JPH08339113A - Electrifying device - Google Patents

Electrifying device

Info

Publication number
JPH08339113A
JPH08339113A JP7146240A JP14624095A JPH08339113A JP H08339113 A JPH08339113 A JP H08339113A JP 7146240 A JP7146240 A JP 7146240A JP 14624095 A JP14624095 A JP 14624095A JP H08339113 A JPH08339113 A JP H08339113A
Authority
JP
Japan
Prior art keywords
particles
charging
resistance
charging device
ωcm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7146240A
Other languages
Japanese (ja)
Inventor
Harumi Ishiyama
晴美 石山
Tadashi Furuya
正 古屋
Hideyuki Yano
秀幸 矢野
Seiji Mashita
精二 真下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7146240A priority Critical patent/JPH08339113A/en
Priority to US08/492,526 priority patent/US5579095A/en
Priority to EP95304338A priority patent/EP0689101B1/en
Priority to DE69523988T priority patent/DE69523988T2/en
Priority to CN95107675A priority patent/CN1073720C/en
Priority to KR1019950016842A priority patent/KR0151324B1/en
Publication of JPH08339113A publication Critical patent/JPH08339113A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent electrification fault due to intrusion of foreign matter, to prevent dielectric breakdown due to low resistance of an electrifying member and to prevent leaking of charges to the material to be electrified, by specifying the particles which constitute a particle layer. CONSTITUTION: The particle layer consists of a mixture of first particles having a volume resistivity between 6.0×10<3> Ωcm and <1.0×10<5> Ωcm and second particles having >=6.3×10<5> Ωcm volume resistivity, and the proportion of the first particles is <=40wt.% of the particle layer. By mixing particles of plural kinds having different resistances, both of electrification property and a preventing effect for leaking through pin holes are made compatible with each other a preferable level, which is different from a device in which particles of electrifying member consist of one kind of material having a specified resistivity. By using magnetic particles having different resistance distributions for electrification, the macroscopic resistance is determined by the magnetic particles having higher resistance because magnetic particles having low resistance and magnetic particles having medium resistance are both present, and thereby, concentration of electrifying currents to a pin hole on the photoreceptor can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、感光体や誘電体のよう
な被帯電体に接触可能な帯電部材を有する帯電装置に関
する。この帯電装置は、好ましくは、複写機、プリンタ
等の画像形成装置や、この装置に着脱可能なプロセスカ
ートリッジに適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device having a charging member capable of contacting an object to be charged such as a photoconductor or a dielectric. The charging device is preferably applied to an image forming device such as a copying machine or a printer, or a process cartridge detachably attached to the device.

【0002】[0002]

【背景技術】従来、感光体表面に電荷注入層を設け、こ
の電荷注入層に接触帯電部材を接触させて感光体を注入
帯電することが特開平6−3921号公報に開示されて
いる。
2. Description of the Related Art Conventionally, Japanese Patent Laid-Open No. 6-3921 discloses that a charge injection layer is provided on the surface of a photoreceptor, and a contact charging member is brought into contact with the charge injection layer to inject and charge the photoreceptor.

【0003】また、接触帯電部材として磁気ブラシのよ
うな粒子層を用いることが特開昭61−57958号公
報に開示されている。
Further, the use of a particle layer such as a magnetic brush as the contact charging member is disclosed in JP-A-61-57958.

【0004】また、感光体上の電荷注入層としては絶縁
性でかつ透光性のバインダーの中に導電性の微粒子を分
散したものが好ましく用いられる。この電荷注入層を電
圧を印加された帯電磁気ブラシが接触することで、あた
かも感光体の導電基体に対して導電粒子が無数の独立し
たフロート電極のように存在し、これらのフロート電極
が形成するコンデンサーに充電を行なうような作用を期
待することができる。
Further, as the charge injection layer on the photosensitive member, a material in which conductive fine particles are dispersed in an insulating and translucent binder is preferably used. By contacting this charge injection layer with a charged magnetic brush to which a voltage is applied, the conductive particles exist as if they were infinite floating electrodes on the conductive base of the photoconductor, and these floating electrodes form these. It can be expected that the capacitor will be charged.

【0005】しかしながら、帯電部材に磁気ブラシを用
いた注入帯電方法では、以下のような欠点があった。
However, the injection charging method using a magnetic brush as the charging member has the following drawbacks.

【0006】(1)磁気ブラシへの不純物の混入による
帯電不良 帯電部材に磁気ブラシを用いた注入帯電方法では、磁気
ブラシを構成する一つ一つの磁性粒子が互いに接触して
導電経路を形成する必要があり、この導電経路を通じて
流れた電荷によって感光体表面が充電、帯電されるわけ
であるが、磁気ブラシ中にごみ等が混入した場合、更に
は画像形成によって感光体表面に付着したトナー等がク
リーニングされずに磁気ブラシに達した場合には、これ
らの絶縁不純物によって導電経路が遮断され、帯電が行
なわれにくくなるという問題点が生じていた。
(1) Poor charging due to mixing of impurities into the magnetic brush In the injection charging method using the magnetic brush as the charging member, the individual magnetic particles forming the magnetic brush contact each other to form a conductive path. It is necessary to charge and charge the surface of the photoconductor by the electric charge that flows through this conductive path.However, if dust or the like is mixed in the magnetic brush, toner that adheres to the surface of the photoconductor due to image formation, etc. However, when the magnetic brush reaches the magnetic brush without being cleaned, the conductive path is blocked by these insulating impurities, which makes charging difficult.

【0007】実際には初期には良好な帯電が行なわれて
いた画像形成装置でも耐久通紙を行なうにつれて前回画
像形成時にクリーニングしきれなかったトナー等が磁気
ブラシの中に混入することで帯電性が劣化する。具体的
には一旦露光によって下げられた感光体表面電位を再帯
電できずに反転現像系の装置では帯電不良カブリを生じ
るという問題点が生じていた。
Actually, even in an image forming apparatus that was initially charged well, toner and the like that could not be completely cleaned at the previous image formation are mixed into the magnetic brush as the durable paper feed is performed, so that the charging property is improved. Deteriorates. Specifically, there has been a problem that the surface potential of the photosensitive member once lowered by the exposure cannot be recharged, and in the reversal development type apparatus, fog is caused due to charging failure.

【0008】(2)低抵抗粒子のみによるピンホールリ
ーク 感光体に帯電電荷を効率的に注入するためには接触帯電
部材の抵抗値は低い方が好ましいが、例えば1×105
Ωcm未満の体積抵抗値の帯電部材を用いて帯電を行な
った場合には、感光体上にピンホール等の欠陥が生じた
場合に、ここに帯電電流が集中することによって帯電部
材に印加されている電圧が降下して線状の帯電不良画像
を生じてしまったり、帯電部材、感光体の破壊を引き起
こすと言う問題点が生じていた。
(2) Pinhole leak due to low-resistance particles only In order to efficiently inject charged charges into the photoreceptor, it is preferable that the contact charging member has a low resistance value, for example, 1 × 10 5
When a charging member having a volume resistance value of less than Ωcm is used for charging, when a defect such as a pinhole occurs on the photoconductor, the charging current concentrates on the defect and is applied to the charging member. There are problems that the applied voltage drops and a linear charging failure image occurs, or the charging member and the photoconductor are destroyed.

【0009】(3)低抵抗粒子の粒子付着 低抵抗粒子を用いた場合には、上述のドラムピンホール
でのリークのほかに、抵抗が低いことで起きる粒子付着
がある。この現象は、磁性粒子の抵抗が低いために磁気
ブラシの先端の粒子に電荷が誘起しやすく、ドラムへの
付着力が働くために起きる。
(3) Particle Adhesion of Low-Resistance Particles When low-resistance particles are used, in addition to the above-mentioned leakage in the drum pinhole, there is particle adhesion caused by low resistance. This phenomenon occurs because the electric resistance is easily induced in the particles at the tip of the magnetic brush due to the low resistance of the magnetic particles, and the adhesion force to the drum acts.

【0010】特開平6−274005号公報には、磁気
ブラシが5×104 Ωcm以上の高抵抗粒子と、5×1
3 Ωcm以下の導電粒子との混合物からなることが開
示されているが、上述した問題点を十分に解決すること
はできなかった。
Japanese Unexamined Patent Publication (Kokai) No. 6-274005 discloses a magnetic brush having high resistance particles of 5 × 10 4 Ωcm or more and 5 × 1.
Although it is disclosed that it is composed of a mixture with conductive particles of 0 3 Ωcm or less, the above-mentioned problems could not be sufficiently solved.

【0011】[0011]

【発明の目的】本発明の目的は、異物が混入することに
よる帯電不良を防止した帯電装置を提供することであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a charging device which prevents a charging failure due to the inclusion of foreign matter.

【0012】本発明の他の目的は、帯電部材の抵抗が低
いことによる被帯電体の絶縁破壊の防止及び被帯電体へ
のリークの防止が可能となる帯電装置を提供することで
ある。
Another object of the present invention is to provide a charging device capable of preventing the dielectric breakdown of the charged body and the leakage to the charged body due to the low resistance of the charging member.

【0013】本発明の他の目的は、帯電部材の粒子が被
帯電体へ付着することを防止する帯電装置を提供するこ
とである。
Another object of the present invention is to provide a charging device which prevents particles of a charging member from adhering to a member to be charged.

【0014】[0014]

【発明の構成】本発明は、被帯電体と、この被帯電体を
帯電する帯電部材と、を有し、この帯電部材は、電圧が
印加可能であり、被帯電体に接触する粒子層を備える帯
電装置において、前記粒子層は、体積抵抗率が6.0×
103 Ωcm以上で1.0×105 Ωcm未満の第1の
粒子と、体積抵抗率が6.3×105 Ωcm以上の第2
粒子と、が混合され、前記第1の粒子は、前記粒子層の
40重量%以下であることを特徴とするものである。
The present invention comprises a body to be charged and a charging member for charging the body to be charged. The charging member is capable of applying a voltage and has a particle layer in contact with the body to be charged. In the charging device, the volume resistivity of the particle layer is 6.0 ×.
First particles having a volume resistivity of 6.3 × 10 5 Ωcm or more and first particles having a resistivity of 10 3 Ωcm or more and less than 1.0 × 10 5 Ωcm.
Particles are mixed, and the first particles account for 40% by weight or less of the particle layer.

【0015】[0015]

【実施例】以下本発明の実施例を図面に基づいて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(第1の実施例)図1に本発明の帯電装置
を適用した画像形成装置の概略側面図を示す。図1は、
本実施例の画像形成装置は電子写真プロセス利用のレー
ザービームプリンタである。
(First Embodiment) FIG. 1 is a schematic side view of an image forming apparatus to which the charging device of the present invention is applied. Figure 1
The image forming apparatus of this embodiment is a laser beam printer using an electrophotographic process.

【0017】1は像担持体としての回転感光ドラム型の
電子写真感光体である。以下感光ドラムと呼ぶ。本実施
例は直径30mmのOPC感光体であり、矢示Dの時計
方向に100mm/secのプロセススピード(周速
度)をもって回転駆動される。
Reference numeral 1 is a rotary photosensitive drum type electrophotographic photosensitive member as an image bearing member. Hereinafter referred to as a photosensitive drum. This embodiment is an OPC photosensitive member having a diameter of 30 mm and is rotationally driven in the clockwise direction indicated by arrow D at a process speed (peripheral speed) of 100 mm / sec.

【0018】2は感光ドラム1に当接された接触帯電部
材としての導電磁気ブラシであり、回転可能な非磁性の
帯電スリーブ21にマグネット22の磁力により帯電磁
性粒子23が付着して構成している。この磁気ブラシ2
には帯電バイアス印加電源S1から−700VのDC帯
電バイアスが印加されていて、電荷注入帯電によって感
光体1の外周面がほぼ−700Vに一様に帯電される。
Reference numeral 2 is a conductive magnetic brush as a contact charging member that is in contact with the photosensitive drum 1. The charging magnetic particles 23 are attached to the rotatable non-magnetic charging sleeve 21 by the magnetic force of the magnet 22. There is. This magnetic brush 2
A −700V DC charging bias is applied from the charging bias applying power source S1 to the charge injection charging, so that the outer peripheral surface of the photoconductor 1 is uniformly charged to about −700V.

【0019】この感光体1の帯電面に対してレーザーダ
イオード・ポリゴンミラー等を含む不図示のレーザービ
ームスキャナから出力される目的の画像情報の時系列電
気ディジタル画素信号に対応して強度変調されたレーザ
ービームによる走査露光Lがなされ、感光体1の周面に
対して目的の画像情報に対応した静電潜像が形成され
る。その静電潜像はマイナスに帯電された磁性一成分絶
縁トナーを用いた反転現像装置3によりトナー像として
現像される。3aはマグネットを内包する直径16mm
の非磁性現像スリーブであり、この現像スリーブに上記
のネガトナーをコートし、感光体1表面との距離を30
0μmに固定した状態で、感光ドラム1と等速で回転さ
せ、スリーブ3aに現像バイアス電源S2より現像バイ
アス電圧を印加する。電圧は、−500VのDC電圧
と、周波数1800Hz、ピーク間電圧1600Vの矩
形のAC電圧を重畳したものを用い、スリーブ3aと感
光体1の間でジャンピング現像を行なわせる。
The charged surface of the photosensitive member 1 is intensity-modulated corresponding to the time-series electric digital pixel signal of the target image information output from a laser beam scanner (not shown) including a laser diode, a polygon mirror and the like. Scanning exposure L is performed by the laser beam, and an electrostatic latent image corresponding to desired image information is formed on the peripheral surface of the photoconductor 1. The electrostatic latent image is developed as a toner image by the reversal developing device 3 using the negatively charged magnetic one-component insulating toner. 3a has a diameter of 16 mm including a magnet
This non-magnetic developing sleeve is coated with the negative toner described above, and the distance from the surface of the photoconductor 1 is set to 30.
While being fixed at 0 μm, the photosensitive drum 1 is rotated at a constant speed, and a developing bias voltage is applied to the sleeve 3a from the developing bias power source S2. As the voltage, a DC voltage of -500 V and a rectangular AC voltage having a frequency of 1800 Hz and a peak-to-peak voltage of 1600 V are superimposed, and jumping development is performed between the sleeve 3 a and the photoconductor 1.

【0020】一方、不図示の給紙部から記録材としての
転写材Pが供給されて、感光ドラム1と、これに所定の
押圧力で当接させた接触転写手段としての、中抵抗の転
写ローラ4との圧接ニップ部(転写部)Tに所定のタイ
ミングにて導入される。転写ローラ4には転写バイアス
印加電源S3から所定の転写バイアス電圧が印加され
る。
On the other hand, a transfer material P as a recording material is supplied from a paper feeding unit (not shown), and a transfer of medium resistance as a contact transfer means abutting against the photosensitive drum 1 with a predetermined pressing force is performed. It is introduced into the pressure contact nip portion (transfer portion) T with the roller 4 at a predetermined timing. A predetermined transfer bias voltage is applied to the transfer roller 4 from the transfer bias applying power source S3.

【0021】本実施例ではローラ抵抗値は5×108 Ω
のものを用い、+2000VのDC電圧を印加して転写
を行なった。
In this embodiment, the roller resistance value is 5 × 10 8 Ω.
Then, a DC voltage of +2000 V was applied to transfer.

【0022】転写部Tに導入された転写材Pはこの転写
部Tを挟持搬送されて、その表面側に感光ドラム1の表
面に形成担持されているトナー画像が順次に静電気力と
押し圧力にて転写されていく。
The transfer material P introduced into the transfer portion T is nipped and conveyed by the transfer portion T, and the toner images formed and carried on the surface of the photosensitive drum 1 on the surface side thereof are sequentially subjected to electrostatic force and pressing force. Will be transcribed.

【0023】トナー画像の転写を受けた転写材Pは感光
ドラム1の面から分離されて熱定着方式等の定着装置5
へ導入されてトナー画像の定着を受け、画像形成物(プ
リント、コピー)として装置外へ排出される。
The transfer material P having the toner image transferred thereto is separated from the surface of the photosensitive drum 1 and is fixed by a fixing device 5 such as a heat fixing system.
Then, the toner image is fixed and is discharged to the outside of the apparatus as an image formed product (print, copy).

【0024】また転写材Pに対するトナー画像転写後の
感光ドラム面はクリーニング装置6により残留トナー等
の付着汚染物の除去を受けて清掃され繰り返して作像に
供される。
The surface of the photosensitive drum after the transfer of the toner image to the transfer material P is cleaned by the cleaning device 6 to remove adhered contaminants such as residual toner, and is repeatedly used for image formation.

【0025】本実施例の画像形成装置は、感光ドラム1
・接触帯電部材2・現像装置3・クリーニング装置6の
4つのプロセス機器をカートリッジ20に包含させて画
像形成装置本体に対して一括して着脱交換自在のカート
リッジ方式の装置であるが、これに限るものではない。
The image forming apparatus of the present embodiment includes the photosensitive drum 1
A cartridge type device in which the four process devices of the contact charging member 2, the developing device 3, and the cleaning device 6 are included in the cartridge 20 and can be attached to and detached from the main body of the image forming apparatus at once, but is not limited to this. Not a thing.

【0026】次に、本実施例で用いた感光体について述
べる。
Next, the photosensitive member used in this embodiment will be described.

【0027】感光体は負帯電のOPC感光体であり、直
径30mmのアルミニウム性のドラム上に機能層を5層
設ける。
The photoreceptor is a negatively charged OPC photoreceptor, and five functional layers are provided on an aluminum drum having a diameter of 30 mm.

【0028】アルミニウム基層側から順に第1層は下引
き層、第2層は正電荷注入防止層、第3層は電荷発生
層、第4層は電荷輸送層であり、本実施例では通常用い
られる機能分離型のOPC感光体を用いたがここまでの
層は本質的には本発明の構成を限定するものではなく、
単層型のOPC、ZnO、セレン、アモルファスシリコ
ン等の感光体を使用することも可能である。
The first layer is an undercoat layer, the second layer is a positive charge injection preventing layer, the third layer is a charge generating layer, and the fourth layer is a charge transporting layer in this order from the aluminum base layer side. Although the function-separated OPC photosensitive material is used, the layers up to this point do not essentially limit the constitution of the present invention.
It is also possible to use a single-layer type photoconductor such as OPC, ZnO, selenium, or amorphous silicon.

【0029】第5層は電荷注入層であり、光硬化性のア
クリル樹脂にSnO2 超微粒子を分散したものである。
具体的には、アンチモンをドーピングし、低抵抗化した
平均粒径約0.03μmのSnO2 粒子を樹脂に対する
重量比で5:2の割合で分散したものである。
The fifth layer is a charge injection layer and is made of a photo-curable acrylic resin in which SnO 2 ultrafine particles are dispersed.
Specifically, SnO 2 particles having an average particle diameter of about 0.03 μm, which is doped with antimony and has a low resistance, are dispersed at a weight ratio of 5: 2 with respect to the resin.

【0030】実際には導電性であるSnO2 の分散量で
電荷注入層の体積抵抗値は変化し、画像流れをおこさな
い条件を満足するために、電荷注入層の抵抗値は1×1
8Ωcm以上であるのが望ましい。
In actuality, the volume resistance value of the charge injection layer changes depending on the dispersion amount of SnO 2 , which is electrically conductive, and the resistance value of the charge injection layer is 1 × 1 in order to satisfy the condition that image deletion does not occur.
0 8 Ωcm or more than it is desirable.

【0031】電荷注入層の抵抗値は、絶縁性のシート上
に電荷注入層を塗布し、これをヒューレッドパッカード
(HP)社の高抵抗計4329Aで印加電圧100Vに
て表面抵抗を測定したものである。
The resistance value of the charge injection layer is obtained by coating the charge injection layer on an insulating sheet and measuring the surface resistance with a high resistance meter 4329A manufactured by Hewlett-Packard (HP) at an applied voltage of 100V. Is.

【0032】このようにして調合した塗工液をディッピ
ング塗工法の適当な塗工法にて厚さ約3μmに塗工して
電荷注入層とした。
The coating liquid thus prepared was applied to a thickness of about 3 μm by a suitable dipping coating method to form a charge injection layer.

【0033】本実施例では電荷注入層の体積抵抗値が1
×1012Ωcmのものを用いた。
In this embodiment, the volume resistance value of the charge injection layer is 1
A film having a density of × 10 12 Ωcm was used.

【0034】電荷注入層の体積抵抗率は、1×108
1×1015Ωcmとするのが好ましい。
The volume resistivity of the charge injection layer is from 1 × 10 8 to
It is preferably 1 × 10 15 Ωcm.

【0035】次に、接触帯電部材について述べる。Next, the contact charging member will be described.

【0036】導電磁気ブラシは非磁性の導電スリーブ2
1、これに内包されるマグネットロール22、スリーブ
上の磁性導電粒子23によって構成され、マグネットロ
ール22は固定、スリーブ21と感光体1との近接位置
でスリーブ表面が感光ドラムの周速方向と逆に移動する
ように回転される。感光体と帯電スリーブの最近接位置
でのスリーブ表面の磁束密度は950ガウスであり、磁
気ブラシの穂立ちはスリーブに対向した磁性ブレード2
4で規制され、約1mmの穂立ちを形成している。帯電
部材の長手方向(図1の紙面と直交する方向)において
磁気ブラシの帯電磁性粒子の付着幅は200mmで、磁
気ブラシの帯電磁性粒子量は約10gで帯電スリーブ2
1と感光ドラム1とのニップでのギャップは500μm
である。
The conductive magnetic brush is a non-magnetic conductive sleeve 2
1. The magnet roll 22 contained therein and the magnetic conductive particles 23 on the sleeve are fixed. The magnet roll 22 is fixed, and the sleeve surface is opposite to the peripheral speed direction of the photosensitive drum at the position where the sleeve 21 and the photosensitive member 1 are close to each other. Is rotated to move to. The magnetic flux density on the sleeve surface at the closest position between the photoconductor and the charging sleeve is 950 gauss, and the spikes of the magnetic brush are the magnetic blade 2 facing the sleeve.
It is regulated by 4 and forms a spike of about 1 mm. In the longitudinal direction of the charging member (the direction orthogonal to the paper surface of FIG. 1), the magnetic brush has a magnetic magnetic particle adhesion width of 200 mm, and the magnetic brush has an amount of magnetic magnetic particles of about 10 g.
1 and the photosensitive drum 1 nip gap is 500μm
Is.

【0037】ここで、スリーブと感光体の周速比につい
て述べる。周速比は以下の式で定義する。 周速比%=(磁気ブラシ周速−ドラム周速)/ドラム周
速×100 周速比は、注入性を向上する点では大きい方が好ましい
のであるが、装置のコストや安全性の面より、注入性を
確保した上で出来る限り小さいことが好ましい。実際に
は、磁気ブラシが感光体の移動方向と順方向(スリーブ
と感光体の近接位置で同方向)に遅い速度で接触する
と、磁気ブラシの磁性粒子がドラムに付着しやすくなる
ため±100%以上が望ましいが、−100%はブラシ
が停止している状態なので、ブラシの感光体表面に停止
した形状がそのまま帯電不良となって、画像に出てしま
う場合がある。そこで本実施例では、スリーブ表面の感
光体に対する周速比はスリーブをスリーブと感光体の近
接位置で感光体の移動方向と逆方向に、感光体のスピー
ドの150%の速度で駆動回転させた。
Now, the peripheral speed ratio between the sleeve and the photosensitive member will be described. The peripheral speed ratio is defined by the following formula. Peripheral speed ratio% = (magnetic brush peripheral speed-drum peripheral speed) / drum peripheral speed x 100 It is preferable that the peripheral speed ratio is large in terms of improving the injection property, but from the viewpoint of the cost and safety of the device. It is preferable that it is as small as possible while ensuring the injection property. Actually, when the magnetic brush comes into contact with the moving direction of the photoconductor at a slow speed in the forward direction (the same direction when the sleeve and the photoconductor are close to each other), the magnetic particles of the magnetic brush tend to adhere to the drum ± 100%. Although the above is preferable, -100% is the state in which the brush is stopped, and therefore the stopped shape on the surface of the photoconductor of the brush may be charged as it is and may appear in the image. Therefore, in this embodiment, the peripheral speed ratio of the surface of the sleeve to the photosensitive member is such that the sleeve is driven and rotated at a position close to the sleeve and the photosensitive member in a direction opposite to the moving direction of the photosensitive member at a speed of 150% of the speed of the photosensitive member. .

【0038】本実施例において、帯電部材への印加電圧
(V)と、感光体の帯電電位(V)と、の関係は正比例
し、傾きが1であることが好ましい。
In the present embodiment, the relationship between the voltage (V) applied to the charging member and the charging potential (V) of the photoconductor is directly proportional, and it is preferable that the inclination is 1.

【0039】次に、本実施例で用いた磁性粒子について
述べる。
Next, the magnetic particles used in this example will be described.

【0040】本実施例では、磁性粒子として電気抵抗値
の異なる低抵抗のA、中抵抗のB二種類のものを混合し
て使用した。
In this embodiment, as the magnetic particles, two kinds of low resistance A and medium resistance B having different electric resistance values were mixed and used.

【0041】A:平均粒径25μm、体積抵抗値8×1
4 Ωcmのマグネタイト粒子(飽和磁化59.6A・
2 /kg) B:平均粒径25μm、体積抵抗値6×107 Ωcmの
フェライト粒子(飽和磁化58.0A・m2 /kg)こ
こで、粒子の平均粒径と抵抗値の測定方法を説明する。
A: Average particle size 25 μm, volume resistance value 8 × 1
0 4 Ωcm magnetite particles (saturation magnetization 59.6A
m 2 / kg) B: Ferrite particles having an average particle size of 25 μm and a volume resistance value of 6 × 10 7 Ωcm (saturation magnetization 58.0 A · m 2 / kg) Here, a method for measuring the average particle size and resistance value of the particles is described. explain.

【0042】粒子の粒径は光学顕微鏡または走査型電子
顕微鏡により、ランダムに100個以上抽出し、水平方
向最大弦長をもって体積粒度分布を算出しその全体積の
50%のところの平均粒径をもって平均粒径とする。ま
た、レーザー回折式粒度分布測定装置HEROS(日本
電子製)を用いて、0.05μm〜200μmの範囲を
32分割して測定し、体積分布の50%の平均粒径をも
って平均粒径としてもよい。
The particle size of the particles is randomly extracted by an optical microscope or a scanning electron microscope, and 100 or more particles are randomly extracted. The volume particle size distribution is calculated with the maximum chord length in the horizontal direction, and the average particle size at 50% of the total volume is calculated. The average particle size is used. Further, using a laser diffraction particle size distribution measuring device HEROS (manufactured by JEOL Ltd.), the range of 0.05 μm to 200 μm is measured by 32 divisions, and the average particle size of 50% of the volume distribution may be used as the average particle size. .

【0043】粒子の抵抗値は、低面積227mm2 の筒
状の容器に磁性粒子を2g充填して6.6kg/cm2
加圧し、上下から100Vの電圧を印加して、これに流
れる電流から算出し、正規化したもので定義した。
The resistance value of the particles, 6.6 kg / cm 2 to 2g filled with magnetic particles in a cylindrical vessel of the low area of 227 mm 2
It was defined as a value obtained by applying pressure and applying a voltage of 100 V from the top and bottom, calculating from the current flowing through this, and normalizing.

【0044】粒子の飽和磁化は理研電子(株)製の振動
磁場型磁気特性自動記録装置BHV−30を用いて測定
する。キャリア粉体の磁気特性値は±1キロエルステッ
ドの外部磁場を作り、そのときのヒステリシスカーブよ
り磁場1キロエルステッドのときの磁化の強さを求め
る。
The saturation magnetization of the particles is measured by using an oscillating magnetic field type magnetic characteristic automatic recording apparatus BHV-30 manufactured by Riken Denshi Co., Ltd. The magnetic characteristic value of the carrier powder is an external magnetic field of ± 1 kilo-oersted, and the strength of magnetization when the magnetic field is 1 kilo-oersted is obtained from the hysteresis curve at that time.

【0045】上述の、粒子の混合比(全体重量に対する
A粒子の重量の比)を変えて磁気ブラシを構成したも
の、さらに、比較例として、A、B粒子単体での、画像
比較を行なった。画像出力は、先に述べた画像形成装置
で行なった。また、粒子の帯電性能を調べるために帯電
電位の測定を行ない、スリーブへの印加電位に対する一
回帯電部通過後の感光体の帯電電位を電位収束率として
帯電性の指標とした。電位収束率は95%以上であれ
ば、実用上問題はない。
The above-mentioned magnetic brush was constructed by changing the mixing ratio of particles (ratio of the weight of A particles to the total weight), and as a comparative example, image comparison was performed using A and B particles alone. . The image output was performed by the image forming apparatus described above. Further, the charging potential was measured in order to investigate the charging performance of the particles, and the charging potential of the photosensitive member after passing through the charging section once for the potential applied to the sleeve was used as the potential convergence rate and used as an index of the charging property. If the potential convergence rate is 95% or more, there is no practical problem.

【0046】その結果を表1に示す。リークがNGと
は、黒線状の帯電不良が生じたもの、リークがほぼOK
とはピンホールのまわりににじむ程度の帯電不良が生じ
るが、使用可のレベルのものである。
The results are shown in Table 1. If the leak is NG, black line-shaped charging failure has occurred, and the leak is almost OK.
The term "is a usable level, although it causes a charging failure to the extent that it bleeds around the pinhole.

【0047】[0047]

【表1】 [Table 1]

【0048】この結果より、B粒子単体では、十分に電
位を収束することが出来ない。一方、A粒子単体ではド
ラムピンホールリークが発生してしまうことが分かる。
そして、A、B粒子を混合することで上述のどちらも満
足することが出来る。ただし、低抵抗のA粒子の混合比
が多くなっていくと、粒子の中で低抵抗のA粒子のみで
導電経路が出来てしまいドラムピンホールリークを起こ
してしまう。A、B粒子の混合では、リークを防止する
ためにA粒子を40wt%以下とすることが好ましい。
また、帯電性を良好にするのにA粒子は5wt%以上で
あるのが望ましい。
From these results, the B particles alone cannot sufficiently converge the potential. On the other hand, it can be seen that the drum pinhole leak occurs in the A particles alone.
Both of the above can be satisfied by mixing A and B particles. However, as the mixing ratio of the low-resistance A particles increases, a conductive path is formed only by the low-resistance A particles among the particles, causing a drum pinhole leak. In mixing the A and B particles, the A particles are preferably 40 wt% or less in order to prevent leakage.
Further, in order to improve the charging property, it is desirable that the A particles are 5 wt% or more.

【0049】次に、混合比を10wt%に固定して、B
粒子はそのままでA粒子を抵抗の異なるものに変え画像
形成と電位測定を行なった。
Then, the mixing ratio is fixed at 10 wt% and B
The particles were left as they were and the particles A were changed to those having different resistances, and image formation and potential measurement were carried out.

【0050】その結果を表2に示す。The results are shown in Table 2.

【0051】[0051]

【表2】 [Table 2]

【0052】この結果より、低抵抗粒子の抵抗が低すぎ
ると、感光体への粒子付着を起こし易くなり、画像不良
と成ってしまう。この現象は、粒子の抵抗が低いため
に、磁気ブラシの先端のドラムに接している粒子に電荷
が誘起され易く、その電荷が電界から受ける力で付着を
引き起こすためである。粒子がドラムに付着すると、付
着した粒子が感光体の像露光位置で露光を遮ることによ
る画像不良、また、粒子が現像器に混入した場合には現
像リークや現像カブリなどを引き起こしてしまう。ま
た、ドラムから転写材に転写された場合には転写材に定
着されず、ざらついた画像になってしまう。さらに、粒
子が減った場合は、磁気ブラシがドラムに均一に接触出
来なくなり、接触不良部は帯電不良画像となってしま
う。ここでは付着の指標としてA4サイズの転写材の1
000枚印字で帯電不良が起きた場合をNGとした。具
体的には、抵抗値が3.5×103Ωcmで付着が多く
800枚印字で帯電不良が起きた。
From this result, if the resistance of the low resistance particles is too low, the particles tend to adhere to the photosensitive member, resulting in a defective image. This phenomenon is because the resistance of the particles is low, so that electric charges are easily induced in the particles in contact with the drum at the tip of the magnetic brush, and the electric charges cause the electric charges to adhere to the particles. When the particles adhere to the drum, the adhered particles block the exposure at the image exposure position of the photoconductor, resulting in an image defect, and when the particles enter the developing device, a development leak or a development fog is caused. Further, when the image is transferred from the drum to the transfer material, the image is not fixed on the transfer material and becomes a rough image. Furthermore, when the particles are reduced, the magnetic brush cannot contact the drum uniformly, and the defective contact portion results in a defective charging image. Here, one of the A4 size transfer materials is used as an adhesion index.
The case where a charging failure occurred after printing 000 sheets was designated as NG. Specifically, when the resistance value was 3.5 × 10 3 Ωcm, there was a large amount of adhesion, and charging failure occurred after printing 800 sheets.

【0053】また、低抵抗粒子の抵抗が高くなると、電
位収束性が悪化し、1.0×105Ωcmの場合は90
%となり帯電不良を引き起こす電位収束性である。ここ
でいう帯電不良は、ドラムと帯電部材の接触が不十分な
ために生じる部分的な帯電不良ではなく、前回露光部を
十分に帯電しきれない均一な帯電不良である。
When the resistance of the low-resistance particles becomes high, the potential convergence deteriorates, and when the resistance is 1.0 × 10 5 Ωcm, it becomes 90.
%, Which is the potential converging property that causes charging failure. The charging failure referred to here is not a partial charging failure caused by insufficient contact between the drum and the charging member, but a uniform charging failure in which the previously exposed portion cannot be sufficiently charged.

【0054】よって、低抵抗粒子の抵抗は、粒子付着と
帯電性の観点より6.0×103Ωcm以上1.0×1
5Ωcm未満が最適である。
Therefore, the resistance of the low-resistance particles is 6.0 × 10 3 Ωcm or more and 1.0 × 1 from the viewpoint of particle adhesion and chargeability.
The optimum value is less than 0 5 Ωcm.

【0055】次に、B粒子はそのままで、低抵抗粒子の
抵抗と混合比を変化させて画像形成を行なった。その結
果を図2のグラフに示す。
Next, image formation was carried out while changing the resistance and mixing ratio of the low resistance particles while leaving the B particles as they were. The results are shown in the graph of FIG.

【0056】図2のように粒子の感光体への付着、感光
体の帯電性、感光体へのリークの観点から低抵抗粒子の
体積抵抗率は、6.0×103Ωcm以上1.0×105
Ωcm未満であり、粒子全体に対する低抵抗粒子の割合
は40重量%以下であるのが良い。更に、低抵抗粒子の
体積抵抗率をx(Ωcm)、全粒子に対する低抵抗粒子
の割合をY(重量%)とするとY≦15+2.5log
10xとするのが望ましい。
As shown in FIG. 2, the volume resistivity of the low resistance particles is 6.0 × 10 3 Ωcm or more and 1.0 from the viewpoints of adhesion of the particles to the photoreceptor, chargeability of the photoreceptor, and leakage to the photoreceptor. × 10 5
It is less than Ωcm, and the ratio of the low resistance particles to the entire particles is preferably 40% by weight or less. Further, assuming that the volume resistivity of the low resistance particles is x (Ωcm) and the ratio of the low resistance particles to all particles is Y (% by weight), Y ≦ 15 + 2.5 log
It is desirable to set it to 10 x.

【0057】次に、低抵抗の粒子を9.5×104Ωc
mにして混合比を30%に固定して、中抵抗の粒子の抵
抗を変化させて電位測定を行なった。その結果を表3に
示す。
Next, low resistance particles were added to 9.5 × 10 4 Ωc.
The mixing ratio was fixed to 30% and the resistance of the medium resistance particles was changed to measure the potential. Table 3 shows the results.

【0058】[0058]

【表3】 [Table 3]

【0059】この結果より、中抵抗粒子の抵抗が低い場
合にはドラムピンホールリークを引き起こしてしまう。
一方、中抵抗粒子の抵抗が高い場合には、多少高くなっ
ても、帯電性は大きくは悪化しないことが分かった。こ
れは、混合している低抵抗粒子が導電経路を確保してい
るためと考えられる。従来の中抵抗粒子単体の場合は1
×108Ωcm以上は帯電不良となっていたので、粒子
の混合を行なうことで、中抵抗粒子の使用可能範囲も広
がった。
From this result, when the resistance of the medium resistance particles is low, the drum pinhole leak is caused.
On the other hand, it was found that when the resistance of the medium resistance particles is high, the charging property is not significantly deteriorated even if the resistance is increased to some extent. It is considered that this is because the mixed low resistance particles secure the conductive path. 1 for conventional medium resistance particles alone
Since a charge of × 10 8 Ωcm or more was insufficient, the range of usable medium resistance particles was expanded by mixing the particles.

【0060】よって、中抵抗粒子の抵抗は6.3×10
5Ωcm以上、好ましくは1.0×106Ωcm以上が良
い。また中抵抗粒子の抵抗は、1.0×1010Ωcm未
満が好ましい。
Therefore, the resistance of the medium resistance particles is 6.3 × 10.
It is 5 Ωcm or more, preferably 1.0 × 10 6 Ωcm or more. The resistance of the medium resistance particles is preferably less than 1.0 × 10 10 Ωcm.

【0061】ここで本実施例をもとにした効果を述べ
る。
Here, the effects based on this embodiment will be described.

【0062】対ピンホールリーク性能は具体的には図3
のように示される。体積抵抗値の低い帯電部材rを用い
た場合、感光体上に生じたピンホールには、図3(b)
のように帯電部材の表面を通じて帯電電流が集中的に流
れ込む。このため、ピンホール部分の電位のみならずA
点の電位までも感光体基本の電位である0V程度にまで
降下し、A点の帯電不良をも引き起こす。これは、ピン
ホール部とA点の間に存在する磁性粒子の抵抗が図3
(b)で2rの値しかないことが原因である。これを防
止するためには帯電部材の抵抗値を1×105Ωcm以
上に設定する必要がある。一方、直接電荷注入帯電で
は、磁性粒子表面から感光体表面の電荷注入層に直接電
荷を注入するため、抵抗値の低い帯電部材を用いた方が
注入性が向上する。これは、磁性粒子の抵抗値が低い方
が注入の時定数が小さくなるためと、磁性粒子と感光体
との界面での接触抵抗値が低いためであると考えられ
る。
The pinhole leak performance is specifically shown in FIG.
As shown. When the charging member r having a low volume resistance value is used, the pinholes formed on the photoconductor are shown in FIG.
As described above, the charging current flows intensively through the surface of the charging member. Therefore, not only the potential of the pinhole part but also A
The potential at the point also drops to about 0 V, which is the basic potential of the photoconductor, and causes a charging failure at the point A. This is because the resistance of the magnetic particles existing between the pinhole and the point A is as shown in FIG.
This is because there is only a value of 2r in (b). In order to prevent this, it is necessary to set the resistance value of the charging member to 1 × 10 5 Ωcm or more. On the other hand, in the direct charge injection charging, the charge is directly injected from the surface of the magnetic particles to the charge injection layer on the surface of the photoconductor, so that the injection property is improved by using the charging member having a low resistance value. It is considered that this is because the lower the resistance value of the magnetic particles, the smaller the injection time constant, and the lower the contact resistance value at the interface between the magnetic particles and the photoconductor.

【0063】従って、従来のように単一の抵抗値分布を
持つ磁性粒子で帯電を行なった場合には対ピンホールリ
ーク性能と電荷注入性を両方満足することが難しかっ
た。
Therefore, it is difficult to satisfy both the anti-pinhole leak performance and the charge injection property when the magnetic particles having a single resistance distribution are charged as in the conventional case.

【0064】しかしながら、本実施例のように抵抗値分
布の異なる磁性粒子で帯電を行なえば、抵抗値の低い磁
性粒子と中抵抗の磁性粒子が混在することによって、マ
クロな抵抗値は抵抗値の高い磁性粒子によって決定され
るため感光体上のピンホールに帯電電流が集中的に流れ
込むことはない。
However, when charging is performed with magnetic particles having different resistance distributions as in the present embodiment, a macro resistance value of a resistance value becomes a macro resistance value due to a mixture of low resistance magnetic particles and medium resistance magnetic particles. Since it is determined by the high magnetic particles, the charging current does not flow intensively into the pinholes on the photoconductor.

【0065】具体的には、図3(a)に示すようにピン
ホール部とA点との間の磁性粒子の抵抗値がR+r〜R
とA点の電位を降下させないような中抵抗になるためで
ある。
Specifically, as shown in FIG. 3A, the resistance value of the magnetic particles between the pinhole portion and the point A is R + r to R.
This is because the resistance becomes a medium resistance that does not lower the potential at point A.

【0066】また、抵抗値の低い磁性粒子と感光体が接
触している部分では、注入時定数が小さいため、また、
界面の電気抵抗が小さいため感光体上に電荷が注入さ
れ、良好な帯電を実現することが可能になる。
Further, since the injection time constant is small in the portion where the magnetic particles having a low resistance value are in contact with the photosensitive member,
Since the electric resistance at the interface is small, electric charges are injected onto the photoconductor, and good charging can be realized.

【0067】一方、抵抗が低い粒子は、ドラムへの粒子
付着が起きていたのであるが、低抵抗粒子の抵抗を6×
103Ωcm以上とすることで、粒子付着は起きなくな
った。
On the other hand, for particles having low resistance, particle adhesion to the drum had occurred.
When it was 10 3 Ωcm or more, particle adhesion did not occur.

【0068】本実施例では二種類の抵抗値を持つ磁性粒
子を混合したが、これは本発明の概念を限定するもので
はなく、3種類以上の抵抗値分布を持つ粒子を混合する
ことや、ブロードな抵抗値分布を持つ磁性粒子を使用し
ても同様の効果を得ることができる。
In the present embodiment, magnetic particles having two kinds of resistance values were mixed, but this does not limit the concept of the present invention, and mixing particles having three or more kinds of resistance values, Similar effects can be obtained by using magnetic particles having a broad resistance distribution.

【0069】本実施例では抵抗値の異なる粒子として、
同じフェライト粒子の表面処理の異なるものや、マグネ
タイトを用いたが、粒子としてはこの他にも樹脂とマグ
ネタイト等の磁性粉体を混連して粒子に成型したもの、
もしくはこれに抵抗値調節のために導電カーボン等を混
ぜたもの、焼結したフェライト、もしくはこれらを還元
処理して抵抗値を調節したもの、またはこれらの磁性粒
子をメッキ処理や抵抗調整をした樹脂で表面を塗工して
抵抗値を適当な値にしたもの等をそれぞれ混合して使用
しても同様な効果が得られた。
In this embodiment, as particles having different resistance values,
The same ferrite particles with different surface treatments and magnetite were used, but in addition to these, resin and magnetic powder such as magnetite were mixed and molded into particles,
Alternatively, a mixture of conductive carbon or the like for adjusting the resistance value, a sintered ferrite, or a material in which the resistance value is adjusted by reducing these, or a resin in which these magnetic particles are plated or the resistance is adjusted. The same effect was obtained by mixing and using, for example, those whose surface had been coated to have an appropriate resistance value, and the like.

【0070】以上述べてきたように、本実施例の構成で
は一種類の材料の固有抵抗で帯電部材の粒子を構成した
場合と異なり、複数種類の抵抗の異なる粒子を混合する
ことでピンホールリーク防止と帯電性を良好なレベルで
両立することが出来るようになった。さらに、低抵抗の
粒子の抵抗を6.0×103Ωcm以上とすることで、
粒子付着も防止することが出来る。
As described above, unlike the case where the particles of the charging member are composed of the specific resistance of one kind of material, the structure of the present embodiment mixes a plurality of kinds of particles having different resistances to cause pinhole leakage. It has become possible to achieve both prevention and chargeability at a good level. Furthermore, by setting the resistance of the low resistance particles to 6.0 × 10 3 Ωcm or more,
Particle adhesion can also be prevented.

【0071】また本実施例の帯電部材と感光体の電荷注
入層(抵抗値が1×108〜1×1015Ωcm)を用い
ているので、電子写真装置における短い帯電時間におい
ても十分に均一帯電が可能であり、さらに画像流れもな
く、粒子付着もないの良好な帯電性を得ることができ
た。
Further, since the charging member of this embodiment and the charge injection layer (having a resistance value of 1 × 10 8 to 1 × 10 15 Ωcm) of the photoconductor are used, they are sufficiently uniform even in a short charging time in the electrophotographic apparatus. It was possible to obtain a good chargeability because charging was possible, there was no image deletion, and no particle adhesion.

【0072】さらに、感光体の種類としては、OPCに
限定するものではなく、表層のシリコンカーバイトの抵
抗値が5×1013Ωcmのシリコンドラムにおいても、
本実施例の帯電部材を用いることで、良好な電荷注入を
行なうことができた。具体的には、500Vのスリーブ
への印加電圧に対してドラム表面が480Vに帯電でき
た。
Further, the type of the photoconductor is not limited to the OPC, and even in the case of a silicon drum in which the resistance value of the surface silicon carbide is 5 × 10 13 Ωcm,
By using the charging member of this example, good charge injection could be performed. Specifically, the drum surface could be charged to 480 V with respect to the voltage applied to the sleeve of 500 V.

【0073】また、このように直接電荷注入帯電を行な
うことによって従来放電に起因して発生していたオゾン
の発生、感光体表面の劣化を完全になくすことが可能に
なり、この効果を耐久通紙に関わらず維持することがで
きるようになった。
Further, by directly performing the charge injection charging as described above, it becomes possible to completely eliminate the generation of ozone and the deterioration of the surface of the photosensitive member which have been conventionally caused by the discharge, and the effect is durable. It can be maintained regardless of the paper.

【0074】(第2の実施例)本実施例では、帯電磁気
ブラシを構成する磁性粒子が、抵抗が異なる粒子を混合
し、かつ抵抗の低い粒子の方が抵抗の高い粒子よりも平
均粒径が小さいことを特徴とする。
(Second Embodiment) In this embodiment, the magnetic particles forming the charging magnetic brush are particles having different resistances mixed, and the particles having a lower resistance have an average particle diameter than the particles having a higher resistance. Is small.

【0075】従来の接触帯電のように放電を用いて電荷
を移動させる場合には、磁性粒子同志や感光体との間に
放電可能なギャップが生じても電荷は移動し、帯電はな
されていた。
When electric charges are moved by using a discharge like the conventional contact charging, the electric charges are moved and charged even if a dischargeable gap is formed between the magnetic particles and the photoconductor. .

【0076】しかしながら、直接電荷注入帯電では、感
光体への帯電は磁性粒子間の導電経路を電荷が移動し、
更に磁性粒子と感光体表面の電荷注入層が直接接触して
電荷を注入するものである。従って、耐久通紙等で磁性
粒子中にトナー等の絶縁性のごみが混入した場合、ま
た、磁性粒子表面トナー融着等で劣化してその部分の抵
抗値が上昇した場合には導電経路が断ち切られてしまっ
て、感光体上に微視的な帯電し残しの領域が生じてしま
う。
However, in the direct charge injection charging, the charge on the photosensitive member is caused by movement of the charge in the conductive path between the magnetic particles,
Further, the magnetic particles and the charge injection layer on the surface of the photoreceptor are in direct contact to inject charges. Therefore, when insulative dust such as toner is mixed in the magnetic particles during durable paper feeding, or when the magnetic particles are deteriorated due to toner fusion on the surface of the magnetic particles and the resistance value of the portion increases, the conductive path is If it is cut off, microscopically charged areas will remain on the photoconductor.

【0077】このような状況下では、帯電不良領域が反
転現像系の電子写真プロセスでは黒ポチとなってしま
い、マクロには前回画像形成時に画像露光等で電位が減
衰した部分が黒くなってしまういわゆる帯電ポジゴース
トが発生する。
In such a situation, the poorly charged region becomes a black spot in the electrophotographic process of the reversal development system, and the macro has a blackened portion where the potential is attenuated by image exposure or the like during the previous image formation. So-called charging positive ghost occurs.

【0078】これを抑制するためには磁性粒子同志、磁
性粒子と感光体との接触機会を増やすために平均粒径を
小さくすることが有効であるが、平均粒径を小さくする
と粒子一つ一つの磁気拘束力が低下してしまうため磁性
粒子が感光体上に付着するという問題点を有していた。
In order to suppress this, it is effective to reduce the average particle diameter in order to increase the chances of contact between the magnetic particles and the magnetic particles and the photoconductor. Therefore, there is a problem in that magnetic particles adhere to the photoconductor because the magnetic restraining force is reduced.

【0079】本実施例では、絶縁性のごみ等の混入によ
る帯電不良の発生と、磁性粒子付着を同時に解決するた
めに、抵抗の異なる粒子を混合させ、かつ抵抗の低い粒
子の方が抵抗の高い粒子よりも平均粒径が小さいことを
特徴とする。
In this embodiment, in order to solve the problem of charging failure due to the mixing of insulating dust and the adhesion of magnetic particles at the same time, particles having different resistances are mixed and particles having a lower resistance have a lower resistance. It is characterized by having a smaller average particle size than high particles.

【0080】本実施例では実施例1で用いた中抵抗のB
粒子と、低抵抗の粒子としてC粒子を用いた。
In this example, the medium resistance B used in Example 1 was used.
Particles and C particles were used as low resistance particles.

【0081】B:平均粒径25μm、体積抵抗値6.4
×107Ωcmのフェライト粒子 C:平均粒径10μm、体積抵抗値8.9×104Ωc
mのマグネタイト粒子 これらの粒子をB:C=9:1(全粒子に対するC粒子
の割合が10wt%)で混合させて磁気ブラシを構成し
た。
B: Average particle diameter 25 μm, volume resistance value 6.4
× 10 7 Ωcm ferrite particles C: average particle size 10 μm, volume resistance value 8.9 × 10 4 Ωc
Magnetite particles of m These particles were mixed at B: C = 9: 1 (the ratio of C particles to all particles was 10 wt%) to form a magnetic brush.

【0082】ここで、粒子の粒径(平均粒径)抵抗値の
測定方法は実施例1に記載してある方法で行なった。
Here, the method for measuring the resistance value of the particle diameter (average particle diameter) of the particles was the method described in Example 1.

【0083】このように、平均粒径の異なる粒子を使用
すると、耐久通紙等は磁性粒子内にトナー、紙粉等の絶
縁物が混入して磁性粒子間、磁性粒子−ドラム間の導通
を遮断しても、図4に示すように大粒径の磁性粒子間を
小粒径の磁性粒子が電気的な導電経路を形成し、導通を
維持することによって帯電不良を防止することが出来る
ようになった。
As described above, when particles having different average particle diameters are used, an insulating material such as toner or paper powder is mixed in the magnetic particles of the durable paper to cause conduction between the magnetic particles and between the magnetic particles and the drum. Even if the power is cut off, the small-diameter magnetic particles form an electrically conductive path between the large-diameter magnetic particles as shown in FIG. 4, and the conduction is maintained, so that the charging failure can be prevented. Became.

【0084】また、磁性粒子と感光ドラム間でも小粒径
磁性粒子の存在は実質的な磁性粒子と感光体との接触ニ
ップを増加させるはたらきがあるため、より帯電性を向
上させることが出来るようになる。
Also, the presence of small-diameter magnetic particles between the magnetic particles and the photosensitive drum serves to increase the contact nip between the magnetic particles and the photosensitive member, so that the charging property can be further improved. become.

【0085】更に、大粒径と小粒径の磁性粒子を混合す
ることによって小粒径の磁性粒子は大粒径の磁性粒子に
磁気的、物理的に拘束されて磁性粒子付着が発生しにく
くなる。
Furthermore, by mixing the large-diameter particles and the small-diameter magnetic particles, the small-diameter magnetic particles are magnetically and physically bound to the large-diameter magnetic particles, and the magnetic particles are less likely to adhere to each other. Become.

【0086】この時、第1の実施例で示したように片方
の粒子の体積抵抗値が低くても磁性粒子全体の抵抗値
は、体積抵抗値の高い粒子によって決定され、感光体の
対ピンホール性は維持することが出来るため導電経路を
形成する小粒径側の磁性粒子の抵抗値が大粒径側のそれ
よりも小さいことが好ましい。
At this time, as shown in the first embodiment, even if the volume resistance value of one of the particles is low, the resistance value of the entire magnetic particle is determined by the particle having a high volume resistance value, and the resistance value of the pair of particles of the photoconductor is increased. Since the hole property can be maintained, it is preferable that the resistance value of the magnetic particles on the small particle size side forming the conductive path is smaller than that on the large particle size side.

【0087】実際に上記の粒子構成で磁性粒子以外の構
成は実施例1の記載と同様にして(プロセススヒードは
100mm/sec)、プリンターで耐久通紙を行なっ
たところ、A4サイズの転写材の10000枚の画像形
成でも良好な帯電性を得られた。
Actually, the above grain structure was the same as that described in Example 1 except that the magnetic particles were the same (process speed was 100 mm / sec), and the paper was subjected to a durable paper feed. Good chargeability was obtained even when the image was formed on 10000 sheets of the material.

【0088】10000枚通紙後の磁性粒子を電子顕微
鏡で観察したところ、トナーは混入しているものの本実
施例の構成の特徴である小粒径の導電磁性粒子が大径磁
性粒子の間に入り込んで導電経路を保っていることが確
認された。また、小径磁性粒子が磁性粒子全体の流動性
を向上させていることと、それ自体がクッショクの役割
をはたし、磁性粒子間のせん断力を低下させているため
トナーの大径磁性粒子への融着はほとんど発生していな
かった。
Observation of the magnetic particles after passing 10,000 sheets with an electron microscope reveals that the toner is mixed, but the conductive magnetic particles of small particle size, which is the feature of the constitution of this embodiment, are present between the large magnetic particles. It was confirmed that it entered and maintained the conductive path. In addition, the small magnetic particles improve the fluidity of the entire magnetic particles, and the magnetic particles themselves play a role of reducing the shearing force between the magnetic particles. Almost no fusion occurred.

【0089】比較例1 平均粒径15μm、体積抵抗値6.9×107Ωcmの
フェライト磁性粒子単体の帯電部材 初期では均一な帯電がなされて良好な画像が得られてい
たが4000枚通紙を行った後には帯電不良が発生し、
反転現像における帯電ゴーストとなってしまった。
Comparative Example 1 Charging member consisting of a single ferrite magnetic particle having an average particle size of 15 μm and a volume resistance value of 6.9 × 10 7 Ωcm Initially uniform charging was performed and a good image was obtained, but 4000 sheets were passed. After carrying out the charging failure occurs,
It became a charging ghost in reversal development.

【0090】比較例2 平均粒径15μm、体積抵抗値6.9×107Ωcmの
フェライト磁性粒子に、平均粒径10μm、体積抵抗値
6.9×107Ωcmのフェライト磁性粒子を重量比1
0:1の割合(9.1wt%)で混合 5000枚通紙で帯電ゴースト発生。
Comparative Example 2 Ferrite magnetic particles having an average particle diameter of 15 μm and a volume resistance value of 6.9 × 10 7 Ωcm were added to ferrite magnetic particles having an average particle diameter of 10 μm and a volume resistance value of 6.9 × 10 7 Ωcm by a weight ratio of 1.
Mixing at a ratio of 0: 1 (9.1 wt%) A charging ghost occurs when 5000 sheets are passed.

【0091】比較例3 平均粒径10μm、体積抵抗値6.9×107Ωcmの
フェライト磁性粒子単体の帯電部材1000枚通紙で粒
子の減少による帯電不良発生。
Comparative Example 3 An electrification failure occurred due to a decrease in the number of particles when 1000 charging members of a single ferrite magnetic particle having an average particle size of 10 μm and a volume resistance value of 6.9 × 10 7 Ωcm were passed.

【0092】帯電ゴーストの評価は、ベタ黒(全面黒画
像)後にベタ白画像(全面白画像)を出力し、完全な帯
電がなされないことに起因するベタ黒後感光体ドラム一
周後のかぶりをマクベス濃時計(マクベス社製RD−1
255)で測定し、帯電性能の指標とした。比較例1及
び2では耐久通紙に従ってかぶりが増加していることが
確認された。
To evaluate the charging ghost, a solid white image (entire black image) is output after a solid black image (entire black image), and fogging after one round of the solid black post-photoreceptor drum due to incomplete charging is performed. Macbeth dark watch (Macbeth RD-1
255) and used as an index of charging performance. In Comparative Examples 1 and 2, it was confirmed that the fog increased as the durable paper passed.

【0093】比較例1及び2の磁性粒子表面を電子顕微
鏡で観察したところ、どちらもトナーの微粉が磁性粒子
内に混入していることが確認され、さらに通紙を続ける
と磁性粒子表面にトナー等が融着し、磁性粒子内の電荷
の移動を阻害していることが判った。
When the surfaces of the magnetic particles of Comparative Examples 1 and 2 were observed with an electron microscope, it was confirmed that fine powder of toner was mixed in the magnetic particles in both cases. It was found that the particles, etc. fused to each other and hindered the movement of charges in the magnetic particles.

【0094】ここで、低抵抗の磁性粒子について抵抗と
平均粒径に好ましい関係があることを見いだしたのでそ
のことについて述べる。
Here, since it has been found that there is a preferable relationship between the resistance and the average particle diameter of the magnetic particles having low resistance, this will be described.

【0095】まず、表4に中抵抗側の磁性粒子の抵抗値
が6.7×109Ωcmのフェライト粒子(平均粒径5
0μm)に体積抵抗と平均粒径が異なる磁性粒子を低抵
抗の粒子が10wt%の割合で混合して画像を確認した
結果を示す。
First, in Table 4, ferrite particles having a resistance value of 6.7 × 10 9 Ωcm of the magnetic particles on the medium resistance side (average particle size 5
(0 μm) magnetic particles having different volume resistance and average particle diameter are mixed at a ratio of 10 wt% of low resistance particles, and the result of confirming an image is shown.

【0096】[0096]

【表4】 この結果より、混合する低抵抗の磁性粒子の抵抗値が1
×105Ωcm未満でかつ平均粒径30μm以下であれ
ば、5000枚の連続通紙に於て、帯電ゴーストのない
やや良好な帯電性が得られた。
[Table 4] From this result, the resistance value of the low resistance magnetic particles to be mixed is 1
When the average particle size was less than 10 5 Ωcm and the average particle size was 30 μm or less, it was possible to obtain a slightly good charging property without a charging ghost when 5000 sheets were continuously fed.

【0097】さらに、混合する低抵抗の磁性粒子の抵抗
値が5×104Ωcm未満でかつ平均粒径が15μm以
下であれば、10000枚の連続通紙に於て、帯電ゴー
ストのない良好な帯電性が得られた。
Furthermore, if the resistance value of the low-resistance magnetic particles to be mixed is less than 5 × 10 4 Ωcm and the average particle size is 15 μm or less, there is no charging ghost in 10,000 continuous sheets, which is good. A chargeability was obtained.

【0098】次に、表5に中抵抗側の磁性粒子の抵抗値
が6.9×107Ωcmのフェライト粒子に対する結果
を示す。
Next, Table 5 shows the results for ferrite particles having a resistance value of 6.9 × 10 7 Ωcm of the magnetic particles on the medium resistance side.

【0099】[0099]

【表5】 [Table 5]

【0100】この結果より、混合する磁性粒子の抵抗値
が1×105Ωcm未満でかつ平均粒径30μm以下で
あれば、10000枚の連続通紙に於て、帯電ゴースト
のない良好な帯電性が得られた。さらに、混合する磁性
粒子の抵抗値が5×104Ωcm未満でかつ平均粒径1
5μm以下であれば、100000枚の連続通紙に於
て、帯電ゴーストのない非常に良好な帯電性が得られ
た。
From these results, it is seen that when the resistance value of the magnetic particles to be mixed is less than 1 × 10 5 Ωcm and the average particle size is 30 μm or less, good charging property without charging ghost can be obtained in 10000 continuous sheets. was gotten. Furthermore, the resistance value of the mixed magnetic particles is less than 5 × 10 4 Ωcm and the average particle size is 1
When the thickness is 5 μm or less, a very good charging property without a charging ghost was obtained when 100,000 sheets were continuously fed.

【0101】以上述べたように、中抵抗大径磁性粒子と
低抵抗小径磁性粒子を混合させて帯電部材として使用す
ることによって従来問題になっていた耐久通紙による磁
性粒子汚染、帯電不良を劇的に解決することが出来るよ
うになった。ここで、低抵抗小径磁性粒子は、付着と帯
電性より抵抗値6.0×103Ωcm以上1.0×105
Ωcm未満でかつ帯電均一性より平均粒径が30μm以
下が望ましい。また、中抵抗大径磁性粒子は、ピンホー
ルリークを防止するため抵抗値が6.3×105Ωcm
以上が望ましい。さらに中抵抗大径磁性粒子は抵抗値が
1×1010Ωcm未満が好ましくかつ平均粒径は粒子の
付着と帯電均一性より15μm以上100μm以下が望
ましい。
As described above, by mixing medium-resistance large-diameter magnetic particles and low-resistance small-diameter magnetic particles and using them as a charging member, magnetic particle contamination and electrification failure due to durable paper feeding, which has been a problem in the past, are affected. Can now be solved. Here, the low-resistance small-diameter magnetic particles have a resistance value of 6.0 × 10 3 Ωcm or more and 1.0 × 10 5 due to adhesion and charging property.
It is desirable that the average particle size is less than Ωcm and the average particle size is 30 μm or less from the viewpoint of charging uniformity. In addition, the medium-resistance large-diameter magnetic particles have a resistance value of 6.3 × 10 5 Ωcm to prevent pinhole leakage.
The above is desirable. Further, the medium-resistance large-diameter magnetic particles preferably have a resistance value of less than 1 × 10 10 Ωcm, and the average particle size is preferably 15 μm or more and 100 μm or less in view of particle adhesion and charging uniformity.

【0102】なお、本実施例では大粒径側、小粒径側と
便宜的に平均粒径の異なる二種類の磁性粒子を混合した
例で示したが、三種類以上の粒子を混合することも可能
であるし、さらには本実施例で述べた大径と小径の両方
の粒度範囲を持つようなブロードな粒度分布を持った粉
体を用いることでも磁性粒子付着防止と帯電性の確保と
いう効果を得ることが可能である。
In the present embodiment, two types of magnetic particles having different average particle sizes on the large particle size side and the small particle size side are mixed for convenience, but three or more kinds of particles are mixed. It is also possible to prevent magnetic particles from adhering and to secure chargeability by using a powder having a broad particle size distribution having both the large particle size range and the small particle size range described in this example. It is possible to obtain an effect.

【0103】(第3の実施例)また、本実施例では感光
体表面に位置する電荷注入層の表面エネルギーを低下さ
せ、特に小粒径の磁性粒子が感光体との間の分子間力で
離脱する磁性粒子付着を抑制するために滑材粒子を分散
した。本実施例では0.3μmの平均粒径のPTFE粒
子(デュポン社製商品名テフロン)をバインダーの重量
比で30%分散した。
(Third Embodiment) In this embodiment, the surface energy of the charge injection layer located on the surface of the photoconductor is lowered, and the magnetic particles of small particle size are generated by the intermolecular force between the photoconductor and the photoconductor. Lubricant particles were dispersed in order to suppress the detachment of the magnetic particles. In this example, PTFE particles having an average particle diameter of 0.3 μm (Teflon, trade name, manufactured by DuPont) were dispersed in a binder weight ratio of 30%.

【0104】通常、感光体に潤滑性を付与するために電
荷輸送層にテフロン粒子等を分散する場合は、電荷輸送
層の膜厚が20μm程度と厚く、画像露光を散乱する恐
れがあるため多量に添加することが難しいが、電荷注入
層は2〜3μmと薄膜として形成するため電荷輸送層の
場合とは異なり、光の散乱をあまり気にする必要がな
く、30%程度まで分散させることが可能である。
Usually, when Teflon particles or the like are dispersed in the charge transport layer in order to impart lubricity to the photoreceptor, the charge transport layer has a large film thickness of about 20 μm, which may scatter the image exposure, and hence a large amount. However, unlike the case of the charge transport layer, the charge injection layer is formed as a thin film having a thickness of 2 to 3 μm. It is possible.

【0105】本実施例では、電荷注入層に滑材粒子とし
てテフロン粒子を分散させているので、電荷注入層の表
面エネルギーを下げ、粒子の離型性が向上しているた
め、滑材粒子を分散しない場合に比べて、小径磁性粒子
が感光体表面に付着することが格段に少なくなった。
In this embodiment, since Teflon particles are dispersed as lubricant particles in the charge injection layer, the surface energy of the charge injection layer is lowered and the releasability of the particles is improved. As compared with the case where the particles were not dispersed, the small-diameter magnetic particles were significantly less attached to the surface of the photoconductor.

【0106】具体的には、磁性粒子として15μmのフ
ェライト粒子とマグネタイト粒子を20:1の割合で混
合させた磁気ブラシに、滑材粒子を分散させないドラム
を組み合わせて画像を1000枚通紙後に粒子の比率を
測定したところ、1μmのマグネタイトが1000:1
までに減少しており、帯電特性の低下によるカブリも増
加していた。ところが、同じ混合磁性粒子に上述のテフ
ロンを分散させたドラムを組み合わせて画像を1000
枚通紙したところ、帯電性も良好で、粒子の比率の変化
もほとんど無かった。
Specifically, a magnetic brush in which ferrite particles of 15 μm and magnetite particles were mixed as magnetic particles at a ratio of 20: 1 was combined with a drum in which lubricant particles were not dispersed, and after 1000 sheets of paper were passed, particles were transferred. When the ratio of 1 μm magnetite is 1000: 1,
However, the fog caused by the deterioration of the charging property was also increased. However, the same mixed magnetic particles are combined with the above-mentioned drum in which Teflon is dispersed to combine the images to obtain 1000 images.
After passing a single sheet, the charging property was good, and there was almost no change in the particle ratio.

【0107】本実施例では、滑材粒子としてテフロン粒
子を分散しているが、ポリオレフィン粒子、シリコーン
粒子を分散させても同様な効果が得られた。
In this example, Teflon particles were dispersed as the lubricant particles, but similar effects could be obtained by dispersing polyolefin particles and silicone particles.

【0108】[0108]

【発明の効果】以上説明したように、本発明によれば、
被帯電体のピンホールに電流が集中することを防止しな
がら被帯電体の帯電性を向上させることができる。
As described above, according to the present invention,
It is possible to improve the charging property of the charged body while preventing the current from concentrating on the pinhole of the charged body.

【0109】また、帯電部材の粒子が被帯電体へ付着す
るのを防止することができる。
Further, it is possible to prevent the particles of the charging member from adhering to the member to be charged.

【図面の簡単な説明】[Brief description of drawings]

【図1】画像形成装置の概略側面図。FIG. 1 is a schematic side view of an image forming apparatus.

【図2】低抵抗粒子の体積抵抗率と混合比の関係を示す
グラフ。
FIG. 2 is a graph showing the relationship between the volume resistivity of low resistance particles and the mixing ratio.

【図3】ピンホール部へのリーク現象を示す説明図。FIG. 3 is an explanatory diagram showing a leak phenomenon to a pinhole portion.

【図4】平均粒径の異なる磁性粒子の帯電部材にトナー
が混入した場合の説明図。
FIG. 4 is an explanatory diagram when toner is mixed in a charging member of magnetic particles having different average particle diameters.

【符号の説明】[Explanation of symbols]

1 感光ドラム 2 帯電部材 21 磁性粒子層の厚さを規制するブレード 22 マグネットロール 23 導電性磁性粒子 1 Photosensitive Drum 2 Charging Member 21 Blade for Regulating Thickness of Magnetic Particle Layer 22 Magnet Roll 23 Conductive Magnetic Particles

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真下 精二 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Seiji Mashita 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 被帯電体と、この被帯電体を帯電する帯
電部材と、を有し、この帯電部材は、電圧が印加可能で
あり、被帯電体に接触する粒子層を備える帯電装置にお
いて、 前記粒子層は、体積抵抗率が6.0×103 Ωcm以上
で1.0×105 Ωcm未満の第1の粒子と、体積抵抗
率が6.3×105 Ωcm以上の第2粒子と、が混合さ
れ、前記第1の粒子は、前記粒子層の40重量%以下で
あることを特徴とする帯電装置。
1. A charging device comprising: a member to be charged; and a charging member for charging the member to be charged, the charging member being capable of applying a voltage, and comprising a particle layer in contact with the member to be charged. The particle layer includes first particles having a volume resistivity of 6.0 × 10 3 Ωcm or more and less than 1.0 × 10 5 Ωcm, and second particles having a volume resistivity of 6.3 × 10 5 Ωcm or more. And are mixed, and the first particles account for 40% by weight or less of the particle layer.
【請求項2】 前記第1の粒子の平均粒径は、前記第2
の粒子の平均粒径よりも小さいことを特徴とする請求項
1の帯電装置。
2. The average particle size of the first particles is the second particle size.
The charging device according to claim 1, wherein the charging device is smaller than the average particle size of the particles.
【請求項3】 前記第1の粒子の平均粒径が30μm未
満であることを特徴とする請求項1又は2の帯電装置。
3. The charging device according to claim 1, wherein the average particle diameter of the first particles is less than 30 μm.
【請求項4】 前記第2の粒子の体積抵抗率は、1.0
×1010Ωcm未満であることを特徴とする請求項1乃
至3の帯電装置。
4. The volume resistivity of the second particles is 1.0.
The charging device according to claim 1, wherein the charging device has a resistance of less than × 10 10 Ωcm.
【請求項5】 前記帯電部材は、移動可能であり、前記
帯電部材の周速は前記被帯電体の周速と異なることを特
徴とする請求項1乃至4の帯電装置。
5. The charging device according to claim 1, wherein the charging member is movable, and the peripheral speed of the charging member is different from the peripheral speed of the body to be charged.
【請求項6】 前記第1の粒子は、マグネタイトであ
り、前記第2の粒子はフェライトであることを特徴とす
る請求項1乃至5の帯電装置。
6. The charging device according to claim 1, wherein the first particles are magnetite, and the second particles are ferrite.
【請求項7】 前記被帯電体は、その表面に体積抵抗率
が1.0×108 Ωcm〜1.0×1015Ωcmの電荷
注入層を備えることを特徴とする請求項1乃至6の帯電
装置。
7. The charged body is provided with a charge injection layer having a volume resistivity of 1.0 × 10 8 Ωcm to 1.0 × 10 15 Ωcm on the surface thereof. Charging device.
【請求項8】 前記第1の粒子は、前記粒子層の5重量
%以上であることを特徴とする請求項1乃至7の帯電装
置。
8. The charging device according to claim 1, wherein the first particles account for 5% by weight or more of the particle layer.
【請求項9】 前記第1の粒子の体積抵抗率をx(Ωc
m)、前記粒子層に対する前記第1の粒子の割合をy
(重量%)とすると y≦15+2.5log10x を満たすことを特徴とする請求項1乃至8の帯電装置。
9. The volume resistivity of the first particles is x (Ωc
m), the ratio of the first particles to the particle layer is y
9. The charging device according to claim 1, wherein y ≦ 15 + 2.5 log 10 x is satisfied when (% by weight).
【請求項10】 前記被帯電体は、前記電荷注入層の内
側に感光層を備え、前記電荷注入層は、光透過性で絶縁
性のバインダに導電微粒子が分散されることを特徴とす
る請求項7の帯電装置。
10. The charged body comprises a photosensitive layer inside the charge injection layer, and the charge injection layer has conductive fine particles dispersed in a light transmissive and insulating binder. Item 7. The charging device.
【請求項11】 前記電荷注入層は、滑剤粉末が分散さ
れることを特徴とする請求項10の帯電装置。
11. The charging device according to claim 10, wherein a lubricant powder is dispersed in the charge injection layer.
【請求項12】 前記滑剤粉末は、フッ素樹脂、ポリオ
レフィン系樹脂、シリコーン系樹脂のいずれかであるこ
とを特徴とする請求項11の帯電装置。
12. The charging device according to claim 11, wherein the lubricant powder is one of a fluororesin, a polyolefin resin, and a silicone resin.
【請求項13】 前記第1及び第2粒子は、磁性粒子で
あることを特徴とする請求項1乃至5又は7乃至12の
帯電装置。
13. The charging device according to claim 1, wherein the first and second particles are magnetic particles.
【請求項14】 上記被帯電体は、電子写真用感光体で
あることを特徴とする請求項1乃至13の帯電装置。
14. The charging device according to claim 1, wherein the member to be charged is an electrophotographic photosensitive member.
【請求項15】 前記帯電装置は、画像形成装置に着脱
可能なプロセスカートリッジ内に設けられることを特徴
とする請求項1乃至14の帯電装置。
15. The charging device according to claim 1, wherein the charging device is provided in a process cartridge that is attachable to and detachable from the image forming apparatus.
JP7146240A 1994-06-22 1995-06-13 Electrifying device Pending JPH08339113A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7146240A JPH08339113A (en) 1995-06-13 1995-06-13 Electrifying device
US08/492,526 US5579095A (en) 1994-06-22 1995-06-20 Charging device
EP95304338A EP0689101B1 (en) 1994-06-22 1995-06-21 A charging device
DE69523988T DE69523988T2 (en) 1994-06-22 1995-06-21 charging
CN95107675A CN1073720C (en) 1994-06-22 1995-06-22 A charging device
KR1019950016842A KR0151324B1 (en) 1994-06-22 1995-06-22 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7146240A JPH08339113A (en) 1995-06-13 1995-06-13 Electrifying device

Publications (1)

Publication Number Publication Date
JPH08339113A true JPH08339113A (en) 1996-12-24

Family

ID=15403277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7146240A Pending JPH08339113A (en) 1994-06-22 1995-06-13 Electrifying device

Country Status (1)

Country Link
JP (1) JPH08339113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288401A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device
JPH09288400A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device
JPH10333359A (en) * 1997-03-11 1998-12-18 Canon Inc Toner for developing electrostatic charge image and image forming method
US7885579B2 (en) 2006-11-08 2011-02-08 Kabushiki Kaisha Toshiba Charging device, image forming apparatus and charging method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288401A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device
JPH09288400A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device
JPH10333359A (en) * 1997-03-11 1998-12-18 Canon Inc Toner for developing electrostatic charge image and image forming method
US7885579B2 (en) 2006-11-08 2011-02-08 Kabushiki Kaisha Toshiba Charging device, image forming apparatus and charging method

Similar Documents

Publication Publication Date Title
US7218881B2 (en) Developing apparatus features first and second developing members and image forming apparatus having the same
JP2002139891A (en) Image forming device
KR0151324B1 (en) Charging device
US5428428A (en) Developing device having a control electrode
US6144824A (en) Image forming method for preventing an uneven potential of an image bearing member having a charge injecting layer
JP2004037894A (en) Image forming apparatus
JPH08339113A (en) Electrifying device
JPH08106200A (en) Electrostatic charging device and image forming device
JPH07181815A (en) Electrophotographic method and device therefor
EP0617339B1 (en) Granular charging agent and charging method and image forming method using the same
JPH086353A (en) Charging device
JP3069946B2 (en) Image forming method, image forming apparatus, and process cartridge
JP2004045570A (en) Image forming apparatus
JP3067064B2 (en) Contact charging particles, method of charging object surface, method of charging photoreceptor, and image forming apparatus
JPH08211741A (en) Image forming device and process cartridge
JP2006301495A (en) Image forming apparatus
JP3260703B2 (en) Image forming device
JP3193228B2 (en) Contact charging particles used in particle charging method and image forming method
JP3989190B2 (en) Image forming apparatus
JP3466840B2 (en) Image forming device
JPH0784439A (en) Image forming method
JP3621320B2 (en) Method for determining the electrical characteristics of a transfer roller
JP4323688B2 (en) Image forming apparatus
JP2004021201A (en) Developing device
JP2005215626A (en) Developing device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010109