JPH086353A - Charging device - Google Patents
Charging deviceInfo
- Publication number
- JPH086353A JPH086353A JP6140180A JP14018094A JPH086353A JP H086353 A JPH086353 A JP H086353A JP 6140180 A JP6140180 A JP 6140180A JP 14018094 A JP14018094 A JP 14018094A JP H086353 A JPH086353 A JP H086353A
- Authority
- JP
- Japan
- Prior art keywords
- charging
- charging device
- particle size
- particles
- resistance value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は複写機、プリンタ等の電
子写真装置及びこの装置に着脱可能なプロセスカートリ
ッジに関するもので、特に感光体に帯電部材に接触させ
て帯電を行なうものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus such as a copying machine and a printer, and a process cartridge which can be attached to and detached from the apparatus, and more particularly to an apparatus which charges a photosensitive member with a charging member.
【0002】[0002]
【背景技術】従来、電子写真の帯電装置としては、コロ
ナ帯電器が使用されてきた。近年、これに代って、接触
帯電装置が実用化されてきている。これは、低オゾン、
低電力を目的としており、この中でも特に帯電部材とし
て導電ローラを用いたローラ帯電方式が、帯電の安定性
という点から好ましく用いられている。BACKGROUND ART Conventionally, a corona charger has been used as a charging device for electrophotography. In recent years, a contact charging device has been put into practical use instead of this. This is low ozone,
Aiming at low power consumption, a roller charging method using a conductive roller as a charging member is particularly preferably used from the viewpoint of stability of charging.
【0003】ローラ帯電では、導電性の弾性ローラを被
帯電体に加圧当接させ、これに電圧を印加することによ
って被帯電体への帯電を行なう。In roller charging, a conductive elastic roller is brought into pressure contact with a member to be charged, and a voltage is applied to the member to charge the member to be charged.
【0004】具体的には、帯電は帯電部材から被帯電体
への放電によって行なわれるため、ある閾値電圧以上の
電圧を印加することによって帯電が開始される。例を示
すと厚さ25μmのOPC感光体に対して帯電ローラを加圧
当接させた場合には、約640V以上の電圧を印加すれ
ば感光体の表面電位が上昇し始め、それ以降は印加電圧
に対して傾き1で線形に感光体表面電位が増加する。以
後、この閾値電圧を帯電開始電圧Vthと定義する。Specifically, since the charging is performed by discharging from the charging member to the body to be charged, the charging is started by applying a voltage higher than a certain threshold voltage. For example, when the charging roller is pressed against the OPC photoconductor with a thickness of 25 μm, the surface potential of the photoconductor begins to rise when a voltage of about 640 V or higher is applied. The surface potential of the photoconductor increases linearly with a slope of 1 with respect to the voltage. Hereinafter, this threshold voltage is defined as the charging start voltage Vth.
【0005】つまり、電子写真に必要とされる感光体表
面電位Vd を得るためには帯電ローラにはVd+Vthという
必要とされる以上のDC電圧が必要となる。このようにし
てDC電圧のみを接触帯電部材に印加して放電により帯電
を行なう方法をDC帯電と称する。That is, in order to obtain the photosensitive member surface potential Vd required for electrophotography, the charging roller requires a DC voltage of Vd + Vth, which is higher than the required DC voltage. The method of applying only the DC voltage to the contact charging member to perform charging by discharging is called DC charging.
【0006】しかし、DC帯電においては環境変動等によ
って接触帯電部材の抵抗値が変動するため、また、感光
体が削れることによって膜厚が変化するとVthが変動す
るため、感光体の電位を所望の値にすることが難しかっ
た。However, in DC charging, the resistance value of the contact charging member fluctuates due to environmental fluctuations and the Vth fluctuates when the film thickness changes due to abrasion of the photoconductor, so that the potential of the photoconductor is desired. It was difficult to make it a value.
【0007】このため、更なる帯電の均一化を図るため
に特開昭63-149669号公報に開示されるように、所望のV
dに相当するDC電圧に2×Vth以上のピーク間電圧を持つA
C成分を重畳した電圧を接触帯電部材に印加するAC帯電
方式が用いられる。これは、ACによる電位のならし効果
を目的としたものであり、被帯電体の電位はAC電圧のピ
ークの中央であるVdに収束し、環境等の外乱には影響さ
れることはない。Therefore, in order to further homogenize the charging, as described in JP-A-63-149669, a desired V
A with a peak-to-peak voltage of 2 x Vth or more in the DC voltage equivalent to d
An AC charging method is used in which a voltage with a superimposed C component is applied to the contact charging member. This is for the purpose of the leveling effect of the potential by AC, and the potential of the charged body converges on Vd which is the center of the peak of the AC voltage, and is not affected by disturbance such as environment.
【0008】しかしながら、このような接触帯電装置に
おいても、その本質的な帯電機構は、帯電部材から感光
体への放電現象を用いているため、先に述べたように帯
電に必要とされる電圧は感光体表面電位以上の値が必要
とされ、微量のオゾンは発生する。また、帯電均一化の
ためにAC帯電を行なった場合にはさらなるオゾン量の発
生、AC電圧の電界による帯電部材と感光体の振動、騒音
(以下AC帯電音と称す)の発生、また、放電による感光
体表面の劣化等が顕著になり、新たな問題点となってい
た。However, even in such a contact charging device, since the essential charging mechanism uses the discharging phenomenon from the charging member to the photosensitive member, the voltage required for charging as described above. Is required to have a value equal to or higher than the surface potential of the photoconductor, and a small amount of ozone is generated. In addition, when AC charging is performed to make the charging uniform, more ozone is generated, vibration of the charging member and the photoconductor due to the electric field of AC voltage, noise (hereinafter referred to as AC charging sound), and discharge. Deterioration of the surface of the photoconductor due to the phenomenon becomes remarkable, which is a new problem.
【0009】このため、感光体への電荷の直接注入によ
る帯電が望まれていた。Therefore, there has been a demand for charging by directly injecting charges into the photoconductor.
【0010】感光体表面に直接電荷を注入するために
は、抵抗値の低い帯電部材を用い、長い帯電時間をかけ
ることによって感光体表面に存在する電荷のトラップ準
位に帯電電荷を充電する方法がある。In order to directly inject charges to the surface of the photoconductor, a charging member having a low resistance value is used, and a long charging time is used to charge the charges to the trap level of the charges existing on the surface of the photoconductor. There is.
【0011】しかしながら、このような帯電方法では帯
電部材の抵抗値が1×103Ω以下と低いことが前提とな
り、更に十分な帯電を行なうために帯電時間が長くなり
電子写真の帯電装置して使用するには実用的でないとい
う問題点をもっていた。また、実際に抵抗値の低い帯電
部材を使用すると、感光体表面に生じたキズ、ピンホー
ル等に対して接触帯電部材から過大なリーク電流が流れ
込み、周辺の帯電不良や、ピンホールの拡大、帯電部材
の通電破壊(以後ピンホールリークと称する。)が生じ
る。[0011] However, such resistance of the charging member is assumed that following a low 1 × 10 3 Ω at charging method, more fully charging the charged charging unit time is long will electrophotographic to perform It had a problem that it was not practical to use. In addition, when a charging member having a low resistance value is actually used, an excessive leak current flows from the contact charging member to scratches, pinholes, etc. generated on the surface of the photoconductor, charging failure in the periphery and expansion of the pinhole, Electric current breakdown of the charging member (hereinafter referred to as pinhole leak) occurs.
【0012】リークを防止するためには帯電部材の抵抗
値を1×104Ω程度以上にする必要があるが、この抵抗値
の帯電部材では先に述べたように感光体への電荷注入性
が低下し、帯電が行なわれないという矛盾が生じてしま
う。In order to prevent the leakage, the resistance value of the charging member needs to be about 1 × 10 4 Ω or more, but the charging member having this resistance value has the property of injecting the charge into the photosensitive member as described above. Will decrease, resulting in a contradiction that charging is not performed.
【0013】そこで、本出願人は特願平4-04-158128に
開示したように感光体表面に電荷注入層を設け、これに
対して接触帯電部材で電荷を注入する方法を見いだし
た。この方法では電荷注入層を設けることで1×104Ω以
上の抵抗値の帯電部材でも短い帯電時間で十分帯電がで
きるようになるため先に述べた他の帯電方法のように放
電に起因する問題点や、帯電に要する時間が長いという
問題点を根本的に解決することが可能である。Therefore, the applicant of the present invention has found a method in which a charge injection layer is provided on the surface of the photoreceptor as disclosed in Japanese Patent Application No. 04-158128, and charges are injected by a contact charging member to the charge injection layer. In this method, by providing a charge injection layer, even a charging member having a resistance value of 1 × 10 4 Ω or more can be sufficiently charged in a short charging time, which causes discharge like other charging methods described above. It is possible to fundamentally solve the problem and the problem that the time required for charging is long.
【0014】具体的には帯電部材として、感光体との接
触ニップを大きくとれることと、感光体表面に均一に接
触でき微視的な帯電し残しがない磁気ブラシローラを用
いることが有効であり、マグネットロールで1×104〜1
×108Ωcmの抵抗値をもったフェライト等の中抵抗の磁
性粒子(以下キャリヤとも称す)を磁気拘束する磁気ブ
ラシ状の帯電部材構成をとることが望ましい。Specifically, it is effective to use, as the charging member, a large contact nip with the photosensitive member and a magnetic brush roller that can uniformly contact the surface of the photosensitive member and does not remain microscopically charged. , 1 x 10 4 ~ 1 with magnet roll
It is desirable to adopt a magnetic brush-shaped charging member structure that magnetically restrains magnetic particles of medium resistance (hereinafter also referred to as carriers) such as ferrite having a resistance value of × 10 8 Ωcm.
【0015】また、感光体上の電荷注入層としては絶縁
性でかつ透光性のバインダーの中に導電性の微粒子を分
散したものが好ましく用いられる。この電荷注入層を電
圧を印加された帯電磁気ブラシが接触することで、あた
かも感光体の導電基体に対して導電粒子が無数の独立し
たフロート電極のように存在し、これらのフロート電極
が形成するコンデンサーに充電を行なうような作用を期
待することができる。Further, as the charge injection layer on the photosensitive member, a material in which conductive fine particles are dispersed in an insulating and translucent binder is preferably used. By contacting this charge injection layer with a charged magnetic brush to which a voltage is applied, the conductive particles exist as if they were infinite floating electrodes on the conductive base of the photoconductor, and these floating electrodes form these. It can be expected that the capacitor will be charged.
【0016】従って、接触帯電部材に印加した電圧と感
光体表面電位は等しい値に収束することになり低電圧帯
電方法が実現できる。Therefore, the voltage applied to the contact charging member and the surface potential of the photosensitive member converge to the same value, and the low voltage charging method can be realized.
【0017】[0017]
(1)しかしながら注入帯電方法では、帯電部材に磁気
ブラシを用いた場合、磁気ブラシを構成する一つ一つの
磁性粒子が互いに接触して導電経路を形成する必要があ
り、この導電経路を通じて流れた電荷によって感光体表
面が充電、帯電されるわけであるが、磁気ブラシ中にご
み等が混入した場合、更には画像形成によって感光体表
面に付着したトナー等がクリーニングされずに磁気ブラ
シに達した場合には、これらの不純絶縁物によって導電
経路が遮断され、帯電が行なわれにくくなるという問題
点が生じていた。(1) However, in the injection charging method, when a magnetic brush is used as the charging member, it is necessary for each magnetic particle forming the magnetic brush to come into contact with each other to form a conductive path, which flows through this conductive path. Although the surface of the photoconductor is charged and charged by the electric charge, when dust or the like is mixed in the magnetic brush, the toner or the like adhering to the surface of the photoconductor due to image formation reaches the magnetic brush without being cleaned. In this case, the conductive path is blocked by these impure insulators, which makes charging difficult.
【0018】実際には初期には良好な帯電が行なわれて
いた画像形成装置でも耐久通紙を行なうにつれて前回画
像形成時にクリーニングしきれなかったトナー等が磁気
ブラシの中に混入することで帯電性が劣化する。具体的
には一旦露光によって下げられた感光体表面を再帯電で
きずに反転現像系の装置では帯電不良カブリを生じると
いう問題点が生じていた。In practice, even in an image forming apparatus that was initially charged well, as the durable paper feed is performed, toner and the like that could not be completely cleaned during the previous image formation are mixed into the magnetic brush, thereby charging the toner. Deteriorates. Specifically, there is a problem in that the surface of the photosensitive member which has been lowered by exposure cannot be recharged, and in the reversal development type apparatus, fog is caused due to charging failure.
【0019】(2)また、直接電荷注入帯電法では、放
電を用いた帯電方法と異なり感光体と帯電部材が直接接
触しなければ感光体の帯電がなされないため磁気ブラシ
を構成する粒子は感光体との接触機会を稼ぐために小さ
い方が好ましい。しかしながら、帯電性を確保するため
に小さい粒子のみを用いると、一つ一つの粒子の磁気力
は低下するためマグネットロールの磁気拘束を逃れて導
電性磁性粒子(キャリヤ)の離脱を引き起こしてしま
う。キャリヤの離脱は磁気ブラシのニップ幅を小さくし
てしまい、帯電性を低下させたり、離脱した導電粒子が
現像器等に混入することでリーク、現像剤のトリボ低下
等のさまざまな悪影響を引き起こすという問題点を有し
ていた。(2) Further, in the direct charge injection charging method, unlike the charging method using discharge, the photosensitive member is not charged unless the photosensitive member and the charging member are in direct contact with each other. It is preferable to be small in order to gain an opportunity to contact with the body. However, if only small particles are used to secure the charging property, the magnetic force of each particle is reduced, and the magnetic restraint of the magnet roll is escaped, causing the conductive magnetic particles (carriers) to be released. The removal of the carrier reduces the nip width of the magnetic brush, which lowers the charging property and causes the various conductive particles that have separated into the developing device to cause various adverse effects such as leakage and reduction of developer tribo. I had a problem.
【0020】(3)また、キャリヤ付着の発生は感光体
の表面性によっても大きく左右され、表面エネルギーの
大きい材料を感光体の表面材質に使用した場合には、キ
ャリヤと感光体表面の分子間力が大きくなりキャリヤ付
着を加速するという問題点が生じていた。(3) Further, the occurrence of carrier adhesion is greatly influenced by the surface property of the photoconductor, and when a material having a large surface energy is used as the surface material of the photoconductor, the intermolecular between the carrier and the photoconductor surface is used. There has been a problem that the force is increased and carrier adhesion is accelerated.
【0021】(4)また、感光体に帯電電荷を効率的に
注入するためには接触帯電部材の抵抗値は低い方が好ま
しいが、1×104Ωcm以下の体積抵抗値の帯電部材を用い
て帯電を行なった場合には、感光体上にピンホール等の
欠陥が生じた場合に、ここに帯電電流が集中することに
よって帯電部材に印加されている電圧が降下して線状の
帯電不良画像を生じてしまったり、帯電部材、感光体の
破壊を引き起こすと言う問題点が生じていた。(4) Further, in order to efficiently inject the charge into the photosensitive member, it is preferable that the contact charging member has a low resistance value, but a charging member having a volume resistance value of 1 × 10 4 Ωcm or less is used. When a charge such as a pinhole is generated on the photoconductor, the charging current concentrates there and the voltage applied to the charging member drops, causing a linear charging failure. There is a problem that an image is generated and the charging member and the photoconductor are destroyed.
【0022】[0022]
【課題を解決するための手段】本発明では、表面に電荷
注入層を有する感光体に対して、電圧を印加された中抵
抗の磁気ブラシを当接させて直接電荷を注入して帯電を
行なう帯電装置において、磁気ブラシが複数の特性を有
する磁性粒子を混合してなることを特徴とする。According to the present invention, charging is performed by directly injecting an electric charge by bringing a medium-resistance magnetic brush to which a voltage is applied into contact with a photoconductor having a charge injection layer on its surface. The charging device is characterized in that the magnetic brush is formed by mixing magnetic particles having a plurality of characteristics.
【0023】具体的には、電気抵抗値の異なる粒子を混
合して帯電磁気ブラシを構成することによって感光体上
に生じたピンホールへの過電流の集中によるピンホール
リークを防止しながら、良好な帯電性を維持することが
可能になる。キャリヤに必要とされる電気抵抗値として
は、感光体への電荷注入性の良好な低抵抗の粒子と、ピ
ンホールリーク防止に効果的な中抵抗の粒子を混合する
ことで両方の効果を有効に発揮させることが出来るよう
になる。Specifically, by mixing particles having different electric resistance values to form a charging magnetic brush, it is possible to prevent pinhole leakage due to the concentration of overcurrent generated on the photoconductor on the photosensitive member, and at the same time, it is preferable. It is possible to maintain good chargeability. As for the electric resistance value required for the carrier, both effects are effective by mixing low resistance particles with good charge injection property to the photoconductor and medium resistance particles effective for preventing pinhole leakage. You will be able to make full use of it.
【0024】また粒径に関しては、磁気拘束力が大きく
キャリヤ付着に有利な大粒径の粒子と、トナー等の絶縁
性のごみが混入した場合に粒子間の導電経路を形成で
き、帯電ゴーストの発生を抑制し、更に電荷注入性に優
れる低抵抗の小粒径の粒子を混合することによって従来
問題となっていた直接電荷注入帯電特有の問題点を解決
することが出来るようになった。ここで、大きい粒径を
持つ粒子は小さな粒子を磁気的に拘束し、キャリヤの離
脱を防止するために大きな効果をもたらす。Regarding the particle size, a conductive path between the particles can be formed when particles of large particle size that have a large magnetic binding force and are advantageous for carrier adhesion and insulating dust such as toner are mixed, so that a charging ghost can be formed. By mixing particles having a small resistance and a small particle size, which suppresses the generation and is excellent in charge injection property, it has become possible to solve the problems peculiar to direct charge injection charging, which have been a conventional problem. Here, the particles having a large particle size magnetically restrain the small particles, and have a great effect on preventing the carrier from separating.
【0025】また、磁気特性に関しては、電気特性、粒
径の異なったキャリヤを混合した場合、粒径の小さなキ
ャリヤは感光体との間に働く分子間力で選択的にキャリ
ヤ付着を起こしがちであるが、このような粒子として磁
気特性の優れた材料、具体的には飽和磁化、残留磁化の
大きいものを用いることによって選択的なキャリヤ付着
という問題点を解決することができるようになる。Regarding the magnetic characteristics, when carriers having different electric characteristics and particle diameters are mixed, the carrier having a small particle diameter tends to selectively cause carrier adhesion due to intermolecular force acting between the carrier and the photoconductor. However, it is possible to solve the problem of selective carrier adhesion by using a material having excellent magnetic properties, specifically, one having a large saturation magnetization and a large residual magnetization as such particles.
【0026】このように複数のことなった特性を有する
粒子を混合して使用することで耐久による帯電性の維
持、キャリヤ付着防止、感光体のピンホールへの帯電電
流の集中防止、感光体への電荷注入性等を同時に満足す
ることができるようになった。By mixing and using a plurality of particles having different characteristics as described above, the charging property is maintained by the durability, the carrier is prevented from adhering, the charging current is prevented from concentrating on the pinholes of the photoconductor, It has become possible to simultaneously satisfy the charge injection property and the like.
【0027】また、本手法の直接電荷注入帯電方式で
は、感光体表面に電荷注入層を設けることで感光体への
電荷注入性を向上させることができるが、感光体表面に
存在する電荷注入層に潤滑性を付与し、表面エネルギー
を低下させることによって、キャリヤと感光体の間に働
く分子間力を弱め、キャリヤ付着を大幅に改善すること
が出来るようになった。特に本発明のように複数の粒子
径の粒子を混合して帯電部材として使用する場合には、
粒子径の小さな粒子ほど感光体との分子間力が大きいた
め感光体表面の表面エネルギーを低下させることはキャ
リヤ付着の防止に特に有効である。In the direct charge injection charging method of this method, the charge injection property to the photoconductor can be improved by providing the charge injection layer on the photoconductor surface. By imparting lubricity to and reducing the surface energy, the intermolecular force acting between the carrier and the photoconductor can be weakened, and the carrier adhesion can be greatly improved. In particular, when used as a charging member by mixing particles having a plurality of particle sizes as in the present invention,
Since particles having a smaller particle size have a larger intermolecular force with the photoconductor, lowering the surface energy of the photoconductor surface is particularly effective in preventing carrier adhesion.
【0028】感光体表面層に潤滑性を付与する手段とし
ては電荷注入層にフッ素系、ポリオレフィン系、シリコ
ーン系等の滑材粒子を分散すること等が有効である。As means for imparting lubricity to the surface layer of the photoreceptor, it is effective to disperse lubricant particles of fluorine type, polyolefin type, silicone type or the like in the charge injection layer.
【0029】[0029]
【実施例】まず、本実施例で用いた感光体について述べ
る。EXAMPLES First, the photoconductor used in this example will be described.
【0030】感光体は負帯電のOPC感光体であり、φ30m
mのアルミニウム性のドラム上に機能層を5層設ける。The photoconductor is a negatively charged OPC photoconductor, φ30 m
Five functional layers are provided on an aluminum drum of m.
【0031】Al基層側から順に第1層は下引き層、第2
層は正電荷注入防止層、第3層は電荷発生層、第4層は
電荷輸送層であり、本実施例では通常用いられる機能分
離型のOPC感光体を用いたがここまでの層は本質的には
本発明の構成を限定するものではなく、単層型のOPC、Z
nO、セレンアモルファスシリコン等の感光体を使用する
ことも可能である。The first layer is the undercoat layer and the second layer is the second layer in this order from the Al base layer side.
The layer is a positive charge injection preventing layer, the third layer is a charge generating layer, and the fourth layer is a charge transporting layer. In this embodiment, a function-separated type OPC photoreceptor which is usually used is used. Is not limited to the structure of the present invention, single-layer OPC, Z
It is also possible to use a photoreceptor such as nO or selenium amorphous silicon.
【0032】第5層が本発明の特徴である電荷注入層で
あり、光硬化性のアクリル樹脂にSnO2超微粒子を分散し
たものである。具体的には、アンチモンをドーピング
し、低抵抗化した粒径約0.03μmのSnO2粒子を樹脂に対
する重量比で5:2の割合で分散したものである。The fifth layer is a charge injection layer, which is a feature of the present invention, and is a photo-curable acrylic resin in which SnO 2 ultrafine particles are dispersed. Specifically, SnO 2 particles having a particle diameter of about 0.03 μm, which is doped with antimony and has a reduced resistance, are dispersed at a weight ratio of 5: 2 with respect to the resin.
【0033】実際には導電性であるSnO2の分散量で電荷
注入層の体積抵抗値は変化し、画像流れをおこさない条
件を満足するために、電荷注入層の抵抗値は1×108Ωcm
以上である必要がある。The volume resistance value of the charge injection layer changes depending on the dispersion amount of SnO 2 which is actually conductive, and the resistance value of the charge injection layer is 1 × 10 8 in order to satisfy the condition that image deletion does not occur. Ωcm
It must be above.
【0034】電荷注入層の抵抗値は、絶縁性のシート上
に電荷注入層を塗布し、これをHP社の高抵抗計4329Aで
印加電圧100Vにて表面抵抗を測定したものである。The resistance value of the charge injection layer is obtained by coating the charge injection layer on an insulating sheet and measuring the surface resistance with a high resistance meter 4329A manufactured by HP at an applied voltage of 100V.
【0035】このようにして調合した塗工液をディッピ
ング塗工法の適当な塗工法にて厚さ約3μmに塗工して電
荷注入層とした。The coating solution thus prepared was applied to a thickness of about 3 μm by a suitable dipping coating method to form a charge injection layer.
【0036】本実施例では電荷注入層の体積抵抗値が1
×1012Ωcmのものを用いた。In this embodiment, the charge injection layer has a volume resistance value of 1
A film having a density of × 10 12 Ωcm was used.
【0037】次に、接触帯電部材について述べる。Next, the contact charging member will be described.
【0038】導電磁気ブラシは非磁性の導電スリーブ、
これに内包されるマグネットロール、スリーブ上の磁性
導電粒子によって構成され、マグネットロールは固定、
スリーブ表面が感光ドラムの周速方向と逆に移動するよ
うに回転される。感光体と帯電スリーブの最近接位置で
のスリーブ表面の磁束密度は950ガウスであり、磁気ブ
ラシの穂立ちはスリーブに対向した磁性ブレードで規制
され、約1mmの穂立ちを形成している。スリーブ表面の
感光体に対する周速比はスリーブを感光体の移動方向と
逆方向に、感光体のスピードの10%の速度で駆動回転さ
せた。The conductive magnetic brush is a non-magnetic conductive sleeve,
The magnet roll contained in this, composed of magnetic conductive particles on the sleeve, the magnet roll is fixed,
The sleeve surface is rotated so as to move in the direction opposite to the peripheral speed direction of the photosensitive drum. The magnetic flux density on the sleeve surface at the closest position between the photoconductor and the charging sleeve is 950 gauss, and the spikes of the magnetic brush are regulated by the magnetic blade facing the sleeve to form spikes of about 1 mm. The peripheral speed ratio of the surface of the sleeve to the photosensitive member was such that the sleeve was driven and rotated in the direction opposite to the moving direction of the photosensitive member at a speed of 10% of the speed of the photosensitive member.
【0039】本実施例では、磁性粒子として電気抵抗値
の異なるA,B二種類のものを混合して使用した。In this example, two kinds of magnetic particles A and B having different electric resistance values were mixed and used.
【0040】一つ目の粒子Aは平均粒径15μm、体積抵抗
値1×107Ωcmのフェライト粒子であり、磁気特性は飽和
磁化が58(A・m2/kg)のものである。The first particle A is a ferrite particle having an average particle size of 15 μm and a volume resistance value of 1 × 10 7 Ωcm, and its magnetic property is that its saturation magnetization is 58 (A · m 2 / kg).
【0041】磁性粒子の抵抗値の測定は、底面積228mm2
の筒状の容器にキャリヤを2g充填して加圧し、上下から
100Vの電圧を印加して、これに流れる電流から算出し、
正規化したもので定義した。The resistance value of the magnetic particles is measured by measuring a bottom area of 228 mm 2
Fill 2g of carrier into the cylindrical container and pressurize.
Apply a voltage of 100V, calculate from the current flowing through it,
It is defined as normalized.
【0042】これに、二つ目の粒子Bを混合する。粒子B
はフェライト表面を水素還元することによって抵抗値を
低下させたものを混合する。フェライト粒子は、その表
面を水素で還元し、その程度を変化させることによって
抵抗値をある程度任意に変化させることができ、本実施
例では具体的には1×103Ωcmまで抵抗値を低下させたも
のを用いた。A second particle B is mixed with this. Particle B
Is mixed with a ferrite whose resistance value has been reduced by hydrogen reduction on the surface. The ferrite particles can reduce the resistance value to some extent by reducing the surface thereof with hydrogen and changing the degree thereof, and in this example, specifically, the resistance value is lowered to 1 × 10 3 Ωcm. I used the one.
【0043】粒子A,Bの混合比率は本実施例では2:1の
割合としたが、これは帯電性の確保と感光体の対ピンホ
ール性能によって決定されるため、使用する粒子の粒
径、抵抗値等によって最適値が変化する。The mixing ratio of the particles A and B was set to 2: 1 in this embodiment, but since this is determined by ensuring the charging property and the pinhole performance of the photoconductor, the particle size of the particles used is The optimum value changes depending on the resistance value and the like.
【0044】ここで本実施例をもとにした、本発明の効
果を述べる。Here, the effects of the present invention will be described based on the present embodiment.
【0045】対ピンホールリーク性能は具体的には図2
のように示される。体積抵抗値の低い帯電部材rを用い
た場合、感光体上に生じたピンホールには、図2(b)
のように帯電部材の表面を通じて帯電電流が集中的に流
れ込む。このため、ピンホール部分の電位のみならずA
点の電位までも感光体基体の電位である0V程度にまで降
下し、A点の帯電不良をも引き起こす。これは、ピンホ
ール部とA点の間に存在するキャリヤの抵抗が図2(b)
で2rの値しかないことが原因である。これを防止する
ためには帯電部材の抵抗値を1×104Ω以上に設定する必
要がある。一方、直接電荷注入帯電では、キャリヤ表面
から感光体表面の電荷注入層に直接電荷を注入するた
め、抵抗値の低い帯電部材を用いた方が注入性が向上す
る。これは、キャリヤの抵抗値が低い方が注入の時定数
が小さくなるためと、キャリヤと感光体との界面での接
触抵抗値が低いためであると考えられる。The anti-pinhole leak performance is specifically shown in FIG.
As shown. When the charging member r having a low volume resistance value is used, the pinhole generated on the photoconductor is shown in FIG.
As described above, the charging current flows intensively through the surface of the charging member. Therefore, not only the potential of the pinhole part but also A
The potential at the point also drops to about 0 V, which is the potential of the photoconductor substrate, and causes a charging failure at the point A. This is because the carrier resistance existing between the pinhole and point A is shown in Fig. 2 (b).
The reason is that there is only a value of 2r. In order to prevent this, it is necessary to set the resistance value of the charging member to 1 × 10 4 Ω or more. On the other hand, in the direct charge injection charging, the charge is directly injected from the carrier surface to the charge injection layer on the surface of the photoconductor, so that the injection property is improved by using a charging member having a low resistance value. It is considered that this is because the lower the resistance value of the carrier, the smaller the injection time constant, and the lower the contact resistance value at the interface between the carrier and the photoconductor.
【0046】従って、従来のように単一の抵抗値分布を
持つキャリヤで帯電を行なった場合には対ピンホールリ
ーク性能と電荷注入性を両方満足することが難しかっ
た。Therefore, it is difficult to satisfy both the anti-pinhole leak performance and the charge injection property when the carrier is charged by a carrier having a single resistance value distribution as in the prior art.
【0047】しかしながら、本実施例のように抵抗値分
布の異なるキャリヤで帯電を行なえば、抵抗値の低いキ
ャリヤと中抵抗のキャリヤが混在することによって、マ
クロな抵抗値は抵抗値の高いキャリヤによって決定され
るため感光体上のピンホールに帯電電流が集中的に流れ
込むことはない。However, if charging is performed with carriers having different resistance distributions as in the present embodiment, a macro resistance value is generated by a carrier having a high resistance value because a carrier having a low resistance value and a carrier having a medium resistance value are mixed. Since it is determined, the charging current does not flow intensively into the pinhole on the photoconductor.
【0048】具体的には、図2(a)に示すようにピンホ
ール部とA点との間のキャリヤの抵抗値がR+r〜RとA点
の電位を降下させないような中抵抗になるためである。Specifically, as shown in FIG. 2 (a), the resistance value of the carrier between the pinhole portion and the point A is R + r to R and a medium resistance value which does not drop the potential at the point A. This is because
【0049】また、抵抗値の低いキャリヤと感光体が接
触している部分では、注入時定数が小さいため、また、
界面の電気抵抗が小さいため感光体上に電荷が注入さ
れ、良好な帯電を実現することが可能になる。Further, since the injection time constant is small in the portion where the carrier having a low resistance value and the photosensitive member are in contact with each other,
Since the electric resistance at the interface is small, electric charges are injected onto the photoconductor, and good charging can be realized.
【0050】従来、帯電部材としてのマクロな抵抗値は
1×105〜1×108Ωcmの範囲で実用上充分な帯電を行なう
ことが出来ることが判っているが、良好な注入性を得る
には、キャリヤ単体の体積抵抗値が1×106Ωcm以下が望
ましい。しかしながら、キャリア単体の抵抗値が1×105
Ωcm以下の場合にはドラムのピンホールでリーク画像と
なってしまうために、良好な使用範囲としては1×105〜
1×106Ωcmと狭い範囲であった。Conventionally, the macro resistance value of the charging member is
It is known that sufficient charging can be performed practically in the range of 1 × 10 5 to 1 × 10 8 Ωcm, but in order to obtain good injection properties, the volume resistance value of the carrier alone is 1 × 10 6 Ωcm or less is desirable. However, the resistance value of the carrier alone is 1 × 10 5
If it is less than Ωcm, a leak image will appear in the drum pinhole, so a good range of use is 1 × 10 5 ~
The range was as narrow as 1 × 10 6 Ωcm.
【0051】本実施例の構成では複数の固有抵抗地を持
つキャリヤを混合することによって、従来の一種類の固
有抵抗のキャリヤではピンホールリークのため使用でき
なかった1×105Ωcm以下のキャリヤも使用できるように
なり、キャリヤの抵抗値、材質の選択の範囲が飛躍的に
広がった。In the structure of the present embodiment, by mixing carriers having a plurality of specific resistances, a carrier of 1 × 10 5 Ωcm or less which cannot be used due to pinhole leak in the conventional carrier of one kind of specific resistance. Can be used, and the range of carrier resistance and material selection has expanded dramatically.
【0052】本実施例では二種類の抵抗値を持つキャリ
ヤを混合したが、これは本発明の概念を限定するもので
はなく、多種の抵抗値分布を持つ粒子を混合すること
や、ブロードな抵抗値分布を持つキャリヤを使用しても
同様の効果を得ることができる。In the present embodiment, carriers having two kinds of resistance values were mixed, but this does not limit the concept of the present invention. Mixing particles having various resistance value distributions and broad resistance The same effect can be obtained by using a carrier having a value distribution.
【0053】本実施例のように抵抗値分布の異なる二種
類のキャリヤを混合した場合には、帯電性を向上させる
ためには低抵抗の粒子の混合比が大きい方が好ましいの
であるが、抵抗値の低いキャリヤの混合比を増していっ
た時、ある混合比からは抵抗値の低いキャリヤだけで導
電経路(チェーン)を形成するようになってしまい、こ
の時には感光体上のピンホールリークへの電流集中を抑
制する効果はなくなってしまうため、低抵抗の粒子はこ
の混合比以下で使用することが必要である。When two kinds of carriers having different resistance distributions are mixed as in this embodiment, it is preferable that the mixing ratio of low resistance particles is large in order to improve the charging property. When the mixing ratio of low-value carriers is increased, from a certain mixing ratio, the conductive path (chain) is formed only by the low-resistance carriers, and at this time, pinhole leakage on the photoconductor occurs. Since the effect of suppressing the current concentration of is lost, it is necessary to use particles with low resistance at a mixing ratio of less than this.
【0054】次に低抵抗粒子の抵抗と混合比に好ましい
関係があることを見いだしたのでそのことについて述べ
る。図3に体積抵抗値が1×107Ωcmのフェライト粒子に
体積抵抗の異なる低抵抗磁性粒子を混入して画像を確認
した結果を示す。この結果より、混合する磁性粒子の抵
抗値が1×105Ωcm以上では長期使用で帯電能力が低下す
ることが判った。また、低抵抗粒子の混合比が、60%以
上では、低抵抗粒子だけで導電経路を形成するので、ピ
ンホールでリークすることが判った。60%以下好ましく
は50%以下でピンホールでリークしないことが判った。
他の抵抗のフェライト粒子に低抵抗の粒子を混合してピ
ンホールでのリークを確認したところ、混合比が50%以
下であればリーク画像は生じなかった。ここで、混合比
は、磁性粒子全重量に対する低抵抗粒子の重量比であ
る。Next, since it has been found that there is a preferable relationship between the resistance of the low resistance particles and the mixing ratio, that will be described. Fig. 3 shows the result of confirming an image by mixing ferrite particles having a volume resistance value of 1 × 10 7 Ωcm with low resistance magnetic particles having different volume resistances. From this result, it was found that when the resistance value of the mixed magnetic particles is 1 × 10 5 Ωcm or more, the charging ability is deteriorated after long-term use. It was also found that when the mixing ratio of the low-resistance particles is 60% or more, the low-resistance particles alone form a conductive path, so that leakage occurs in pinholes. It has been found that no pinhole leakage occurs at 60% or less, preferably 50% or less.
Leakage in pinholes was confirmed by mixing low-resistance particles with ferrite particles of other resistance. No leak image was generated if the mixing ratio was 50% or less. Here, the mixing ratio is the weight ratio of the low resistance particles to the total weight of the magnetic particles.
【0055】本実施例では抵抗値の異なる粒子として、
同じフェライト粒子の表面処理のことなるものを用いた
が、粒子としてはこの他にも樹脂とマグネタイト等の磁
性粉体を混練して粒子に成型したもの、もしくはこれに
抵抗値調節のために導電カーボン等を混ぜたもの、焼結
したマグネタイト、フェライト、もしくはこれらを還元
処理して抵抗値を調節したもの、またはこれらの磁性粒
子をメッキ処理して抵抗値を適当な値にしたもの等をそ
れぞれ混合して使用しても同様な効果が得られた。In this embodiment, as particles having different resistance values,
The same ferrite particles with different surface treatments were used, but in addition to these particles, resin and magnetic powder such as magnetite were kneaded to form particles, or conductive particles for adjusting the resistance value. Mixtures of carbon, etc., sintered magnetite, ferrite, or those whose resistance value has been adjusted by reduction treatment, or those whose magnetic particles have been plated to have an appropriate resistance value, etc. Similar effects were obtained when used in combination.
【0056】以上の構成の帯電器を用いた画像形成を行
なった例を示す。使用した図1に示す電子写真方式のプ
リンターはプロセススピード100mm/secであり、先に述
べた電荷注入層を持つ負帯電の直径30mmのOPC感光体1を
用いる。An example in which an image is formed by using the charger having the above structure will be described. The electrophotographic printer shown in FIG. 1 used has a process speed of 100 mm / sec and uses the negatively charged OPC photoreceptor 1 having a diameter of 30 mm and having the charge injection layer described above.
【0057】まず、-700Vの直流電圧を印加された帯電
ブラシ2を感光体に対して当接、回転させることによっ
て帯電を行なう。先に述べたように帯電は、帯電ブラシ
から感光体表面のSnO2への電荷注入によって行なわれる
ため、感光体全面をくまなく帯電ブラシが接触しなくて
はならない。このため、帯電ブラシの接触ニップ幅を5m
mとした。First, charging is performed by bringing the charging brush 2 to which a DC voltage of -700V is applied into contact with and rotating the photosensitive member. As described above, charging is performed by injecting charges from the charging brush into SnO 2 on the surface of the photoconductor, so the charging brush must contact the entire surface of the photoconductor. Therefore, the contact nip width of the charging brush is 5m.
It was m.
【0058】このような状態では帯電ブラシへの印加電
圧と感光ドラムの表面電位はほぼ線形に推移し、従来の
帯電ローラを用いた場合にような放電閾値の存在は認め
らず、電荷注入が行なわれた。-700Vに帯電を受けた感
光ドラムは次に露光部で画像露光(イメージ露光)を受
ける。In such a state, the voltage applied to the charging brush and the surface potential of the photosensitive drum change substantially linearly, the existence of the discharge threshold as in the case of using the conventional charging roller is not recognized, and the charge injection is not performed. Was done. The photosensitive drum charged to -700V is then subjected to image exposure at the exposure section.
【0059】画像信号に従って強度変調を受けたレーザ
ダイオードからのレーザ光3をポリゴンミラーで走査し
て露光手段とし、感光ドラム上に静電潜像を形成する。A laser beam 3 from a laser diode whose intensity is modulated according to an image signal is scanned by a polygon mirror to serve as exposure means, and an electrostatic latent image is formed on the photosensitive drum.
【0060】次に、磁性一成分絶縁トナーを用いて反転
現像を行なう。マグネットを内包する直径16mmの非磁性
スリーブ4に上記のネガトナーをコートし、感光体表面
との距離を300μmに固定した状態で、感光ドラムと等速
で回転させ、スリーブに電圧を印加する。Next, reversal development is performed using a magnetic one-component insulating toner. A non-magnetic sleeve 4 having a diameter of 16 mm and containing a magnet is coated with the above-mentioned negative toner, and while the distance from the surface of the photosensitive member is fixed to 300 μm, the sleeve is rotated at a constant speed with the photosensitive drum to apply a voltage to the sleeve.
【0061】電圧は、-500VのDC電圧と、周波数1800H
z、ピーク間電圧1600Vの矩形のAC電圧を重畳したものを
用い、スリーブと感光ドラムの間でジャンピング現像を
行なわせる。The voltage is a DC voltage of -500V and a frequency of 1800H.
z, jumping development is performed between the sleeve and the photosensitive drum by using a rectangular AC voltage with a peak-to-peak voltage of 1600V superimposed.
【0062】このようにしてトナーで顕視化された像
は、次に転写材6に転写される。転写部では中抵抗の転
写ローラ5を用いる。本実施例ではローラ抵抗値は5×10
8Ωのものを用い、+2000VのDC電圧を印加して転写を行
なった。The image visualized with the toner in this manner is then transferred to the transfer material 6. A transfer roller 5 having a medium resistance is used in the transfer section. In this embodiment, the roller resistance value is 5 × 10
The transfer was performed by applying a DC voltage of +2000 V using an 8 Ω one.
【0063】転写材上にトナー像を転写されたプリント
画像は、その後熱定着ローラ8によって定着を受け、機
外に排出される。また、転写残トナーはクリーニングブ
レード7で感光ドラム上からかきおとされ、次の画像形
成に備えられる。The print image on which the toner image has been transferred onto the transfer material is then fixed by the heat fixing roller 8 and discharged outside the apparatus. Further, the transfer residual toner is scraped off from the photosensitive drum by the cleaning blade 7 to prepare for the next image formation.
【0064】以上のような構成のプリンターで画像出力
を行なった。Images were output by the printer having the above-mentioned configuration.
【0065】本実施例の比較例として従来の構成である
単一の抵抗値分布のキャリヤを用いて実験を行なった。As a comparative example of this embodiment, an experiment was conducted using a carrier having a single resistance value distribution, which has a conventional structure.
【0066】〔比較例1〕用いたキャリヤは平均粒径15
μm、体積抵抗値1×109Ωcmのものと平均粒径15μm、体
積抵抗値1×103Ωcmのそれぞれフェライトキャリヤであ
る。[Comparative Example 1] The carrier used had an average particle size of 15
The ferrite carrier has a volume resistance of 1 × 10 9 Ωcm and an average particle size of 15 μm and a volume resistance of 1 × 10 3 Ωcm.
【0067】体積抵抗値1×109Ωcmのキャリヤで画像出
力を行なったところ、抵抗値が高すぎるためキャリヤか
ら感光体表面に充分な電荷注入がなされず、初期から帯
電不良が発生した。When an image was output with a carrier having a volume resistance value of 1 × 10 9 Ωcm, the resistance value was too high and sufficient charge injection from the carrier to the surface of the photosensitive member was not carried out, resulting in poor charging from the initial stage.
【0068】〔比較例2〕体積抵抗値1×103Ωcmのキャ
リヤを用いたところ、帯電不良も発生せず良好な帯電が
なされたが感光体上に存在していた欠陥に帯電電流が集
中し、ピンホールとなって帯電不良に基づく横黒線が発
生した。更に画像出力を行なうと、このピンホールを中
心として電気的な力でキャリヤ付着が発生し、最後には
ピンホールが拡大して感光体と帯電部材の破壊を生じて
しまった。[Comparative Example 2] When a carrier having a volume resistance value of 1 × 10 3 Ωcm was used, good charging was performed without causing charging failure, but the charging current was concentrated on the defects existing on the photoconductor. However, a pinhole was formed and a horizontal black line was generated due to poor charging. When the image is further output, carrier adhesion occurs due to an electric force centering on the pinhole, and finally the pinhole expands, causing damage to the photoconductor and the charging member.
【0069】これらの比較例は帯電部材の抵抗値が高
い、もしくは低い場合に発生する顕著な現象であるが、
本実施例の構成のキャリヤでは、1×109Ωcmと1×103Ω
cmの抵抗値のものを2:1で混合することによって、混合
されたキャリヤの体積抵抗値は5×108Ωcmとなった。These comparative examples are remarkable phenomena which occur when the resistance value of the charging member is high or low.
With the carrier of the constitution of this embodiment, 1 × 10 9 Ωcm and 1 × 10 3 Ωcm
By mixing 2: 1 with a resistance value of cm, the volume resistance value of the mixed carrier was 5 × 10 8 Ωcm.
【0070】これは、抵抗値の高いものと低いものが直
列に接続された場合に相当し、マクロな抵抗値は抵抗値
の高い方に支配されるためピンホールリークは発生しな
い。また、抵抗値の低いキャリヤが感光体表面と接触し
た場合は、そのキャリヤ自体の体積抵抗値は低いため電
荷注入の時定数は充分小さく、更に界面の接触抵抗も小
さいため感光体に電荷を激しく注入することが出来る。This corresponds to the case where a high resistance value and a low resistance value are connected in series, and since the macro resistance value is dominated by the higher resistance value, pinhole leakage does not occur. Further, when a carrier having a low resistance value comes into contact with the surface of the photoconductor, the time constant of charge injection is sufficiently small because the volume resistance value of the carrier itself is low, and furthermore, the contact resistance at the interface is also small, so that the charge is strongly applied to the photoconductor. Can be injected.
【0071】従って、本実施例の構成では一種類の材料
の固有抵抗で帯電部材を形成した場合と異なり、複数種
類の材料を混合することでピンホールリーク防止と帯電
性を良好なレベルで両立することが出来るようになっ
た。Therefore, in the structure of this embodiment, unlike the case where the charging member is formed by the specific resistance of one kind of material, by mixing a plurality of kinds of materials, the pinhole leak prevention and the chargeability are compatible at a good level. I can do it now.
【0072】また本実施例の帯電部材を用いたことで、
感光体の電荷注入層の抵抗値が1×108〜1×1015Ωcmの
範囲で画像流れもなく、良好な帯電性を得ることができ
た。By using the charging member of this embodiment,
When the resistance value of the charge injection layer of the photoconductor was in the range of 1 × 10 8 to 1 × 10 15 Ωcm, no image deletion occurred and good chargeability could be obtained.
【0073】さらに、感光体の種類としては、OPCに限
定するものではなく、表層のシリコンカーバイトの抵抗
値が5×1013Ωcmのシリコンドラムにおいても、本実施
例の帯電部材を用いることで、良好な電荷注入を行なう
ことができた。具体的には、500Vの印加電圧に対してド
ラム表面が480Vに帯電できた。Further, the type of the photoconductor is not limited to the OPC, and the charging member of this embodiment can be used even in the silicon drum in which the resistance value of the surface silicon carbide is 5 × 10 13 Ωcm. , Good charge injection could be performed. Specifically, the drum surface was able to be charged to 480 V with an applied voltage of 500 V.
【0074】また、このように直接電荷注入帯電を行な
うことによって従来放電に起因して発生していたオゾン
の発生、感光体表面の劣化を完全になくすことが可能に
なり、この効果を耐久通紙に関わらず維持することがで
きるようになった。Further, by directly performing the charge injection charging in this manner, it is possible to completely eliminate the generation of ozone and the deterioration of the surface of the photoconductor, which have been conventionally caused by the discharge, and this effect is durable. It can be maintained regardless of the paper.
【0075】〔第2の実施例〕本実施例では、帯電磁気
ブラシを構成する磁性粒子が、粒径の異なるものを混合
してなることを特徴とする。[Second Embodiment] The present embodiment is characterized in that the magnetic particles constituting the charging magnetic brush are formed by mixing particles having different particle diameters.
【0076】従来の直接帯電のように放電を用いて電荷
を移動させる場合には、キャリヤ同志や感光体との間に
放電可能なギャップが生じても電荷は移動し、帯電はな
されていた。When electric charges are moved by using discharge like the conventional direct charging, the electric charges are moved and charged even if a dischargeable gap is formed between the carriers and the photoconductor.
【0077】しかしながら、直接電荷注入帯電では、感
光体への帯電はキャリヤ間の導電経路を電荷が移動し、
更にキャリヤと感光体表面の電荷注入層が直接接触して
電荷を注入することが必要である。従って、耐久通紙等
でキャリヤ中にトナー等の絶縁性のごみが混入した場
合、また、キャリヤ表面がトナー融着等で劣化してその
部分の抵抗値が上昇した場合には導電経路が断ち切られ
てしまって、感光体上に微視的な帯電しのこしの領域が
生じてしまう。However, in the direct charge injection charging, the charge on the photosensitive member is caused by movement of the charge in the conductive path between the carriers.
Further, it is necessary to directly contact the carrier with the charge injection layer on the surface of the photoreceptor to inject charges. Therefore, when insulative dust such as toner is mixed in the carrier during durable paper feeding, or when the carrier surface is deteriorated due to toner fusion or the like and the resistance value of that part increases, the conductive path is cut off. As a result, a microscopically-charged residual area is formed on the photoconductor.
【0078】このような状況下では、帯電不良領域が反
転現像恵の電子写真プロセスでは黒ポチとなってしま
い、マクロでは前回画像形成時に画像露光等で電位が減
衰した部分が黒くなってしまういわゆる帯電ポジゴース
トが発生する。In such a situation, the poorly charged area becomes a black spot in the electrophotographic process of reversal development, and in the macro, the portion where the potential is attenuated by image exposure during the previous image formation becomes black. Charged positive ghost occurs.
【0079】これを抑制するためにはキャリヤ同志、キ
ャリヤと感光体との接触機会を増やすために平均粒径を
小さくすることが有効であるが、この場合には粒子一つ
一つの磁気拘束力が低下してしまうためキャリヤが感光
体上に離脱すると言う問題点を有していた。To suppress this, it is effective to reduce the average particle size in order to increase the chances of contact between the carriers and the carrier and the photoconductor, but in this case, the magnetic binding force of each particle is increased. However, there is a problem in that the carrier is detached from the photosensitive member because of the decrease in the temperature.
【0080】本実施例では、絶縁性のごみ等の混入によ
る帯電不良の発生と、キャリヤ付着を同時に解決するた
めに粒度分布において複数のピークを持つキャリヤを使
用することを特徴とする。The present embodiment is characterized in that a carrier having a plurality of peaks in the particle size distribution is used in order to solve the occurrence of charging failure due to the mixing of insulating dust and the like and carrier adhesion.
【0081】本実施例では平均粒径15μm、体積抵抗値1
×106Ωcmのフェライトキャリヤと平均粒径10μm、体積
抵抗値1×104Ωcmのマグネタイト粒子を重量比10:1の
割合で混合して使用した。In this embodiment, the average particle diameter is 15 μm and the volume resistance value is 1
Ferrite carriers of × 10 6 Ωcm and magnetite particles of 10 μm in average particle size and 1 × 10 4 Ωcm in volume resistance were mixed and used at a weight ratio of 10: 1.
【0082】このように、粒径の異なる粒子を使用する
と、耐久通紙等でキャリヤ内にトナー、紙粉等の絶縁物
が混入してキャリヤ間、キャリヤ-ドラム間の導通を遮
断しても、図4に示すように大粒径のキャリヤ間を小粒
径のキャリヤが電気的な導電経路を形成し、導通を維持
することによって帯電不良を防止することが出来るよう
になる。As described above, when particles having different particle diameters are used, even if an insulating material such as toner or paper powder is mixed in the carrier during durable paper feeding or the like, conduction between the carrier and between the carrier and the drum is cut off. As shown in FIG. 4, the small particle size carriers form an electrically conductive path between the large particle size carriers, and the conduction is maintained, whereby the charging failure can be prevented.
【0083】また、キャリヤと感光ドラム間でも小粒径
キャリヤの存在は実質的なキャリヤと感光体との接触ニ
ップを増加させるはたらきがあるため、より帯電性を向
上させることが出来るようになる。Also, the presence of the small particle size carrier between the carrier and the photosensitive drum serves to substantially increase the contact nip between the carrier and the photosensitive member, so that the charging property can be further improved.
【0084】更に、大粒径と小粒径のキャリヤを混合す
ることによって小粒径のキャリヤは大粒径のキャリヤに
磁気的、物理的に拘束されてキャリヤ付着が発生しにく
くなる。Furthermore, by mixing the large particle size carrier and the small particle size carrier, the small particle size carrier is magnetically and physically bound to the large particle size carrier, and carrier adhesion is less likely to occur.
【0085】この時、第1の実施例で示したように片方
の粒子の体積抵抗値が低くてもキャリヤ全体の抵抗値
は、体積抵抗値の高い粒子によって決定され、感光体の
対ピンホール性は維持することが出来るため導電経路を
形成する小粒径側のキャリヤの抵抗値が大粒径側のそれ
よりも小さいことが好ましい。At this time, as shown in the first embodiment, even if the volume resistance value of one particle is low, the resistance value of the entire carrier is determined by the particles having a high volume resistance value, and the resistance value to the pinhole of the photoconductor is increased. Since the property can be maintained, it is preferable that the resistance value of the carrier on the small particle size side forming the conductive path is smaller than that on the large particle size side.
【0086】実際に上記の粒子構成で磁性粒子以外の構
成は実施例の1での記載と同様にして、プリンターで耐
久通紙を行なったところ、5000枚の画像形成でも良好な
帯電性が得られた。Actually, in the above-mentioned particle constitution except for the magnetic particles, when a durable paper feed was carried out by a printer in the same manner as described in Example 1, a good chargeability was obtained even when 5,000 sheets of images were formed. Was given.
【0087】5000枚通紙後のキャリヤを電子顕微鏡で観
察したところ、トナーは混入しているものの本実施例の
構成の特徴である小粒径の導電キャリヤが大径キャリヤ
の間に入り込んで導電経路を保っていることが確認され
た。また、小径キャリヤがキャリヤ全体の流動性を向上
させていることと、それ自体がクッションの役割をはた
し、キャリヤ間のせん断力を低下させているためトナー
の大径キャリヤへの融着はほとんど発生していなかっ
た。Observation of the carrier after passing 5,000 sheets with an electron microscope shows that the toner is mixed, but the conductive carrier having a small particle size, which is a feature of the structure of the present embodiment, enters between the large-diameter carriers and is electrically conductive. It was confirmed that the route was maintained. Further, since the small-diameter carrier improves the fluidity of the entire carrier, and the itself functions as a cushion and reduces the shearing force between the carriers, the toner is not fused to the large-diameter carrier. Almost never happened.
【0088】以上述べたように、大径キャリヤと小径キ
ャリヤを混在させて帯電部材として使用することによっ
て従来問題となっていた耐久通紙によるキャリヤ汚染、
帯電不良を劇的に解決することが出来るようになった。As described above, by using a large-diameter carrier and a small-diameter carrier as a charging member by mixing them, carrier contamination due to durable paper feeding, which has been a problem in the related art,
It has become possible to dramatically solve charging defects.
【0089】〔比較例1〕平均粒径15μm、体積抵抗値1
×106Ωcmのフェライトキャリヤ単体の帯電部材初期で
は均一な帯電がなされて良好な画像が得られていたが10
00枚通紙を行なった後には帯電不良が発生し、反転現像
における帯電ゴーストとなってしまった。Comparative Example 1 Average particle diameter 15 μm, volume resistance value 1
× 10 6 Ωcm Ferrite carrier alone The charging member was initially uniformly charged and good images were obtained.
After passing 00 sheets, a charging failure occurred and became a charging ghost in reversal development.
【0090】〔比較例2〕平均粒径15μm、体積抵抗値1
×106Ωcmのフェライトキャリヤに、平均粒径10μm、体
積抵抗値1×106Ωcmのフェライトキャリヤを重量比10:
1の割合で混合。2000枚通紙で帯電ゴースト発生。[Comparative Example 2] Average particle diameter 15 μm, volume resistance value 1
× 10 6 ferrite carrier [Omega] cm, an average particle diameter of 10 [mu] m, a volume resistivity 1 × 10 6 wt ferrite carrier [Omega] cm ratio of 10:
Mixed at a ratio of 1. A charge ghost occurs when 2000 sheets are passed.
【0091】帯電ゴーストの評価は、ベタ黒後にベタ白
画像を出力し、完全な帯電がなされないことに起因する
ベタ黒後感光ドラム一周後のかぶりをマクベス濃度計
(マクベス社製RD-1255)で測定し、帯電性能の指標とし
た。比較例1及び2では耐久通紙に従ってかぶりが増加し
ていることが確認された。The charging ghost was evaluated by outputting a solid white image after solid black, and the fogging after one round of the photosensitive drum after solid black was caused by the fact that complete charging was not performed by a Macbeth densitometer (RD-1255 manufactured by Macbeth Co.). And was used as an index of charging performance. In Comparative Examples 1 and 2, it was confirmed that the fog increased as the durable paper passed.
【0092】この状態でキャリヤ表面を電子顕微鏡で観
察したところ、トナーの微粉がキャリヤ内に混入してい
ることが確認され、さらに通紙を続けるとキャリヤ表面
にトナー等が融着し、キャリヤ内の電荷の移動を阻害し
ていることが判った。When the surface of the carrier was observed under an electron microscope in this state, it was confirmed that fine powder of toner was mixed in the carrier, and when the paper was further passed, the toner and the like were fused to the surface of the carrier, and It was found that it hindered the transfer of electric charges of.
【0093】なお、本実施例では大粒径側、小粒径側と
便宜的に粒径の異なる二種類のキャリヤを混合した例で
示したが、三種類以上の粒子を混合することも可能であ
るし、さらには本実施例で述べた大径と小径の両方の粒
度範囲を持つようなブロードな粒度分布を持った粉体を
用いることでもキャリヤ付着防止と帯電性の確保という
効果を得ることが可能である。In the present embodiment, two kinds of carriers having different particle sizes, that is, large particle size and small particle size, are mixed for convenience, but three or more kinds of particles can be mixed. Further, by using the powder having a broad particle size distribution having the particle size ranges of both the large diameter and the small diameter described in this embodiment, the effect of preventing carrier adhesion and ensuring the charging property can be obtained. It is possible.
【0094】〔第3の実施例〕本実施例では、粒度分布
の小粒径側のピークを形成する磁性粒子の飽和磁化、残
留磁化のいずれか、もしくは両方が大粒径側のピークを
形成する磁性粒子のそれよりも大きいことを特徴とす
る。[Third Embodiment] In this embodiment, either or both of saturation magnetization and remanent magnetization of the magnetic particles forming a peak on the small particle size side of the particle size distribution form a peak on the large particle size side. It is characterized in that it is larger than that of the magnetic particles.
【0095】小粒径の粒子と大粒径の粒子を混合して磁
気ブラシを構成した場合に、小さい粒子が磁気拘束力が
弱いために画像形成時に磁気ブラシから脱離して、その
小さい粒子が現像器に混入しで現像性を低下させたり、
ブラシからの脱離によって帯電均一性を低下させてしま
う場合があった。When a magnetic brush is formed by mixing small-sized particles and large-sized particles, the small particles are detached from the magnetic brush at the time of image formation because the magnetic binding force is weak, and the small particles are separated. When mixed in the developing device, the developability is reduced,
The detachment from the brush may reduce the charging uniformity.
【0096】磁気拘束力を表す指標として、磁束内での
磁化を表す飽和磁化の値でも、磁気的な配向の程度をあ
らわす残留磁化の値でもどちらが大きくてもキャリヤ付
着には効果がある。これらのいずれか、または両方が上
記の関係を満足していることが好ましい。As an index showing the magnetic binding force, whichever is larger, the value of the saturation magnetization showing the magnetization in the magnetic flux or the value of the residual magnetization showing the degree of magnetic orientation, is effective for carrier adhesion. It is preferable that either or both of these satisfy the above relationship.
【0097】具体的には、小粒径側のキャリヤとして残
留磁化の大きいハードフェライト、もしくは飽和磁化の
大きい希土類の金属を用いたキャリヤ、または、これら
の磁化の大きい金属粉体を分散して作成した樹脂キャリ
ヤ等を使用することが可能である。Concretely, a hard ferrite having a large residual magnetization or a carrier using a rare earth metal having a large saturation magnetization is used as a carrier on the small grain size side, or these metal powders having a large magnetization are dispersed and prepared. It is possible to use a resin carrier or the like.
【0098】帯電器は、第1の実施例と異なり、他極の
マグネットロールに直接キャリヤを付着させ、マグネッ
トロールを回転駆動させることによって帯電を行なう。
固定マグネットと回転スリーブの組み合せでは、マグネ
ットロールとスリーブ表面の間の距離で磁束密度は低下
し、キャリヤ付着を起こしやすい構成であったが、マグ
ネットロール表面に直接キャリヤを付けることで大幅に
キャリヤ付着を改善することが出来る。本実施例で用い
たマグネットロールは直径15mm、等極8極の磁束パター
ンで、ロール表面での最大磁束密度は1500ガウスであ
る。キャリヤの穂立ちの高さは磁性ブレードで1.5mmに
規制し、マグネットロールと感光体との間のギャップは
コロによって500μmとした。Unlike the first embodiment, the charging device charges the carrier by directly attaching the carrier to the magnet roll of the other pole and driving the magnet roll to rotate.
In the combination of a fixed magnet and a rotating sleeve, the magnetic flux density decreases with the distance between the magnet roll and the sleeve surface, which tends to cause carrier adhesion. Can be improved. The magnet roll used in this example has a magnetic flux pattern of 15 mm in diameter and 8 poles with equal poles, and the maximum magnetic flux density on the roll surface is 1500 gauss. The height of the spikes of the carrier was regulated to 1.5 mm by the magnetic blade, and the gap between the magnet roll and the photoconductor was set to 500 μm by the roller.
【0099】〔実験例1〕粒径15μmで飽和磁化が58Am
2/Kg(emu/g)のフェライトキャリヤに10:1の割合で、
粒径が10μmで飽和磁化が60Am2/Kgのフェライトキャリ
ヤを混合。通紙枚数5000枚で帯電性低下。5000枚でのキ
ャリアの混合比はほとんど変化がなかった。[Experimental Example 1] The particle size is 15 μm and the saturation magnetization is 58 Am.
At a ratio of 10: 1 to 2 / Kg (emu / g) ferrite carrier,
A ferrite carrier with a particle size of 10 μm and saturation magnetization of 60 Am 2 / Kg is mixed. The electrification deteriorates after passing 5000 sheets. There was almost no change in the carrier mixing ratio for 5000 sheets.
【0100】〔実験例2〕粒径15μmで飽和磁化が58Am
2/Kgのフェライトキャリヤに10:1の割合で、粒径が1μ
mで飽和磁化が60Am2/Kgのフェライトキャリヤを混合。
通紙枚数10000枚まで帯電性は良好。但し、5000枚での
キャリアの混合比は20:1に減っており、現像性の低下
によるカブリは見られた。[Experimental Example 2] Saturation magnetization was 58 Am with a particle size of 15 μm.
The particle size is 1μ at a ratio of 10: 1 to 2 / Kg ferrite carrier.
Mix ferrite carrier with saturation magnetization of 60Am2 / Kg at m.
Good electrification up to 10,000 sheets. However, the mixing ratio of the carrier on 5,000 sheets was reduced to 20: 1, and fog was observed due to deterioration in developability.
【0101】〔実験例3〕粒径15μmで飽和磁化が58Am
2/Kgのフェライトキャリヤに10:1の割合で、粒径が1μ
mで飽和磁化が77Am2/Kgのフェライトキャリヤを混合。
通紙枚数10000枚まで帯電性良好。5000枚でのキャリア
の混合比はほとんど変化がなかった。よって現像性低下
によるカブリは見られなかった。[Experimental Example 3] The particle size is 15 μm and the saturation magnetization is 58 Am.
The particle size is 1μ at a ratio of 10: 1 to 2 / Kg ferrite carrier.
saturation magnetization m is a mixture of ferrite carrier of 77Am 2 / Kg.
Good electrification up to 10,000 sheets. There was almost no change in the carrier mixing ratio for 5000 sheets. Therefore, no fog was observed due to a decrease in developability.
【0102】ここでの飽和磁化は(1/4π)×107A/m(1
0kエルステッド)磁場下での測定値である。The saturation magnetization here is (1 / 4π) × 10 7 A / m (1
0k Oersted) This is a measurement value under a magnetic field.
【0103】これらの実験例より、磁性粒子の小粒径側
の飽和磁化が大粒径と同じ60Am2/Kg前後のものでは、粒
径10μmより大きくないとキャリア付着の点で好ましく
はなかったが(実験例1/実験例2)、小粒径側の飽和磁
化を77Am2/Kgとすることで粒径1μmでも付着を防止でき
るようになった。その結果帯電性能が大幅に向上した。From these experimental examples, when the saturation magnetization on the small particle size side of the magnetic particles is around 60 Am 2 / Kg which is the same as the large particle size, it is not preferable in terms of carrier adhesion unless the particle size is larger than 10 μm. There now (experimental example 1 / example 2), the adhesion of the saturation magnetization of the small particle diameter side even particle size 1μm by a 77Am 2 / Kg can be prevented. As a result, the charging performance was significantly improved.
【0104】以上のことより、磁性粒子の小粒径側の飽
和磁化または残留磁化を大粒径のそれよりも大きくする
ことで、磁気ブラシからの小粒径粒子の脱離を防止で
き、それに伴う帯電性の低下と現像性の低下を防止でき
る。From the above, by making the saturation magnetization or remanent magnetization of the magnetic particles on the small particle size side larger than that of the large particle size, it is possible to prevent detachment of the small particle size from the magnetic brush. It is possible to prevent a decrease in chargeability and a decrease in developability that accompany it.
【0105】〔第4の実施例〕本実施例では、粒度分布
の小粒径側のピークを形成する磁性粒子の飽和磁化、残
留磁化のいずれか、もしくは両方が大粒径側のピークを
形成する磁性粒子のそれよりも大きく、かつ小粒径の粒
子の抵抗値が1×100〜1×105Ωcmであることを特徴とす
る。[Fourth Embodiment] In the present embodiment, either the saturation magnetization or the residual magnetization of the magnetic particles forming the peak on the small particle size side of the particle size distribution, or both of them form the peak on the large particle size side. Is smaller than that of the magnetic particles and has a resistance value of 1 × 10 0 to 1 × 10 5 Ωcm.
【0106】従来の問題点であった、ドラムへのキャリ
ア付着は、導電性の粒子を用いた場合には電荷誘導によ
り中抵抗の粒子よりも顕著であった。よって、小粒径粒
子の抵抗値を下げるとドラムに付着してしまい、帯電性
が低下していた。本実施例では小粒径粒子の磁気拘束力
を向上させることで、小粒径粒子の抵抗を下げることを
可能にした。Carrier adhesion to the drum, which has been a problem of the prior art, was more remarkable when conductive particles were used than particles of medium resistance due to charge induction. Therefore, if the resistance value of the small particle size is reduced, the particles adhere to the drum, and the charging property is deteriorated. In this example, the magnetic restraining force of the small-sized particles was improved so that the resistance of the small-sized particles could be lowered.
【0107】本実施例の磁性粒子の構成としては、粒径
15μmで飽和磁化が58Am2/Kg、抵抗値が1×106Ωcmのフ
ェライトキャリヤに10:1の割合で、粒径が1μmで飽和
磁化が77Am2/Kg、抵抗値が1×103Ωcmのフェライトキャ
リヤを混合した。プリンターで画出し評価したところ、
通紙枚数20000枚でカブリは2%以下と良好であった。The constitution of the magnetic particles of this embodiment is as follows:
Ferrite carrier with a saturation magnetization of 58Am 2 / Kg and a resistance of 1 × 10 6 Ωcm at 15μm at a ratio of 10: 1, with a particle size of 1μm and a saturation magnetization of 77Am 2 / Kg and a resistance of 1 × 10 3 Ωcm. Of ferrite carrier. When the image was printed and evaluated on the printer,
Fogging was good at less than 2% after passing 20,000 sheets.
【0108】〔比較例1〕粒径15μmで飽和磁化が58Am
2/Kg、抵抗値が1×106Ωcmのフェライトキャリヤに10:
1の割合で、粒径が1μmで飽和磁化が58Am2/Kg、抵抗値
が1×103Ωcmのフェライトキャリヤを混合して、画出し
評価したところ、通紙枚数1000枚でカブリが3%を越え
ていた。この現象を観察してみると、画像形成時に、抵
抗の低い小粒径の粒子が、ドラムに付着しているのが観
察された。[Comparative Example 1] Saturation magnetization was 58 Am with a particle size of 15 μm.
2 / Kg, 10 × on a ferrite carrier with a resistance of 1 × 10 6 Ωcm:
A ratio of 1 was mixed with a ferrite carrier having a grain size of 1 μm, a saturation magnetization of 58 Am 2 / Kg, and a resistance value of 1 × 10 3 Ωcm, and the image was evaluated. % Was exceeded. When this phenomenon was observed, it was observed that particles having a low resistance and a small particle size adhered to the drum during image formation.
【0109】〔比較例2〕粒径15μmで飽和磁化が58Am
2/Kg、抵抗値が1×106Ωcmのフェライトキャリヤに10:
1の割合で、粒径が1μmで飽和磁化が77Am2/Kg、抵抗値
が1×106Ωcmのフェライトキャリヤを混合して、画出し
評価したところ、通紙枚数10000枚でカブリが3%を越え
た。この現象を観察してみると、画像形成時に、抵抗の
低い小粒径の粒子が、ドラムに付着するのはほとんど無
かったが画像形成時にブラシの混入したトナーが、キャ
リアの導電経路を阻害しているのが観察できた。[Comparative Example 2] Saturation magnetization was 58 Am with a particle size of 15 μm.
2 / Kg, 10 × on a ferrite carrier with a resistance of 1 × 10 6 Ωcm:
1 ratio, particle size saturation magnetization 1μm is 77Am 2 / Kg, and resistance by mixing ferrite carrier 1 × 10 6 [Omega] cm, were evaluated image reproduction, fog at 10,000 number of fed sheets 3 Exceeded%. When observing this phenomenon, particles of small particle size with low resistance hardly adhered to the drum during image formation, but the toner mixed with the brush during image formation hindered the conductive path of the carrier. I was able to observe it.
【0110】本実施例の、小粒径側のキャリヤとして残
留磁化の大きいハードフェライトを水素還元して抵抗値
を1×104Ωcm程度以下まで下げたもの、もしくは飽和磁
化の大きい希土類の金属を用いたキャリヤ、または、こ
れらの磁化の大きい金属粉体を分散して作成した樹脂キ
ャリヤ等を使用することが可能である。In the present embodiment, as a carrier on the small grain size side, hard ferrite having a large residual magnetization is hydrogen-reduced to reduce the resistance value to about 1 × 10 4 Ωcm or less, or a rare earth metal having a large saturation magnetization is used. It is possible to use the carrier used, or a resin carrier prepared by dispersing these metal powders having large magnetization.
【0111】以上のことより、磁性粒子の小粒径側の飽
和磁化または残留磁化を大粒径のそれよりも大きくし、
かつ小粒径の粒子の抵抗値を1×100〜1×105Ωcmとする
ことで、小粒径粒子のドラムへの付着を防止でき、か
つ、耐久での帯電性の低下と現像性の低下を防止でき
る。From the above, the saturation magnetization or remanent magnetization on the small particle size side of the magnetic particles is made larger than that of the large particle size,
Moreover, by setting the resistance value of the small particle size to 1 × 10 0 to 1 × 10 5 Ωcm, it is possible to prevent the small particle size from adhering to the drum, and to reduce the charging property and developability during the durability. Can be prevented.
【0112】〔第5の実施例〕また、本実施例では感光
体表面に位置する電荷注入層の表面エネルギーを低下さ
せ、特に小粒径の磁性粒子が感光体との間の分子間力で
離脱するキャリヤ付着を抑制するために滑材粒子として
テフロン粒子を分散した。本実施例では0.3μmの粒径の
PTFE粒子(デュポン社製商品名テフロン)をバインダー
との重量比で30%分散した。[Fifth Embodiment] In this embodiment, the surface energy of the charge injection layer located on the surface of the photoconductor is lowered, and particularly, the magnetic particles having a small particle size are generated by the intermolecular force between the photoconductor and the photoconductor. Teflon particles were dispersed as lubricant particles in order to suppress the adherence of detached carriers. In this example, the particle size of 0.3 μm
PTFE particles (Teflon, trade name, manufactured by DuPont) were dispersed by 30% in weight ratio with the binder.
【0113】通常、感光体に潤滑性を付与するために電
荷輸送層にテフロン粒子等を分散する場合は、電荷輸送
層の膜厚が20μm程度と厚く、画像露光を散乱する恐れ
があるため多量に添加することが難しいが、電荷注入層
は2〜3μmと薄膜として形成するため電荷輸送層の場合
とは異なり、光の散乱をあまり気にする必要がなく、30
%程度まで分散させることが可能である。Usually, when Teflon particles or the like are dispersed in the charge transport layer in order to impart lubricity to the photoconductor, the charge transport layer has a large film thickness of about 20 μm, which may scatter image exposure, so that a large amount of it may occur. However, unlike the case of the charge transport layer, the charge injection layer is formed as a thin film with a thickness of 2 to 3 μm, so there is no need to worry about light scattering.
It is possible to disperse up to about%.
【0114】本実施例では、電荷注入層に滑材粒子とし
てテフロン粒子を分散させているので、電荷注入層の表
面エネルギーを下げ、粒子の離型性が向上しているた
め、滑材粒子を分散しない場合に比べて、小径キャリア
が感光体表面に付着することが格段に少なくなった。In this embodiment, since Teflon particles are dispersed as lubricant particles in the charge injection layer, the surface energy of the charge injection layer is lowered and the releasability of the particles is improved. As compared with the case where the carrier was not dispersed, the small-diameter carrier was remarkably less attached to the surface of the photoconductor.
【0115】具体的には、磁性粒子として15μmのフェ
ライトと1μmのマグネタイトを20:1の割合で混合させ
た磁気ブラシに、滑材粒子を分散させないドラムを組み
合せて画像を1000枚通紙後に粒子の比率を測定したとこ
ろ、1μmのマグネタイトが1000:1にまで減少してお
り、帯電特性の低下によるカブリも増加していた。とこ
ろが、同じ混合キャリアに上述のテフロンを分散させた
ドラムを組み合わせて画像を1000枚通紙したところ、帯
電性も良好で、粒子の比率の変化もほとんど無かった。Specifically, a magnetic brush in which 15 μm ferrite and 1 μm magnetite were mixed at a ratio of 20: 1 as magnetic particles was combined with a drum in which lubricant particles were not dispersed, and 1,000 sheets of images were passed after the paper was passed. The ratio of 1 μm magnetite was reduced to 1000: 1, and fog was also increased due to deterioration of the charging property. However, when 1000 images were passed by combining the same mixed carrier with the above-mentioned drum in which Teflon was dispersed, the chargeability was good and there was almost no change in the particle ratio.
【0116】[0116]
【発明の効果】以上述べたように電荷注入層を持つ感光
体に、必要とされる感光体表面電位に相当するDC電圧を
印加した中抵抗磁気ブラシを当接させて帯電を行なう電
子写真装置の帯電装置において、中抵抗磁気ブラシが、
抵抗値を調整した磁性粒子をマグネットで拘束したもの
であり、磁性粒子が電気的、磁気的、粒径においてその
いずれかが異なった複数種類の粒子を混合することによ
って、単一の粒子では得られなかった各種の効果を得る
ことが出来るようになった。As described above, an electrophotographic apparatus for charging a photoreceptor having a charge injection layer with a medium resistance magnetic brush to which a DC voltage corresponding to the required photoreceptor surface potential is applied is brought into contact. In the charging device of, the medium resistance magnetic brush is
A magnetic particle whose resistance value is adjusted is bound by a magnet.By mixing multiple types of particles, each of which has different electrical, magnetic, or particle sizes, a single particle can be obtained. You can now obtain various effects that were not possible.
【0117】具体的には、中抵抗の粒子に低抵抗の粒子
を混合することによって帯電部材としてのマクロな抵抗
値を中抵抗領域にして感光体上のピンホールに帯電電流
が集中することを防止しながら、低抵抗粒子から感光体
に激しく電荷を注入することによって帯電性能を向上さ
せることが出来るようになった。Specifically, by mixing particles of medium resistance with particles of low resistance, the macro resistance value of the charging member is set to the medium resistance region, and the charging current is concentrated in the pinholes on the photoconductor. While preventing, it became possible to improve the charging performance by violently injecting charges into the photoconductor from the low resistance particles.
【0118】また、粒径の小さい粒子を存在させて複数
の粒度ピークを持つような磁性粒子を帯電部材として使
用することによって、トナー等の絶縁物が混入した場合
にも導電経路を維持し、耐久通紙による帯電性の劣化を
防止することが可能になった。この際、大粒径の粒子は
小粒径の粒子を拘束することによって、キャリヤ付着を
最小限に抑えることができる。By using magnetic particles having a small particle size and having a plurality of particle size peaks as a charging member, the conductive path is maintained even when an insulator such as toner is mixed. It has become possible to prevent the deterioration of the charging property due to durable paper passing. At this time, the large particle size restrains the small particle size so that the carrier adhesion can be minimized.
【0119】また、キャリヤ付着を起こしやすい小粒径
の粒子等には飽和磁化、残留磁化の大きい、磁気特性の
異なった材料を用いることによって選択的なキャリヤ付
着を防止し、帯電部材の耐久性を向上させることが出来
るようになった。Further, by using materials having large saturation magnetization and remanent magnetization and different magnetic characteristics for particles having a small particle diameter that easily cause carrier adhesion, selective carrier adhesion is prevented, and durability of the charging member is improved. Can be improved.
【0120】また、電荷注入層に潤滑性を付与すること
によって、具体的には表面エネルギーの小さいテフロン
粒子等を分散することによって、帯電部材として磁気ブ
ラシを用いた場合に顕著に発生するキャリヤ付着を防止
することが出来るようになった。Further, by imparting lubricity to the charge injection layer, specifically, by dispersing Teflon particles having a small surface energy, carrier adhesion that remarkably occurs when a magnetic brush is used as a charging member is achieved. Can be prevented.
【0121】特に、本発明のように複数の種類のキャリ
ヤを混合し、電気的、粒度分布的、磁気特性的にキャリ
ヤ付着の発生しやすい特性を持つ粒子を使用しなければ
ならない場合には電荷注入層にテフロン等の滑材粒子を
分散することによってより大きな効果を得ることが出来
るようになった。In particular, when a plurality of types of carriers are mixed as in the present invention, and particles having electric, particle size distribution, and magnetic characteristics that easily cause carrier adhesion are used, the charge is By dispersing lubricant particles such as Teflon in the injection layer, a greater effect can be obtained.
【図1】本発明における電子写真方式のプリンターの構
成を表す図。FIG. 1 is a diagram illustrating a configuration of an electrophotographic printer according to the present invention.
【図2】本発明の構成に基づくピンホールリークの防止
機構を表す概念図。FIG. 2 is a conceptual diagram showing a pinhole leak prevention mechanism based on the configuration of the present invention.
【図3】磁性粒子に低抵抗粒子を添加した場合の帯電性
を表す図。FIG. 3 is a diagram showing chargeability when low resistance particles are added to magnetic particles.
【図4】粒径の異なる磁性粒子によって構成された帯電
部材にトナーが混入した場合の導電経路を表す図。FIG. 4 is a diagram showing a conductive path when toner is mixed in a charging member composed of magnetic particles having different particle diameters.
1 感光ドラム 2 接触帯電部材 3 露光手段 4 現像器 5 転写ローラ 6 転写材 7 クリーニングブレード 8 熱定着ローラ 21 接触帯電部材のキャリヤ層厚を規制するブレード 22 固定マグネットロール 23 導電性磁性粒子(キャリヤ) DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Contact charging member 3 Exposure means 4 Developing device 5 Transfer roller 6 Transfer material 7 Cleaning blade 8 Thermal fixing roller 21 Blade for regulating the carrier layer thickness of the contact charging member 22 Fixed magnet roll 23 Conductive magnetic particles (carrier)
Claims (21)
持つ材質で構成された電荷注入層であるような感光体に
対して導電性磁性粒子を用いた接触帯電部材に電圧を印
加し、これを当接させて帯電を行なう帯電装置におい
て、 上記導電性磁性粒子が異なった特性を持つ複数の種類の
粒子を混合されてなることを特徴とする帯電装置。1. A contact charging member using conductive magnetic particles for a photoreceptor, the surface of which is a charge injection layer made of a material having a resistance value of 1 × 10 8 to 1 × 10 15 Ωcm. A charging device for charging by applying a voltage and bringing them into contact with each other, wherein the conductive magnetic particles are a mixture of a plurality of types of particles having different characteristics.
数種類の粒子が混合されたものであることを特徴とする
請求項1の帯電装置。2. The charging device according to claim 1, wherein the magnetic particles are a mixture of plural kinds of particles having different electric resistance values.
×105Ωcmの体積抵抗値を持つ粒子群と、1×105以上の
体積抵抗値を持つ粒子群を含むことを特徴とする請求項
2の帯電装置。3. The magnetic particles are at least 1 × 10 0 -1.
The charging device according to claim 2, comprising a particle group having a volume resistance value of × 10 5 Ωcm and a particle group having a volume resistance value of 1 × 10 5 or more.
める重量が帯電部材を構成する総磁性粒子重量の半分以
下であることを特徴とする請求項3の帯電装置。4. 1 × 10 0 ~1 × 10 5 charging apparatus according to claim 3, wherein the weight occupied particles in the range of Ωcm is less than half of the total magnetic particle weight constituting the charging member.
つ以上のピークを有することを特徴とする請求項2の帯
電装置。5. The charging device according to claim 2, wherein the particle size distribution of the magnetic particles has at least two peaks.
つのピークが30μm以下であることを特徴とする請求項
5の帯電装置。6. The charging device according to claim 5, wherein at least one peak of the particle size distribution of the magnetic particles is 30 μm or less.
布のピークの小粒径側をなす粒子群の少なくとも一つの
体積抵抗値が、大粒径側のピークをなす粒子群の体積抵
抗値よりも低いことを特徴とする請求項5の帯電装置。7. The volume resistance value of at least one particle group forming a peak on the large particle size side of at least one particle group forming the small particle size side of the peak of the particle size distribution of the magnetic particles among the magnetic particles. The charging device according to claim 5, wherein the charging device is lower than the charging device.
布のピークの小粒径側をなす粒子群の少なくとも一つの
体積抵抗値が1×100〜1×105Ωcmであることを特徴とす
る請求項5の帯電装置。8. The volume resistance value of at least one of the particles forming the small particle size side of the peak of the particle size distribution of the magnetic particles is 1 × 10 0 to 1 × 10 5 Ωcm. The charging device according to claim 5.
種類の粒子によって構成されていることを特徴とする請
求項1の帯電装置。9. The charging device according to claim 1, wherein the magnetic particles are composed of a plurality of types of particles having different magnetic properties.
二つ以上のピークを有することを特徴とする請求項9の
帯電装置。10. The charging device according to claim 9, wherein the particle size distribution of the magnetic particles has at least two peaks.
一つのピークが30μm以下であることを特徴とする請求
項10の帯電装置。11. The charging device according to claim 10, wherein at least one peak of the particle size distribution of the magnetic particles is 30 μm or less.
径側のピークを形成する磁性粒子の飽和磁化、残留磁化
のいずれか、もしくは両方が大粒径側のピークを形成す
る磁性粒子のそれよりも大きいことを特徴とする請求項
10の帯電装置。12. Among the above magnetic particles, one of the saturation magnetization and the residual magnetization of a magnetic particle forming a peak on the small particle size side of the particle size distribution, or both of the magnetic particles forming a peak on the large particle size side. The charging device according to claim 10, wherein the charging device is larger than that.
分布のピークの小粒径側をなす粒子群の少なくとも一つ
の体積抵抗値が1×100〜1×105Ωcmであることを特徴と
する請求項12の帯電装置。13. The magnetic particles according to claim 1, wherein at least one of the particle groups forming the small particle size side of the peak of the particle size distribution of the magnetic particles has a volume resistance value of 1 × 10 0 to 1 × 10 5 Ωcm. The charging device according to claim 12.
のバインダーに、導電性微粒子を分散させてなることを
特徴とする請求項1の帯電装置。14. The charging device according to claim 1, wherein the charge injection layer is formed by dispersing conductive fine particles in a light-transmitting and insulating binder.
徴とする請求項14の帯電装置。15. The charging device according to claim 14, wherein the conductive fine particles are SnO 2 .
ていることを特徴とする請求項1の帯電装置。16. The charging device according to claim 1, wherein a lubricant powder is dispersed in the charge injection layer.
レフィン系樹脂、シリコーン系樹脂のいずれかであるこ
とを特徴とする請求項16の帯電装置。17. The charging device according to claim 16, wherein the lubricant powder is any one of a fluorine resin, a polyolefin resin, and a silicone resin.
周速差をもって移動することを特徴とする請求項1の帯
電装置。18. The charging device according to claim 1, wherein the contact charging member moves with a peripheral speed difference with respect to the body to be charged.
像形成装置に用いられ、この画像形成装置が、接触転写
手段を有することを特徴とする請求項1の帯電装置。19. The charging device according to claim 1, wherein the charging device is used in an image forming device for performing reversal development, and the image forming device has a contact transfer means.
とマグネタイトを混合したものであることを特徴とする
請求項1の帯電装置。20. The charging device according to claim 1, wherein the magnetic particles are a mixture of at least ferrite and magnetite.
のピークが30μm以下でかつマグネタイトであることを
特徴とする請求項1の帯電装置。21. The charging device according to claim 1, wherein at least one peak of the particle size distribution of the magnetic particles is 30 μm or less and is magnetite.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6140180A JPH086353A (en) | 1994-06-22 | 1994-06-22 | Charging device |
US08/492,526 US5579095A (en) | 1994-06-22 | 1995-06-20 | Charging device |
EP95304338A EP0689101B1 (en) | 1994-06-22 | 1995-06-21 | A charging device |
DE69523988T DE69523988T2 (en) | 1994-06-22 | 1995-06-21 | charging |
KR1019950016842A KR0151324B1 (en) | 1994-06-22 | 1995-06-22 | Charging device |
CN95107675A CN1073720C (en) | 1994-06-22 | 1995-06-22 | A charging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6140180A JPH086353A (en) | 1994-06-22 | 1994-06-22 | Charging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH086353A true JPH086353A (en) | 1996-01-12 |
Family
ID=15262763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6140180A Withdrawn JPH086353A (en) | 1994-06-22 | 1994-06-22 | Charging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH086353A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5659852A (en) * | 1994-10-31 | 1997-08-19 | Canon Kabushiki Kaisha | Image forming method, image forming apparatus and process cartridge |
JPH09288400A (en) * | 1996-04-23 | 1997-11-04 | Canon Inc | Contact electrifying member and contact electrifying device |
JPH09288401A (en) * | 1996-04-23 | 1997-11-04 | Canon Inc | Contact electrifying member and contact electrifying device |
US6576387B2 (en) | 2000-11-15 | 2003-06-10 | Canon Kabushiki Kaisha | Image-forming apparatus and image-forming method |
US6645688B2 (en) | 2000-11-15 | 2003-11-11 | Canon Kabushiki Kaisha | Image-forming apparatus and image-forming method |
WO2006019190A1 (en) | 2004-08-19 | 2006-02-23 | Canon Kabushiki Kaisha | Method for producing electrophotographic photosensitive body for negative charging, electrophotographic photosensitive body for negative charging, and electrophotographic system employing it |
-
1994
- 1994-06-22 JP JP6140180A patent/JPH086353A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5659852A (en) * | 1994-10-31 | 1997-08-19 | Canon Kabushiki Kaisha | Image forming method, image forming apparatus and process cartridge |
JPH09288400A (en) * | 1996-04-23 | 1997-11-04 | Canon Inc | Contact electrifying member and contact electrifying device |
JPH09288401A (en) * | 1996-04-23 | 1997-11-04 | Canon Inc | Contact electrifying member and contact electrifying device |
US6576387B2 (en) | 2000-11-15 | 2003-06-10 | Canon Kabushiki Kaisha | Image-forming apparatus and image-forming method |
US6645688B2 (en) | 2000-11-15 | 2003-11-11 | Canon Kabushiki Kaisha | Image-forming apparatus and image-forming method |
WO2006019190A1 (en) | 2004-08-19 | 2006-02-23 | Canon Kabushiki Kaisha | Method for producing electrophotographic photosensitive body for negative charging, electrophotographic photosensitive body for negative charging, and electrophotographic system employing it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5659852A (en) | Image forming method, image forming apparatus and process cartridge | |
EP0709746B1 (en) | Image forming method, image forming apparatus, process cartridge and use of developer material for said method | |
JPH086353A (en) | Charging device | |
JPH08106200A (en) | Electrostatic charging device and image forming device | |
JP3219926B2 (en) | Magnetic carrier for electrostatic latent image developer, electrostatic latent image developer, and image forming method | |
JP3327689B2 (en) | Electrophotographic apparatus and image forming method | |
US5952101A (en) | Granular charging agent and charging method and image forming method using the same | |
JP3313942B2 (en) | Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method | |
JP3069946B2 (en) | Image forming method, image forming apparatus, and process cartridge | |
JP3067064B2 (en) | Contact charging particles, method of charging object surface, method of charging photoreceptor, and image forming apparatus | |
JPH08339113A (en) | Electrifying device | |
JP3181005B2 (en) | Image forming device | |
JPH086355A (en) | Electrophotographic device and image forming method | |
JPH08211741A (en) | Image forming device and process cartridge | |
JP3347623B2 (en) | Charging device and electrophotographic device | |
JPH06258918A (en) | Magnetic brush type electrifying device | |
JP3058531B2 (en) | Contact charging particles and charging method thereof | |
JP3281139B2 (en) | Charging device | |
JP3164717B2 (en) | Image forming device | |
JP3193228B2 (en) | Contact charging particles used in particle charging method and image forming method | |
JPH0784439A (en) | Image forming method | |
JP3164705B2 (en) | Image forming device | |
JPH09166905A (en) | Electrifying device and electrophotographic device | |
JPH0667537A (en) | Image forming method and conductive magnetic resin carrier for developer | |
JP2001125369A (en) | Developing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010904 |