is referred to as a photoconductor 2.

【0103】(感光体製造例3)鏡面加工を施したΦ3
0mmのアルミシリンダーにグロー放電法を用いて、阻
止層、光導電層、表面層からなるアモルファスシリコン
感光体を作製した。
(Photoreceptor Manufacturing Example 3) Φ3 mirror-finished
An amorphous silicon photosensitive member including a blocking layer, a photoconductive layer, and a surface layer was prepared by using a glow discharge method in a 0 mm aluminum cylinder.

【0104】先ず、反応室を約5×10-3Paに排気し
てから、250℃に調音されたアルミシリンダー表面
に、SiH4 、B26 、NO及びH2 の各種ガスをフ
ロー式で反応室に送り込んだ。30Pa程度の内圧に達
したところでグロー放電を生起させ、5μmの阻止層を
形成した。
First, the reaction chamber was evacuated to about 5 × 10 −3 Pa, and then various gases such as SiH 4 , B 2 H 6 , NO and H 2 were flow type on the surface of the aluminum cylinder tuned to 250 ° C. I sent it to the reaction chamber. When the internal pressure reached about 30 Pa, glow discharge was generated to form a 5 μm blocking layer.

【0105】次に、阻止層の形成と同様な方法で、Si
4 、H2 ガスを使用し、約50Paの内圧条件下で2
0μmの光導電層を形成した。
Next, by the same method as the formation of the blocking layer, Si
2 using H 4 and H 2 gas under an internal pressure of about 50 Pa
A 0 μm photoconductive layer was formed.

【0106】更に、SiH4 、CH4 、H2 ガスを使用
し、約60Paの内圧条件下でグロー放電させて、膜厚
0.5μmのSiとCからなる表面層を形成し、アモル
ファスシリコン感光体を作製した。感光体の表面抵抗
は、8×1012Ωcmである。これを感光体3とする。
Further, a glow discharge was carried out using SiH 4 , CH 4 , and H 2 gas under an internal pressure of about 60 Pa to form a surface layer of Si and C having a film thickness of 0.5 μm. The body was made. The surface resistance of the photoconductor is 8 × 10 12 Ωcm. This is designated as Photoconductor 3.

【0107】 [トナーの製造例] スチレン−ブチルアクリレート共重合体 (共重合質量比80:20) 100重量部 マグネタイト 100重量部 含金属アゾ顔料 2重量部 低分子量ポリプロピレン 3重量部 上記材料をヘンシェルミキサーで混合した後に、130
℃に設定したエクストルーダーにて混練した。得られた
混練物を冷却し、カッターミルにより粗粉砕した後に、
ジェット気流を用いたジェットミルで微粉砕し、風力分
級して重量平均粒径7μmの黒色微紛体(磁性トナー粒
子)を得た。この黒色微紛体100重量部に対して、シ
リコーンオイルで疎水化処理をしたシリカ粉体1.0重
量部をヘンシェルミキサーを用いて外添し磁性トナーを
得た。
[Production Example of Toner] Styrene-butyl acrylate copolymer (copolymerization mass ratio 80:20) 100 parts by weight Magnetite 100 parts by weight Metal azo pigment 2 parts by weight Low molecular weight polypropylene 3 parts by weight The above materials are used in a Henschel mixer. After mixing in 130
The mixture was kneaded in an extruder set at ℃. The obtained kneaded product is cooled, and after roughly crushing with a cutter mill,
The mixture was finely pulverized with a jet mill using a jet stream and subjected to air classification to obtain a black fine powder (magnetic toner particles) having a weight average particle diameter of 7 μm. To 100 parts by weight of this black fine powder, 1.0 part by weight of silica powder hydrophobized with silicone oil was externally added using a Henschel mixer to obtain a magnetic toner.

【0108】[0108]

【実施例】本実施例では、本発明の接触帯電装置を、プ
ロセススピード100mm/sec、反転現像方式のク
リーニング装置を備えた電子写真装置に内蔵し、トナー
製造例で作製したトナーを用いて画像出し耐久評価を行
った。
EXAMPLE In this example, the contact charging device of the present invention was incorporated in an electrophotographic apparatus equipped with a cleaning device of a reversal development system with a process speed of 100 mm / sec, and an image was formed using the toner prepared in the toner manufacturing example. The durability evaluation was performed.

【0109】ここで、接触帯電部材としての電極スリー
ブ(φ16)は、アルミニウムからなり、磁束密度10
00×10-4T(テスラ)のマグネットローラを内包
し、感光体(φ30mm)に対し−150%(対向)の
周速差で回転する。電極スリーブと感光体のギャップは
500μm、磁気ブラシのニップ幅は約5mmに調整し
た。
Here, the electrode sleeve (φ16) as the contact charging member is made of aluminum and has a magnetic flux density of 10
A magnet roller of 00 × 10 −4 T (Tesla) is included and rotated at a peripheral speed difference of −150% (opposing) with respect to the photoconductor (φ30 mm). The gap between the electrode sleeve and the photosensitive member was adjusted to 500 μm, and the nip width of the magnetic brush was adjusted to about 5 mm.

【0110】電極スリーブへの印加は、交流重畳(DC
−700V、1.6kVpp)、弱交流重畳(DC−7
00V、1.0kVpp)、注入DC(DC−700
V)の3条件で行った。
The voltage applied to the electrode sleeve is AC superposition (DC
-700V, 1.6kVpp), weak AC superposition (DC-7)
00V, 1.0 kVpp), injection DC (DC-700
It carried out on 3 conditions of V).

【0111】これらの条件にて以下の評価を行った。The following evaluations were performed under these conditions.

【0112】評価1 通常の画出し耐久(5000枚)
を行い耐久前後の電位差(ΔV)を測定した。ここで、
電位差(ΔV)とは、帯電飽和電位(Vdに相当)と帯
電1周目電位の差であり、目的の電位Vdに対しΔVが
小さいほど帯電は良好と言える。評価レベルは4段階で
行った。
Evaluation 1 Normal image output durability (5000 sheets)
Then, the potential difference (ΔV) before and after the durability test was measured. here,
The potential difference (ΔV) is the difference between the charging saturation potential (corresponding to Vd) and the first-round charging potential, and it can be said that the smaller ΔV is with respect to the target potential Vd, the better the charging. The evaluation level was four levels.

【0113】 [0113]

【0114】評価2 評価1の耐久磁性粒子を水洗し、
その表面を拡大撮影(電子顕微鏡)して現像剤によるス
ペントを評価した。評価は4段階で行った。
Evaluation 2 The durable magnetic particles of Evaluation 1 were washed with water,
The surface was magnified (electron microscope) to evaluate the spent by the developer. The evaluation was performed in four stages.

【0115】 [0115]

【0116】評価3 感光体の代わりにSUS製のドラ
ムを使用し空回転耐久(現像なし、10時間)を行い、
耐久前後の樹脂被覆磁性粒子の表面を拡大撮影(電子顕
微鏡)し、密着性(剥がれ)を評価した。評価レベルは
4段階である。
Evaluation 3 A drum made of SUS was used in place of the photoconductor to perform idle rotation durability (no development, 10 hours).
The surface of the resin-coated magnetic particles before and after the durability test was magnified (electron microscope) to evaluate the adhesion (peel). There are four evaluation levels.

【0117】 [0117]

【0118】(実施例1〜12)表6に示す磁性粒子、
感光体、印加条件の組み合わせで、評価1、2、3の検
討を実施した。
(Examples 1 to 12) Magnetic particles shown in Table 6,
Evaluations 1, 2, and 3 were carried out based on the combination of the photoconductor and the application conditions.

【0119】 [0119]

【0120】本実施例においては、耐久による電位差
(ΔV)の低下が抑えられ良好な帯電を維持することが
できた。本発明の樹脂を被覆することにより磁性粒子か
らの剥がれは防止され、中でもポリオレフィンを被覆し
た磁性粒子は最も良好な結果を示した。
In this example, the decrease in the potential difference (ΔV) due to the durability was suppressed, and good charging could be maintained. Peeling from the magnetic particles was prevented by coating with the resin of the present invention, and among them, the magnetic particles coated with polyolefin showed the best results.

【0121】また、本発明の分子量(P1)範囲外の樹
脂を被覆した実施例12(磁性粒子12)を除き、良好
な耐スペント性も得られた。
Also, good spent resistance was obtained except for Example 12 (magnetic particles 12) coated with a resin having a molecular weight (P1) outside the range of the present invention.

【0122】(比較例1〜4)表7に示す磁性粒子、感
光体、印加条件の組み合わせで、実施例と同様に評価1
の検討を実施した。
(Comparative Examples 1 to 4) Evaluation was made in the same manner as in Example 1 with the combinations of magnetic particles, photoconductors and application conditions shown in Table 7.
Was examined.

【0123】 [0123]

【0124】本比較例では、耐久と共にΔVが増加し、
画像カブリが発生した。
In this comparative example, ΔV increases with durability,
Image fog has occurred.

【0125】[0125]

【発明の効果】本発明により、良好な帯電電位が得ら
れ、同時に磁性粒子へのスペント、樹脂被膜の剥がれを
防止することが可能になったので、長期的に安定した画
質を維持することができた。
According to the present invention, a good charging potential can be obtained, and at the same time, it is possible to prevent the spent on the magnetic particles and the resin film from peeling off, so that stable image quality can be maintained for a long period of time. did it.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒平 文弘 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 杷野 祥史 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 久木元 力 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 石原 友司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Fumihiro Arahira 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yoshifumi Hino 3-30-2 Shimomaruko, Ota-ku, Tokyo Kya Non-Incorporated (72) Inventor Motoki Hisagi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yuji Ishihara 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. In the company

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 導電性部材と該導電性部材に支持された
磁性粒子を有しており被帯電体に接触配置され、該導電
性部材に電圧を印加することにより該被帯電体を帯電さ
せる接触帯電部材において、 該磁性粒子の体積分布の50%径が10μm以上100
μm以下であり、 かつ、体積分布の50%径と体積分布の5%径の比が
1.40以上であり、 該磁性粒子の体積抵抗が1×104 Ωcm以上1×10
11Ωcm以下であることを特徴とする接触帯電部材。
1. A conductive member and magnetic particles supported by the conductive member, which are arranged in contact with an object to be charged, and a voltage is applied to the conductive member to charge the member to be charged. In the contact charging member, the 50% diameter of the volume distribution of the magnetic particles is 10 μm or more and 100
μm or less, the ratio of the 50% diameter of the volume distribution to the 5% diameter of the volume distribution is 1.40 or more, and the volume resistance of the magnetic particles is 1 × 10 4 Ωcm or more and 1 × 10.
A contact charging member having a resistance of 11 Ωcm or less.
【請求項2】 該磁性粒子の体積分布の50%径が10
μm以上60μm以下である請求項1記載の接触帯電部
材。
2. The 50% diameter of the volume distribution of the magnetic particles is 10
The contact charging member according to claim 1, wherein the contact charging member has a size of not less than μm and not more than 60 μm.
【請求項3】 該磁性粒子の体積分布の50%径と体積
分布の5%径の比が1.55以上5.00以下である請
求項1または2記載の接触帯電部材。
3. The contact charging member according to claim 1, wherein the ratio of the 50% diameter of the volume distribution of the magnetic particles to the 5% diameter of the volume distribution is 1.55 or more and 5.00 or less.
【請求項4】 該磁性粒子の表面層が、GPCクロマト
グラムのメインピークの分子量P1が10000以上で
ある樹脂を含有する請求項1記載の接触帯電部材。
4. The contact charging member according to claim 1, wherein the surface layer of the magnetic particles contains a resin having a main peak molecular weight P1 of a GPC chromatogram of 10,000 or more.
【請求項5】 該磁性粒子の表面層の樹脂のGPCクロ
マトグラムが、メインピークの低分子量側に少なくとも
1つのピークまたはショルダーを有する請求項4記載の
接触帯電部材。
5. The contact charging member according to claim 4, wherein the GPC chromatogram of the resin in the surface layer of the magnetic particles has at least one peak or shoulder on the low molecular weight side of the main peak.
【請求項6】 該磁性粒子の表面層の樹脂のGPCクロ
マトグラムのメインピークの分子量P1と、低分子量側
のピークまたはショルダーの分子量P2の比P1:P2
が3:1〜100:1である請求項4または5記載の接
触帯電部材。
6. The ratio P1: P2 of the molecular weight P1 of the main peak of the GPC chromatogram of the resin of the surface layer of the magnetic particles and the molecular weight P2 of the peak or shoulder on the low molecular weight side.
Is 3: 1 to 100: 1, The contact charging member according to claim 4 or 5.
【請求項7】 該磁性粒子の表面層の樹脂のGPCクロ
マトグラムのメインピークの分子量が30000〜40
0000であり、少なくとも1つの低分子量側のピーク
またはショルダーの分子量が3000〜30000であ
る請求項4、5または6記載の接触帯電部材。
7. The molecular weight of the main peak of the GPC chromatogram of the resin of the surface layer of the magnetic particles is 30,000 to 40.
The contact charging member according to claim 4, 5, or 6, wherein the peak or shoulder on the low molecular weight side has a molecular weight of 3,000 to 30,000.
【請求項8】 該磁性粒子の表面層の樹脂の重量平均分
子量Mwが50000〜700000、数平均分子量M
nが5000〜50000であり、Mw/Mnが10以
上である請求項4、5、6または7記載の接触帯電部
材。
8. The weight average molecular weight Mw of the resin of the surface layer of the magnetic particles is 50,000 to 700,000, and the number average molecular weight M is
The contact charging member according to claim 4, 5, 6 or 7, wherein n is 5,000 to 50,000 and Mw / Mn is 10 or more.
【請求項9】 該磁性粒子の表面層の樹脂が少なくとも
フッ素系樹脂、アクリル系樹脂、シリコーン系樹脂及び
ポリオレフィン系樹脂から選ばれる1種以上の樹脂であ
る請求項4、5、6、7または8記載の接触帯電部材。
9. The resin of the surface layer of the magnetic particles is at least one resin selected from at least fluorine resin, acrylic resin, silicone resin and polyolefin resin. 8. The contact charging member according to item 8.
【請求項10】 該磁性粒子の表面層の樹脂がポリオレ
フィン系樹脂である請求項4、5、6、7、8または9
記載の接触帯電部材。
10. The resin of the surface layer of the magnetic particles is a polyolefin resin, 4, 5, 6, 7, 8 or 9.
The contact charging member described.
【請求項11】 該磁性粒子の表面層の樹脂が導電性粒
子を含有している請求項4、5、6、7、8、9または
10記載の接触帯電部材。
11. The contact charging member according to claim 4, wherein the resin of the surface layer of the magnetic particles contains conductive particles.
【請求項12】 被帯電体と、導電性部材と該導電性部
材に支持された磁性粒子を有しており該被帯電体に接触
配置される帯電部材を有し、該導電性部材に電圧を印加
することにより該被帯電体を帯電させる接触帯電装置に
おいて、 該磁性粒子の体積分布の50%径が10μm以上100
μm以下であり、 かつ、体積分布の50%径と体積分布の5%径の比が
1.40以上であり、 該磁性粒子の体積抵抗が1×104 Ωcm以上1×10
11Ωcm以下であることを特徴とする接触帯電装置。
12. A charging member, which has a member to be charged, a conductive member, and magnetic particles supported by the conductive member, and is placed in contact with the member to be charged, and a voltage is applied to the conductive member. In a contact charging device for charging the body to be charged by applying a magnetic field, the 50% diameter of the volume distribution of the magnetic particles is from 10 μm to 100 μm.
μm or less, the ratio of the 50% diameter of the volume distribution to the 5% diameter of the volume distribution is 1.40 or more, and the volume resistance of the magnetic particles is 1 × 10 4 Ωcm or more and 1 × 10.
A contact charging device characterized by being 11 Ωcm or less.
【請求項13】 該磁性粒子の体積分布の50%径が1
0μm以上60μm以下である請求項12記載の接触帯
電装置。
13. The 50% diameter of the volume distribution of the magnetic particles is 1
The contact charging device according to claim 12, having a size of 0 μm or more and 60 μm or less.
【請求項14】 該磁性粒子の体積分布の50%径と体
積分布の5%径の比が1.55以上5.00以下である
請求項12または13記載の接触帯電装置。
14. The contact charging device according to claim 12, wherein the ratio of the 50% diameter of the volume distribution of the magnetic particles to the 5% diameter of the volume distribution is 1.55 or more and 5.00 or less.
【請求項15】 該磁性粒子の表面層が、GPCクロマ
トグラムのメインピークの分子量P1が10000以上
である樹脂を含有する請求項12記載の接触帯電装置。
15. The contact charging device according to claim 12, wherein the surface layer of the magnetic particles contains a resin having a main peak molecular weight P1 of a GPC chromatogram of 10,000 or more.
【請求項16】 該磁性粒子の表面層の樹脂のGPCク
ロマトグラムが、メインピークの低分子量側に少なくと
も1つのピークまたはショルダーを有する請求項15記
載の接触帯電装置。
16. The contact charging device according to claim 15, wherein the GPC chromatogram of the resin of the surface layer of the magnetic particles has at least one peak or shoulder on the low molecular weight side of the main peak.
【請求項17】 該磁性粒子の表面層の樹脂のGPCク
ロマトグラムのメインピークの分子量P1と、低分子量
側のピークまたはショルダーの分子量P2の比P1:P
2が3:1〜100:1である請求項15または16記
載の接触帯電装置。
17. The ratio P1: P of the molecular weight P1 of the main peak of the GPC chromatogram of the resin of the surface layer of the magnetic particles and the molecular weight P2 of the peak or shoulder on the low molecular weight side.
The contact charging device according to claim 15 or 16, wherein 2 is 3: 1 to 100: 1.
【請求項18】 該磁性粒子の表面層の樹脂のGPCク
ロマトグラムのメインピークの分子量が30000〜4
00000であり、少なくとも1つの低分子量側のピー
クまたはショルダーの分子量が3000〜30000で
ある請求項15、16または17記載の接触帯電装置。
18. The molecular weight of the main peak of the GPC chromatogram of the resin of the surface layer of the magnetic particles is 30,000 to 4
18. The contact charging device according to claim 15, 16, or 17, wherein the peak or shoulder has a molecular weight of 3000 to 30,000 at least on the low molecular weight side.
【請求項19】 該磁性粒子の表面層の樹脂の重量平均
分子量Mwが50000〜700000、数平均分子量
Mnが5000〜50000であり、Mw/Mnが10
以上である請求項15、16、17または18記載の接
触帯電装置。
19. The weight average molecular weight Mw of the resin of the surface layer of the magnetic particles is 50,000 to 700,000, the number average molecular weight Mn is 5,000 to 50,000, and Mw / Mn is 10.
The contact charging device according to claim 15, 16, 17 or 18, which is as described above.
【請求項20】 該磁性粒子の表面層の樹脂が少なくと
もフッ素系樹脂、アクリル系樹脂、シリコーン系樹脂及
びポリオレフィン系樹脂から選ばれる1種以上の樹脂で
ある請求項15、16、17、18または19記載の接
触帯電装置。
20. The resin of the surface layer of the magnetic particles is at least one resin selected from at least a fluorine resin, an acrylic resin, a silicone resin and a polyolefin resin, 15, 16, 17, 18 or 19. The contact charging device described in 19.
【請求項21】 該磁性粒子の表面層の樹脂がポリオレ
フィン系樹脂である請求項15、16、17、18、1
9または20記載の接触帯電装置。
21. The resin of the surface layer of the magnetic particles is a polyolefin resin, 15, 16, 17, 18, 1
The contact charging device as described in 9 or 20.
【請求項22】 該磁性粒子の表面層の樹脂が導電性粒
子を含有している請求項15、16、17、18、1
9、20または21記載の接触帯電装置。
22. The resin of the surface layer of the magnetic particles contains conductive particles.
The contact charging device according to 9, 20, or 21.
【請求項23】 該被帯電体の表面層が電荷注入層であ
る請求項12記載の接触帯電装置。
23. The contact charging device according to claim 12, wherein the surface layer of the member to be charged is a charge injection layer.
【請求項24】 該電荷注入層が導電性粒子及び結着樹
脂を含有する請求項23記載の接触帯電装置。
24. The contact charging device according to claim 23, wherein the charge injection layer contains conductive particles and a binder resin.
【請求項25】 該電荷注入層が無機半導体層である請
求項23記載の接触帯電装置。
25. The contact charging device according to claim 23, wherein the charge injection layer is an inorganic semiconductor layer.
JP10095496A 1996-04-23 1996-04-23 Contact charging member and contact charging device Expired - Fee Related JP3372749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095496A JP3372749B2 (en) 1996-04-23 1996-04-23 Contact charging member and contact charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095496A JP3372749B2 (en) 1996-04-23 1996-04-23 Contact charging member and contact charging device

Publications (2)

Publication Number Publication Date
JPH09288400A true JPH09288400A (en) 1997-11-04
JP3372749B2 JP3372749B2 (en) 2003-02-04

Family

ID=14287759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095496A Expired - Fee Related JP3372749B2 (en) 1996-04-23 1996-04-23 Contact charging member and contact charging device

Country Status (1)

Country Link
JP (1) JP3372749B2 (en)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651554A (en) * 1992-06-04 1994-02-25 Canon Inc Developer for developing electrostatic charge image and image forming method
JPH0743935A (en) * 1993-07-28 1995-02-14 Canon Inc Developer and image forming method
JPH0792737A (en) * 1993-03-31 1995-04-07 Canon Inc Electrostatic charge image developing toner, method of image formation, and process cartridge
JPH086353A (en) * 1994-06-22 1996-01-12 Canon Inc Charging device
JPH086355A (en) * 1994-06-22 1996-01-12 Canon Inc Electrophotographic device and image forming method
JPH0844190A (en) * 1994-07-29 1996-02-16 Canon Inc Image forming method
JPH0869156A (en) * 1994-06-22 1996-03-12 Canon Inc Electrophotographic device, process cartridge and image forming method
JPH0869155A (en) * 1994-06-22 1996-03-12 Canon Inc Magnetic particle for electrifying member and electrophotographic device, process cartridge and image forming method using the magnetic particle
JPH0869149A (en) * 1994-06-22 1996-03-12 Canon Inc Electrophotographic device and image forming method
JPH0869157A (en) * 1994-06-22 1996-03-12 Canon Inc Magnetic particles for electrifying member, electrophotographic device using the member, process cartridge and image forming method
JPH08211741A (en) * 1994-10-31 1996-08-20 Canon Inc Image forming device and process cartridge
JPH08272183A (en) * 1995-03-30 1996-10-18 Canon Inc Electrophotographic charging device
JPH08339113A (en) * 1995-06-13 1996-12-24 Canon Inc Electrifying device
JPH0926682A (en) * 1995-07-11 1997-01-28 Canon Inc Image forming device
JPH09114193A (en) * 1995-10-20 1997-05-02 Canon Inc Image formation
JPH09134074A (en) * 1994-10-31 1997-05-20 Canon Inc Method and device for forming image and process cartridge
JPH09166905A (en) * 1995-12-18 1997-06-24 Canon Inc Electrifying device and electrophotographic device
JPH09190045A (en) * 1996-01-10 1997-07-22 Canon Inc Contact electrifying device and image forming device provided therewith
JPH09211939A (en) * 1996-01-31 1997-08-15 Canon Inc Electrifying device, electrifying member, image recorder and process cartridge
JPH09218566A (en) * 1996-02-09 1997-08-19 Canon Inc Image recorder
JPH09230674A (en) * 1995-12-18 1997-09-05 Canon Inc Electrostatic charging device and electrophotographic device
JPH09244355A (en) * 1996-03-07 1997-09-19 Canon Inc Charging device, image recording device, and process cartridge
JPH09269685A (en) * 1996-03-29 1997-10-14 Canon Inc Image forming device
JPH09292756A (en) * 1996-02-27 1997-11-11 Canon Inc Image forming device and process cartridge
JPH1010840A (en) * 1996-02-14 1998-01-16 Canon Inc Electrostatic charging device and electrophotograhic device
JPH1048909A (en) * 1996-04-23 1998-02-20 Canon Inc Electrification device and electrophotographic device

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651554A (en) * 1992-06-04 1994-02-25 Canon Inc Developer for developing electrostatic charge image and image forming method
JPH0792737A (en) * 1993-03-31 1995-04-07 Canon Inc Electrostatic charge image developing toner, method of image formation, and process cartridge
JPH0743935A (en) * 1993-07-28 1995-02-14 Canon Inc Developer and image forming method
JPH0869156A (en) * 1994-06-22 1996-03-12 Canon Inc Electrophotographic device, process cartridge and image forming method
JPH086355A (en) * 1994-06-22 1996-01-12 Canon Inc Electrophotographic device and image forming method
JPH0869155A (en) * 1994-06-22 1996-03-12 Canon Inc Magnetic particle for electrifying member and electrophotographic device, process cartridge and image forming method using the magnetic particle
JPH0869149A (en) * 1994-06-22 1996-03-12 Canon Inc Electrophotographic device and image forming method
JPH0869157A (en) * 1994-06-22 1996-03-12 Canon Inc Magnetic particles for electrifying member, electrophotographic device using the member, process cartridge and image forming method
JPH086353A (en) * 1994-06-22 1996-01-12 Canon Inc Charging device
JPH0844190A (en) * 1994-07-29 1996-02-16 Canon Inc Image forming method
JPH09134074A (en) * 1994-10-31 1997-05-20 Canon Inc Method and device for forming image and process cartridge
JPH08211741A (en) * 1994-10-31 1996-08-20 Canon Inc Image forming device and process cartridge
JPH08272183A (en) * 1995-03-30 1996-10-18 Canon Inc Electrophotographic charging device
JPH08339113A (en) * 1995-06-13 1996-12-24 Canon Inc Electrifying device
JPH0926682A (en) * 1995-07-11 1997-01-28 Canon Inc Image forming device
JPH09114193A (en) * 1995-10-20 1997-05-02 Canon Inc Image formation
JPH09166905A (en) * 1995-12-18 1997-06-24 Canon Inc Electrifying device and electrophotographic device
JPH09230674A (en) * 1995-12-18 1997-09-05 Canon Inc Electrostatic charging device and electrophotographic device
JPH09190045A (en) * 1996-01-10 1997-07-22 Canon Inc Contact electrifying device and image forming device provided therewith
JPH09211939A (en) * 1996-01-31 1997-08-15 Canon Inc Electrifying device, electrifying member, image recorder and process cartridge
JPH09218566A (en) * 1996-02-09 1997-08-19 Canon Inc Image recorder
JPH1010840A (en) * 1996-02-14 1998-01-16 Canon Inc Electrostatic charging device and electrophotograhic device
JPH09292756A (en) * 1996-02-27 1997-11-11 Canon Inc Image forming device and process cartridge
JPH09244355A (en) * 1996-03-07 1997-09-19 Canon Inc Charging device, image recording device, and process cartridge
JPH09269685A (en) * 1996-03-29 1997-10-14 Canon Inc Image forming device
JPH1048909A (en) * 1996-04-23 1998-02-20 Canon Inc Electrification device and electrophotographic device

Also Published As

Publication number Publication date
JP3372749B2 (en) 2003-02-04

Similar Documents

Publication Publication Date Title
JPH09269614A (en) Carrier for electrostatic latent image developer, its production, electrostatic latent image developer, image forming method and image forming device
JPWO2006016643A1 (en) Magnetic one-component toner for developing electrostatic latent image and image forming method
TW321735B (en)
US5940662A (en) Charging apparatus and electrophotographic apparatus
JP3327689B2 (en) Electrophotographic apparatus and image forming method
JP3372749B2 (en) Contact charging member and contact charging device
JP2000352845A (en) Image forming method
US5930566A (en) Electrostatic charging apparatus having conductive particles with a multi-peaked size distribution
JPH08106200A (en) Electrostatic charging device and image forming device
JP2001013767A (en) Electorphotographic device and image forming method
JP3313942B2 (en) Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method
JPH09288401A (en) Contact electrifying member and contact electrifying device
JP3382414B2 (en) Electrophotographic apparatus, process cartridge and image forming method
JP3262476B2 (en) Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method
JP3372750B2 (en) Electrophotographic charging device and electrophotographic device
JP3347623B2 (en) Charging device and electrophotographic device
JP5081402B2 (en) Image forming apparatus and image forming method
JP3313996B2 (en) Charging device and electrophotographic device
JP3327769B2 (en) Magnetic particles for charging member, charging device and image forming method
JP5949580B2 (en) Electrostatic image developing carrier, electrostatic image developer, developer cartridge, process cartridge, image forming apparatus, and image forming method
JPH09288403A (en) Electrophotographic electrifying device
JP4241119B2 (en) Electrostatic latent image developer carrier, electrostatic latent image developer and image forming method
JPH1078681A (en) Carrier and developer for developing electrostatic latent image
JPH09288406A (en) Electrophotographic electrifying device
JP2001125294A (en) Image forming device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees