WO2006019190A1 - Method for producing electrophotographic photosensitive body for negative charging, electrophotographic photosensitive body for negative charging, and electrophotographic system employing it - Google Patents

Method for producing electrophotographic photosensitive body for negative charging, electrophotographic photosensitive body for negative charging, and electrophotographic system employing it Download PDF

Info

Publication number
WO2006019190A1
WO2006019190A1 PCT/JP2005/015387 JP2005015387W WO2006019190A1 WO 2006019190 A1 WO2006019190 A1 WO 2006019190A1 JP 2005015387 W JP2005015387 W JP 2005015387W WO 2006019190 A1 WO2006019190 A1 WO 2006019190A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrophotographic photosensitive
photosensitive member
producing
negatively charged
Prior art date
Application number
PCT/JP2005/015387
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Ohira
Satoshi Kojima
Makoto Aoki
Kazuto Hosoi
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to EP05774924.4A priority Critical patent/EP1783557B1/en
Priority to US11/340,729 priority patent/US7229730B2/en
Publication of WO2006019190A1 publication Critical patent/WO2006019190A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/005Materials for treating the recording members, e.g. for cleaning, reactivating, polishing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • G03G5/08228Silicon-based comprising one or two silicon based layers at least one with varying composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/0825Silicon-based comprising five or six silicon-based layers
    • G03G5/08257Silicon-based comprising five or six silicon-based layers at least one with varying composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material

Definitions

  • Patent application title METHOD FOR PRODUCING ELECTROPHOTOGRAPHIC PHOTOSENSITIVE ELECTRODE FOR NEGATIVELY CHARGED, AND ELECTROPHOTOGRAPHIC PHOTOSENSITIVE FOR NEGATIVELY CHARGED ELECTROGRAPH
  • the present invention relates to a method for producing a negatively charged electrophotographic photosensitive member that has few image defects and can maintain good image formation for a long period of time, and a negatively charged electrophotographic photosensitive member, and an electrophotographic apparatus. .
  • Materials that form the photoconductive layer in solid-state imaging devices or electrophotographic photoreceptors and document readers in the field of image formation have high sensitivity and a high SN ratio [photocurrent (Ip) / dark current (Id)]. It has absorption spectrum characteristics that match the spectral characteristics of the electromagnetic waves that it emits, has fast photoresponsiveness, has the desired dark resistance, is non-polluting to the human body during use, and in solid-state imaging devices However, characteristics such as the ability to easily process afterimages within a predetermined time are required. In the case of electrophotographic photoreceptors used in offices as office machines, the above-mentioned pollution-free property is an important point.
  • amorphous silicon hereinafter referred to as “a-S ij” in which dangling bonds are modified with monovalent elements such as hydrogen and halogen atoms. Has been applied.
  • a sputtering method and a method of decomposing a source gas by heat Many methods are known, such as (thermal CVD method), a method of decomposing source gas from light (photo CVD method), and a method of decomposing source gas by plasma (plasma CVD method).
  • the plasma CVD method that is, a method of forming a deposited film on a conductive substrate by decomposing a source gas by a glow discharge such as direct current, high frequency, or microwave is used in the field of formation methods of electrophotographic photoreceptors and the like.
  • a glow discharge such as direct current, high frequency, or microwave
  • a-Si films have the property that, when dust of the order of several ⁇ m adheres to the substrate surface, abnormal growth occurs with the dust as a nucleus during film formation, and protrusions grow. ing. This protrusion causes a defect on the image.
  • a technique for flattening the top of the protrusion on the surface of the photoreceptor after film formation by polishing has also been proposed (see, for example, JP-A-2001-318480).
  • JP-A-2001-318480 a technique for flattening the top of the protrusion on the surface of the photoreceptor after film formation by polishing has also been proposed (see, for example, JP-A-2001-318480).
  • Japanese Patent Laid-Open No. 2001-318480 an electrophotographic photosensitive member is held and rotated, and the polishing tape is fed while the polishing tape wound around an elastic roller and the surface of the photosensitive member are in pressure contact.
  • FIG. 1 shows an example of the protrusion.
  • the protrusion (111) has a conical shape starting from the dust (110), and has a low resistance due to the large number of localized levels at the interface (112) between the normal deposit and the protrusion.
  • the charged charge at the interface It has the property of passing through (1 12) to the substrate side. For this reason, the projected portion appears as a white point on the solid black image on the image (in the case of reversal development, it appears as a black dot on the solid white image).
  • These so-called “pochi” image defects have not been treated as defective even if they existed on several A3 sheets depending on the size, but when they are installed in color copiers. A further quality improvement is required, A further quality improvement is required, A
  • the cause of the protrusion is not only the dust attached to the substrate.
  • the film formation time is several hours to several tens of hours because the film thickness is very large, from several ⁇ to several tens of zm.
  • the a-Si film is deposited not only on the substrate but also on the film forming furnace wall and the structure in the film forming furnace.
  • the deposits deposited on these furnace walls and structures are not film-like deposits deposited on the substrate, but may be powdery deposits. In some cases, peeling occurred in the film. Even if a slight amount of peeling occurs during film formation, it becomes dust and adheres to the surface of the photoconductor during deposition.
  • Protrusions which are abnormally grown parts, are generated starting from this. Therefore, in order to maintain a high yield, polishing is performed to flatten abnormally grown protrusions, and an upper blocking layer having a blocking ability against charged charges is laminated so as to cover the flattened protrusions.
  • polishing is performed to flatten abnormally grown protrusions, and an upper blocking layer having a blocking ability against charged charges is laminated so as to cover the flattened protrusions.
  • it has been effective to prevent the phenomenon that the charged charges slip through the protrusions and the interface between the normal part and the protrusions (see, for example, JP-A-2004-133396).
  • a corona charging method using corona charging a roller charging method in which charging is performed by direct discharge using a conductive roller, magnetic particles, etc.
  • the injection charging method does not actively use discharge, but directly injects charge from the part in contact with the surface of the photoconductor. Hateful.
  • the contact charging method which is a contact charging method, is a voltage control type, while the corona charging method is a current control type.
  • the charging performance can be improved by bringing the contact charging member of magnetic brush-like particles made of a magnetic material and magnetic particles into contact with the surface of the photoreceptor (see, for example, Japanese Patent Application Laid-Open No. 08-6353). . Disclosure of the invention
  • Such a conventional method for producing an electrophotographic photosensitive member makes it possible to obtain an electrophotographic photosensitive member having practical characteristics and uniformity to some extent.
  • the injection charging method has various advantages.
  • the magnetic brush directly rubs the surface of the photosensitive member, so that the upper blocking layer
  • the present inventors have produced an electrophotographic photosensitive member for negative charging having a photoconductive layer made of a non-single crystal material as described below. What is the effect of reducing adhesion and image defects? Thus, the inventors have found that the photoreceptor can be produced stably and inexpensively without causing any adverse effects, and the present invention has been completed.
  • an electrophotographic photosensitive member for negative charging including a layer made of a non-single crystal material
  • a cylindrical substrate having a conductive surface is installed in a vacuum-tight film-forming furnace connected to an evacuation means and equipped with a raw material gas supply means. And a base layer on which the first layer is laminated as a second step, and a step of depositing a photoconductive layer made of at least a non-single crystal material as the first layer on the substrate.
  • the substrate after completion of the third step is placed in a vacuum-tight film-forming furnace equipped with exhaust means and source gas supply means, and at least one periodic table group 13 element is installed.
  • the present invention also relates to a method for producing a negatively charged electrophotographic photoreceptor, comprising a step of laminating a layer made of a non-single crystal material as a second layer.
  • an upper blocking layer containing at least one group 13 element of the periodic table in the first layer in terms of improving electrical characteristics, and the upper blocking layer. It is more preferable from the viewpoint of suppression of potential unevenness that the composition ratio of carbon to silicon constituting is increased toward the surface side.
  • the content of the Group 13 element in the periodic table with respect to the total number of constituent elements contained in the upper blocking layer is 100 atoms! ) In terms of electrical characteristics, it is desirable to form it so that it is pm or more and 30000 atoms pp m or less. That's right.
  • a protective layer containing at least silicon is formed on the outermost surface of the first layer in terms of scratch resistance in the step of removing the top of the protrusion.
  • the step of removing at least the top of the protrusion on the surface of the first layer is a polishing process.
  • the heating setting temperature of the substrate may be changed between the third step and the fourth step, and further, by performing a process of contacting with water between the third step and the fourth step. Then, the adhesion when the second layer is laminated is improved, and the latitude for film peeling is widened.
  • the content of the Group 13 element in the periodic table in all the gases introduced is 2.0 X l (T 4 mol% or more, 2.0 X l (T 2 mol% or less).
  • B 2 H 6 is more preferable in terms of handling as a gas containing Group 13 elements of the periodic table in the fourth step.
  • the present invention also provides a photoconductive layer made of at least a non-single crystal material, a top blocking layer made of a non-single crystal material containing carbon and silicon, and a protective layer on a cylindrical substrate having at least a conductive surface.
  • an abnormally grown portion in the first layer is a second layer formed by laminating a second layer made of at least a non-single crystal material on the first layer.
  • the negatively charged electrophotographic photosensitive member is characterized in that the content distribution of the Group 13 element of the periodic table has a peak in the interface region between the first layer and the second layer. Further, it is more preferable from the viewpoint of potential unevenness that the composition ratio of carbon to silicon constituting the upper blocking layer increases toward the surface side of the photoreceptor.
  • the periphery in the interface region between the first layer and the second layer is 5.0 ⁇ 10 17 pieces / cm 3 or more and 1.0 ⁇ 10 21 pieces / cm 3 or less.
  • an interface having a blocking ability against charged charges is formed on the protrusion surface from which the top of the head has been removed.
  • the plasma processing step to be performed it is not necessary to stack the upper blocking layer as the second layer, and the adhesion can be improved while maintaining the effect of reducing image defects.
  • the film formation process has been simplified, and the overall cost has been reduced.
  • potential unevenness could be suppressed by increasing the composition ratio of carbon to silicon constituting the upper blocking layer laminated as the first layer toward the surface side.
  • FIG. 1 is a schematic cross-sectional view showing an example of a protrusion of an electrophotographic photosensitive member.
  • FIG. 2 is a schematic cross-sectional view showing an example of the protrusion of the electrophotographic photosensitive member of the present invention after polishing the surface of the first layer.
  • Fig. 3 is a schematic cross-sectional view showing the electrophotographic photosensitive member laminated up to the first layer used in the experimental example.
  • FIG. 4 is a schematic cross section showing an example of a negatively charged electrophotographic photosensitive member of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an RF plasma C V D a-Si photoconductor film forming apparatus.
  • FIG. 6 is a schematic cross-sectional view of the surface polishing apparatus used in the present invention.
  • FIG. 7 is a schematic cross-sectional view of the water cleaning apparatus used in the present invention.
  • FIG. 8 is a schematic cross-sectional view showing an example of the electrophotographic apparatus of the present invention.
  • FIG. 9 is a schematic diagram showing the content distribution of Group 13 element (boron atom) of the periodic table in the negatively charged electrophotographic photosensitive member of the present invention.
  • l 0 is a schematic diagram showing a change in the composition ratio of carbon to silicon constituting the upper blocking layer of the present invention.
  • the present inventors have studied improvement of image defects caused by protrusions, which is an important problem in a photoreceptor made of a non-single crystal material, particularly an a-Si photoreceptor. In particular, efforts have been made to prevent image defects caused by protrusions caused by film peeling from structures in the reactor wall during the formation of the deposited film. ,
  • Protrusions become image defects such as spots, because there are many localized levels at the protrusions that are abnormally grown, and at the interface between the protrusions and the normal deposition part of the deposited film. This is because the charged charges escape to the substrate side through the protrusions and the interface.
  • the protrusions generated by the dust attached during film formation grow not from the substrate but from the middle of the deposited film, if the surface side is covered with a part that has some blocking ability, Intrusion, and even if protrusions are present, they will not cause image defects.
  • FIG. 2 after the first layer (202) is stacked, the top portion of the protrusion (21 1) is removed and planarized, and then a portion having a blocking ability is formed. . .
  • the present inventors have conducted intensive studies, and without forming an upper blocking layer as the second layer, an interface having a blocking ability against charged charges is formed between the first layer and the second layer.
  • the upper blocking layer (second layer) can be stacked by forming an interface on the projection surface that has the ability to block charged charges.
  • the present inventors have made various electrophotographic processes and various photoconductor manufacturing conditions in order to achieve higher image quality and higher durability for the combination of an electrophotographic apparatus and an electrophotographic photoconductor. We studied in combination.
  • the contact charging method using a magnetic brush charger is a voltage control method, so that the width of the surface potential of the electrophotographic photosensitive member is reduced. It became possible, and it was found that the potential unevenness became inconspicuous. Therefore, it has been found that the combination with the electrophotographic photosensitive member according to the present invention can achieve both high level of suppression of potential unevenness and high durability without peeling of the layer. .
  • Fig. 4 shows an example of a negatively charged electrophotographic photosensitive member according to the present invention.
  • Fig. 9 shows the content distribution of Group 13 elements (boron atoms) in the periodic table of the negatively charged electrophotographic photosensitive member of the present invention.
  • FIG. 10 is a schematic diagram showing a change in the composition ratio of carbon to silicon constituting the upper blocking layer of the present invention.
  • the electrophotographic photosensitive member of the present invention is, for example, a base (401) made of a conductive material such as A'l, stainless steel, etc., connected to the exhaust means as a first step, and can be vacuum-tight equipped with a raw material gas supply means. Installing in a film-forming furnace, decomposing the source gas with high-frequency power, and depositing a photoconductive layer (405) made of at least a non-single crystal material on the substrate as a first layer (402); As a second step, a step of taking out the substrate on which the first layer (402) is laminated and from a film forming furnace, and as a third step, the first layer laminated in the first step is used.
  • a base (401) made of a conductive material such as A'l, stainless steel, etc.
  • the base after finishing the third step is installed at least one type.
  • at least the source gas is decomposed by high-frequency power, and a layer made of a non-single-crystal material is stacked on the first layer as the second layer (403).
  • the first layer (402) includes a photoconductive layer (405), and a-Si is used as the material of the photoconductive layer (405). Further, it is desirable to further provide a lower blocking layer (404) and an upper blocking layer (406) on the first layer (402) in order to improve the electrical characteristics.
  • the upper blocking layer (406) has a rectifying property by selectively containing a group 13 element from the viewpoint of improving electrical characteristics.
  • a protective layer (407) made of at least a non-single crystal material can be laminated on the first layer (402), whereby the top of the protrusion (41 1) performed in the third step.
  • the process of removing the top of the head can be performed without damaging the surface of the photoreceptor.
  • the second layer (403) is a surface protective layer made of at least a non-single crystal material, and is a silicon carbide layer containing at least carbon atoms or silicon atoms, or a non-carbon material containing carbon atoms as a base material.
  • Single crystal material for example, a-C (H).
  • This surface protective layer can improve the abrasion resistance and scratch resistance of the electrophotographic photosensitive member. .
  • the abnormally grown portion in the first layer does not reach the second layer, and as shown in FIG.
  • the composition ratio of carbon to silicon constituting the layer (406) increases toward the surface side, and as shown in FIG. 9, in the interface region (413) between the first layer and the second layer.
  • the content distribution of group 13 elements of the periodic table has a peak.
  • the peak is preferably 5.0 ⁇ 10 17 pieces / cm 3 or more and 1.0 ⁇ 10 21 pieces / cm 3 or less from the viewpoint of image defect reduction and electrical characteristics.
  • This value can be obtained by using a composition analyzer such as SIMS (secondary ion mass spectrometry).
  • SIMS secondary ion mass spectrometry
  • the shape of the substrate (401) shown in FIG. 4 may be as desired according to the driving method of the electrophotographic photosensitive member.
  • the substrate is usually 0.5 mm or more for the cylindrical shape and ⁇ ⁇ -m or more for the plate shape and endless belt shape in terms of mechanical strength in terms of manufacturing and handling.
  • conductive materials such as A1 and stainless steel are generally used.
  • a material imparted with conductivity by vapor deposition on the surface on which the layer is formed can also be used.
  • examples of the conductive material include metals such as Cr, Mo, Au, In, Nb, Te, V, Ti, PPd, and Fe, and alloys thereof.
  • examples of the plastic include films or sheets of polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polychlorinated butyl, polystyrene, and polyamide.
  • a non-single crystal material (“a-Si (H, X)”) containing silicon atoms as a base and further containing hydrogen atoms and / or halogen atoms is used. (Abbreviated).
  • the photoconductive layer (405) can be formed by plasma CVD, sputtering, ion plating, etc.
  • the film thus prepared is particularly preferable because a high-quality film can be obtained.
  • Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 or the like, or silicon hydride (silanes) that can be gasified is used as a source gas. It can be used by decomposing these gases with high frequency power. Further, Si H 4 and S i 2 H 6 are preferable from the viewpoint of easy handling at the time of layer preparation and good Si supply efficiency.
  • the temperature of the substrate is preferably maintained at a temperature of about 200 ° (up to 450 ° C., more preferably about 250 ° C. to 350 ° C. This promotes surface reflection on the surface of the substrate. This is to sufficiently relax the structure.
  • the optimum range of the pressure in the reaction vessel is appropriately selected according to the layer design.In normal cases, 1 ⁇ 1 ( ⁇ 2 -1 X10 3 Pa, preferably 5 ⁇ 1 ( ⁇ 2 -5 X10 2 Pa, more preferably 1 X10 - and 1 ⁇ 1 X 1 ⁇ 2 P a .
  • Halogen raw materials for supply include fluorine gas (F 2 ) and intermetallic compounds such as B r F, C 1 F, C 1 F 3 , B r F 3 , B r F 5 , IF 5 , IF 7 etc.
  • Silicon compounds containing halogen atoms, as a what is called silane derivatives substituted with halogen atoms include, for example, be ani gel as preferred S i F 4, S i 2 F 6 silicon fluorides force such as s it can.
  • these raw material gases for supplying silicon may be diluted with a gas such as H 2 , He, Ar, or Ne if necessary.
  • the layer thickness of the photoconductive layer (405) is not particularly limited, but about 15 to 50 ⁇ m is appropriate considering the manufacturing cost.
  • the upper blocking layer (406) can be formed by a plasma CVD method, a sputtering method, an 'ion plating method, or the like. Films made using the force S and plasma CVD methods are particularly preferred because high quality films can be obtained.
  • Use Si gas source such as Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 , or silicon hydride (silanes) that can be gasified.
  • SiH 4 and Si 2 H 6 are preferable from the viewpoints of easy handling during layer preparation and good Si supply efficiency.
  • the upper blocking layer may be a layer made of a non-single crystal material based on silicon atoms, but a silicon carbide layer is preferable in consideration of electrical characteristics.
  • a carbon source for producing the silicon carbide layer CH 4 , C 2 H 2 , C ' 2 ⁇ 4, C 2 ⁇ 6 , C 3 ⁇ 8 , C 4 ⁇ 10 , etc. can be used.
  • CH 4 , C 2 H 2 , and C 2 H 6 are preferable from the standpoint of C supply efficiency. '
  • the upper blocking layer (406) blocks the intrusion of charges from the surface side to the first layer (402) side when the electrophotographic photosensitive member is subjected to a charging process with a constant polarity on its free surface. It has a function that does not exhibit such a function when it is charged with the opposite polarity. In order to provide such a function, the upper blocking layer (406) needs to appropriately contain impurity atoms for controlling conductivity.
  • impurity atom used for such a purpose a Group 13 atom can be used in the present invention. Specific examples of such group 13 atoms include boron (B), aluminum (A 1), gallium (Ga), indium (In;), and tarium (T 1). ⁇ Boron (B) is particularly suitable. Examples of the boron supply source include BC 1 3 , BF 3 , BB r 3 , B 2 H 6, etc., but B 2 H, 6 is preferable from the viewpoint of ease of handling.
  • the necessary content of impurity atoms controlling the conductivity inherent in the upper blocking layer (406) is not generally determined by the composition and manufacturing method of the upper blocking layer (406). Contains 100 atomic ppm or more of the total number of constituent elements, It is preferable to be 30000 atoms ppm or less.
  • the atoms controlling the conductivity contained in the upper blocking layer (406) may be uniformly distributed in the upper blocking layer (406), or nonuniformly in the layer thickness direction. It may be contained in a distributed state. However, in any case, in the in-plane direction parallel to the surface of the substrate, it is necessary to contain evenly in a uniform distribution from the point of achieving uniform characteristics in the in-plane direction. .
  • the upper blocking layer (406) has a carbon composition ratio with respect to silicon constituting the upper blocking layer (406) from the photoconductive layer (405) side toward the protective layer (407). Thus, increasing from the surface side is more preferable from the viewpoint of suppressing potential unevenness.
  • the first layer (402) may have a plurality of layers.
  • the lower blocking layer (t04) is generally based on a-Si (H, X) and is conductive by containing a Group 15 element in the periodic table (hereinafter also referred to as Group 15 element). It is possible to control the mold and to have a blocking ability against the carrier from the substrate side. In this case, if necessary, the stress is adjusted by containing at least one element selected from C, N, and O, and the function of improving the adhesion of the photoconductive layer (405) is provided. You can also.
  • Examples of the element used as a dopant for the lower blocking layer (404) in the present invention include a Group 15 element, and the effective use as a raw material for introducing the Group 15 atom is the introduction of a phosphorus atom.
  • PH 3, P 2 H 4 hydrogenation such as phosphorus, PF 3, PF 5, PC 1 3, PC 1 5, PB r 3, P 1 3 halogens, such as phosphorus, include further PH 4 1, etc. It is done.
  • NO, NO 2 , N 2 , NH 3 and the like are effective as starting materials for introducing Group 15 atoms for introducing nitrogen atoms.
  • the content of the dopant atoms is preferably 1 1 ( ⁇ 2 to 1 X 10 4 Child pp m, more preferably 5 ⁇ 1 ( ⁇ 2 to 5 X 10 3 atoms pp m, optimally IX 10 -1 to 1 X 10 3 atoms pp m.
  • a protective layer (407) made of at least a non-single crystal material may be provided on the outermost surface of the first layer (402) of the present invention.
  • the protective layer (407) may be a non-single crystal material based on silicon atoms, but a silicon carbide layer is preferred in view of electrical characteristics. With this protective layer (407), the abrasion resistance and scratch resistance of the electrophotographic photosensitive member can be improved.
  • any frequency can be used as the discharge frequency used in the plasma CVD method when the first layer (402) is laminated, and it is industrially referred to as an RF frequency band of 1 MHz or more, 50 Even a high frequency lower than MHz can be suitably used even at a frequency higher than 50 MHz and lower than 450 MHz called the VHF band.
  • Figure 2 shows an example of the protrusion after removing the crown. Removal of the top of the head is preferably performed up to the level line (220) from the viewpoint of reducing image defects and improving adhesion. Further, the protrusion (211) after the removal of the top of the head is in a state where the photoconductive layer is exposed due to the relationship between the height of the protrusion (211) and the film thickness of the first layer.
  • the processing for removing the top of the head includes means for removing the head by melting the head, such as alkali etching, but polishing is preferred from the viewpoint of workability and uniformity.
  • polishing process can be performed by a surface polishing apparatus described later.
  • the treatment of bringing the electrophotographic photosensitive member into contact with water before installing it again in the film forming furnace is for the purpose of improving the adhesion of the second layer (403), which will be described later, and reducing dust adhesion. It ’s good.
  • Specific treatment methods include clean cloth and paper It is better to clean the surface with a method of cleaning with an organic solvent or water. In particular, in view of environmental considerations in recent years, water washing with a water washing apparatus described later is more preferable.
  • the discharge is temporarily stopped, the substrate is taken out of the film formation furnace, and the protrusion on the surface of the first layer is at least at the top of the top. After removal, it is placed in a vacuum-tight film-forming furnace.
  • plasma is generated in a dilute gas atmosphere consisting of at least one gas selected from Group 13 elements of the periodic table and hydrogen, argon, and helium.
  • the protrusion surface from which the top of the head has been removed and the photoconductive layer has been exposed is modified to the order of several atoms by this plasma treatment, and becomes an interface having a blocking ability against charged charges. Since this interface can be formed between the first layer and the second layer, it is possible to maintain the effect of reducing image defects even if the upper blocking layer is not laminated as the second layer. It will be possible ... In addition, since it is not necessary to stack the upper barrier layer as the second layer, a layer having a low carbon content is stacked after a layer having a high carbon content, thereby reducing the adhesion. Can be prevented.
  • the first layer is stacked in a vacuum-tight film-forming furnace, and the base from which the top of the protrusion is removed is placed. At least one group 13 element in the periodic table is added.
  • Choose from gas, hydrogen, argon, helium This is done by generating plasma in a dilute gas atmosphere consisting of at least one. Any frequency can be used as the discharge frequency when generating the plasma.
  • RF frequency band Even a high frequency of 1 MHz or more and less than 50 MHz called the RF frequency band is called the VHF band. It can be suitably used even at a high frequency of 50 MHz or more and 450 MHz or less.
  • Examples of the gas containing Group 13 element of the periodic table include BC 1 3 , BF 3 , BB r 3 , B 2 H 6, etc., but B 2 H 6 gas is preferable from the viewpoint of easy handling.
  • the content of boron atoms in the total gas flow rate is preferably 2.0 ⁇ l (T 4 mol% or more and 2.0 ⁇ 10 — 2 mol% or less in view of image defect reduction effect and electrical characteristics.
  • the discharge is temporarily stopped, the substrate is taken out of the film formation furnace, and the first layer surface The top of the protrusion is removed from the protrusion, and after the plasma treatment, the layers are stacked.
  • the second layer (403) of the present invention is a surface protective layer (408) made of at least a non-single crystal material.
  • the surface protective layer (408) can improve the abrasion resistance and scratch resistance of the electrophotographic photosensitive member.
  • the surface protective layer (408) can be formed by the plasma C VD method, the sputtering method, the ion plating method, etc., like the photoconductive layer (405). This is preferable because a high-quality film can be obtained.
  • Si sources include Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H io and other gaseous silicon hydrides (silanes), or gasifiable silicon hydride ( Silanes) can be used, but Si H 4 and Si 2 H 6 are preferred because they are easy to handle at the time of layer preparation and have good Si supply efficiency.
  • the surface protective layer is based on silicon atoms.
  • a silicon carbide layer containing carbon atoms and silicon atoms, and a non-single crystal material based on carbon atoms, such as aC (H), are preferred.
  • the carbon source used here is tl 4, ⁇ 2 H 2 C ⁇ 4 2 ⁇ 6> and 3 ng, 4 ⁇ ⁇ , etc., and CH 4 and C 2 in terms of the C supply efficiency. ⁇ 2, C 2 H 6 is preferred.
  • any frequency can be used as the discharge frequency used in the plasma CVD method when laminating the second layer (403), and it is industrially referred to as an RF frequency band of 1 MHz or more and less than 50 MHz. However, it can be suitably used even at a high frequency of 50 MHz or more and 450 MHz or less, called the VHF band.
  • the optimum range of the pressure in the reaction vessel is also appropriately selected according to the layer design.
  • the optimum range of the temperature of the substrate is appropriately selected according to the layer design. In general, it is more preferable to set the temperature lower than the substrate temperature at the time of forming the first layer from the viewpoint of improving adhesion. Specifically, in the case of forming a silicon carbide layer, it is desirable to set the temperature to 100 ° C. to 330 ° C., more preferably 150 ° (: to 270 ° C. Non-single crystal material based on carbon atoms, for example, In the case of aC (H), it is preferable to select 20 ° C. or more and 50 ° C., preferably about room temperature, for example, 25 ° C.
  • FIG. 5 is a diagram schematically showing an example of a film forming apparatus for an electrophotographic photosensitive member by an RF plasma CVD method using a high-frequency power source.
  • This apparatus is roughly composed of a film forming apparatus (5100), a source gas supply apparatus (5200), and an exhaust apparatus (not shown) for depressurizing the inside of the film forming furnace (5110).
  • the substrate connected to the ground in the deposition furnace (5110) in the deposition apparatus (5100) (5112), a substrate heating heater (5113) and a source gas introduction pipe (5114) are installed, and a high frequency power source (5120) is connected via a high frequency matching box (5115).
  • the raw material gas supply device (5200) includes Si H 4 , H 2 , CH 4 , NO, B 2 H 6 , CF 4 and other raw material gas cylinders (5221 to 5226) and valves (5231 to 5236), (5241 to 5246 ), (5251-5256) and mass flow controller (5211-5216), each gas cylinder is connected to the gas inlet pipe (5114) in the film-forming furnace (5110) via pulp (5260) Has been.
  • the substrate (5112) is connected to the ground by being placed on the conductive cradle (5123).
  • the substrate (5112) is set in the film forming furnace (5110), and the film forming furnace (5110) is evacuated by an unillustrated exhaust device (for example, a vacuum pump). Subsequently, the temperature of the substrate (5112) is set to 200 ° C. to 450 ° C., more preferably by the heater for heating the substrate (5113).
  • an unillustrated exhaust device for example, a vacuum pump.
  • each gas is introduced from the gas cylinder (5221 to 5226) by opening the valve (5231 to 5236), and each gas pressure is adjusted to 0.2 MPa by the pressure regulator (5261 to 5266). .
  • the inflow pulp (5241 to 5246) is gradually opened and each gas is mass flow controlled. It is introduced into the controller (5211 to 5216).
  • a photoconductive layer is laminated as a first layer on the substrate (5112).
  • each gas cylinder (5221 to 5226) is opened.
  • a desired source gas is introduced into the film forming furnace (5110) through the gas introduction pipe (5114).
  • each mass flow controller (521 1 to 5216) is adjusted so that each source gas has a desired flow rate.
  • the high-frequency power supply (5120) When the internal pressure is stable, set the high-frequency power supply (5120) to the desired power and, for example, apply high-frequency power with a frequency of 1 ⁇ ⁇ ⁇ to 50 ⁇ ⁇ , for example 13.56 ⁇ ⁇ ⁇ , through the high-frequency matching box (51 15).
  • a high frequency glow discharge is generated by supplying the sword electrode (511 1). With this discharge energy, each source gas introduced into the film forming furnace (5110) is decomposed, and a photoconductive layer mainly composed of desired silicon atoms is laminated on the substrate (5112).
  • the supply of high-frequency power is stopped, the outflow valves (5251 to 5256) are closed to stop the flow of each source gas into the film formation furnace (51 10), and the photoconductive layer Finish the lamination.
  • compositions and film thicknesses of the photoconductive layer can be used. Subsequently, when the upper blocking layer is laminated, or when the lower blocking layer is laminated between the photoconductive layer and the substrate (5112), the above operation may be basically performed in advance. The point is to remove the top of the protrusions on the substrate laminated up to the first layer by the procedure described above.
  • the substrate which has been subjected to the treatment of removing the top of the protrusion and bringing it into contact with water is again returned to the film forming furnace, and plasma treatment and lamination of the second layer are performed.
  • FIG. 6 shows an example of a surface polishing apparatus used when removing the top of the protrusion in the manufacturing process of the negatively charged electrophotographic photoreceptor of the present invention.
  • the object to be processed "deposited film surface on cylindrical substrate" (600) has a first layer of a-Si deposited on its surface. Cylindrical substrate, attached to the elastic support mechanism (620).
  • a pneumatic holder is used as the elastic support mechanism (620).
  • a pneumatic holder manufactured by Pridestone (trade name: air picker, model number: P 045 TCAX 820) Is used.
  • the pressure inertia roller (630) winds the polishing tape (631) and presses it against the surface of the workpiece (600).
  • the polishing tape (631) is supplied from the feed roll (632) and collected by the scraping roll (633).
  • the feed speed is adjusted by a constant feed roll (634) and a capstan roller (635), and the tension is also adjusted.
  • the polishing tape (631) what is usually called a rubbing tape is preferably used.
  • the rubbing tape When processing the surface of a-Si photoconductive layer or upper blocking layer or protective layer, the rubbing tape contains Si C, A 1 2 O 3 , Fe 2 O 3 etc. as abrasive grains Used. Specifically, Fuji Film's rubbing tape LT-C 2000 was used.
  • the pressure elastic roller (630) is made of materials such as neoprene rubber and silicone rubber, and conforms to JIS standards (JIS K 6253 N method).
  • the rubber hardness is in the range of 20-80, more preferably in the range of rubber hardness 30-40.
  • the shape of the roller part is preferably such that the diameter of the central part is slightly larger than the diameter of both end parts in the longitudinal direction, for example, the difference in diameter between the two is 0.0 to 0.6 mm, more preferably 0.2 to 0.4 mm. A shape that falls within this range is preferred.
  • the pressure elastic roller (630) is a polishing tape that is pressed against a rotating workpiece “deposition film surface on a cylindrical substrate” (600) in a pressure range of 0.05 MPa to 0.2 MPa. (, 631) For example, the above-mentioned rubbing tape is fed to polish the surface of the deposited film.
  • wet polishing means such as puff polishing in addition to the means using the polishing tape.
  • wet polishing means there is a process for cleaning and removing the liquid used for polishing after polishing, and at that time, the surface is brought into contact with water and cleaned. can do.
  • FIG. 1 An example of the water cleaning apparatus used in the present invention is shown in FIG. 1
  • the processing apparatus shown in FIG. 7 includes a processing unit (702) and a member-to-be-processed transport mechanism (703).
  • the processing section (702) is composed of a processing member input stand (71 1), a processing member cleaning tank (721), a pure water contact tank (731), a drying tank (741), and a processing member unloading base (751). ing. Both the washing tank (721) and the pure water contact tank (731) are provided with a temperature control device (not shown) for keeping the temperature of the liquid constant.
  • the transfer mechanism (703) includes a transfer rail (765) and a transfer arm (761).
  • the transfer arm (761) is a moving mechanism (762) that moves on the rail (765) and a chucking that holds the base body (701).
  • the substrate (701) placed on the input table (711) is transferred to the cleaning tank (721) by the transfer mechanism (703). Surfactant in the cleaning tank (721) The adhering oil and powder are cleaned. Next, the substrate (701) is transported to the pure water contact tank (731) by the transport mechanism (703), and pure water with a resistivity of 175 kQm (17.5 MQcm) maintained at a temperature of 25 ° C is supplied. Sprayed from nozzle (732) with a pressure of 4.9 MPa.
  • FIG. 1 An example of an electrophotographic apparatus using the negatively charged electrophotographic photosensitive member of the present invention is shown in FIG.
  • FIG. 8 is a schematic view showing an example of an image forming process of the electrophotographic apparatus, and the photoconductor (801) rotates to perform a copying operation.
  • the photoreceptor (801) are a magnetic brush injection charger (803), a developer (804), a transfer paper supply system (805), a transfer charger (806 (a)), a separation charger (806 (b) )), A cleaning unit (807), a transport system (808), a static elimination light source (809), and the like.
  • the photoconductor (801) is uniformly charged by the magnetic brush electrode (803).
  • a static latent image is formed by light emitted from the laser unit (818) and passing through the mirror (819), and a negative polarity toner is supplied from the developing unit (804) to the latent image to form a toner image.
  • the signal from the C C D unit (817) is used to control the laser unit (818). That is, the light emitted from the lamp (810) is reflected by the document (812) placed on the platen glass (81 1), passes through the mirrors (813), (814), and (815), and passes through the lens unit.
  • the image is formed by the (816) lens and converted to an electrical signal by the CCD unit (817).
  • the transfer material P adjusted in timing and supplied in the direction of the photoconductor (801), is separated from the toner in the gap between the transfer charger (806 (a)) and the photoconductor (801) to which high voltage is applied. A positive electric field having a reverse polarity is applied, whereby a negative polarity toner image on the surface of the photoreceptor is transferred to the transfer material P.
  • the transfer material P passes through the transfer conveyance system (808) to the fixing device (824) by the separation charger (806 (b)) to which the high-voltage AC power is applied, and the toner image is fixed and carried out of the device. It is done. '
  • the substrate on which the first layer is laminated is once taken out from the film forming furnace and exposed to the atmosphere, and then the protrusion on the surface of the first layer is subjected to a polishing process to remove at least the top of the head, A treatment for bringing the surface of the first layer into contact with water is performed, and then a substrate on which the first layer is laminated is placed in a film forming furnace, and the results shown in Table 2 before the second layer is laminated
  • Plasma treatment was performed by changing the flow rate of B 2 H 6 gas (2850 ppm / H 2 ) as shown in Table 3 to the amount of B (content of boron atoms in the total gas flow rate introduced), A negatively charged electrophotographic photosensitive member was produced by laminating the second layer under the conditions shown in Table 1.
  • the charging ability of the negatively charged electrophotographic photoreceptor thus prepared was evaluated by the following method.
  • the results are shown in Table 3.
  • Examples 1-1 to 1-8 were performed with respect to the B content of 1.0 ⁇ 1 ( ⁇ 4 to 3.0 ⁇ 1 ( ⁇ 2 [ ⁇ ol%]).
  • the peak value of the boron content distribution in the interface region between the first layer and the second layer of the produced photoreceptor was analyzed using SIMS (secondary ion mass spectrometry). Since the peak value obtained here is the peak value in the interface region, the absolute value is displayed instead of the ratio between boron and other constituent elements.
  • Table 3 The results are also shown in Table 3.
  • the produced electrophotographic photosensitive member was charged in an electrophotographic apparatus and charged, and the surface potential meter of the electrophotographic photosensitive member was measured with a surface potential meter installed at the position of the imager to obtain a charging ability.
  • the charging conditions DC applied voltage to the charger, superimposed AC amplitude, frequency, etc.
  • the obtained results were ranked by relative evaluation using the value in Example 1-11 as the standard (100%).
  • Example 1 1 2 to Example 1 1 7 2.0 X l (T 4 mol% or more and 2.0 X l (T 2 mol% or less) was found to be the optimum range. Also, boron content in the interface region between the first layer and the second layer The optimum range of the peak value of the quantity distribution should be 5.0 x 10 17 pieces / cm 3 or more and 1.0 x 10 21 pieces / cm 3 or less in Examples 1 to 2 to Examples 1 to 7. found.
  • Example 1 a negatively charged electrophotographic photosensitive member was produced under the conditions shown in Table 5 except that the treatment for bringing the surface of the first layer into contact with water was not performed, and the cost, adhesion, The following methods were used to evaluate polishing scratches, charging ability, image defects, and potential unevenness. The results are shown in Table 18.
  • Example 4 a negatively charged electrophotographic photosensitive member was manufactured under the conditions shown in Table 6 except that the first layer was changed by adding an upper blocking layer made of at least a non-single crystal material as a first layer. The following methods were used to evaluate the cost, adhesion, polishing scratches, charging power, image defects, and potential unevenness. The results are shown in Table 18. (Example 4)
  • Example 3 a negatively charged electrophotographic photosensitive member was produced under the conditions shown in Table 7 except that a protective layer made of at least a non-single crystal material was added as the first layer and the layer was laminated.
  • the following methods were used to evaluate the following characteristics: adhesiveness, adhesion, polishing scratches, charging ability, image defects', and potential unevenness. The results are shown in Table 18.
  • Example 4 In the procedure of Example 4, by changing the B 2 H 6 flow rate of the upper blocking layer laminated as the first layer as shown in Table 4, the period with respect to the total number of constituent elements contained in the upper blocking layer Photoreceptors 5- :! to 5-6 with varying Group 13 element (boron) content are produced under the conditions shown in Table 8. Cost, adhesion, polishing scratches, charging ability, image Defects and potential unevenness were evaluated by the following methods. The results are shown in Table 18.
  • the second layer is a non-carbon material.
  • a negatively charged electrophotographic photosensitive member was manufactured under the conditions shown in Table 9 with only the point of laminating the single crystal material (a-C (H)), and cost, adhesion, polishing scratches, charging ability, image defects The potential unevenness was evaluated by the following method. The results are shown in Table 18. ⁇
  • Example 4 the upper blocking layer to be laminated as the first layer was changed only in that the composition ratio with respect to the constituent silicon was laminated by changing as shown in FIG. 10 in the layer thickness direction.
  • Table 10 to Table 14 the negatively charged electrophotographic photoconductors of Examples 7 to 11 were prepared, and the cost, adhesion, polishing scratches, charging ability, image defects, and unevenness in the position of the surface were measured. The following method was used for evaluation. The results are shown in Table 18.
  • Example 1 a negatively charged electrophotographic photosensitive member was produced by changing only the point that the plasma processing performed before laminating the second layer was performed under the conditions shown in Table 15. The following methods were used to evaluate adhesion, polishing scratches, charging ability, image defects, and potential unevenness. The results are shown in Table 18.
  • Example 2 Comparative Example 2--'In the procedure of Example 4, the upper surface blocking layer made of a non-single-crystal material and the surface protective layer were used as the second layer without performing the plasma treatment of the substrate surface on which the first layer was laminated.
  • a negatively charged electrophotographic photosensitive member was manufactured under the conditions shown in Table 16 with the point where the layers were laminated, and the cost, adhesion, polishing scratches, charging ability, image defects, and potential unevenness were evaluated using the following methods. Went. The results are shown in Table 18.
  • the negatively charged electrophotographic photosensitive member produced in Example 1 was also evaluated for the cost, adhesion, polishing scratches, charging ability, image defects, and potential unevenness by the following methods. The results are also shown in Table 18.
  • Comparative Example 3 was used as a reference for relative evaluation. A decreased by 15% or more compared to Comparative Example 3, B decreased by 10% or more and less than 15% compared with Comparative Example 3, C represents 5% or more compared with Comparative Example 3 A decrease of less than 10%, D indicates a decrease of 1% or more and less than 5% compared to Comparative Example 3, and E indicates that it is equivalent to Comparative Example 3.
  • polishing scratches The surface of the electrophotographic photoreceptor after polishing was observed using an optical microscope. Then, a protrusion with a diameter of about 30 ⁇ m is polished to the level line, and scratches caused by polishing extending from the protrusion to the normal part are defined as polishing scratches. The presence or absence was confirmed.
  • A is that there are no polishing scratches in the normal part
  • B is that there are 5 or less minor scratches on the entire surface of the photoconductor
  • C is that there are minor scratches on the entire surface of the photoconductor. It shows that 5 or more occurred.
  • the prepared electrophotographic photosensitive member was placed in an electrophotographic apparatus for charging, and the surface potential meter installed at the current imager position was used to measure the surface potential of the dark part of the electrophotographic photosensitive member to determine the charging ability.
  • the charging conditions DC applied voltage to the charger, superimposed AC amplitude, frequency, etc.
  • the value in Comparative Example 3 was used as the standard (100%): ranking was performed based on the relative evaluation.
  • Image defects were evaluated by the number of black spots with a diameter of 0.1 mm or less in a 0% pixel density image. Black spots with a diameter exceeding 0, lmm are mostly caused by dust attached to the support before the start of film formation of the photoconductor. Such image defects are caused by film formation. It is clear from the results of various studies by the present inventors that the dependence on time conditions is small and it is essential to eliminate image defects by improving processes such as dust reduction. For this reason, the evaluation was conducted by focusing on the number of relatively small image defects with a diameter of 0.1 mm or less, which can be affected by the conditions during film formation, except for the current evaluation. The obtained results were ranked by relative evaluation using the value in Comparative Example 1 as a reference (100%). A: Less than 90%
  • the surface of the protrusion subjected to plasma treatment on the surface of the first layer before laminating the second layer to at least remove the top of the head is improved in the order of several atoms by plasma treatment.
  • the charging charge can be prevented from penetrating into the protrusion, and the image defect can be prevented without laminating the upper blocking layer as the second layer. It was possible to maintain the reduction effect. This eliminates the need to stack the upper blocking layer as the second scrap, thus reducing the overall cost and improving adhesion without reducing the image defect reduction effect compared to the comparative example. We were able to.
  • Example 5 From the results of Example 5, the content of the Group 13 element (boron) in the periodic table with respect to the total number of constituent elements is 100 atoms ppm or more and 30000 atoms ppm or less from the viewpoint of charging ability. It turned out to be preferable. Further, from the results of Examples 7 to 11, it was found that the potential unevenness was improved by making the composition ratio of carbon to silicon constituting the upper blocking layer to increase toward the surface side.
  • the content of the Group 13 element (boron) in the periodic table with respect to the total number of constituent elements is 100 atoms ppm or more and 30000 atoms ppm or less from the viewpoint of charging ability. It turned out to be preferable. Further, from the results of Examples 7 to 11, it was found that the potential unevenness was improved by making the composition ratio of carbon to silicon constituting the upper blocking layer to increase toward the surface side.

Abstract

A method for producing an electrophotographic photosensitive body for negative charging capable of enhancing adhesion between first and second layers without lowering the effect of reducing image defect while reducing total cost, an electrophotographic photosensitive body for negative charging produced by that method, and an electrophotographic system. The method for producing an electrophotographic photosensitive body for negative charging is characterized in that a substrate having a first layer laid thereon is placed in a film deposition furnace while removing at least the head part of a protrusion, plasma processing is performed on the surface of the first layer with a dilution gas consisting of a gas containing at least a group XIII element on the periodic table and at least one element selected from hydrogen, argon and helium, and then a second layer of a non-single crystal material is deposited on the first layer. An electrophotographic photosensitive body for negative charging, and an electrophotographic system employing it are also provided.

Description

明細書 負帯電用電子写真感光体の製造方法、 及び負帯電用電子写真感光体、 及ぴそれを用いた電子写真装置  Patent application title: METHOD FOR PRODUCING ELECTROPHOTOGRAPHIC PHOTOSENSITIVE ELECTRODE FOR NEGATIVELY CHARGED, AND ELECTROPHOTOGRAPHIC PHOTOSENSITIVE FOR NEGATIVELY CHARGED ELECTROGRAPH
技術分野 ' Technical field '
本発明は、 画像欠陥が少なく、 良好な画像形成を長期間維持するこ とができる負帯電用電子写真感光体の製造方法、 並びに負帯電用電子 写真感光体、 並びに電子写真装置に関するものである。  The present invention relates to a method for producing a negatively charged electrophotographic photosensitive member that has few image defects and can maintain good image formation for a long period of time, and a negatively charged electrophotographic photosensitive member, and an electrophotographic apparatus. .
背景技術 Background art
固体撮像装置、 あるいは像形成分野における電子写真感光体や原稿 読み取り装置における光導電層を形成する材料には、 高感度で S N比 [光電流 (Ip)/暗電流 (Id)]が高く、 照射する電磁波のスペク トル特性にマ ツチングした吸収スペク トル特性を有すること、 光応答性が速く、 所 望の暗抵抗値を有すること、使用時において人体に無公害であること、 さらに固体撮像装置においては、 残像を所定時間内に容易に処理する ことができる等の特性が要求される。 特に事務機としてオフィスで使 用される電子写真感光体の場合には、 上記の使用時における無公害性 は重要な点である。  Materials that form the photoconductive layer in solid-state imaging devices or electrophotographic photoreceptors and document readers in the field of image formation have high sensitivity and a high SN ratio [photocurrent (Ip) / dark current (Id)]. It has absorption spectrum characteristics that match the spectral characteristics of the electromagnetic waves that it emits, has fast photoresponsiveness, has the desired dark resistance, is non-polluting to the human body during use, and in solid-state imaging devices However, characteristics such as the ability to easily process afterimages within a predetermined time are required. In the case of electrophotographic photoreceptors used in offices as office machines, the above-mentioned pollution-free property is an important point.
この様な観点に
Figure imgf000003_0001
して注目されている材料に、 水素やハロゲン原 子等の一価の元素でダングリングボンドが修飾されたアモルファスシ リコン (以後、 「a- S ij と表記する)があり、 電子写真感光体への応用 がなされている。
From this perspective
Figure imgf000003_0001
Among these materials, there is amorphous silicon (hereinafter referred to as “a-S ij”) in which dangling bonds are modified with monovalent elements such as hydrogen and halogen atoms. Has been applied.
従来、 導電性基体上に a- S iからなる電子写真感光体を形成する形 成方法としで、 スパッタリング法、 熱により原料ガスを分解する方法 (熱 C V D法)、 光 より原料ガスを分解する方法 (光 C V D法)、 プラズ マにより原料ガスを分解する方法 (プラズマ C V D法)等、 多数知られ ている。 なかでもプラズマ C V D法、 すなわち、 原料ガスを直流また は高周波、 マイクロ波などのグロ一放電によって分解し、 導電性基体 上に堆積膜を形成する方法は電子写真感光体等の形成方法の分野にお いて、 現在実用化が非常に進んでいる。 このような堆積膜の層構成と して、 従来から行われてきた a- S iを母'体とし、 適宜修飾元素を添加 した電子写真感光体に加えて、 更に表面側に阻止能を持った、 いわゆ る上部阻止層や表面保護層を積層する構成も提案されている(例えば 特開平 08-15882号公報参照)。 特開平 08-15882号公報では、 光導電層 と表面保護層との間に、 炭素原子の含有量を表面保護層より減らし、 伝導性を制御する原子を含有させた上部阻止層を設けた感光体が開示 されている。 Conventionally, as a forming method for forming an electrophotographic photosensitive member made of a-Si on a conductive substrate, a sputtering method and a method of decomposing a source gas by heat Many methods are known, such as (thermal CVD method), a method of decomposing source gas from light (photo CVD method), and a method of decomposing source gas by plasma (plasma CVD method). Among these, the plasma CVD method, that is, a method of forming a deposited film on a conductive substrate by decomposing a source gas by a glow discharge such as direct current, high frequency, or microwave is used in the field of formation methods of electrophotographic photoreceptors and the like. Currently, practical application is very advanced. As a layer structure of such a deposited film, in addition to a conventional electrophotographic photosensitive member in which a-Si is used as a matrix and appropriately modifying elements are added, it has a blocking ability on the surface side. In addition, a configuration in which a so-called upper blocking layer or surface protective layer is laminated has also been proposed (see, for example, JP-A-08-15882). In Japanese Patent Laid-Open No. 08-15882, a photosensitive layer is provided in which an upper blocking layer containing an atom for controlling the conductivity is provided between the photoconductive layer and the surface protective layer, the carbon atom content being reduced from that of the surface protective layer. The body is disclosed.
また、 a- S i膜は基体表面に数 μ mオーダーのダストが付着していた 場合、 成膜中にそのダス トを核として異常成長し、 突起が成長してし まうという性質を.持っている。 この突起が原因となり画像上に欠陥を 作ってしまう。 この画像欠陥を防ぐ為に、 成膜後の感光体表面に存在 する突起の頭頂部を研磨加工により平坦化する技術も提案されている (例えば特開 2001-318480号公報参照)。 特開 2001-318480号公報では、 電子写真感光体を保持し回転させ、 弾性ローラに卷回させた研磨テー プと前記感光体の表面を ^圧当接させながら前記研磨テープを送'るこ とによって、 前記感光体表面の突起の平坦化研磨を行う後処理方法が 開示されている。  In addition, a-Si films have the property that, when dust of the order of several μm adheres to the substrate surface, abnormal growth occurs with the dust as a nucleus during film formation, and protrusions grow. ing. This protrusion causes a defect on the image. In order to prevent this image defect, a technique for flattening the top of the protrusion on the surface of the photoreceptor after film formation by polishing has also been proposed (see, for example, JP-A-2001-318480). In Japanese Patent Laid-Open No. 2001-318480, an electrophotographic photosensitive member is held and rotated, and the polishing tape is fed while the polishing tape wound around an elastic roller and the surface of the photosensitive member are in pressure contact. And a post-processing method for flattening and polishing the protrusions on the surface of the photoconductor.
図 1に前記突起の一例を示す。突起(111)はダス ト(110)を起点とした 円錐形を逆転させた形をしており、 正常堆積部分と突起部分の界面 (112)では局在準位が非常に多いために低抵抗化し、 帯電電荷が界面 (1 12)を通って基体側に抜けてしまうという性質を持っている。 このた め、 突起のある部分は、 画像上ではベタ黒画像で白い点となって現れ る(反転現像の場合はベタ白画像に黒い点となって現れる)。 このいわ ゆる 「ポチ」 と呼ばれる画像欠陥は、 これまでは大きさによっては A 3用紙に数個存在していても不良として扱われることはなかったが、 カラー複写機に搭載される場合には更なる品質の向上が求められ、 AFIG. 1 shows an example of the protrusion. The protrusion (111) has a conical shape starting from the dust (110), and has a low resistance due to the large number of localized levels at the interface (112) between the normal deposit and the protrusion. The charged charge at the interface It has the property of passing through (1 12) to the substrate side. For this reason, the projected portion appears as a white point on the solid black image on the image (in the case of reversal development, it appears as a black dot on the solid white image). These so-called “pochi” image defects have not been treated as defective even if they existed on several A3 sheets depending on the size, but when they are installed in color copiers. A further quality improvement is required, A
3用紙に 1個存在していても不良となる場合がある。 この突起は、 ダ ス トを起点としているため、 俾用する基体を成膜前に精密に洗浄し、 成膜装置に設置する行程は全てクリーンルーム、 あるいは真空下で作 業を行うなど、 成膜開始前に基体上に付着するダス トを極力少なくす るよう努力され、 効果を上げてきた。 Even if one sheet is present on three sheets, it may be defective. Since these protrusions start from the dust, the substrate to be used is precisely cleaned before film formation, and all the steps to install in the film formation apparatus are performed in a clean room or under vacuum. Efforts have been made to minimize the amount of dust adhering to the substrate before starting, and this has been effective.
しかし、 突起の発生原因は基体上に付着したダス トのみではない。 すなわち、 a- S i感光体を製造する場合、 膜厚が数 μ πιから数 10 /z m と非常に厚いため、成膜時間は数時間から数十時間に及ぶ。 この間に、 a- S i膜は基体のみではなく、成膜炉壁ゃ成膜炉内の構造物にも堆積す る。 これらの炉壁、 構造物に堆積する堆積物は、 基体に堆積される膜 状のものではなく、 粉状の堆積物であることがあり、 場合によっては 密着力が弱く、 長時間に渡る成膜中に剥がれをおこす場合があった。 成膜中に僅かでも剥がれが発生ずると、 それがダス トとなり、 堆積.中 の感光体表面に付着.し、 これが起点となって異常成長部である突起が 発生してしまう。 従って、 高い歩留まりを維持していくために、 異常 成長した突起の平坦化を図る研磨加工を行い、 平坦化された突起を覆 うように帯電電荷に対して阻止能を持つ上部阻止層を積層し、 突起部 や正常部と突起部の界面を帯電電荷がすり抜けてしまう.現象を防ぐと いうことが行われ、 効果を上げてきた(例えば特開 2004-133396号公報 参照)。 ' また、 a- S i感光体を帯 ¾する方法としては、 コロナ帯電を用いたコ ロナ帯電方式、 導電性ローラーを用い直接放電で帯電を行うローラー 帯電方式、 磁性粒子等により接触面積を十分にとり、 電荷を感光体表 面に直接注入することにより帯電 行う注入帯電方式などがある。 中 でも、 コロナ帯電方式やローラー帯電方式は放電を用いるために感光 体表面に放電生成物が付着しやすい。 加えて. a- S i感光体は有機感光 体などに比べてはるかに高硬度な表面層を持っている こめに放電生成 物が表面に残存しやすく、 高湿環境下などで水分の吸着によって放電 生成物と水分が結合して表面を低抵抗化させ、 表面の電荷が移動しや すくなり画像流れ現象が発生する場合がある。そのため、表面の摺擦方 法や感光体の温度管理方法など、 様々な工夫が必要となる場合があつ た。 However, the cause of the protrusion is not only the dust attached to the substrate. In other words, when an a-Si photoreceptor is manufactured, the film formation time is several hours to several tens of hours because the film thickness is very large, from several μπι to several tens of zm. During this time, the a-Si film is deposited not only on the substrate but also on the film forming furnace wall and the structure in the film forming furnace. The deposits deposited on these furnace walls and structures are not film-like deposits deposited on the substrate, but may be powdery deposits. In some cases, peeling occurred in the film. Even if a slight amount of peeling occurs during film formation, it becomes dust and adheres to the surface of the photoconductor during deposition. Protrusions, which are abnormally grown parts, are generated starting from this. Therefore, in order to maintain a high yield, polishing is performed to flatten abnormally grown protrusions, and an upper blocking layer having a blocking ability against charged charges is laminated so as to cover the flattened protrusions. However, it has been effective to prevent the phenomenon that the charged charges slip through the protrusions and the interface between the normal part and the protrusions (see, for example, JP-A-2004-133396). ' In addition, as a method for applying the a-Si photoconductor, a corona charging method using corona charging, a roller charging method in which charging is performed by direct discharge using a conductive roller, magnetic particles, etc. are used to provide a sufficient contact area. There is an injection charging method in which charging is performed by directly injecting charges onto the surface of the photoreceptor. Among them, since the corona charging method and roller charging method use discharge, discharge products are likely to adhere to the surface of the photoreceptor. In addition, a-Si photoconductors have a surface layer that is much harder than organic photoconductors, so that the discharge products are likely to remain on the surface, and are absorbed by moisture in high humidity environments. The discharge product and moisture combine to lower the resistance of the surface, and the charge on the surface can easily move, resulting in an image flow phenomenon. For this reason, various ideas such as the surface rubbing method and the temperature control method of the photosensitive member may be required.
これに対して注入帯電方式は、放電を積極的に用いることはせずに、 感光体表面に接触した部分から直接電荷を注入す.る帯電方式であるた めに画像流れといった現象は発生しにくい。 また、 接触帯電である注 入帯電方式は、 コロナ帯電方式が電流制御型であるのに対し、 電圧制 御型であるため、 帯電電位のムラを比較的小さく しゃすいというメ リ ッ トがある。 従来の注入帯電方式では、 磁性体と磁性粒子からなる磁 気ブラシ状粒子の接触帯電部材を感光体表面に接触させることで帯電 性能向上が得られる(例えば特開平 08-6353号公轅参照)。 発明の開示  In contrast, the injection charging method does not actively use discharge, but directly injects charge from the part in contact with the surface of the photoconductor. Hateful. In addition, the contact charging method, which is a contact charging method, is a voltage control type, while the corona charging method is a current control type. . In the conventional injection charging method, the charging performance can be improved by bringing the contact charging member of magnetic brush-like particles made of a magnetic material and magnetic particles into contact with the surface of the photoreceptor (see, for example, Japanese Patent Application Laid-Open No. 08-6353). . Disclosure of the invention
このような従来の電子写真感光体製造方法により、 ある程度実用的 な特性と均一性を持つ電子写真感光体を得ることが可能になった。  Such a conventional method for producing an electrophotographic photosensitive member makes it possible to obtain an electrophotographic photosensitive member having practical characteristics and uniformity to some extent.
しかし、 カラー複写機の高画質化に向けて、 画像欠陥に対する要求 は年々厳しくなつており、 より高品質な電子写真感光体が望まれてい る。 However, the demand for image defects is becoming stricter year by year for higher image quality in color copiers, and higher-quality electrophotographic photoreceptors are desired. The
また、前述'したように種々のメリッ トを持つ注入帯電方式であるが、 例えば磁気ブラシ帯電器を用いた接触注入帯電方式では、 磁気ブラシ が感光体表面を直接摺擦する為、 上部阻止層および表面層の作成方法 を慎重に管理した良好な密着性を持った電子写真感光体を作製する必 要がある。  In addition, as described above, the injection charging method has various advantages. For example, in the contact injection charging method using a magnetic brush charger, the magnetic brush directly rubs the surface of the photosensitive member, so that the upper blocking layer In addition, it is necessary to produce an electrophotographic photosensitive member having good adhesion with careful management of the method of creating the surface layer.
そこでこれまでのように、 突起の平坦化研磨を行ったあとに再度、 感光体を 膜炉内に設置し、 第 2の層として上部阻止層を積層する場 合、 層同士の密着性が低下するという問題が発生する場合がある。 こ の問題は、 研磨加工により感光体に傷がついてしまうことを防ぐ目的' で積層する保護層と前記上部阻止層を、 少なく とも炭素、 珪素を含む 非単結晶材料からなる層とした場合、 比較的炭素含有率の高い保護層 を積層した後に比較的炭素含有率の低い上部阻止層を積層するという 層構成に起因する。 このような炭素含有率の高い層の後に炭素含有率 の低い層を積層するという関係から密着性が低下すると考えられる。 また.、 前記上部阻止層を積層した後に、 感光体表面を保護する為に 表面保護層を第 2の層としてさらに積層する必要が.あり、 全体のコス トを上昇させていた。  Therefore, as in the past, if the photoconductor is placed in the film furnace again after performing planarization polishing of the protrusions, and the upper blocking layer is laminated as the second layer, the adhesion between the layers decreases. May occur. This problem is that when the protective layer and the upper blocking layer that are laminated for the purpose of preventing the photosensitive member from being scratched by the polishing process are layers made of a non-single-crystal material containing at least carbon and silicon, This is due to a layer structure in which an upper blocking layer having a relatively low carbon content is stacked after a protective layer having a relatively high carbon content is stacked. It is considered that the adhesiveness is lowered due to the relationship in which a layer having a low carbon content is laminated after such a layer having a high carbon content. In addition, after the upper blocking layer is laminated, it is necessary to further laminate a surface protective layer as a second layer in order to protect the surface of the photoreceptor, increasing the overall cost.
密着性を維持する為に炭素含有率の比較的高い層の後に炭素含有率 の比較的低い層を積層するという密着性の低い接合を設けず、 且つ全 体のコストを上昇させない為には、 平坦化された突起の上に上部阻止 層を積層せずに表面保護層を積層でき、 且つ帯電電荷に対して阻止能 を持たせることのできる感光体の製造方法が要望されている。  In order not to provide a low-adhesion joint by laminating a layer with a relatively low carbon content after a layer with a relatively high carbon content in order to maintain adhesion, and not to increase the overall cost, There is a demand for a method of manufacturing a photoreceptor that can be laminated with a surface protective layer on the flattened protrusion without laminating an upper blocking layer and can have a blocking ability against charged charges.
本発明者らは、 上述の問題を解決すべく鋭意研究を重ねた結果、 非 単結晶材料からなる光導電層を持つ負帯電用電子写真感光体を以下の ように製造することにより電気特性や密着性、 画像欠陥低減効果に何 ら悪影響を与えず、感光体を安定して安価に製造できることを見出し、 本発明を完成するに至った。 As a result of intensive research to solve the above-mentioned problems, the present inventors have produced an electrophotographic photosensitive member for negative charging having a photoconductive layer made of a non-single crystal material as described below. What is the effect of reducing adhesion and image defects? Thus, the inventors have found that the photoreceptor can be produced stably and inexpensively without causing any adverse effects, and the present invention has been completed.
すなわち、 非単結晶材料からなる層を含む負帯電用電子写真感光体 Namely, an electrophotographic photosensitive member for negative charging including a layer made of a non-single crystal material
• の製造方法において、 第 1ステップとして、 排気手段に接続され、 原 料ガス供給手段を備えた真空気密可能な成膜炉内に導電性の表面を有 する円筒状基体を設置し、 原料ガスを高周波電力により分解し、 該基 体上に、 第 1の層として少なく とも非単結晶材料からなる光導電層を 堆積する工程と、 第 2ステップとして、 前記第 1の層を積層した基体 を一旦成膜炉から取り出す工程と、 第 3ステップとして、 前記第 1ス テツプにおいて積層された前記第 1の層表面の突起に対して、 少なく 'とも'その頭頂部の除去を図る工程と、 第 4ステップとして、 排気手段 と原料ガス供給手段を備えた真空気密可能な成膜炉内に前記第 3ステ ップの工程を終えた基体を設置し、少なく とも 1種の周期表第 13族元 素を含むガスと水素、 アルゴン、 ヘリ ウムから選ばれる少なく とも一 つからなる希釈ガスで前記第 1の層表面をプラズマ処理する工程と、 第 5ステップとして、少なく とも原料ガスを高周波電力により分解し、 • 前記第 1の層上に非単結晶材料からなる層を第 2の層として積層させ る工程を有することを特徴とする負帯電用電子写真感光体の製造方法 に関するものである。 • As a first step in this manufacturing method, a cylindrical substrate having a conductive surface is installed in a vacuum-tight film-forming furnace connected to an evacuation means and equipped with a raw material gas supply means. And a base layer on which the first layer is laminated as a second step, and a step of depositing a photoconductive layer made of at least a non-single crystal material as the first layer on the substrate. A step of removing from the film forming furnace, a step of removing at least the top of the protrusion on the surface of the first layer laminated in the first step, as a third step; As the fourth step, the substrate after completion of the third step is placed in a vacuum-tight film-forming furnace equipped with exhaust means and source gas supply means, and at least one periodic table group 13 element is installed. Gas containing hydrogen and hydrogen, argon, A process of plasma-treating the surface of the first layer with a diluent gas selected from lithium; and as a fifth step, at least the source gas is decomposed by high-frequency power, and • on the first layer The present invention also relates to a method for producing a negatively charged electrophotographic photoreceptor, comprising a step of laminating a layer made of a non-single crystal material as a second layer.
また、前記第 1の層に少なく とも 1種の周期表第 13族元素が含有さ れた上部阻止層を形成することが電気的特性を向上させる点で好まし く、 また、 前記上部阻止層を構成する珪素に対する炭素の組成比が、 表面側に向かって増加しているように形成することが、 電位ムラの抑 制の点からより好ましい。 そして、 前記上部阻止層に含まれる構成元 素の総数に対する周期表第 13族元素の含有量は、 100原子!) p m以上、 30000原子 pp m以下であるように形成することが電気的特性上、 望ま しい。 In addition, it is preferable to form an upper blocking layer containing at least one group 13 element of the periodic table in the first layer in terms of improving electrical characteristics, and the upper blocking layer. It is more preferable from the viewpoint of suppression of potential unevenness that the composition ratio of carbon to silicon constituting is increased toward the surface side. The content of the Group 13 element in the periodic table with respect to the total number of constituent elements contained in the upper blocking layer is 100 atoms! ) In terms of electrical characteristics, it is desirable to form it so that it is pm or more and 30000 atoms pp m or less. That's right.
また、 前記第 1の層に少なく とも珪素を含む保護層が前記第 1の層 の最表面に形球されることが、 突起の頭頂部を除去する工程における 耐傷性などの点から好ましい。  In addition, it is preferable that a protective layer containing at least silicon is formed on the outermost surface of the first layer in terms of scratch resistance in the step of removing the top of the protrusion.
更に、 前記第 3ステップにおいて、 第 1の層表面の突起に対して、 少なく ともその頭頂部の除去を図る工程が、 研磨加工であることが、 作業性や均一性などの点から好ましい。  Further, in the third step, it is preferable from the viewpoint of workability and uniformity that the step of removing at least the top of the protrusion on the surface of the first layer is a polishing process.
更に、 前記第 3ステップと第 4ステップの間で、 基体の加熱設定温 度を変更しても良く、 更に、 前記第 3ステップと第 4ステップの間で、 水と接触させる処理をおこなうことにより、 その後第 2の層を積層し た際の密着性が向上し、 膜剥がれに対するラチチュードが広くなる。 更に、 前記第 4ステップにおける、 導入される全ガス中の周期表第 13族元素の含有量は、 2.0 X l (T4moll%以上、 2.0 X l(T2mol%以下である ことが画像欠陥を低減する上でより好ましく、 前記第 4ステップにお ける周期表第 13族元素を含むガスとしては B 2 H 6が取り扱い上好ま しい。 ' Further, the heating setting temperature of the substrate may be changed between the third step and the fourth step, and further, by performing a process of contacting with water between the third step and the fourth step. Then, the adhesion when the second layer is laminated is improved, and the latitude for film peeling is widened. Further, in the fourth step, the content of the Group 13 element in the periodic table in all the gases introduced is 2.0 X l (T 4 mol% or more, 2.0 X l (T 2 mol% or less). B 2 H 6 is more preferable in terms of handling as a gas containing Group 13 elements of the periodic table in the fourth step.
また、 本発明は、 少なく とも導電性の表面を有する円筒状基体上に、 少なく とも非単結晶材料からなる光導電層と、 炭素、 珪素を含む非単 結晶材料からなる上部阻止層及び保護層を含む第 1の層と、 前記第 1 の層上に少なく とも非単結晶材料からなる第 2の層を積層させた電子 写真感光体において、 第 1の層内の異常成長部が第 2の層まで達して おらず、第 1の層と第 2の層との界面領域に周期表第 13族元素の含有 量分布がピークを有することを特徴とする負帯電用電子写真感光体で ある。 また、 前記上部阻止層を構成する珪素に対する炭素の組成比が 感光体の表面側に向かって増加してい ことが電位ムラの点からより 好ましい。 さらに、 前記第 1の層と第 2の層との界面領域における周 期表第 13族元素の含有量分布のピークが、 5.0 X 1017個/ cm3以上、 1.0 X 1021個/ cm3以下であることが画像欠陥低減及び電気的特性上好まし い。 The present invention also provides a photoconductive layer made of at least a non-single crystal material, a top blocking layer made of a non-single crystal material containing carbon and silicon, and a protective layer on a cylindrical substrate having at least a conductive surface. And an abnormally grown portion in the first layer is a second layer formed by laminating a second layer made of at least a non-single crystal material on the first layer. The negatively charged electrophotographic photosensitive member is characterized in that the content distribution of the Group 13 element of the periodic table has a peak in the interface region between the first layer and the second layer. Further, it is more preferable from the viewpoint of potential unevenness that the composition ratio of carbon to silicon constituting the upper blocking layer increases toward the surface side of the photoreceptor. Further, the periphery in the interface region between the first layer and the second layer. It is preferable in terms of image defect reduction and electrical characteristics that the peak of the content distribution of the group 13 element in the period table is 5.0 × 10 17 pieces / cm 3 or more and 1.0 × 10 21 pieces / cm 3 or less.
以上説明したように、 本発明の.負帯電用電子写真感光体の製造方法 によれば、 少なく とも頭頂部の除去が施された突起表面に、 帯電電荷 に対して阻止能を持つ界面を形成するプラズマ処理工程を有すること により、 第 2の層として上部阻止層を積層する必要がなく、 画像欠陥 の低減効果を維持しながら、 密着性の向上が達成される。 また、 併せ て成膜工程の簡素化も達成され、 全体のコス トダウンが達成された。 また、 第 1の層として積層する上部阻止層を、 構成する珪素に対する 炭素の組成比が、 表面側に向かって増加させることで、 電位ムラを抑 制することができた。 図面の簡単な説明  As described above, according to the method for producing a negatively charged electrophotographic photosensitive member of the present invention, an interface having a blocking ability against charged charges is formed on the protrusion surface from which the top of the head has been removed. By having the plasma processing step to be performed, it is not necessary to stack the upper blocking layer as the second layer, and the adhesion can be improved while maintaining the effect of reducing image defects. In addition, the film formation process has been simplified, and the overall cost has been reduced. In addition, potential unevenness could be suppressed by increasing the composition ratio of carbon to silicon constituting the upper blocking layer laminated as the first layer toward the surface side. Brief Description of Drawings
図 1は、 電子写真感光体の突起の一例を示す模式的断面図である。 '図 2は、 第 1の層表面を研磨加工した後の本発明の電子写真感光体 の突起の一例を示す模式的断面図で る。  FIG. 1 is a schematic cross-sectional view showing an example of a protrusion of an electrophotographic photosensitive member. FIG. 2 is a schematic cross-sectional view showing an example of the protrusion of the electrophotographic photosensitive member of the present invention after polishing the surface of the first layer.
図.3は、 実験例に用いた第 1の層まで積層した電子写真感光体を示 す模式的断面図である。  Fig. 3 is a schematic cross-sectional view showing the electrophotographic photosensitive member laminated up to the first layer used in the experimental example.
.図 4は、 本発明の負帯電用電子写真感光体の一例を示す模式的断面 である。  FIG. 4 is a schematic cross section showing an example of a negatively charged electrophotographic photosensitive member of the present invention.
図 5は、 R Fプラズマ C V D方式の a- S i感光体成膜装置の模式的 断面図である。  FIG. 5 is a schematic cross-sectional view of an RF plasma C V D a-Si photoconductor film forming apparatus.
図 6は、 本発明に用いた表面研磨装置の模式的断面図である。  FIG. 6 is a schematic cross-sectional view of the surface polishing apparatus used in the present invention.
図 7は、 本発明に用いた水洗浄装置の模式的断面図である。  FIG. 7 is a schematic cross-sectional view of the water cleaning apparatus used in the present invention.
図 8は、 本発明の電子写真装置の一例を示す模式的断面図である。 図 9は、本発明の負帯電用電子写真感光体における周期表第 13族元 素 (ホウ素原子) の含有量分布を示す模式図である。FIG. 8 is a schematic cross-sectional view showing an example of the electrophotographic apparatus of the present invention. FIG. 9 is a schematic diagram showing the content distribution of Group 13 element (boron atom) of the periodic table in the negatively charged electrophotographic photosensitive member of the present invention.
l 0は、 本発明の上部阻止層を構成する珪素に対する炭素の組成 比の変化の様子を示す模式図である。  l 0 is a schematic diagram showing a change in the composition ratio of carbon to silicon constituting the upper blocking layer of the present invention.
,  ,
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 非単結晶材料からなる感光体、 特に a- S i感光体に おける重要な問題点である、 突起に起因する画像欠陥の改善を検討し てきた。 特に、 堆積膜形成途中に反応炉壁ゃ炉内の構造物からの膜剥 がれによって発生する突起による画像欠陥を防止するために鋭意努力 してきた。 ,  The present inventors have studied improvement of image defects caused by protrusions, which is an important problem in a photoreceptor made of a non-single crystal material, particularly an a-Si photoreceptor. In particular, efforts have been made to prevent image defects caused by protrusions caused by film peeling from structures in the reactor wall during the formation of the deposited film. ,
突起がポチのような画像欠陥になるのは、 異常成長部である突起部 分や、 前記突起部分と堆積膜の正常堆積部分との界面に局在準位が多 く、 そこが低抵抗化'し、 帯電電荷が前記突起部分や前記界面を通って 基体側に抜けてしまうからである。 ところが、 成膜途中に付着したダ ス トによって発生する突起は基板からではなく、 堆積膜の途中から成 長しているため、 表面側が何らかの阻止能を持つ部分で覆われていれ ば、 帯電電荷の侵入を防止することができ、 たとえ突起が存在しても 画像欠陥にはならない。 具体的には、 図 2に示されるように、 第 1の 層(202)を積層した後に突起 (21 1)の頭頂部を除去して平坦化した後に 阻止能を持つ部分を形成すればよい。 .  Protrusions become image defects such as spots, because there are many localized levels at the protrusions that are abnormally grown, and at the interface between the protrusions and the normal deposition part of the deposited film. This is because the charged charges escape to the substrate side through the protrusions and the interface. However, since the protrusions generated by the dust attached during film formation grow not from the substrate but from the middle of the deposited film, if the surface side is covered with a part that has some blocking ability, Intrusion, and even if protrusions are present, they will not cause image defects. Specifically, as shown in FIG. 2, after the first layer (202) is stacked, the top portion of the protrusion (21 1) is removed and planarized, and then a portion having a blocking ability is formed. . .
現在用いられているのは、 第 2の層として上部阻止層と表面保護層 が含まれる層を積層する手法である。 しかしこの手法では、 画像欠陥 を低減する効果はあるものの、 炭素含有率の高い層の後に炭素含有率 の低い層.を積層するという関係から、 密着性が低下するという問題が 生じた。 また、 上部阻止層を積層したのちに、 感光体を保護する目的 で表面保護層を更に積層しなければならず、 全体のコストを上昇させ ていた。 Currently used is a method of laminating a layer containing an upper blocking layer and a surface protective layer as the second layer. However, although this method has an effect of reducing image defects, there is a problem in that the adhesiveness is lowered due to the relation that a layer having a low carbon content is laminated after a layer having a high carbon content. The purpose of protecting the photoconductor after laminating the upper blocking layer Therefore, the surface protective layer had to be further laminated, which increased the overall cost.
そこで、 本発明者らは鋭意検討を重ね、 第 2の層として上部阻止層 を積層することなく、 帯電電荷に対して阻止能を持つ界面を第 1の層 と第 2の層との間に形成させうるプラズマ処理方法を確立し、 第 2の 層として表面保護層のみを積層するだけで、 画像欠陥低減に効果を発 揮することを見出した。 これは、 突起の頭頂部を除去する処理が突起 に施され、 光導電層が表面に剥き出しになった状態の突 表面が、 プ ラズマ処理により数原子オーダーで改質され、 帯電電荷に対して阻止 能を持つような界面となった為に、 帯電電荷の突起への侵入を防止で きたことによると思われる。  Therefore, the present inventors have conducted intensive studies, and without forming an upper blocking layer as the second layer, an interface having a blocking ability against charged charges is formed between the first layer and the second layer. We have established a plasma processing method that can be formed, and found that it is effective to reduce image defects simply by laminating only the surface protective layer as the second layer. This is because the process of removing the top of the protrusion is applied to the protrusion, and the protrusion surface in a state where the photoconductive layer is exposed on the surface is modified by the plasma process to the order of several atoms. This is probably due to the fact that the interfacial surface has a stopping ability, preventing the charge from entering the protrusions.
このように、 これまでの上部阻止層(第 2の層)に代わり、 帯電電荷 に対して阻止能を持つ界面を突起表面に形成できることにより、 上部 阻止層 (第 2の層)を積層することによる密着性の低下を防ぐことがで き、 且つ上部阻止層(第 2の層)を積層する必要が無くなることにより、 全体のコス トを抑えることができる。  In this way, instead of the previous upper blocking layer (second layer), the upper blocking layer (second layer) can be stacked by forming an interface on the projection surface that has the ability to block charged charges. In addition, it is possible to prevent a decrease in adhesion due to, and to eliminate the necessity of laminating an upper blocking layer (second layer), thereby reducing the overall cost.
また、 本発明者らは、 電子写真装置と電子写真感光体との組合せに 関して、 更に高画質、 高耐久性を実現する為に、 様々な電子写真プロ セス、 様々な感光体製造条件を組み合わせて鋭意検討した。  In addition, the present inventors have made various electrophotographic processes and various photoconductor manufacturing conditions in order to achieve higher image quality and higher durability for the combination of an electrophotographic apparatus and an electrophotographic photoconductor. We studied in combination.
本発明の電子写真感光体を用いた電子写真装置に関して、 磁気ブラ シ帯電器を用いた接触帯電方式では、 電圧制御方式である'ため電子写 真感光体の表面電位の落ち込み幅を軽減することが可能となり、 電位 ムラが目立ち難くなることを見出した。 その為、 本発明からなる電子 写真感光体との組合せが、 電位ムラの抑制およぴ層の剥れのない高耐 久性との高い次元での両立が可能となることが判.明した。  Regarding the electrophotographic apparatus using the electrophotographic photosensitive member of the present invention, the contact charging method using a magnetic brush charger is a voltage control method, so that the width of the surface potential of the electrophotographic photosensitive member is reduced. It became possible, and it was found that the potential unevenness became inconspicuous. Therefore, it has been found that the combination with the electrophotographic photosensitive member according to the present invention can achieve both high level of suppression of potential unevenness and high durability without peeling of the layer. .
以下、 必要に応じて図面を参照しつつ、 本発明を詳細に説明する。 《本発明に係わる a- S i感光体》 Hereinafter, the present invention will be described in detail with reference to the drawings as necessary. << a-Si photoconductor according to the present invention >>
図 4に本発明に係わる負帯電用電子写真感光体の一例を、 図 9に本 発明の負帯電用電子写真感光体における周期表第 13族元素(ホウ.素原 子) の含有量分布を、 図 1 0に本発明の上部阻止層を構成する珪素に 対する炭素の組成比の変化の様子を示す模式図を示す。  Fig. 4 shows an example of a negatively charged electrophotographic photosensitive member according to the present invention. Fig. 9 shows the content distribution of Group 13 elements (boron atoms) in the periodic table of the negatively charged electrophotographic photosensitive member of the present invention. FIG. 10 is a schematic diagram showing a change in the composition ratio of carbon to silicon constituting the upper blocking layer of the present invention.
本発明の電子写真感光体は、例えば A' l、 ステンレス等の導電性材料 からなる基体 (401)を、 第 1ステップとして、 排気手段に接続され、 原 料ガス供給手段を備えた真空気密可能な成膜炉内に設置し、 原料ガス を高周波電力により分解し、 該基体上に、 第 1の層(402)として少なく とも非単結晶材料からなる光導電層(405)を堆積する工程と、 第 2ステ ップとして、 前記第 1の層(402)を積層した基体をー且成膜炉から取り 出す工程と、 第 3ステップとして、 前記第 1ステップにおいて積層さ れた前記第 1の層(402)表面の突起 (411)に対して、少なく ともその頭頂 部の除去を図る工程と、 第 4ステップとして、 排気手段と原料ガス供 給手段を備えた真空気密可能な成膜炉内に前記第 3ステップの工程を 終えた基体を設置し、少なく とも 1種の周期表第 13族元素を含むガス と水素、 アルゴン、 ヘリ ウムから選ばれる少なく とも一つからなる希 釈ガスで前記第 1の層(402)表面をプラズマ処理する工程と、 第 5ステ ップとして、 少なく とも原料ガスを高周波電力により分解し、 前記第 1の層上に非単結晶材料からなる層を第 2の層(403)として積層した ものである。  The electrophotographic photosensitive member of the present invention is, for example, a base (401) made of a conductive material such as A'l, stainless steel, etc., connected to the exhaust means as a first step, and can be vacuum-tight equipped with a raw material gas supply means. Installing in a film-forming furnace, decomposing the source gas with high-frequency power, and depositing a photoconductive layer (405) made of at least a non-single crystal material on the substrate as a first layer (402); As a second step, a step of taking out the substrate on which the first layer (402) is laminated and from a film forming furnace, and as a third step, the first layer laminated in the first step is used. A step of removing at least the top of the protrusion (411) on the surface of the layer (402) and, as a fourth step, a vacuum-tight film forming furnace equipped with an exhaust means and a source gas supply means. The base after finishing the third step is installed at least one type. A step of plasma-treating the surface of the first layer (402) with a gas containing a Group 13 element of the periodic table and a dilute gas selected from hydrogen, argon and helium, and a fifth step. As described above, at least the source gas is decomposed by high-frequency power, and a layer made of a non-single-crystal material is stacked on the first layer as the second layer (403).
このように成膜することによって、 第 1の層(402)中から発生し、 頭 頂部の除去された突起 (411)表面が、 プラズマ処理により数原子オーダ 一で改質され、帯電電荷に対して阻止能を持つような界面となった為、 たとえ突起 (41 1)が存在しても画像に、は現れず良好な画質を保つこと が可能となった。 本発明においては第 1の層(402)には光導電層(405)が含まれ、前記光 導電層(405)の材料として、 a- S iが用いられる。 また、 第 1の層(402) には更に下部阻止層(404)、上部阻止層(406)を設けることが電気的特性 を良好なものとする為に望ましい。 By forming the film in this manner, the surface of the protrusion (411) generated from the first layer (402) and removed from the top of the head is modified by the plasma treatment on the order of several atoms, and the charged charge is reduced. Therefore, even if the protrusion (41 1) is present, the image does not appear and it is possible to maintain a good image quality. In the present invention, the first layer (402) includes a photoconductive layer (405), and a-Si is used as the material of the photoconductive layer (405). Further, it is desirable to further provide a lower blocking layer (404) and an upper blocking layer (406) on the first layer (402) in order to improve the electrical characteristics.
前記上部阻止層(406)には、 一般的に 13族元素を選択して含有させ て、 整流性を持たせることが電気的特性の向上の点で望ましい。  In general, it is desirable that the upper blocking layer (406) has a rectifying property by selectively containing a group 13 element from the viewpoint of improving electrical characteristics.
更に、 前記第 1の層(402)には少なく とも非単結晶材料からなる保護' 層(407)を積層することもでき、 これにより第 3ステップで行われる突 起 (41 1)の頭頂部の除去,を図る工程を行う際に感光体表面に傷をつけ ることなく頭頂部の除去工程を行うことができる。  In addition, a protective layer (407) made of at least a non-single crystal material can be laminated on the first layer (402), whereby the top of the protrusion (41 1) performed in the third step. When performing the process of removing the head, the process of removing the top of the head can be performed without damaging the surface of the photoreceptor.
尚、 前記第 2の層(403)は、 少なく とも非単結晶材料からなる表面保 護層であり、 少なく とも炭素原子、 珪素原子を含んだ炭化珪素層や、 炭素原子を母材とする非単結晶材料、 例えば、 a- C (H)である。 この表 面保護層により電子写真感光体の耐摩耗性や耐傷性を^上させること ができる。 .  Note that the second layer (403) is a surface protective layer made of at least a non-single crystal material, and is a silicon carbide layer containing at least carbon atoms or silicon atoms, or a non-carbon material containing carbon atoms as a base material. Single crystal material, for example, a-C (H). This surface protective layer can improve the abrasion resistance and scratch resistance of the electrophotographic photosensitive member. .
また、 本発明に関わる感光体は、 図 4に示すように、 第 1の層内の 異常成長部が、 第 2の層まで達しておらず、 また、 図 1 0に示すよう に、 上部阻止層 (406)を構成する珪素に対する炭素の組成比が、 表面側 に向かって増加しており、 且つ図 9に示すように、 第 1の層と第 2の 層との界面領域 (413)に周期表第 13族元素の含有量分布がピークを有 していることを特徴とする。 また、 俞記ピークは、 5.0 X 1017個 /cm3以 上、1.0 X 1021個/ cm3以下であるこ が画像欠陥低減及び電気的特性上、 好ましい。 この値は、 例えば SIMS ( 2次イオン質量分析) 等の組成分 析装置を用いることで得られ、 ここでは、 界面領域のピーク値である 為、 他の構成元素との割合としてで.はなく、 絶対値を表示している。 Further, in the photoconductor according to the present invention, as shown in FIG. 4, the abnormally grown portion in the first layer does not reach the second layer, and as shown in FIG. The composition ratio of carbon to silicon constituting the layer (406) increases toward the surface side, and as shown in FIG. 9, in the interface region (413) between the first layer and the second layer. The content distribution of group 13 elements of the periodic table has a peak. In addition, the peak is preferably 5.0 × 10 17 pieces / cm 3 or more and 1.0 × 10 21 pieces / cm 3 or less from the viewpoint of image defect reduction and electrical characteristics. This value can be obtained by using a composition analyzer such as SIMS (secondary ion mass spectrometry). Here, since it is the peak value of the interface region, it is not as a percentage of other constituent elements. The absolute value is displayed.
《本発明に係わる基体の形状及び材質》 図 4に示す基体 (401)の形状は電子写真感光体の駆動方式などに応 じた所望のものとしてよい。 << Shape and Material of Substrate According to the Present Invention >> The shape of the substrate (401) shown in FIG. 4 may be as desired according to the driving method of the electrophotographic photosensitive member.
例えば、 平滑表面あるいは凹凸表面の円筒状または板状、 無端ベル ト状であることができ、 その厚さは、 所望通りの電子写真感光体を形 成し得るように適宜決定するが、 電子写真感光体としての可撓性が要 求ざれる場合には、 基体としての機能が充分発揮できる範囲内で可能 な限り薄くすることができる。 しかしながら、 基体は製造上および取 り扱い上、 機械的強度等の点から通常の場合、 円筒状は 0.5 m m以上、 板状、 無端ベルト状は ΙΟ μ -m以上とされる。  For example, it may be a smooth or uneven surface cylindrical or plate-like, endless belt-like, and its thickness is appropriately determined so that a desired electrophotographic photosensitive member can be formed. When flexibility as a photoconductor is required, it can be made as thin as possible within a range where the function as a substrate can be sufficiently exhibited. However, the substrate is usually 0.5 mm or more for the cylindrical shape and ΙΟ μ-m or more for the plate shape and endless belt shape in terms of mechanical strength in terms of manufacturing and handling.
基体材質としては上記 A 1やステンレスの如き導電性材料が一般的 であるが、 例えば各種のプラスチックやガラス、 セラミックス等、 特 には導電性を有しないものに下記導電性材料を少なく とも光導電層を 形成する側の表面に蒸着するなどして導電性を付与したものも用いる ことができる。  As the base material, conductive materials such as A1 and stainless steel are generally used. However, for example, various plastics, glass, ceramics, etc., especially those that do not have conductivity, at least the following conductive materials are photoconductive. A material imparted with conductivity by vapor deposition on the surface on which the layer is formed can also be used.
導電性材料としては上記の他、 C r、 M o、 A u、 In、 N b、 T e、 V、 T i、 P P d、 F e等の金属、 およびこれらの合金が挙げられる。 プラスチックとしてはポリエステル、 ポリエチレン、 ポリカーボネ ート、 セル ースアセテート、 ポリプロピレン、 ポリ塩化ビュル、 ポ リスチレン、 ポリアミ ド等のフィルムまたはシートが挙げられる。  In addition to the above, examples of the conductive material include metals such as Cr, Mo, Au, In, Nb, Te, V, Ti, PPd, and Fe, and alloys thereof. Examples of the plastic include films or sheets of polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polychlorinated butyl, polystyrene, and polyamide.
《本発明に係わる第 1の層》  << First layer according to the present invention >>
図 4に示す第 1の層(402)としてば、 本発明ではシリコン原子を母体 とし、 更に水素原子及び/またはハロゲン原子を含む非単結晶材料(「a- S i(H,X )」 と略記する)で構成される。  As for the first layer (402) shown in FIG. 4, in the present invention, a non-single crystal material (“a-Si (H, X)”) containing silicon atoms as a base and further containing hydrogen atoms and / or halogen atoms is used. (Abbreviated).
光導電層(405)は、 プラズマ C V D法、 スパッタリング法、 イオンプ レーティング法等によって作成可能であるが、 プラズマ C V D法を用 いて作成した膜は特に高品質の膜が得られるため好ましい。 この方法 は、 S i H 4、 S i2H 6、 S i3H 8、 S i4 H 10等のガス状態のもの、 ま たはガス化し得る水素化珪素(シラン類)を原料ガスとして用い、 これ らのガスを高周波電力によつて分解することによって行うことができ 'る。 更に層作製時の取り扱い易さ、 S i供給効率の良さ等の点で S i H 4、 S i2H 6が好ましいものとして挙げられる。 The photoconductive layer (405) can be formed by plasma CVD, sputtering, ion plating, etc. The film thus prepared is particularly preferable because a high-quality film can be obtained. In this method, Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 or the like, or silicon hydride (silanes) that can be gasified is used as a source gas. It can be used by decomposing these gases with high frequency power. Further, Si H 4 and S i 2 H 6 are preferable from the viewpoint of easy handling at the time of layer preparation and good Si supply efficiency.
このとき、 基体の温度は、 200° ( 〜 450°C、 より好ましくは 250°C〜 350°C程度の温度に保つことが特性上好ましい。これは基体表面での表 ¾反^を促進させ、 充分に構造緩和をさせるためである。  At this time, the temperature of the substrate is preferably maintained at a temperature of about 200 ° (up to 450 ° C., more preferably about 250 ° C. to 350 ° C. This promotes surface reflection on the surface of the substrate. This is to sufficiently relax the structure.
反応容器内の圧力も同様に層設計にしたがって最適範囲が適宜選択 されるが、 通常の場合 1 Χ1(Γ2〜 1 X103 P a, 好ましくは 5 Χ1(Γ2〜 5 X102 P a、 より好ましくは 1 X10 -1〜 1 X 1Ό2 P aとする。 Similarly, the optimum range of the pressure in the reaction vessel is appropriately selected according to the layer design.In normal cases, 1 Χ1 (Γ 2 -1 X10 3 Pa, preferably 5 Χ1 (Γ 2 -5 X10 2 Pa, more preferably 1 X10 - and 1 ~ 1 X 1Ό 2 P a .
これらのガスに更に H 2あるいはハロゲン原子を含むガスを所望量 混合して層形成することも特性向上の上で好ましい。 ハロゲン原子供 給用の原料ガスとして有効なものとしては、 フッ素ガス(F 2)や、 バロ ゲン間化合物、 例えば B r F、 C 1 F、 C 1 F 3、 B r F 3、 B r F 5、 I F 5、 I F 7等を挙げることができる。 ハロゲン原子を含む珪素化合物、 いわゆるハロゲン原子で置換されたシラン誘導体としては、 具体的に は、 たとえば S i F 4、 S i2 F 6等の弗化珪素力 s好ましいものとして挙 げることができる。 In order to improve the characteristics, it is preferable to form a layer by mixing a desired amount of a gas containing H 2 or a halogen atom with these gases. Halogen raw materials Effective materials for supply include fluorine gas (F 2 ) and intermetallic compounds such as B r F, C 1 F, C 1 F 3 , B r F 3 , B r F 5 , IF 5 , IF 7 etc. Silicon compounds containing halogen atoms, as a what is called silane derivatives substituted with halogen atoms include, for example, be ani gel as preferred S i F 4, S i 2 F 6 silicon fluorides force such as s it can.
また、 これらの珪素供給用の原料ガスを必要に応じて H 2、 H e、 A r、 N e等のガスにより希釈して使用してもよい。 Further, these raw material gases for supplying silicon may be diluted with a gas such as H 2 , He, Ar, or Ne if necessary.
前記光導電層(405)の層厚としては特に限定はないが、 製造コストな どを考慮すると 15〜50μ m程度が適当である。  The layer thickness of the photoconductive layer (405) is not particularly limited, but about 15 to 50 μm is appropriate considering the manufacturing cost.
上部阻止層(406)は前記光導電層(405)と同様にプラズマ CVD法、ス パッタリング法、'イオンプレーティング法等によって作成可能である 力 S、 プラズマ CVD法を用いて作成した膜は特に高品質の膜が得られ るため好ましい。 S i供給源としては S i H 4、 S i2H 6、 S i3H 8、 S i4H 10等のガス状態のもの、またはガス化し得る水素化珪素(シラン類) を使用することができるが、 層作製時の取り扱い易さ、 S i供給効率 の良さ等の点で S iH 4、 S i2H 6が好ましいものとして挙げられる。 また、'上部阻止層はシリコン原子を母体とした非単結晶材料からなる 層であれば良いが、 電気的特性を考慮すると炭化珪素層が好ましい。 炭化珪素層を作製する際の炭素供給源としては、 CH 4、 C 2H 2、 C '2Η 4、 C 2Η 6、 C 3Η 8、 C 4Η 10、 等使用することができるが、 C供 給効率の良さ等の点で CH 4、 C 2H 2、 C 2H 6が好ましいものとして 挙げられる。 ' Similar to the photoconductive layer (405), the upper blocking layer (406) can be formed by a plasma CVD method, a sputtering method, an 'ion plating method, or the like. Films made using the force S and plasma CVD methods are particularly preferred because high quality films can be obtained. Use Si gas source such as Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H 10 , or silicon hydride (silanes) that can be gasified. However, SiH 4 and Si 2 H 6 are preferable from the viewpoints of easy handling during layer preparation and good Si supply efficiency. Further, the upper blocking layer may be a layer made of a non-single crystal material based on silicon atoms, but a silicon carbide layer is preferable in consideration of electrical characteristics. As a carbon source for producing the silicon carbide layer, CH 4 , C 2 H 2 , C ' 2 Η 4, C 2 Η 6 , C 3 Η 8 , C 4 Η 10 , etc. can be used. CH 4 , C 2 H 2 , and C 2 H 6 are preferable from the standpoint of C supply efficiency. '
前記上部阻止層(406)は、 電子写真感光体が一定極性の帯電処理をそ の自由表面に受けた際、 表面側より第 1の層 (402)側に電荷が侵入する の-を阻止する機能を有し、 逆の極性の帯電処理を受けた際にはそのよ うな機能は発揮されない特性を有している。 そのような機能を付与す るために、 前記上部阻止層(406)には伝導性を制御する不純物原子を適 切に含有させることが必要である。 そのような目的で用いられる不純 物原子としては、 本発明においては第 13族原子を用いることができ る。 このような第 13族原子としては、 具体的には、 硼素(B)、 アルミ ニゥム(A 1)、ガリゥム (G a)、インジウム(In;)、タリ ゥム(T 1)等があり、· 特に硼素(B)が好適である。 硼素供給源としては、 B C 13、 B F 3、 B B r3、 B 2H 6等が挙げられるが、 取り扱い易さの点から B 2H, 6が好 ましい。 The upper blocking layer (406) blocks the intrusion of charges from the surface side to the first layer (402) side when the electrophotographic photosensitive member is subjected to a charging process with a constant polarity on its free surface. It has a function that does not exhibit such a function when it is charged with the opposite polarity. In order to provide such a function, the upper blocking layer (406) needs to appropriately contain impurity atoms for controlling conductivity. As an impurity atom used for such a purpose, a Group 13 atom can be used in the present invention. Specific examples of such group 13 atoms include boron (B), aluminum (A 1), gallium (Ga), indium (In;), and tarium (T 1). · Boron (B) is particularly suitable. Examples of the boron supply source include BC 1 3 , BF 3 , BB r 3 , B 2 H 6, etc., but B 2 H, 6 is preferable from the viewpoint of ease of handling.
前記上部阻止層(406)に贪有される伝導性を制御する不純物原子の 必要な含有量は、 前記上部阻止層 (406)の組成や製造方法により一概に はいえなレ、が、一般的には構成元素の総数に対して 100原子 ppm以上、 30000原子 pp m以下とされることが好ましい。 The necessary content of impurity atoms controlling the conductivity inherent in the upper blocking layer (406) is not generally determined by the composition and manufacturing method of the upper blocking layer (406). Contains 100 atomic ppm or more of the total number of constituent elements, It is preferable to be 30000 atoms ppm or less.
前記上部阻止層 (406)に含有される伝導性を制御する原子は、 前記上 部阻止層(406)中に万偏なく均一に分布されていても良いし、 あるいは 層厚方向に不均一に分布する状態で含有していてもよい。 しかしなが ら、 いずれの場合にも基体の表面と平行面内方向においては、 均一な 分布で万偏なく含有されることが面内方向における特性の均一化を図 る点からも必要である。  The atoms controlling the conductivity contained in the upper blocking layer (406) may be uniformly distributed in the upper blocking layer (406), or nonuniformly in the layer thickness direction. It may be contained in a distributed state. However, in any case, in the in-plane direction parallel to the surface of the substrate, it is necessary to contain evenly in a uniform distribution from the point of achieving uniform characteristics in the in-plane direction. .
また、前記上部阻止層(406)は光導電層(405)側から保護層 (407)に向か つて、 上部阻止層(406)を構成する珪素に対する炭素の組成比を、 図 1 0に示すように、 表面側に向かって増加させることが電位ムラの抑制 の点からより好ましい。  The upper blocking layer (406) has a carbon composition ratio with respect to silicon constituting the upper blocking layer (406) from the photoconductive layer (405) side toward the protective layer (407). Thus, increasing from the surface side is more preferable from the viewpoint of suppressing potential unevenness.
更に特性を向上させる為に、 前記第 1の層(402)を複数の層構成にし ても良い。 例えば、 下部阻止層(t04)は、 一般的に a- S i(H ,X )をべ一 スとし、 周期表第 15族元素 (以下第 15族元素とも表記) を含有させ ることにより伝導型を制御し、 基体側からのキャリアに対して阻止能 を持たせることが可能である。 この場合、 必要に応じて、 C、 N、 O から選ばれる少なく とも 1つ以上の元素を含有させることで応力を調 整し、 光導電層(405)の密着性向上の機能を持たせることもできる。 本発明における前記下部阻止層 (404)のドーパントとして用いられ る元素としては第 15族元素が挙げられ、 前記第 15族原子導入用の原 料物質として有効に使用されるのは、 燐原子導入用として、 P H 3、 P 2 H 4等の水素化燐、 P F 3、 P F 5、 P C 13、 P C 15、 P B r3、 P 13 等のハロゲン化燐、 さらに P H 41等が挙げられる。 この他、 窒素原子 導入用として、 N O、 N O 2, N 2、 N H 3等が第 15族原子導入用の出 発物質の有効なものとして挙げられる。 In order to further improve the characteristics, the first layer (402) may have a plurality of layers. For example, the lower blocking layer (t04) is generally based on a-Si (H, X) and is conductive by containing a Group 15 element in the periodic table (hereinafter also referred to as Group 15 element). It is possible to control the mold and to have a blocking ability against the carrier from the substrate side. In this case, if necessary, the stress is adjusted by containing at least one element selected from C, N, and O, and the function of improving the adhesion of the photoconductive layer (405) is provided. You can also. Examples of the element used as a dopant for the lower blocking layer (404) in the present invention include a Group 15 element, and the effective use as a raw material for introducing the Group 15 atom is the introduction of a phosphorus atom. as use, PH 3, P 2 H 4 hydrogenation such as phosphorus, PF 3, PF 5, PC 1 3, PC 1 5, PB r 3, P 1 3 halogens, such as phosphorus, include further PH 4 1, etc. It is done. In addition, NO, NO 2 , N 2 , NH 3 and the like are effective as starting materials for introducing Group 15 atoms for introducing nitrogen atoms.
前記ドーパントの原子の含有量は、 好ましくは 1 Χ 1(Γ2〜 1 X 104原 子 pp m、 より好ましくは 5 Χ 1(Γ2〜 5 X 103原子 pp m、 最適には I X 10 -1〜 1 X 103原子 pp mである。 The content of the dopant atoms is preferably 1 1 (Γ 2 to 1 X 10 4 Child pp m, more preferably 5 Χ 1 (Γ 2 to 5 X 10 3 atoms pp m, optimally IX 10 -1 to 1 X 10 3 atoms pp m.
また、 本発明の第 1の層 (402)の最表面に、 少なく とも非単結晶材料 からなる保護層 (407)を設けても良い。前記保護層 (407)はシリコン原子 を母体とした非単結晶材料であれば良いが、 電気的特性を考慮すると 炭化珪素層が好ましい。 この保護層 (407)により電子写真感光体の耐摩 耗性ゃ耐傷性を向上させることができる。  Further, a protective layer (407) made of at least a non-single crystal material may be provided on the outermost surface of the first layer (402) of the present invention. The protective layer (407) may be a non-single crystal material based on silicon atoms, but a silicon carbide layer is preferred in view of electrical characteristics. With this protective layer (407), the abrasion resistance and scratch resistance of the electrophotographic photosensitive member can be improved.
また、 前記第 1の層(402)を積層する際のプラズマ C V D法に用いる 放電周 数としては如何なる周波数も用いることができ、 工業的には R. F周波数帯と呼ばれる 1 M H z以上、 50 M H z未満の高周波でも、 V H F帯と呼ばれる 50 M H z以上、 450 M H z以下の高周波でも好適 に用いることが出来る。  Further, any frequency can be used as the discharge frequency used in the plasma CVD method when the first layer (402) is laminated, and it is industrially referred to as an RF frequency band of 1 MHz or more, 50 Even a high frequency lower than MHz can be suitably used even at a frequency higher than 50 MHz and lower than 450 MHz called the VHF band.
また、 前記第 1の層 (402)表面に存在する突起 (41 1)の頭頂部を除去 し、 平坦にすることが画像欠陥の低減の為に必要不可欠である。 図 2 に頭頂部を除去した後の突起の一例を示す。 頭頂部の除去は、 水準線 (220)まで行われることが画像欠陥低減や密着性向上の点から好まし い。 また、 頭頂部の除去が施された後の突起 (211)は、 突起 (211)の高さ と第 1の層の膜厚との関係から、 光導電層が剥き出しの状態となって いる。  In addition, it is indispensable to remove the top of the protrusion (411) existing on the surface of the first layer (402) and make it flat to reduce image defects. Figure 2 shows an example of the protrusion after removing the crown. Removal of the top of the head is preferably performed up to the level line (220) from the viewpoint of reducing image defects and improving adhesion. Further, the protrusion (211) after the removal of the top of the head is in a state where the photoconductive layer is exposed due to the relationship between the height of the protrusion (211) and the film thickness of the first layer.
また、 頭頂部を除去する加工は、 アルカリエクチングのよ、うな、 頭 項部を溶かすことで除去する手段などがあるが、 作業性や均一性など の点から研磨加工が好ましい。 尚、 このような研磨加工は、 後述する 表面研磨装置によって行うことができる。  In addition, the processing for removing the top of the head includes means for removing the head by melting the head, such as alkali etching, but polishing is preferred from the viewpoint of workability and uniformity. Such a polishing process can be performed by a surface polishing apparatus described later.
また、 成膜炉に再度設置する前に、 電子写真感光体を水と揆触させ る処理を行うことは、 後述する第 2の層(403)の密着性向上やダス ト付 着低減のために ¾ましい。 具体的な処理方法としては、 清浄な布や紙 で表面を拭き取る方法や、 望ましくは有機溶媒洗浄や水洗浄などによ り精密洗浄した方が望ましい。 特に、 近年の環境に対する配慮からは 後述する水洗浄装置'による水洗浄がより好ましい。 In addition, the treatment of bringing the electrophotographic photosensitive member into contact with water before installing it again in the film forming furnace is for the purpose of improving the adhesion of the second layer (403), which will be described later, and reducing dust adhesion. It ’s good. Specific treatment methods include clean cloth and paper It is better to clean the surface with a method of cleaning with an organic solvent or water. In particular, in view of environmental considerations in recent years, water washing with a water washing apparatus described later is more preferable.
《本発明に係わるプラズマ処理》  << Plasma treatment according to the present invention >>
本発明に係わるプラズマ処理は、 前記第 1の層が形成された後に一 且放電を止めて、 基体を成膜炉から取り出し、 第 1の層表面の突起に 対して、 少なく ともその頭頂部の除去を施した後に、 真空気密可能な 成膜炉内に設置して行われる。  In the plasma treatment according to the present invention, after the first layer is formed, the discharge is temporarily stopped, the substrate is taken out of the film formation furnace, and the protrusion on the surface of the first layer is at least at the top of the top. After removal, it is placed in a vacuum-tight film-forming furnace.
具体的には、 少なく とも周期表第 13族元素を含むガスと水素、 アル ^ン、 ヘリ ウムから選ばれる少なく とも一つからなる希釈ガス雰囲気 の中で、 プラズマを発生させ行われる。  Specifically, plasma is generated in a dilute gas atmosphere consisting of at least one gas selected from Group 13 elements of the periodic table and hydrogen, argon, and helium.
頭頂部の除去が施され、 光導電層が剥き出しとなった突起表面が、 このプラズマ処理により数原子オーダーで改質され、 帯電電荷に対し て阻止能を持つ界面となる。 この界面を第 1の層と第 2の層との間に 形成することができることで、 第 2の層として上部阻止層を積層 Lな くても画像欠陥を低減させる効果を維持する.ことが可能になる.。また、 第 2の層と.して上部阻 it層を積層する必要がなくなることで、 炭素含 有率の高い層の後に炭素含有率の低い層を積層することによって、 密 着性の低下を防ぐことができる。  The protrusion surface from which the top of the head has been removed and the photoconductive layer has been exposed is modified to the order of several atoms by this plasma treatment, and becomes an interface having a blocking ability against charged charges. Since this interface can be formed between the first layer and the second layer, it is possible to maintain the effect of reducing image defects even if the upper blocking layer is not laminated as the second layer. It will be possible ... In addition, since it is not necessary to stack the upper barrier layer as the second layer, a layer having a low carbon content is stacked after a layer having a high carbon content, thereby reducing the adhesion. Can be prevented.
このプラズマ処理により画像欠陥の低減効果が維持される理由は、 突起表面がプラズマ処理により数原子オーダーで改質され、 帯電電荷 に対して阻止能を持つ界面となった為に、 帯電電荷の突起への侵入を 防止することができた為であると思われる。  The reason why the effect of reducing image defects is maintained by this plasma treatment is that the surface of the protrusion is modified by the plasma treatment to the order of several atoms, and the interface has a blocking ability against the charged charge. This is thought to be due to the fact that it was able to prevent intrusion.
このプラズマ処理は、 真空気密可能な成膜炉内に、 第 1の層を積層 し、 突起の頭頂部の除去が施された基体を設置し、 少なく とも 1種の 周期表第 13族元素を含むガスと、 水素、 ァルゴシ、 ヘリ ゥムから選ば れる少なく とも一つからなる希釈ガス雰囲気の中でプラズマを発生さ せて行われる。 前記プラズマを発生させる際の放電周波数としては如 何なる周波数も用いることができ、 工業的には R F周波数帯と呼ばれ る 1 MH z以上、 50 MH z未満の高周波でも、 VH F帯と呼ばれる 50 MH z以上、 450 MH z以下の高周波でも好適に用いることが出来る。 前記周期表第 13族元素を含むガスとしては B C 13、 B F 3、 B B r3、 B 2 H 6等が挙げられるが、 取り扱い易さの点から B 2 H 6ガスが^ま しく、 導入される全ガス流量中のホウ素原子の含有量は 2.0X l(T4m ol%以上、 2.0X 10_2m ol%以下であることが、 画像欠陥低減効果及び 電気的特性上好ましい。 In this plasma treatment, the first layer is stacked in a vacuum-tight film-forming furnace, and the base from which the top of the protrusion is removed is placed. At least one group 13 element in the periodic table is added. Choose from gas, hydrogen, argon, helium This is done by generating plasma in a dilute gas atmosphere consisting of at least one. Any frequency can be used as the discharge frequency when generating the plasma. Industrially, even a high frequency of 1 MHz or more and less than 50 MHz called the RF frequency band is called the VHF band. It can be suitably used even at a high frequency of 50 MHz or more and 450 MHz or less. Examples of the gas containing Group 13 element of the periodic table include BC 1 3 , BF 3 , BB r 3 , B 2 H 6, etc., but B 2 H 6 gas is preferable from the viewpoint of easy handling. The content of boron atoms in the total gas flow rate is preferably 2.0 × l (T 4 mol% or more and 2.0 × 10 — 2 mol% or less in view of image defect reduction effect and electrical characteristics.
' 《本発明に係わる第 2の層》  '《Second layer according to the present invention》
図 4に示す本発明に関わる第 2の層(403)は、第 1の層(402)が形成さ れた後に一旦放電を止めて、 基体を成膜炉から取り出し、 第 1 の層表 面の突起に対してその頭頂部の除去を施し、 前記プラズマ ^理を行つ た後に積層される。  In the second layer (403) according to the present invention shown in FIG. 4, after the first layer (402) is formed, the discharge is temporarily stopped, the substrate is taken out of the film formation furnace, and the first layer surface The top of the protrusion is removed from the protrusion, and after the plasma treatment, the layers are stacked.
本発明の第 2の層 (403)は少なく とも非単結晶材料からなる表面保 護層 (408)である。前記表面保護層 (408)により電子写真感光体の耐摩耗 性や耐傷性を向上させることができる。  The second layer (403) of the present invention is a surface protective layer (408) made of at least a non-single crystal material. The surface protective layer (408) can improve the abrasion resistance and scratch resistance of the electrophotographic photosensitive member.
表面保護層(408)は前記光導電層(405)と同様にプラズマ C VD法、ス パッタリング法、 イオンプレーティング法等によって作成可能である 力 プラズマ C VD法を用いて作成した膜は特に高品質の膜が得られ るため好ましい。 S i供給源としては S i H 4、 S i2 H 6、 S i3 H 8、 S i4H io等のガス状態の水素化珪素(シラン類)、 またはガス化し得る水 素化珪素(シラン類)を使用することができるが、 層作製時の取り扱い 易さ、 S i供給効率の良さ等の点で S i H 4、 S i2 H 6が好まし.いもの として挙げられる。 また、 表面保護層はシリ コン原子を'母体とし、 少 なぐとも炭素原子、 珪素原子を含んだ炭化珪素層や炭素原子を母材と する非単結晶材料、 例えば a-C(H)が好まじい。 この際の炭素供給源 とし は、 し tl 4、 ^ 2 H 2 C Η 4 2 Η 6> し 3 n g、 4 Η χο 等が用られ、 C供給効率の良さ等の点で CH 4、 C 2Η 2、 C 2H 6が好 ましいもの.として挙げられる。 The surface protective layer (408) can be formed by the plasma C VD method, the sputtering method, the ion plating method, etc., like the photoconductive layer (405). This is preferable because a high-quality film can be obtained. Si sources include Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H io and other gaseous silicon hydrides (silanes), or gasifiable silicon hydride ( Silanes) can be used, but Si H 4 and Si 2 H 6 are preferred because they are easy to handle at the time of layer preparation and have good Si supply efficiency. In addition, the surface protective layer is based on silicon atoms. Of these, a silicon carbide layer containing carbon atoms and silicon atoms, and a non-single crystal material based on carbon atoms, such as aC (H), are preferred. The carbon source used here is tl 4, ^ 2 H 2 C Η 4 2 Η 6> and 3 ng, 4 χ χο, etc., and CH 4 and C 2 in terms of the C supply efficiency. Η 2, C 2 H 6 is preferred.
前記第 2の層(403)を積層する際のプラズマ CVD法に用いる放電 周波数としては如何なる周波数も用いることができ、 工業的には R F 周波数帯と呼ばれる 1 MH z以上、 50 MH z未満の高周波でも、 VH F帯と呼ばれる 50MH z以上、 450 MH z以下の高周波でも好適に用 いることが出来る。  Any frequency can be used as the discharge frequency used in the plasma CVD method when laminating the second layer (403), and it is industrially referred to as an RF frequency band of 1 MHz or more and less than 50 MHz. However, it can be suitably used even at a high frequency of 50 MHz or more and 450 MHz or less, called the VHF band.
反応容器内の圧力も同様に層設計にしたがって最適範囲が適宜選択 されるが、 通常の場合 1 Χ1(Γ2〜 1 X103 P a、 好ましくは 5 Χ1(Γ2〜 5 X102 P a、 最適には 1 X10 -1〜 1 X102 P aとするのが好ましい。 Similarly, the optimum range of the pressure in the reaction vessel is also appropriately selected according to the layer design.In normal cases, 1 Χ1 (Γ 2 -1 X10 3 Pa, preferably 5 Χ1 (Γ 2 -5 X10 2 Pa, Optimally, it is preferably 1 X10 -1 to 1 X10 2 Pa.
さらに、 基体の温度は、 層設計にしたがって最適範囲が適宜選択さ れるが、 通常の場合、 密着性向上の観点から第 1の層形成時の基体温 度より低く設定することがより.好ましい。 具体的には、 炭化珪素層を 形成する場合、 100°C〜330°C、 より好ましく 150° (:〜 270°Cとするのが 望ましい。 炭素原子を母材とする非単結晶材料、 例えば、 a-C(H)の場 合は、 20°C以上 50°C、 好ましくは、 室温程度、 例えば、 25°Cに選択す ることが好ましい。  Further, the optimum range of the temperature of the substrate is appropriately selected according to the layer design. In general, it is more preferable to set the temperature lower than the substrate temperature at the time of forming the first layer from the viewpoint of improving adhesion. Specifically, in the case of forming a silicon carbide layer, it is desirable to set the temperature to 100 ° C. to 330 ° C., more preferably 150 ° (: to 270 ° C. Non-single crystal material based on carbon atoms, for example, In the case of aC (H), it is preferable to select 20 ° C. or more and 50 ° C., preferably about room temperature, for example, 25 ° C.
《本発明に係わる a-S i感光体成膜装置》  << a-Si photoconductor film forming apparatus according to the present invention >>
図 5は、 高周波電源を用いた RFプラズマ CVD法による電子写真 感光体の成膜装置の一例を模式的に示した図である。 +  FIG. 5 is a diagram schematically showing an example of a film forming apparatus for an electrophotographic photosensitive member by an RF plasma CVD method using a high-frequency power source. +
この装置は大別すると、成膜装置 (5100)、原料ガスの供給装置 (5200)、 成膜炉 (5110)内を減圧する為の排気装置(図示せず)から構成されてい る。 成膜装置 (5100)中の成膜炉 (5110)内にはアースに接続された基体 (5112)、 基体の加熱用ヒーター(5113)、 原料ガス導入管(5114)が設置さ 'れ、 更に高周波マッチングボックス(5115)を介して高周波電源(5120) が接続されている。 , This apparatus is roughly composed of a film forming apparatus (5100), a source gas supply apparatus (5200), and an exhaust apparatus (not shown) for depressurizing the inside of the film forming furnace (5110). The substrate connected to the ground in the deposition furnace (5110) in the deposition apparatus (5100) (5112), a substrate heating heater (5113) and a source gas introduction pipe (5114) are installed, and a high frequency power source (5120) is connected via a high frequency matching box (5115). ,
原料ガス供給装置(5200)は、 S i H 4、 H 2、 CH 4、 NO、 B 2 H 6、 C F 4等の原料ガスボンベ(5221〜5226)とバルブ(5231〜5236)、 (5241 〜5246)、 (5251〜5256)及ぴマスフローコントローラ(5211〜5216)から 構成され、 各構成ガスのボンべはパルプ (5260)を介して成膜炉 (5110) 内のガス導入管(5114)に接続されている。 The raw material gas supply device (5200) includes Si H 4 , H 2 , CH 4 , NO, B 2 H 6 , CF 4 and other raw material gas cylinders (5221 to 5226) and valves (5231 to 5236), (5241 to 5246 ), (5251-5256) and mass flow controller (5211-5216), each gas cylinder is connected to the gas inlet pipe (5114) in the film-forming furnace (5110) via pulp (5260) Has been.
基体 (5112)は導電性受け台(5123)の上に設置されることによってァ ースに接続される。  The substrate (5112) is connected to the ground by being placed on the conductive cradle (5123).
以下、 図 5の装置を用いた電子写真感光体の形成方法手順の一例に ついて説明する。  Hereinafter, an example of a procedure for forming an electrophotographic photosensitive member using the apparatus of FIG. 5 will be described.
成膜炉 (5110)内に基体 (5112)を設置し、 不図示の排気装置 (例えば真 空ポンプ)により成膜炉 (5110)内を排気する。 続いて基体加熱用ヒータ 一(5113)により基体(5112)の温度を 200°C〜450°C、 より好ましくは The substrate (5112) is set in the film forming furnace (5110), and the film forming furnace (5110) is evacuated by an unillustrated exhaust device (for example, a vacuum pump). Subsequently, the temperature of the substrate (5112) is set to 200 ° C. to 450 ° C., more preferably by the heater for heating the substrate (5113).
250°C〜350°Cの所望の温度に制御する。 次いで、. 感光体形成用の原料 ガスを成膜炉(5110)内に流入させるにはガスボンベのパルプ(5231〜 5236)、 成膜炉のリークパルプ(5117)が閉じられている事を確認し、 ま た流入バルブ(5241〜5246)、流出バルブ(5251〜5256)、捕助バルブ(5260) が開かれている事を確認し、 メインバルブ (5118)を開い T成膜炉 (5110) 及びガス供給配管 (5116)を排気する。 Control to the desired temperature between 250 ° C and 350 ° C. Next, make sure that the gas cylinder pulp (5231 to 5236) and the leak pulp (5117) of the film forming furnace are closed in order to flow the raw material gas for forming the photoconductor into the film forming furnace (5110). Check that the inflow valve (5241 to 5246), outflow valve (5251 to 5256), and trap valve (5260) are open, then open the main valve (5118) and the T deposition furnace (5110) and Exhaust the gas supply pipe (5116).
その後、真空計 (5119)の読みが約 0.1 P a以下になった時点で補助バ ルブ (5260)、流出パルプ(5251〜5256)を閉じる。その後ガスボンベ (5221 〜5226)より各ガスをバルブ (5231〜5236)を開いて導入し、 圧力調整器 (5261〜5266)により各ガス圧を 0.2 MP aに調整する。 .  Then, close the auxiliary valve (5260) and the spilled pulp (5251-5256) when the reading of the vacuum gauge (5119) becomes about 0.1 Pa or less. Then, each gas is introduced from the gas cylinder (5221 to 5226) by opening the valve (5231 to 5236), and each gas pressure is adjusted to 0.2 MPa by the pressure regulator (5261 to 5266). .
次に流入パルプ(5241〜5246)を徐々に開けて各ガスをマスフローコ ントローラ(5211〜5216)内に導入する。 Next, the inflow pulp (5241 to 5246) is gradually opened and each gas is mass flow controlled. It is introduced into the controller (5211 to 5216).
以上の手.順によつて成膜準備を完了した後、 基体 (51 12)上に、 まず 第 1の層として、 例えば光導電層の積層を行う。  After completing the preparation for film formation by the above procedure, first, for example, a photoconductive layer is laminated as a first layer on the substrate (5112).
すなわち、 基体 (5112)が所望の温度になったところで、 各流出バル ブ (5251〜5256)のうちの必要なものと補助パルプ(5260)とを徐々に開 き、各ガスボンベ (5221〜5226)から所望の原料ガスをガス導入管(5114) を介して成膜炉(51 10)内に導入する。 次に、 各マスフローコン トロー ラ(521 1〜5216)によって、 各原料ガスが所望の流量になる様に調整す る。 その際、 成膜炉(51 10)内が 13.3 P a〜1330 P aの所望の圧力にな 6様に、 真空計(51 19)を見ながらメインパルプ(51 18)の開口を調整す る。 内圧が安定したところで、 高周波電源 (5120)を所望の電力に設定 して例えば、 周波数 1 Μ Η ζ〜50 Μ Η ζ、 例えば 13.56 Μ Η ζの高周波 電力を高周波マッチングボックス(51 15)を通じて力ソード電極(511 1) に供給し高周波グロ一放電を生起させる。 この放電エネルギーによつ て成膜炉 (51 10)内に導入させた各原料ガスが分解され、基体 (51 12)上に 所望のシリコン原子を主成分とする光導電層が積層される。  That is, when the substrate (5112) reaches a desired temperature, necessary ones of the outflow valves (5251 to 5256) and the auxiliary pulp (5260) are gradually opened, and each gas cylinder (5221 to 5226) is opened. Then, a desired source gas is introduced into the film forming furnace (5110) through the gas introduction pipe (5114). Next, each mass flow controller (521 1 to 5216) is adjusted so that each source gas has a desired flow rate. At that time, adjust the opening of the main pulp (51 18) while looking at the vacuum gauge (51 19) so that the inside of the film forming furnace (51 10) is at a desired pressure of 13.3 Pa to 1330 Pa. . When the internal pressure is stable, set the high-frequency power supply (5120) to the desired power and, for example, apply high-frequency power with a frequency of 1 Μ ζ ζ to 50 ζ ζ, for example 13.56 ζ Μ ζ, through the high-frequency matching box (51 15). A high frequency glow discharge is generated by supplying the sword electrode (511 1). With this discharge energy, each source gas introduced into the film forming furnace (5110) is decomposed, and a photoconductive layer mainly composed of desired silicon atoms is laminated on the substrate (5112).
所望の膜厚の形成がおこなわれた後、 高周波電力の供給を止め、 各 流出バルブ(5251〜5256)を閉じて成膜炉(51 10)への各原料ガスの流入 を止め、 光導電層の積層を終える。  After the formation of the desired film thickness, the supply of high-frequency power is stopped, the outflow valves (5251 to 5256) are closed to stop the flow of each source gas into the film formation furnace (51 10), and the photoconductive layer Finish the lamination.
光導電層の組成や膜厚は公.知のものを使用することができる。 続い て上部阻止層を積層する場合や前記光導電層と基体 (51 12)の間に下部 阻止層を積層する場合も基本的には上記の操作をあらかじめ.おこなえ ばよい。 前述の手順で第 1の層まで積層した基体に対しては突起の頭 頂部の除去を行うことがポイントである。  Known and known compositions and film thicknesses of the photoconductive layer can be used. Subsequently, when the upper blocking layer is laminated, or when the lower blocking layer is laminated between the photoconductive layer and the substrate (5112), the above operation may be basically performed in advance. The point is to remove the top of the protrusions on the substrate laminated up to the first layer by the procedure described above.
第 2の層の積層を行う前に水と接触させる処理を行うことが好まし く、 具体的な処理方法として、 水洗浄や有機溶媒洗浄などが挙げられ るが、 近年の環境への配慮から水洗浄がより好ましい。 水洗浄の方法 は後述する。 このよ うに第 2の層の積層前に水洗浄を行うことは、 密 着性向上やダス ト付着低減に有効である。 . It is preferable to perform treatment with water before laminating the second layer, and specific treatment methods include water washing and organic solvent washing. However, water washing is more preferable in view of environmental considerations in recent years. The method of washing with water will be described later. In this way, washing with water before the second layer is laminated is effective in improving adhesion and reducing dust adhesion. .
次に、 突起の頭頂部の除去及び水と接触させる処理を行った基体は 再び成膜炉に戻され、 プラズマ処理及ぴ第 2の層の積層をおこなう。  Next, the substrate which has been subjected to the treatment of removing the top of the protrusion and bringing it into contact with water is again returned to the film forming furnace, and plasma treatment and lamination of the second layer are performed.
《本発明に係わる表面研磨装置》 '  << Surface polishing apparatus according to the present invention >>
図 6に、 本発明の負帯電用電子写真用感光体の製造工程において、 突起の頭頂部の除去加工を行う際に利用される表面研磨装置の一例を 示す。 図 6に示.す表面研磨装置の構成例において、加工対象物「円筒状 の基体上の堆積膜表面」(600)は、その表面に a- S iからなる第 1の層が 堆積された円筒状の基体であり、 弾性支持機構 (620)に取り付けられ る。  FIG. 6 shows an example of a surface polishing apparatus used when removing the top of the protrusion in the manufacturing process of the negatively charged electrophotographic photoreceptor of the present invention. In the configuration example of the surface polishing apparatus shown in Fig. 6, the object to be processed "deposited film surface on cylindrical substrate" (600) has a first layer of a-Si deposited on its surface. Cylindrical substrate, attached to the elastic support mechanism (620).
図 6に示す装置において、 弾性支持機構 (620)は、 例えば、 空気圧ホ ルダ一が利用され、 具体的には、 プリヂストン社製空気圧式ホルダー (商品名:エアピッカー、 型番: P 045 T C A X 820)が用いられている。 加圧弹性ローラー(630)は、 研磨テープ (631)を卷回して、 加工対象物 (600)の表面に押圧させる。 ·研磨テープ (631)は、 送り出しロール (632) から供給され、 卷き取りロール (633)に回収される。 その送り出し速度 は、定量送り出しロール (634)とキヤプスタンローラ(635)により調整さ れ、 また、 その張力も調整されている。 研磨テープ (631)には、 通常ラ ッビングテープと呼ばれるものが好適に利用される。 a- S i光導電層ま たは上部阻止層または保護層の表面を加工する際、 ラッビングテープ には、 砥粒としては S i C、 A 12 O 3、 F e2 O 3などが用いられる。 具体 的には、 富士フィルム社製ラッビングテープ L T - C 2000を用いた。 加圧弾性ローラー(630)は、 そのローラー部は、 ネオプ ンゴム、 シ-リ コンゴムなどの材質からなり、 J I S規格 (JIS K 6253 N法) による ゴム硬度 20〜80の範囲、 より好ましくはゴム硬度 30〜40の範囲とさ れている。 また、 ローラー部形状は、 長手方向において、 中央部の直 径が両端部の直径より若干太いものが好ましく、 例えば、 両者の直径 差が 0.0〜0.6 m mの範囲、 より好ましくは、 0.2〜0.4 m mの範囲とな る形状が好適である。 加圧弾性ローラー(630)は、 回転する加工対象物 「円筒状基体上の堆積膜表面」(600)に対して、加圧圧力 0.05 M P a〜0.2 M P aの範囲で加圧しながら、 研磨テープ (、631)、 例えば、 上記のラッ ビングテープを送り堆積膜表面の研磨をおこなう。 In the apparatus shown in FIG. 6, for example, a pneumatic holder is used as the elastic support mechanism (620). Specifically, a pneumatic holder manufactured by Pridestone (trade name: air picker, model number: P 045 TCAX 820) Is used. The pressure inertia roller (630) winds the polishing tape (631) and presses it against the surface of the workpiece (600). · The polishing tape (631) is supplied from the feed roll (632) and collected by the scraping roll (633). The feed speed is adjusted by a constant feed roll (634) and a capstan roller (635), and the tension is also adjusted. As the polishing tape (631), what is usually called a rubbing tape is preferably used. When processing the surface of a-Si photoconductive layer or upper blocking layer or protective layer, the rubbing tape contains Si C, A 1 2 O 3 , Fe 2 O 3 etc. as abrasive grains Used. Specifically, Fuji Film's rubbing tape LT-C 2000 was used. The pressure elastic roller (630) is made of materials such as neoprene rubber and silicone rubber, and conforms to JIS standards (JIS K 6253 N method). The rubber hardness is in the range of 20-80, more preferably in the range of rubber hardness 30-40. Further, the shape of the roller part is preferably such that the diameter of the central part is slightly larger than the diameter of both end parts in the longitudinal direction, for example, the difference in diameter between the two is 0.0 to 0.6 mm, more preferably 0.2 to 0.4 mm. A shape that falls within this range is preferred. The pressure elastic roller (630) is a polishing tape that is pressed against a rotating workpiece “deposition film surface on a cylindrical substrate” (600) in a pressure range of 0.05 MPa to 0.2 MPa. (, 631) For example, the above-mentioned rubbing tape is fed to polish the surface of the deposited film.
なお、 大気中で実施される表面研磨に対しては、 前記研磨テープを 利用する手段以外に、 パフ研磨のような湿式研磨の手段を利用するこ とも可能である。 また、 湿式研磨の手段を利用する際には、 研磨加工 後、 研磨に利用する液の洗浄除去を施す工程を設けるが、 その際、 表 面を水と接触させ、 洗浄する処理を併せて実施することができる。  For surface polishing performed in the atmosphere, it is also possible to use wet polishing means such as puff polishing in addition to the means using the polishing tape. In addition, when using wet polishing means, there is a process for cleaning and removing the liquid used for polishing after polishing, and at that time, the surface is brought into contact with water and cleaned. can do.
《本発明に係わる水洗浄装置》  << Water cleaning apparatus according to the present invention >>
本発明に用いられる水洗浄装置の一例を図 7に示す。  An example of the water cleaning apparatus used in the present invention is shown in FIG.
図 7に示す処理装置は、処理部 (702)と被処理部材搬送機構 (703)より なっている。 処理部(702)は、 被処理部材投入台(71 1)、 被処理部材洗浄 槽 (721)、 純水接触槽 (731)、 乾燥槽 (741)、 被処理部材搬出台 (751)より なっている。 洗浄槽 (721)、 純水接触槽 (731)とも液の温^を一定に保つ ための温度調節装置(図示せず)が付いている。 搬送機構 (703)は、 搬送 レール(765)と搬送アーム(761)よりなり、 搬送アーム(761)は、 レール (765)上を移動する移動機構 (762)、基体 (701)を保持するチヤッキング機 構 (763)及ぴチヤッキング機構 (763)を上下させるためのェアーシリン ダー (764)よりなっている。投入台(711)上に置かれた基体 (701)は、搬送 機構 (703)により洗浄槽 (721)に搬送される。洗浄槽 (721)中の界面活性剤 水溶液よりなる洗浄液 (722)中で超音波処理されることにより表面に 付着している油及び粉体の洗浄が行なわれる。 次に基体 (701)は、 搬送 機構 (703)により純水接触槽 (731)へ運ばれ、 25°Cの温度に保たれた抵抗 率 175k Q · m (17.5 M Q · c m)の純水をノズル(732)から 4.9 M P aの圧 力で吹き付けられる。 純水接触工程の終わった基体 (701)は搬送機構 (703)により乾燥槽 (741)へ移動され、ノズル (742)から高温の高圧空気を 吹き付けられ乾燥される。 乾燥工程の終了した基体 (701)は、 搬送機構 (703)により搬出台(751)に運ばれる。 The processing apparatus shown in FIG. 7 includes a processing unit (702) and a member-to-be-processed transport mechanism (703). The processing section (702) is composed of a processing member input stand (71 1), a processing member cleaning tank (721), a pure water contact tank (731), a drying tank (741), and a processing member unloading base (751). ing. Both the washing tank (721) and the pure water contact tank (731) are provided with a temperature control device (not shown) for keeping the temperature of the liquid constant. The transfer mechanism (703) includes a transfer rail (765) and a transfer arm (761). The transfer arm (761) is a moving mechanism (762) that moves on the rail (765) and a chucking that holds the base body (701). It consists of an air cylinder (764) for moving the mechanism (763) and the chucking mechanism (763) up and down. The substrate (701) placed on the input table (711) is transferred to the cleaning tank (721) by the transfer mechanism (703). Surfactant in the cleaning tank (721) The adhering oil and powder are cleaned. Next, the substrate (701) is transported to the pure water contact tank (731) by the transport mechanism (703), and pure water with a resistivity of 175 kQm (17.5 MQcm) maintained at a temperature of 25 ° C is supplied. Sprayed from nozzle (732) with a pressure of 4.9 MPa. The substrate (701) after the pure water contact step is moved to the drying tank (741) by the transport mechanism (703), and is dried by blowing high-temperature high-pressure air from the nozzle (742). The substrate (701) after the drying process is carried to the unloading base (751) by the transport mechanism (703).
《本発明に係わる電子写真装置》  << Electrophotographic apparatus according to the present invention >>
本発明の負帯電用電子写真感光体を用いた電子写真装置の一例を図 8に示す。  An example of an electrophotographic apparatus using the negatively charged electrophotographic photosensitive member of the present invention is shown in FIG.
図 8は電子写真装置の画像形成プロセスの一例を示す概略図であつ て、 感光体 (801)が回転して複写操作を行う。 感光体 (801)の周辺には、 磁気ブラシ注入帯電器 (803)、 現像器(804)、 転写紙供給系(805)、 転写帯 電器 (806(a))、 分離帯電器(806(b))、 クリーニングユニッ ト(807)、 搬送 系(808)、 除電光源(809)等が配設されている。  FIG. 8 is a schematic view showing an example of an image forming process of the electrophotographic apparatus, and the photoconductor (801) rotates to perform a copying operation. Around the photoreceptor (801) are a magnetic brush injection charger (803), a developer (804), a transfer paper supply system (805), a transfer charger (806 (a)), a separation charger (806 (b) )), A cleaning unit (807), a transport system (808), a static elimination light source (809), and the like.
以下、 さらに具体的に画像形成プロセスを説明すると、 感光体 (801) は磁気ブラシ带電器 (803)によって一様に帯電される。 次にレーザーュ ニッ ト(818)から発せられ、 ミラー(819)を経由した光によって静 ¾潜像 が形成され、 この潜像に現像器 (804)からネガ極性トナーが供給されて トナー像が形成される。 レーザーユニッ ト(818)の制御には、 C C Dュ ニッ ト(817)からの信号が用いられる。 即ち、 ランプ (810)から発した光 が原稿台ガラス(81 1)上に置かれた原稿(812)によって反射され、 ミラー (813)、 (814)、 (815)を経由し、 レンズユニッ ト(816)のレンズによって 結像され、 C C Dュニッ ト(817)によって電気信号に変換された信号が 利用されている。  Hereinafter, the image forming process will be described more specifically. The photoconductor (801) is uniformly charged by the magnetic brush electrode (803). Next, a static latent image is formed by light emitted from the laser unit (818) and passing through the mirror (819), and a negative polarity toner is supplied from the developing unit (804) to the latent image to form a toner image. Is done. The signal from the C C D unit (817) is used to control the laser unit (818). That is, the light emitted from the lamp (810) is reflected by the document (812) placed on the platen glass (81 1), passes through the mirrors (813), (814), and (815), and passes through the lens unit. The image is formed by the (816) lens and converted to an electrical signal by the CCD unit (817).
一方、 転写紙供給系(805)を通って、 レジストローラー(822)によって タイミングを調整され、 感光体 (801)方向.に供給される転写材 Pは、 高 電圧を印加した転写帯電器 (806(a))と感光体(801 )の間隙において、背面 からトナーとは逆極性の正電界が与えられ、 これによつて感光体表面- のネガ極性のトナー像は転写材 Pに転写する。 次いで、 高圧 A C電 を印加した分離帯電器 (806(b))により、転写材 Pは転写搬送系(808)を通 つて定着装置 (824)に至り、 トナー像が定着されて装置外に搬出され る。' On the other hand, through the transfer paper supply system (805), by the registration roller (822) The transfer material P, adjusted in timing and supplied in the direction of the photoconductor (801), is separated from the toner in the gap between the transfer charger (806 (a)) and the photoconductor (801) to which high voltage is applied. A positive electric field having a reverse polarity is applied, whereby a negative polarity toner image on the surface of the photoreceptor is transferred to the transfer material P. Next, the transfer material P passes through the transfer conveyance system (808) to the fixing device (824) by the separation charger (806 (b)) to which the high-voltage AC power is applied, and the toner image is fixed and carried out of the device. It is done. '
実施例 Example
以下、 実施例、 比較例を挙げながら本発明を詳細に説明する。 なお、 本 ¾明はこれらの実施例に限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. The present description is not limited to these examples.
(実施例 1 )  (Example 1)
図 5に示す R Fプラズマ C V D方式の a- S i感光体成膜装置を用い て、 外径 80 m mの A 1製基体に表 1に示した条件で、 第 1の層として 少なく とも非単結晶材料からなる下部阻止層と、 少なく とも非単結晶 材料からなる光導電層を積層した。 その後、 前記第 1の層を積層した 基体を成膜炉から一旦取り出し大気に晒した後、 前記第 1の層表面の 突起に対して、 少なく ともその頭頂部の除去を図る研磨加工を施し、 前記第 1の層の表面を水と接触させる処理を行い、 その後、 成膜炉内 に前記第 1の層を積層した基体を設置し、 第 2の層を積層する前に表 2に示される B量(導入される全ガス流量中のホウ素原子の含有量) を、 B 2 H 6ガス(2850pp m/H 2)の流量を表 3に示すように変化させた プラズマ処理を行い、 次いで、 第 2の層を表 1に示した条件で積層し た負帯電用電子写真感光体を作製した。 このようにして作成した負帯 電用電子写真感光体の帯電能について下記の手法で評価を行った。 そ の結果を表 3に示す。 表中に示すように、 B量 1.0 Χ 1(Γ4〜3.0 Χ 1(Γ2[πι ol%]に対して、 実施例 1-1〜1-8とした。 また、 作製した感光体の第 1の層と第 2の層との界面領域における ホウ素の含有量分布のピーク値を、 SIMS (二次イオン質量分析法)を用 いて分析した。 ここで得られたピーグ値は、 界面領域のピーク値であ る為、 ホウ素と他の構成元素との割合ではなく、 絶対値を表示してい る。 その結果も併せて表 3に示す。 Using the RF plasma CVD a-Si photoconductor deposition system shown in Fig. 5, at least a non-single crystal as the first layer on an A 1 substrate with an outer diameter of 80 mm under the conditions shown in Table 1 A lower blocking layer made of a material and a photoconductive layer made of at least a non-single crystal material were laminated. Thereafter, the substrate on which the first layer is laminated is once taken out from the film forming furnace and exposed to the atmosphere, and then the protrusion on the surface of the first layer is subjected to a polishing process to remove at least the top of the head, A treatment for bringing the surface of the first layer into contact with water is performed, and then a substrate on which the first layer is laminated is placed in a film forming furnace, and the results shown in Table 2 before the second layer is laminated Plasma treatment was performed by changing the flow rate of B 2 H 6 gas (2850 ppm / H 2 ) as shown in Table 3 to the amount of B (content of boron atoms in the total gas flow rate introduced), A negatively charged electrophotographic photosensitive member was produced by laminating the second layer under the conditions shown in Table 1. The charging ability of the negatively charged electrophotographic photoreceptor thus prepared was evaluated by the following method. The results are shown in Table 3. As shown in the table, Examples 1-1 to 1-8 were performed with respect to the B content of 1.0 Χ 1 (Γ 4 to 3.0 Χ 1 (Γ 2 [πι ol%]). In addition, the peak value of the boron content distribution in the interface region between the first layer and the second layer of the produced photoreceptor was analyzed using SIMS (secondary ion mass spectrometry). Since the peak value obtained here is the peak value in the interface region, the absolute value is displayed instead of the ratio between boron and other constituent elements. The results are also shown in Table 3.
《帯電能》  《Chargeability》
作製した電子写真感光体を電子写真装置に設置して帯電を行い、 現 像器位置に設置した表面電位計により電子写真感光体の暗部表面電位 を測定し帯電能とした。 このとき、 比較のために帯電条件 (帯電器へ の DC印加電圧、 重畳 AC振幅、 周波数など) は一定とした。 得られ. た結果は、 実施例 1一 1での値を基準(100% )とした場合の相対評価で ランク付けをおこなった。  The produced electrophotographic photosensitive member was charged in an electrophotographic apparatus and charged, and the surface potential meter of the electrophotographic photosensitive member was measured with a surface potential meter installed at the position of the imager to obtain a charging ability. At this time, the charging conditions (DC applied voltage to the charger, superimposed AC amplitude, frequency, etc.) were constant for comparison. The obtained results were ranked by relative evaluation using the value in Example 1-11 as the standard (100%).
A … 105%以上  A… 105% or more
B … 105%未満 B… Less than 105%
表 1 table 1
ガスの種類と流量 第 1の層 . 第 2の層 下部阻止 Gas type and flow rate 1st layer 2nd layer Lower block
光導電層  Photoconductive layer
SiH4[ml/min(normal)] 100 100 10SiH 4 [ml / min (normal)] 100 100 10
H2 [ml/min(normal)] 600 800 H 2 [ml / min (normal)] 600 800
NO [ml/min(normal)] 8  NO [ml / min (normal)] 8
CH4[ml/min(normal)] 600 基体温度 [°C] 260 260 180 反応容器内圧 [Pa] 64 79 60 高周波電力 [W] 100 400 180 膜厚 [μπι;] 3 20 0.8 表 , ガスの種類と流量 プラズマ処理 CH 4 [ml / min (normal)] 600 Substrate temperature [° C] 260 260 180 Internal pressure in reaction vessel [Pa] 64 79 60 High frequency power [W] 100 400 180 Film thickness [μπι;] 3 20 0.8 Table, Type and flow rate Plasma treatment
H2[ml/min(normal)] 796 H 2 [ml / min (normal)] 796
B[m ol%]  B [m ol%]
変化  Change
【Β2Η6[ρρώ] (対 H2)】 2 Η 6 [ρρώ] (vs. H 2 )]
基体温度 [°C] 180 Substrate temperature [° C] 180
反応容器内圧 [Pa] 87 Reaction vessel internal pressure [Pa] 87
高周波電力 [W] 400 表 3 High frequency power [W] 400 Table 3
Figure imgf000031_0001
表 3の結果より、 第 2の層を積層する前に行う前記プラズマ処理時 の B量 (導入される全ガス流量中のホウ素原子の含有量)は実施例 1一 2〜実施例 1一 7の 2.0 X l(T4 m ol%以上 2.0 X l (T2 m ol%以下が最適な 範囲であることが判明した。 また、 第 1の層と第 2の層との界面領域 におけるホウ素含有量分布のピーク値の最適な範囲は、 実施例 1一 2 〜実施例 1一 7の 5.0 X 1017個/ cm3以上、 1.0 X 1021個/ cm3以下が最適な 範囲であることが判明した。
Figure imgf000031_0001
From the results in Table 3, the amount of B (content of boron atoms in the total gas flow rate introduced) at the time of the plasma treatment performed before laminating the second layer is shown in Example 1 1 2 to Example 1 1 7 2.0 X l (T 4 mol% or more and 2.0 X l (T 2 mol% or less) was found to be the optimum range. Also, boron content in the interface region between the first layer and the second layer The optimum range of the peak value of the quantity distribution should be 5.0 x 10 17 pieces / cm 3 or more and 1.0 x 10 21 pieces / cm 3 or less in Examples 1 to 2 to Examples 1 to 7. found.
(実施例 2 )  (Example 2)
実施例 1の手順において、 第 1の層の表面を水と接触させる処理を 行わない点のみ変更した、 表 5に示す条件で負帯電用電子写真感光体 を作製し、 コス ト、 密着性、 研磨傷、 帯電能、 画像欠陥、 電位ムラに ついて下記の手法で評価を行った。 その結果を表 1 8に示す。  In the procedure of Example 1, a negatively charged electrophotographic photosensitive member was produced under the conditions shown in Table 5 except that the treatment for bringing the surface of the first layer into contact with water was not performed, and the cost, adhesion, The following methods were used to evaluate polishing scratches, charging ability, image defects, and potential unevenness. The results are shown in Table 18.
(実施例 3 )  (Example 3)
実施例 1の手順において、 第 1の層として少なく とも非単結晶材料 からなる上部阻止層を加えて積層する点のみ変更した、 表 6に示す条 件で負帯電用電子写真感光体を作製し、 コス ト、 密着性、 研磨傷、 帯 電能、 画像欠陥、 電位ムラについて下記の手法で評価を行った。 その 結果を表 1 8に示す。 (実施例 4 ) In the procedure of Example 1, a negatively charged electrophotographic photosensitive member was manufactured under the conditions shown in Table 6 except that the first layer was changed by adding an upper blocking layer made of at least a non-single crystal material as a first layer. The following methods were used to evaluate the cost, adhesion, polishing scratches, charging power, image defects, and potential unevenness. The results are shown in Table 18. (Example 4)
実施例 3の手順において、 第 1の層として少なく とも非単結晶材料 からなる保護層を加えて積層する点のみ変更した、 表 7に示す条件で 負帯電用電子写真感光体を作製し、 コス ト、 密着性、 研磨傷、 帯電能、 画像欠陥'、 電位ムラについて下記の手法で評価を行った。 その結果を 表 1 8に示す。  In the procedure of Example 3, a negatively charged electrophotographic photosensitive member was produced under the conditions shown in Table 7 except that a protective layer made of at least a non-single crystal material was added as the first layer and the layer was laminated. The following methods were used to evaluate the following characteristics: adhesiveness, adhesion, polishing scratches, charging ability, image defects', and potential unevenness. The results are shown in Table 18.
(実施例 5 )  (Example 5)
実施例 4の手順において、 第 1の層として積層する上部阻止層の B 2 H 6流量を表 4のように変化させる.ことで、前記上部阻止層に含有 される、 構成元素の総数に対する周期表第 13族元素 (ホウ素) の含有 量を変化させた感光体 5-:!〜 5- 6を、表 8に示す.条件で作製し、コス ト、 密着性、 研磨傷、 帯電能、 画像欠陥、 電位ムラについて下記の手法で 評価を行った。 その結果を表 1 8に示す。 In the procedure of Example 4, by changing the B 2 H 6 flow rate of the upper blocking layer laminated as the first layer as shown in Table 4, the period with respect to the total number of constituent elements contained in the upper blocking layer Photoreceptors 5- :! to 5-6 with varying Group 13 element (boron) content are produced under the conditions shown in Table 8. Cost, adhesion, polishing scratches, charging ability, image Defects and potential unevenness were evaluated by the following methods. The results are shown in Table 18.
尚、 感光体 5- 1〜5- 6の構成元素の総数に対する周期表第 13族元素 (ホウ素) の含有量は、 SIMS ( 2次イオン質量分析) を用いて行った。 その結果を表 4に示す。  The content of the group 13 element (boron) in the periodic table with respect to the total number of constituent elements of the photoreceptors 5-1 to 5-6 was measured using SIMS (secondary ion mass spectrometry). The results are shown in Table 4.
表 4  Table 4
Figure imgf000032_0001
Figure imgf000032_0001
(実施例 6 ) (Example 6)
実施例 4の手順において、 第 2の層として炭素原子を母材とする非 単結晶材料 (a- C (H))を積層する点のみ変更した、 表 9に示す条件で負 帯電用電子写真感光体を作製し、 コス ト、 密着性、 研磨傷、 帯電能、 画像欠陥、 電位ムラについて下記の手法で評価を行った。 その結果を 表 1 8に示す。 ■ In the procedure of Example 4, the second layer is a non-carbon material. A negatively charged electrophotographic photosensitive member was manufactured under the conditions shown in Table 9 with only the point of laminating the single crystal material (a-C (H)), and cost, adhesion, polishing scratches, charging ability, image defects The potential unevenness was evaluated by the following method. The results are shown in Table 18. ■
(実施例 7〜 1 1 )  (Examples 7 to 1 1)
実施例 4の手順において、 第 1の層として積層する上部阻止層を、. 構成する珪素に対する組成比を、 層厚方向で図 1 0に示すような変化 をさせて積層する点のみ変更した、 表 1 0〜表 1 4に示す条件で、 実 施例 7〜 1 1の負帯電用電子写真感光体を作製し、 コス ト、 密着性、 研磨傷、 帯電能、 画像欠陥、 竃位ムラについて下記の手法で評価を行 つた。 その結果を表 1 8に示す。  In the procedure of Example 4, the upper blocking layer to be laminated as the first layer was changed only in that the composition ratio with respect to the constituent silicon was laminated by changing as shown in FIG. 10 in the layer thickness direction. Under the conditions shown in Table 10 to Table 14, the negatively charged electrophotographic photoconductors of Examples 7 to 11 were prepared, and the cost, adhesion, polishing scratches, charging ability, image defects, and unevenness in the position of the surface were measured. The following method was used for evaluation. The results are shown in Table 18.
(比較例 1 ) '  (Comparative Example 1) '
実施例 1の手順において、 第 2の層を積層する前に行うプラズマ処 理を、 表 1 5に示す条件で行った点のみを変更した負帯電用電子写真 感光体を作製し、 コス ト、 密着性、 研磨傷、 帯電能、 画像欠陥、 電位 ムラについて下記の手法で評価を行った。 その結果を表 1 8に示す。  In the procedure of Example 1, a negatively charged electrophotographic photosensitive member was produced by changing only the point that the plasma processing performed before laminating the second layer was performed under the conditions shown in Table 15. The following methods were used to evaluate adhesion, polishing scratches, charging ability, image defects, and potential unevenness. The results are shown in Table 18.
(比較例 2 ) - - ' 実施例 4の手順において、 第 1の層を積層した基体表面のプラズマ 処理を行わず、 第 2の層として非単結晶材料からなる上部阻止層、 表 面保護層を積層する点を変更した、 表 1 6に示す条件で負帯電用電子 写真感光体を作製し、 コス ト、 密着性、 研磨傷、 帯電能、 画像欠陥、 . 電位ムラについて下記の手法で評価を行った。 その結果を表 1 8に示 す。  (Comparative Example 2)--'In the procedure of Example 4, the upper surface blocking layer made of a non-single-crystal material and the surface protective layer were used as the second layer without performing the plasma treatment of the substrate surface on which the first layer was laminated. A negatively charged electrophotographic photosensitive member was manufactured under the conditions shown in Table 16 with the point where the layers were laminated, and the cost, adhesion, polishing scratches, charging ability, image defects, and potential unevenness were evaluated using the following methods. Went. The results are shown in Table 18.
' (比較例 3 )  '(Comparative Example 3)
比較例 2の手順 おいて、 第 2の層として少なく とも非単結晶材料 からなる中間層を加えて積層する点のみ変更した、 表 1 7に示す条件 で負帯電用電子写真感光体を作製し、 コスト、 密着性、 '研磨傷、 帯電 能、 .画像欠陥、 電位ムラについて下記の手法で評価を行った。 その結 果を表 1 8に示す。 The conditions shown in Table 17 were changed in the procedure of Comparative Example 2 except that the second layer was added with an intermediate layer made of at least a non-single crystal material. A negatively charged electrophotographic photosensitive member was prepared and evaluated for cost, adhesiveness, polishing scratches, charging performance, image defects, and potential unevenness by the following methods. The results are shown in Table 18.
実施例 1で作製した負帯電用電子写真感光体も、 コスト、 密着性、 研磨傷、 帯電能、 画像欠陥、 電位ムラについて下記の手法で評価を行 つた。 その結果も併せて表 1 8に示す。  The negatively charged electrophotographic photosensitive member produced in Example 1 was also evaluated for the cost, adhesion, polishing scratches, charging ability, image defects, and potential unevenness by the following methods. The results are also shown in Table 18.
《コス ト》  《Cost》
比較例 3を基準とし、 相対的に評価した。 Aは比較例 3と比較して 1 5 %以上減少したこと、 Bは比較例 3と比較して 1 0 %以上 1 5 % 未満減少したこと、 Cは比較例 3と比較して 5 %以上 1 0 %未満減少 したこと、 Dは比較例 3と比較して 1 %以上 5 %未満減少したこと、 E は比較例 3と同等であることを示している。  Comparative Example 3 was used as a reference for relative evaluation. A decreased by 15% or more compared to Comparative Example 3, B decreased by 10% or more and less than 15% compared with Comparative Example 3, C represents 5% or more compared with Comparative Example 3 A decrease of less than 10%, D indicates a decrease of 1% or more and less than 5% compared to Comparative Example 3, and E indicates that it is equivalent to Comparative Example 3.
《密着性》  《Adhesion》
第 の層と第 2の層における密着性を、 新東化学製の  Adhesion between the first and second layers
HEIDON(Type: 14 S )を用いて測定した。 この装置を用いて、 ダイヤモ ンド針で各層が積層された前記感光体表面を引つ搔き、 感光体表面に 剥れが発生したときの前記ダイヤモンド針にかかる荷重の大小で層と 層の密着力を評価した。 得られた結果について、 比較例 3での値を 100%とした場合の相対評価でランク付けを行った。 Measurement was performed using HEIDON (Type: 14 S). Using this device, the surface of the photoconductor on which each layer is laminated is pulled with a diamond needle, and the layer and the layer adhere to each other with the magnitude of the load applied to the diamond needle when peeling occurs on the photoconductor surface. The power was evaluated. The obtained results were ranked by relative evaluation when the value in Comparative Example 3 was 100%.
A … 105%以上  A… 105% or more
B … 95%以上、 105%未満  B… 95% or more, less than 105%
C · … 95%未満  C · Less than 95%
《研磨傷》  《Polishing wound》
光学顕微鏡を用いて研磨加工後の電子写真感光体の表面を観察し た。 そして、 直径 30 μ m程度の突起を水準線まで研磨し、 突起部から 正常部にかけてのびる、 研磨が原因となって発生する傷を研磨傷とし て、 その有無を確認した。 The surface of the electrophotographic photoreceptor after polishing was observed using an optical microscope. Then, a protrusion with a diameter of about 30 μm is polished to the level line, and scratches caused by polishing extending from the protrusion to the normal part are defined as polishing scratches. The presence or absence was confirmed.
.. 尚、 表中の判定記号として、 Aは正常部に研磨傷がないこと、 Bは 軽微な研磨傷が感光体全面において 5本以下発生したこと、 Cは軽微 な研磨傷が感光体全面において 5本以上発生したことを示している。 · 《帯電能》  .. In addition, as a judgment symbol in the table, A is that there are no polishing scratches in the normal part, B is that there are 5 or less minor scratches on the entire surface of the photoconductor, and C is that there are minor scratches on the entire surface of the photoconductor. It shows that 5 or more occurred. · 《Chargeability》
作製した電子写真感光体を電子写真装置に設置して帯電を行い、 現 • 像器位置に設置した表面電位計により電子写真感光体の暗部表面電位 を測定し帯電能とした。 このとき、 比較のために帯電条件 (帯電器へ の DC印加電圧、 重畳 AC振幅、 周波数など) は一定とした。 得られ た.結果について、 比較例 3での値を基準(100%)とした: 合の相対評価 でランク付けをおこなった。  The prepared electrophotographic photosensitive member was placed in an electrophotographic apparatus for charging, and the surface potential meter installed at the current imager position was used to measure the surface potential of the dark part of the electrophotographic photosensitive member to determine the charging ability. At this time, the charging conditions (DC applied voltage to the charger, superimposed AC amplitude, frequency, etc.) were constant for comparison. For the results, the value in Comparative Example 3 was used as the standard (100%): ranking was performed based on the relative evaluation.
A … 95%以上  A… 95% or more
B … 85%以上、 95%未満  B… 85% or more, less than 95%
C … 75%以上、 85%未満  C… 75% or more, less than 85%
D … 75%未満  D… Less than 75%
《画像欠陥》  《Image defect》
画像欠陥は、 画素密度 0%画像における直径 0.1mm以下の黒点の数 によって評価を行った。直径 0,lmmを超える大きさの黒点に関しては、 感光体の成膜開始前の支持体に付着したダス ト等が原因である場合が ほとんどであり、 そのような画像欠陥の発生は、成膜時の条件に対する 依存性が小さく、ダス ト低減等の工程改善によって画像欠陥を無く して いく ことが本質的であると、本発明者らのさまざまな検討結果よりわか つている。 このため、 今回の評価対象からは除き、 成膜時の条件に左右 され得る直径 0.1mm以下の比較的小さな画像欠陥の数量に着目して評 価を行った。 得られた結果について、 比較例 1での値を基準(100%)と した場合の相対評価でランク けをおこなった。 A … 90%未満 Image defects were evaluated by the number of black spots with a diameter of 0.1 mm or less in a 0% pixel density image. Black spots with a diameter exceeding 0, lmm are mostly caused by dust attached to the support before the start of film formation of the photoconductor. Such image defects are caused by film formation. It is clear from the results of various studies by the present inventors that the dependence on time conditions is small and it is essential to eliminate image defects by improving processes such as dust reduction. For this reason, the evaluation was conducted by focusing on the number of relatively small image defects with a diameter of 0.1 mm or less, which can be affected by the conditions during film formation, except for the current evaluation. The obtained results were ranked by relative evaluation using the value in Comparative Example 1 as a reference (100%). A: Less than 90%
B … 90%以上  B… 90% or more
《電位ムラ》  《Electric potential unevenness》
キヤノン製 i R. 6000(プロセススピード 265 m m/sec)の一次帯電器を 磁気ブラシ帯電用に改造したものを用い、現像器位置における暗部電位 が -450Vになるように帯電器を調整し、現像器位置における明部電位が -100Vになるように像露光光源の光量を調整した状態において、暗部電 位と明部電位との差分の面内分布を測定し、その差分の最大値と最小値 の差を電位ムラとした。 得られた結果について、 比較例 1での値を基準 (100%)とした場合の相対評価でランク付けをおこなった。  Using a Canon i R.6000 (process speed 265 mm / sec) primary charger modified for magnetic brush charging, adjusting the charger so that the dark potential at the developer position is -450 V, and developing Measure the in-plane distribution of the difference between the dark part potential and the bright part potential with the light intensity of the image exposure light source adjusted so that the bright part potential at the detector position is -100 V. The maximum and minimum values of the difference are measured. The difference was defined as potential unevenness. The obtained results were ranked by relative evaluation using the value in Comparative Example 1 as a reference (100%).
A … 90%未満  A: Less than 90%
B … 90%以上  B… 90% or more
《総合評価》  "Comprehensive evaluation"
コス ト、 密着性、 研磨傷の評価で得られた結果を、 Aラ クが 3点、 Bランクが 2点、 Cランクが 1点、 Dランク及ぴ. Eランクが 0点とし て合計した得点をもとに、以下のように総合的にランク付けを行った。  The results obtained from the evaluation of cost, adhesion, and polishing flaws were summed up as 3 points for A rack, 2 points for B rank, 1 point for C rank, 1 rank for D rank, and 0 rank for E rank. Based on the score, ranking was performed as follows.
1 6点以上で Aランクが 5つ以上、 D、 Eランクが無いもの (極 めて優れている)  1 6 points or more, 5 or more A ranks, no D or E ranks (Excellent)
A〜 1 5点以上で Aランクが 4つ以上、 D、 Eランクが無いもの (非 常に優れている)  A ~ 1 5 points or more, 4 ranks A, 4 ranks, no D and E ranks (very good)
B〜 1 4 、以上で Cランクが 1つ以下、 D、 Eランクが無いもの (優 れている)  B ~ 14, or more, C rank is 1 or less, D, E rank is missing (excellent)
C〜 1 2点以上で Cランクが 2つ以下、 D、 Eランクが無いもの (良 好)  C ~ 1 2 or more points, 2 or less C ranks, no D or E ranks (good)
D〜 1 2点未満もしくは、 D、 Eランクが 1つでもあるもの (実用 上問題なし) 表 5 D ~ 1 Less than 2 points or one with D or E rank (no problem in practical use) Table 5
Figure imgf000037_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000038_0001
表 7 第 1の層 プラズマ処理第 2の層 ガスの種類と流量 下部阻止 光導電 上部阻止 Table 7 First layer Plasma treatment Second layer Gas type and flow rate Lower blocking Photoconduction Upper blocking
保護層 表面保護層  Protective layer Surface protective layer
SiH4[ml/min(normal)] 100 100 200 10 10 SiH 4 [ml / min (normal)] 100 100 200 10 10
¾ [ml/min(normal)] 600 800 778 ¾ [ml / min (normal)] 600 800 778
B2 [ppm] (対 SiH4) 900 B 2 [ppm] (vs SiH 4 ) 900
B[m ol% ] 1.56 X 2 【B2H6[ppm](対 H2)】 [ 80] B [mol%] 1.56 X 2 [B 2 H 6 [ppm] (vs. H 2 )] [80]
NO[ml/min(normal)] 8 NO [ml / min (normal)] 8
CH4[ml/min(normal)] 150 600 500 基体温度 [°C] 260 260 260 260 180 180 反 Jfe容器内圧 [Pa] . 64 79 60 60 87 60 高周波電力 [W] 100 400 300 180 400 180 膜厚 [μιη] 3 20 0.2 0.5 0.8 CH 4 [ml / min (normal)] 150 600 500 Substrate temperature [° C] 260 260 260 260 180 180 Anti-Jfe inner pressure [Pa]. 64 79 60 60 87 60 High frequency power [W] 100 400 300 180 400 180 Film thickness [μιη] 3 20 0.2 0.5 0.8
表 8 第 1の層 プラズマ処理第 2の層 ガスの種類と流量 下部阻止 光導電 上部阻止 Table 8 First layer Plasma treatment Second layer Gas type and flow rate Lower block Photoconductivity Upper block
保護層 表 IS保護層  Protective layer Table IS protective layer
S iH4 [ml/ min(normal)] 100 100 90 10 30S iH 4 [ml / min (normal)] 100 100 90 10 30
H2[ml/min(normal)] 600 800 789 H 2 [ml / min (normal)] 600 800 789
B2H6[ppm] (対 SiH4) 変化 B 2 H 6 [ppm] (vs. SiH 4 ) change
B[m ol% ] 7.89 X 3 B [m ol%] 7.89 X 3
【B2H6[ppm] (対 ¾)】 [ 40 ] [B 2 H 6 [ppm] (vs. ¾)] [40]
NO [ml/min(normal)] 8  NO [ml / min (normal)] 8
CH4 [ml/min(normal)] 90 600 600 基体温度 [°C] 260 260 260 260 180 180 反応容器内圧 [Pa] 64 79 60 60 87 60 高周波電力 [w] 100 400 300 180 400 180 膜厚 [μπι] 3 20 0.2 0.5 0.8 CH 4 [ml / min (normal)] 90 600 600 Substrate temperature [° C] 260 260 260 260 180 180 Reaction vessel internal pressure [Pa] 64 79 60 60 87 60 High frequency power [w] 100 400 300 180 400 180 Film thickness [μπι] 3 20 0.2 0.5 0.8
表 9 Table 9
Figure imgf000041_0001
Figure imgf000041_0001
1 0 Ten
ガスの種類と流量 上部阻止層 Gas type and flow rate Upper blocking layer
SiH4[ml/min(nornial)] 10→10 10→10 SiH 4 [ml / min (nornial)] 10 → 10 10 → 10
H2 [ml/min(normal)] H 2 [ml / min (normal)]
B2H6[ppm] (対 SiH4) 0→棚→0 B 2 H 6 [ppm] (vs. SiH 4 ) 0 → shelf → 0
B[m ol%] B [m ol%]
o  o
【B2H6[ppm] (対 ¾)】 o T [B 2 H 6 [ppm] (vs. ¾)] o T
NO[ml/min(normal)] ο  NO [ml / min (normal)] ο
CH4 [ml/min(normal)] 0→800 800→700 700→600 基体温度 [°C] 260 260 260 反応容器内圧 [Pa] 60 60 60 高周波電力 [w] 300 300 300 膜厚 [μπι] 0.1 0.08 0.1 CH 4 [ml / min (normal)] 0 → 800 800 → 700 700 → 600 Substrate temperature [° C] 260 260 260 Reaction vessel internal pressure [Pa] 60 60 60 High frequency power [w] 300 300 300 Film thickness [μπι] 0.1 0.08 0.1
ガスの種類と流量 上部阻止層 ' Gas types and flow rates Upper blocking layer ''
S iH4 [ml/ min (normal)] 10→10 10→10S iH 4 [ml / min (normal)] 10 → 10 10 → 10
H2[ml/min(normal)] H 2 [ml / min (normal)]
B2H6[ppm] (対 SiH4) 0→400→0 B 2 H 6 [ppm] (vs. SiH 4 ) 0 → 400 → 0
B[m ol%]  B [m ol%]
【B2H6[ppm] (対 H2)】 Ό [B 2 H 6 [ppm] (vs. H 2 )] Ό
Ο Ο
NO [ml/min(normal)] ο NO [ml / min (normal)] ο
CH4[ml/min(normal)] ' 0→400 400→550 550→600 基体温度 [°C] 260 260. 260 反応容器内圧 [Pa] 60 60 60 高周波電力 [w] 300 300 300 膜厚 [μιη] 0.1 0.08 0.1 CH 4 [ml / min (normal)] '0 → 400 400 → 550 550 → 600 Substrate temperature [° C] 260 260. 260 Pressure inside reaction vessel [Pa] 60 60 60 High frequency power [w] 300 300 300 Film thickness [ μιη] 0.1 0.08 0.1
1 2 1 2
ガスの種類と流量 上部阻止層 Gas type and flow rate Upper blocking layer
S iH4 [ml/min(normal)] 100→25 25→15 15 10S iH 4 [ml / min (normal)] 100 → 25 25 → 15 15 10
¾ [ml/min(normal)] ¾ [ml / min (normal)]
B2H6[ppm] (対 SiH4) 0→400→0 B 2 H 6 [ppm] (vs. SiH 4 ) 0 → 400 → 0
B[m ol%]  B [m ol%]
【B2H6[ppm] (対 ¾)】 [B 2 H 6 [ppm] (vs. ¾)]
NO [ml/min(normal)]  NO [ml / min (normal)]
CH4[ml/min(normal)] 0→傷 400→500 500→600 基体温度 [°C] 260 260 260 反応容器内圧 [Pa] 60 60 60 高周波電力 [W] 300 300 300 膜厚 [μιη] 0.1 0.08 0.1 CH 4 [ml / min (normal)] 0 → Scratch 400 → 500 500 → 600 Substrate temperature [° C] 260 260 260 Reaction vessel internal pressure [Pa] 60 60 60 High frequency power [W] 300 300 300 Film thickness [μιη] 0.1 0.08 0.1
1 3 13
Figure imgf000045_0001
Figure imgf000045_0001
7 7
44 1 4  44 1 4
ガスの種類と流量 上部阻止層 Gas type and flow rate Upper blocking layer
SiH4[ml/mm(noraial)] 100→30 30→60 60→10 SiH 4 [ml / mm (noraial)] 100 → 30 30 → 60 60 → 10
¾ [ml/ min(normal)]  ¾ [ml / min (normal)]
B2H m] (対 SiH4) 0→400→0 B 2 H m] (vs SiH 4 ) 0 → 400 → 0
B[m ol%]  B [m ol%]
【B2H6[ppm] (対 ¾)】 [B 2 H 6 [ppm] (vs. ¾)]
NO [ml/min(normal)]  NO [ml / min (normal)]
CH4 [ml/min(normal)] 0→400 400→500 500→600 CH 4 [ml / min (normal)] 0 → 400 400 → 500 500 → 600
基体温度 [°C] 260 260 260 Substrate temperature [° C] 260 260 260
反応容器内圧 [Pa]- 60 60 60 Reaction vessel internal pressure [Pa]-60 60 60
高周波電力 [w] 300 300 300 High frequency power [w] 300 300 300
膜厚 [μιη] 0.1 0.08 0.1 Film thickness [μιη] 0.1 0.08 0.1
表 1 5 第 1の層 第 2の層 Table 1 5 1st layer 2nd layer
7ラズマ  7 Razma
ガスの種類と流量 下部阻止 光導電 Gas type and flow rate Lower blocking Photoconductive
処理 表面垂  Treatment surface
SiH4[ml/min(normal)] 100 100 10 [ml/min(normal)] 600 600 800 SiH 4 [ml / min (normal)] 100 100 10 [ml / min (normal)] 600 600 800
B2H6[ppm] (対 SiH4) B 2 H 6 [ppm] (vs. SiH 4 )
NO [ml/min(normal)] 8  NO [ml / min (normal)] 8
CH4 [ml/min(normal)] 550 基体温度 [°C] ' 260 260 180 180 反応容器内圧 [Pa] 64 79 87 60 高周波電力 [W] 100 350 400 180 膜厚 [μηι] 3 20 0.8 CH 4 [ml / min (normal)] 550 Substrate temperature [° C] '260 260 180 180 Reaction vessel internal pressure [Pa] 64 79 87 60 High frequency power [W] 100 350 400 180 Film thickness [μηι] 3 20 0.8
表 1 6 Table 1 6
第 1の層 第 2の層 ガスの種類と流量 ' 下部阻止 光導電 上部阻止  1st layer 2nd layer Gas type and flow rate 'Lower blocking Photoconduction Upper blocking
保護 上部阻止層 Protective upper blocking layer
Siri4[ml/min(normal)] 100 100 90 10 90 50Siri 4 [ml / min (normal)] 100 100 90 10 90 50
H2rml/mm(normal)] 600 800 H 2 rml / mm (normal)] 600 800
B2H6[ppm] (対 SiH4) 300 300 B 2 H 6 [ppm] (vs. SiH 4 ) 300 300
NO[ml/mininormal)] 8  NO [ml / mininormal)] 8
CH4[ml/mm(normal)] 90 600 90 600 基体温度 [°C] 260 260 260 260 180 180 反応容器内圧 [Pa] 64 79 60 6.0 60 60 高周波電力 [W] 100 400 300 180 300 180 膜厚 [μιη] 3 20 0.2 0.5 0.2 0.8 CH4 [ml / mm (normal)] 90 600 90 600 Substrate temperature [° C] 260 260 260 260 180 180 Reaction vessel internal pressure [Pa] 64 79 60 6.0 60 60 High frequency power [W] 100 400 300 180 300 180 Film thickness [μιη] 3 20 0.2 0.5 0.2 0.8
表 1 7 第 1の層 第 2の層 Table 1 7 1st layer 2nd layer
ガスの種類と流量 下部阻止 上部阻止 上部阻止表面保護 纏層 中間層 Gas type and flow rate Lower blocking Upper blocking Upper blocking surface protection Summary layer Intermediate layer
S iH4 [ml/ min(normal)] 100 100 90 10 10 90 10S iH 4 [ml / min (normal)] 100 100 90 10 10 90 10
H2[ml/min(normal)] 600 800 H 2 [ml / min (normal)] 600 800
B2H6[ppm] (対 SiH4) 300 300 B 2 H 6 [ppm] (vs. SiH 4 ) 300 300
NO [mlノ min normal)] 8  NO [ml no min normal]] 8
CH4[ml/min(normal)] 90 600 600 90 600 基体温度 [°C] 260 260 260 260 180 180 180 反応容器内圧 [Pa] 64 79 60 60 60 60 60 高周波電力 [W] 100 400 300 180 180 300 180 膜厚 [μιη] 3 20 0.2 0.5 0.2 0.2 0.8 CH 4 [ml / min (normal)] 90 600 600 90 600 Substrate temperature [° C] 260 260 260 260 180 180 180 Reaction vessel internal pressure [Pa] 64 79 60 60 60 60 60 High frequency power [W] 100 400 300 180 180 300 180 Film thickness [μιη] 3 20 0.2 0.5 0.2 0.2 0.8
表 1 8 Table 1 8
Figure imgf000050_0001
表 1 8から分かるように、 比較例 2 、 3では第 2の層を積層する前 のプラズマ処理を行わず、 第 2の層として上部阻止層を積層する手法 である為、 感光体としての密着性が低下してしまう結果となった。 ま た、 上部阻止層を第 2の層として積層することや、 密着性をある程度 保っために中間層を積層しなければならない必要があることから、 全 体のコストを上昇させる結果となった。
Figure imgf000050_0001
As can be seen from Table 18 in Comparative Examples 2 and 3, the plasma treatment prior to laminating the second layer is not performed, and the upper blocking layer is laminated as the second layer. As a result, the sex decreased. In addition, the upper blocking layer was laminated as the second layer, and the intermediate layer had to be laminated to maintain a certain degree of adhesion, resulting in an increase in the overall cost.
一方、 実施例 1 〜 1 1では、 第 2の層を積層する前に第 1の層の表 面をプラズマ処理することで、 少なく ともその頭頂部の除去を図るェ 程が施された突起表面が、 プラズマ処理により数原子オーダーで改質 され、 帯電電荷に対して阻止能を持つようになり、 この為に、 帯電電 荷の突起への侵入を防止することができ、 第 2の層として上部阻止層 を積層することなく、 画像欠陥の低減効果を維持することができた。 この、 上部阻止層を第 2の屑として積層する必要がなぐなつたことか ら、 比較例に比べ、 画像欠陥低減効果を低下させずに、 全体のコス ト の低減と密着性の向上を達成することができた。 On the other hand, in Examples 1 to 11, the surface of the protrusion subjected to plasma treatment on the surface of the first layer before laminating the second layer to at least remove the top of the head However, it is improved in the order of several atoms by plasma treatment. As a result, the charging charge can be prevented from penetrating into the protrusion, and the image defect can be prevented without laminating the upper blocking layer as the second layer. It was possible to maintain the reduction effect. This eliminates the need to stack the upper blocking layer as the second scrap, thus reducing the overall cost and improving adhesion without reducing the image defect reduction effect compared to the comparative example. We were able to.
また、 実施例 5の結果から、構成元素の総数に対する周期表第 13族 元素 (ホウ素) の含有量は、 100原子 pp m以上、 30000原子 pp m以下 であることが、 帯電能の点からより好ましいことが分かった。 また、 実施例 7〜 1 1の結果より、 上部阻止層を構成する珪素に対する炭素 の組成比が、 表面側に向かって増加するように作成することで、 電位 ムラが向上する事がわかった。  From the results of Example 5, the content of the Group 13 element (boron) in the periodic table with respect to the total number of constituent elements is 100 atoms ppm or more and 30000 atoms ppm or less from the viewpoint of charging ability. It turned out to be preferable. Further, from the results of Examples 7 to 11, it was found that the potential unevenness was improved by making the composition ratio of carbon to silicon constituting the upper blocking layer to increase toward the surface side.
また、 実施例 1及び 2の結果から、 第 1の層の表面を水と接触させ る処理を行うことで、 密着性や帯電能が向上することが確認された。 次いで、 実施例 4及び実施例 9、 比較例 1で作製した負帯電用電子 写真感光体を、 電位ムラについてのみ下記の手法で評価した。 その結 果を表 1 9に示す。  In addition, from the results of Examples 1 and 2, it was confirmed that the adhesion and charging ability were improved by performing the treatment of bringing the surface of the first layer into contact with water. Next, the negatively charged electrophotographic photosensitive member produced in Example 4, Example 9, and Comparative Example 1 was evaluated only for potential unevenness by the following method. The results are shown in Table 19.
《電位ムラ》  《Electric potential unevenness》
キヤノン製 i R 6000(プロセススピード 265 m m/sec)で一次帯電器と してコロナ帯電器を用い、現像器位置における暗部電位が- 450Vになる ように帯電器を調整し、現像器位置における明部電位が- 100Vになるよ うに像露光光源の光量を調整した状態において、暗部電位と明部電位と の差分の面内分布を測定し、その差分の最大値と最小値の差を電位ムラ とした。 得られた結果について、 キャノン製 i R 6000(プロセススピー ド 265 m m/sec)の一次帯電器を磁気ブラシ帯電用に改造したものを用 いた場合での比較例 1の値を基準(100% )とした、 相対評価でランク付 けをおこなった Using a Canon iR 6000 (process speed 265 mm / sec) with a corona charger as the primary charger, adjusting the charger so that the dark part potential at the developer position is -450 V, and adjusting the brightness at the developer position. In the state where the light intensity of the image exposure light source is adjusted so that the partial potential is -100 V, the in-plane distribution of the difference between the dark portion potential and the bright portion potential is measured, and the difference between the maximum value and the minimum value of the difference is measured as potential unevenness. It was. For the results obtained, the value of Comparative Example 1 when using a Canon i R 6000 (process speed 265 mm / sec) primary charger modified for magnetic brush charging is the standard (100%) And ranked by relative evaluation I did
A … 90%未満  A: Less than 90%
B "- 90%以上、 110%未満  B "-90% or more, less than 110%
C … 110%以上  C… 110% or more
: 1 9 実施例 4で 実施例 9で 比較例 1で  : 1 9 In Example 4 In Example 9 In Comparative Example 1
作製した感光体 作製した感光体 作製した感光体 電位ムラ C B C 表 1 8及び表 1 9から分かるように、 磁気ブラシ帯電器を使用する ことで、 電位ムラの抑制が更に向上することが確認された。  Produced photoconductor Produced photoconductor Produced photoconductor Potential unevenness CBC As shown in Tables 18 and 19, it was confirmed that the suppression of potential unevenness was further improved by using a magnetic brush charger. .
また、 第 2の層を積層する前に行われるプラズマ処理時の希釈ガス として、 アルゴンやヘリ ウムを用いた場合も前述した実施例と同様の 効果が得られた。 この出願は 2 0 0 4年 8月 1 9 日に出願された日本国特許出願 番号第 2 0 0 4— 2 3 9 4 9 0及ぴ 2 0 0 5年 8月 5 日に出願さ れた日本国特許出願番号第 2 0 0 5 - 2 2 7 7 5 0からの優先権 を主張するものであり、その内容を引用してこの出願の一部とする ものである。  In addition, when argon or helium was used as a dilution gas at the time of the plasma processing performed before the second layer was laminated, the same effect as in the above-described example was obtained. This application was filed on August 5, 2000, Japan patent application number 2 0 0 4— 2 3 9 4 9 0 and August 5, 2000 This claim claims priority from Japanese Patent Application No. 2 0 0 5-2 2 7 7 5 0, the contents of which are incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
1 . 非単結晶材料からなる層を含む負帯電用電子写真感光体の製造 方法において、 - 第 1ステップとして、 排気手段に接続され、 原料ガス供給手段を備 . えた真空気密可能な成膜炉内に導電性の表面を有する円筒状基体を設 置し、 原料ガスを.高周波電力により分解し、 該基体上に、 '第 1の層と ■ して少なく とも非単結晶材料からなる光導電層を堆積する工程と、 第 2ステップとして、 前記第 1の層を積層した基体を一旦成膜炉か ら取り出す工程と、 1. In a method of manufacturing a negatively charged electrophotographic photosensitive member including a layer made of a non-single crystal material,-As a first step, a vacuum-tight film-forming furnace connected to an exhaust means and provided with a source gas supply means A cylindrical substrate having a conductive surface is placed inside, the source gas is decomposed by high-frequency power, and a photoconductivity consisting of at least a non-single crystalline material as the first layer is formed on the substrate. A step of depositing a layer, and a step of removing the substrate on which the first layer is laminated from the film forming furnace as a second step;
第 3ステップとして、 前記第 1ステップにおいて積層された前記第 1の層表面の突起に対して、 少なく ともその頭頂部の除去を図る工程 と、  As a third step, a process of removing at least the top of the protrusion on the surface of the first layer laminated in the first step; and
第 4ステップとして、 排気手段と原料ガス供給手段を備えた真空気 密可能な成膜炉内に前記第 3ステップの工程を終えた基体を設 gし、 少なく とも 1種の周期表第 13族元素を含むガスと水素、 アルゴン、 へ リ ゥムから選ばれる少なく とも一つからなる希釈ガスで前記第 1の層 表面をプラズマ処理する工程と、  As the fourth step, the substrate after completion of the third step is placed in a vacuum-tight film-forming furnace equipped with an evacuation means and a source gas supply means, and at least one group 13 of the periodic table is installed. Plasma treatment of the surface of the first layer with a gas containing an element and at least one diluent gas selected from hydrogen, argon, and helium;
第 5ステップとして、 少なく とも原料ガスを高周波電力により分解 し、 前記第 1の層上に非単結晶材料からなる層を第 2の層として積層 させる工程を有することを特徴とする負帯電用電子写真感光体の製造 方法。 '  As a fifth step, there is a step of decomposing at least a source gas with a high-frequency power, and laminating a layer made of a non-single crystal material as a second layer on the first layer. A method for producing a photographic photoreceptor. '
2 . 前記第 1ステップには、 前記第 1の層の前記光導電層よりも表 面側に、少なく とも珪素と 1種の周期表第 13族元素とが含有された上 部阻止層を形成する工程が含まれることを特徴とする請求項 1に記载 の負帯電用電子写真感光体の製造方法。 2. In the first step, an upper blocking layer containing at least silicon and one group 13 element of the periodic table is formed on the surface side of the first layer from the photoconductive layer. The method for producing a negatively charged electrophotographic photosensitive member according to claim 1, further comprising the step of:
3 . 前記第 1ステップには、 少なく とも珪素を含む非単結晶材料か らなる保護層を、 前期第 1の層の最表面に形成する工程が含まれるこ とを特徴とする請求項 2に記載の負帯電用電子写真感光体の製造方 法。 ' 3. The first step includes a step of forming a protective layer made of a non-single-crystal material containing at least silicon on the outermost surface of the first layer in the previous period. A method for producing the negatively charged electrophotographic photosensitive member as described. '
4 . 前記第 1の層に含まれる前記上部阻止層、 前記保護層及び前記 第 2の層を形成する工程が、 少なく とも炭素、 珪素を含む非単結晶材 料からなる層を形成する工程であることを特徴とする請求項 2乃至 3 のいずれか 1項に記載の負帯電用電子写真感光体の製造方法。  4. The step of forming the upper blocking layer, the protective layer, and the second layer included in the first layer is a step of forming a layer made of a non-single-crystal material containing at least carbon and silicon. The method for producing a negatively charged electrophotographic photosensitive member according to any one of claims 2 to 3, wherein the negatively charged electrophotographic photosensitive member is provided.
5 . 前記上部阻止層を形成する工程は、 前記上部阻止層を構成する 珪素に対する炭素の組成比を表面側に向かって増加させるために原料 ガスの流量を変化させることを特徴とする請求項 4に記載の負帯電用 電子写真感光体の製造方法。  5. The step of forming the upper blocking layer is characterized in that the flow rate of the source gas is changed in order to increase the composition ratio of carbon to silicon constituting the upper blocking layer toward the surface side. A process for producing an electrophotographic photoreceptor for negative charging as described in 1.
6 . 前記第 2の層を形成する工程が、 炭素原子を母材とする非 ,単結 晶材料からなる層を形成する工程であることを特徴とする請求項 1乃 至 5のいずれか 1項に記載の負帯電用電子写真感光体の製造方法。  6. The step of forming the second layer is a step of forming a layer made of a non-single crystal material having a carbon atom as a base material. The method for producing a negatively charged electrophotographic photosensitive member according to item 2.
7 . 前記上部阻止層を形成する工程が、 前記上部阻止層に含まれる 構成元素の総数に対する、少なく とも 1種の周期表第 13族元素の含有 量が 100原子 ppm以上、 30000原子 ppm以下となるような原料ガスの 流量にする工程であることを特徴とする請求項 2乃至 6のいずれか 1 項に記載の負帯電用電子写真感光体の製造方法。 .  7. The step of forming the upper blocking layer has a content of at least one group 13 element of the periodic table of 100 atomic ppm or more and 30000 atomic ppm or less with respect to the total number of constituent elements included in the upper blocking layer. 7. The method for producing a negatively chargeable electrophotographic photosensitive member according to claim 2, wherein the raw material gas flow rate is such a step. .
8 . 前記第 4ステップにおいて、 導入される全ガス流量中の少なく とも 1種の周期表第 13族元素の含有量を、 2.0 Χ 1θ ηο1%以上、 2.0 Χ l(T2mol%以下とすることを特徴とする請求項 1乃至 7のいずれか 1 項に記載の負帯電用電子写真感光体の製造方法。 8. In the fourth step, the content of at least one group 13 element in the periodic table in the total gas flow introduced is 2.0 と す る 1θ ηο1% or more and 2.0 Χl (T 2 mol% or less). The method for producing a negatively charged electrophotographic photosensitive member according to any one of claims 1 to 7, wherein:
9 .前記第 4ステップにおける少なく とも 1種の周期表第 13族元素 を含むガスが、 B 2 H 6ガスであることを特徴とする請求項 1乃至 8の いずれか 1項に記載の負帯電用電子写真感光体の製造方法。 9. The gas containing at least one group 13 element of the periodic table in the fourth step is a B 2 H 6 gas. The method for producing a negatively charged electrophotographic photosensitive member according to any one of the preceding claims.
1 0 . 前記第 3ステップにおいて、 第 1の層表面の突起に対して、 少なく ともその頭頂部の除去を図る工程が、 研磨加工であることを特 徴とする請求項 1乃至 9のいずれか 1項に記載の'負帯霉用電子写真感 光体の製造方法。  10. The process according to any one of claims 1 to 9, wherein in the third step, the process of removing at least the top of the protrusion on the surface of the first layer is a polishing process. 2. A process for producing an electrophotographic photosensitive member for a negative belt according to item 1.
1 1 . 前記第 3ステップにおいて、 前記第 4ステップに進む前に前 記第 1の層の表面を水と接触させる処理が施されることを特徴とする 請求項 1乃至 1 0のいずれか 1項に記載の負帯電用電子写真感光体の 製造方法。  11. In the third step, before the process proceeds to the fourth step, a treatment for bringing the surface of the first layer into contact with water is performed. The method for producing a negatively chargeable electrophotographic photosensitive member according to the item.
1 2 . 少なく とも導電性の表面を有する円筒状基体上に、 少なく と も非単結晶材料からなる光導電層と、. 炭素、 珪素を含む非単結晶材料 からなる上部阻止層及び保護層を含む第 1の層と、 前記第 1の層上に 少なく とも非単結晶材料からなる第 2の層を積層させた電子写真感光 体において、 第 1の層内の異常成長部が第 2の層まで達しておらず、 第 1の層と第 2の層との界面領域に周期表第 13族元素の含有量分布 がピークを有するこ'とを特徴とする負帯電用電子写真感光体。  1 2. A photoconductive layer made of at least a non-single crystal material and a top blocking layer and a protective layer made of a non-single crystal material containing carbon and silicon on a cylindrical substrate having at least a conductive surface. An electrophotographic photosensitive member in which a first layer including a second layer made of at least a non-single crystal material is stacked on the first layer, wherein the abnormally grown portion in the first layer is the second layer. A negatively charged electrophotographic photosensitive member characterized in that the content distribution of the Group 13 element of the periodic table has a peak in the interface region between the first layer and the second layer.
1 3 . 前記上部阻止層を構成する珪素に対する炭素の組成比が、 表 面側に向かって増加しているごとを特徴とする請求項 1 2に記載の負 帯電用電子写真感光体。  13. The negatively chargeable electrophotographic photosensitive member according to claim 12, wherein the composition ratio of carbon to silicon constituting the upper blocking layer increases toward the surface side.
1 4 .前記第 1の層と第 2の層との界面領域における周期表第 13族 元素の含有量分布のピークが、 5.0 X 1017個/ cm3以上、 1.0 X 1021個/ cm3 以下であることを特徴とする請求項 1 2または 1 3に記載の負帯電用 ' 電子写真感光体。 14.The peak of the content distribution of Group 13 element of the periodic table in the interface region between the first layer and the second layer is 5.0 × 10 17 pieces / cm 3 or more, 1.0 × 10 21 pieces / cm 3 The electrophotographic photoreceptor for negative charging according to claim 12 or 13, wherein:
1 5 . 請求項 1 2乃至 1 4のいずれか 1項に記載の負帯電用電子写 真感光体を用いた電子写真装置。 15. An electrophotographic apparatus using the negatively charged electrophotographic photosensitive member according to any one of claims 12 to 14.
16. 前記電子'写真装置の帯電手段が、 接触帯電手段からなること を特徴とする請求項 1 5に記載の電子写真装置。 16. The electrophotographic apparatus according to claim 15, wherein the charging means of the electrophotographic apparatus comprises contact charging means.
PCT/JP2005/015387 2004-08-19 2005-08-18 Method for producing electrophotographic photosensitive body for negative charging, electrophotographic photosensitive body for negative charging, and electrophotographic system employing it WO2006019190A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05774924.4A EP1783557B1 (en) 2004-08-19 2005-08-18 Method for producing electrophotographic photosensitive body for negative charging, electrophotographic photosensitive body for negative charging, and electrophotographic system employing it
US11/340,729 US7229730B2 (en) 2004-08-19 2006-01-27 Process for producing negative-charging electrophotographic photosensitive member, negative-charging electrophotographic photosensitive member, and electrophotographic apparatus using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-239490 2004-08-19
JP2004239490 2004-08-19
JP2005-227750 2005-08-05
JP2005227750A JP4726209B2 (en) 2004-08-19 2005-08-05 Method for producing negatively charged electrophotographic photosensitive member, negatively charged electrophotographic photosensitive member, and electrophotographic apparatus using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/340,729 Continuation US7229730B2 (en) 2004-08-19 2006-01-27 Process for producing negative-charging electrophotographic photosensitive member, negative-charging electrophotographic photosensitive member, and electrophotographic apparatus using same

Publications (1)

Publication Number Publication Date
WO2006019190A1 true WO2006019190A1 (en) 2006-02-23

Family

ID=35907570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015387 WO2006019190A1 (en) 2004-08-19 2005-08-18 Method for producing electrophotographic photosensitive body for negative charging, electrophotographic photosensitive body for negative charging, and electrophotographic system employing it

Country Status (4)

Country Link
US (1) US7229730B2 (en)
EP (1) EP1783557B1 (en)
JP (1) JP4726209B2 (en)
WO (1) WO2006019190A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6015160B2 (en) * 2012-06-22 2016-10-26 富士ゼロックス株式会社 Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP6128885B2 (en) 2013-02-22 2017-05-17 キヤノン株式会社 Electrophotographic photosensitive member, method for producing the same, and electrophotographic apparatus
JP7019350B2 (en) 2017-09-01 2022-02-15 キヤノン株式会社 Electrophotographic photosensitive member
JP7019351B2 (en) 2017-09-01 2022-02-15 キヤノン株式会社 Electrophotographic photosensitive members and electrophotographic equipment
JP7110016B2 (en) 2018-07-13 2022-08-01 キヤノン株式会社 INTERMEDIATE TRANSFER BELT, INTERMEDIATE TRANSFER BELT MANUFACTURING METHOD, AND IMAGE FORMING APPARATUS

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109068A (en) * 1984-10-30 1986-05-27 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Charge transfer medium and manufacture thereof
JPH04191748A (en) * 1990-11-27 1992-07-10 Canon Inc Electrophotographic sensitive body and manufacture thereof
JPH0764312A (en) * 1993-08-31 1995-03-10 Kyocera Corp Surface treatment of electrophotographic photoreceptor
JPH086353A (en) 1994-06-22 1996-01-12 Canon Inc Charging device
JPH08171220A (en) * 1994-12-15 1996-07-02 Fuji Xerox Co Ltd Electrophotographic photoreceptor and its production
JP2000010313A (en) * 1998-06-22 2000-01-14 Canon Inc Electrophotographic device
JP2002091040A (en) * 2000-09-12 2002-03-27 Canon Inc Electrophotographic photoreceptor and electrophotographic device
JP2002236379A (en) * 2001-02-08 2002-08-23 Canon Inc Electrophotographic photoreceptive member and electrophotographic device using the same
JP2003149841A (en) * 2001-01-31 2003-05-21 Canon Inc Electrophotographic photosensitive member, process for its production, and electrophotographic apparatus
EP1394619A2 (en) 2002-08-02 2004-03-03 Canon Kabushiki Kaisha Method for producing electrophotographic photosensitive member, electrophotographic photosensitive member and electrophotographic apparatus using the same
JP2004133396A (en) * 2002-08-09 2004-04-30 Canon Inc Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535166A (en) * 1991-07-31 1993-02-12 Canon Inc Image forming device
US6435130B1 (en) * 1996-08-22 2002-08-20 Canon Kabushiki Kaisha Plasma CVD apparatus and plasma processing method
US6635397B2 (en) * 2001-04-24 2003-10-21 Canon Kabushiki Kaisha Negative-charging electrophotographic photosensitive member
EP1388761B1 (en) * 2002-08-09 2006-10-25 Canon Kabushiki Kaisha Electrophotographic photosensitive member
EP1429192A3 (en) * 2002-12-12 2005-03-23 Canon Kabushiki Kaisha Electrophotographic photosensitive member and process for producing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109068A (en) * 1984-10-30 1986-05-27 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Charge transfer medium and manufacture thereof
JPH04191748A (en) * 1990-11-27 1992-07-10 Canon Inc Electrophotographic sensitive body and manufacture thereof
JPH0764312A (en) * 1993-08-31 1995-03-10 Kyocera Corp Surface treatment of electrophotographic photoreceptor
JPH086353A (en) 1994-06-22 1996-01-12 Canon Inc Charging device
JPH08171220A (en) * 1994-12-15 1996-07-02 Fuji Xerox Co Ltd Electrophotographic photoreceptor and its production
JP2000010313A (en) * 1998-06-22 2000-01-14 Canon Inc Electrophotographic device
JP2002091040A (en) * 2000-09-12 2002-03-27 Canon Inc Electrophotographic photoreceptor and electrophotographic device
JP2003149841A (en) * 2001-01-31 2003-05-21 Canon Inc Electrophotographic photosensitive member, process for its production, and electrophotographic apparatus
JP2002236379A (en) * 2001-02-08 2002-08-23 Canon Inc Electrophotographic photoreceptive member and electrophotographic device using the same
EP1394619A2 (en) 2002-08-02 2004-03-03 Canon Kabushiki Kaisha Method for producing electrophotographic photosensitive member, electrophotographic photosensitive member and electrophotographic apparatus using the same
JP2004133396A (en) * 2002-08-09 2004-04-30 Canon Inc Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus using the same

Also Published As

Publication number Publication date
US20060127783A1 (en) 2006-06-15
US7229730B2 (en) 2007-06-12
JP4726209B2 (en) 2011-07-20
EP1783557B1 (en) 2014-10-08
JP2006085158A (en) 2006-03-30
EP1783557A4 (en) 2012-05-30
EP1783557A1 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP3913067B2 (en) Electrophotographic photoreceptor, method for producing the same, and electrophotographic apparatus
WO2006019190A1 (en) Method for producing electrophotographic photosensitive body for negative charging, electrophotographic photosensitive body for negative charging, and electrophotographic system employing it
JPH112912A (en) Light receiving member, image forming device provided therewith and image forming method using it
JPH1083091A (en) Electrophotographic photoreceptor and its production
JP2002123020A (en) Electrophotographic photoreceptor for negative electrification
JP3122281B2 (en) Method of forming light receiving member for electrophotography
CN100543591C (en) Negative charging with the manufacture method of Electrophtography photosensor, negative charging with Electrophtography photosensor, and use the electro-photography apparatus of this photoreceptor
JP2007078762A (en) Electrophotographic photoreceptor and its manufacturing method
JP2004133396A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus using the same
JP4110053B2 (en) Electrophotographic photoreceptor manufacturing method, electrophotographic photoreceptor, and electrophotographic apparatus using the same
JP4143491B2 (en) Method for producing electrophotographic photosensitive member
JP3902975B2 (en) Negative charging electrophotographic photoreceptor
JP2004133398A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and electrophotographic apparatus
JP2008216306A (en) Method for polishing protrusion of electrophotographic photoreceptor
JP2004126541A (en) Method for manufacturing photoreceptor, electrophotographic photoreceptor, and electrophotographic device using the same
JP2004126543A (en) Method of manufacturing photoreceptor, electrophotographic photoreceptor, and electrophotographic device using the same
JP3535664B2 (en) Electrophotographic equipment
JP3437299B2 (en) Image forming method
JP3929037B2 (en) Photoconductor manufacturing method, electrophotographic photosensitive member, and electrophotographic apparatus using the same
JP2006058532A (en) Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor and image forming apparatus using same
JP3459700B2 (en) Light receiving member and method of manufacturing light receiving member
JP4448043B2 (en) Electrophotographic photoreceptor
JP2004347648A (en) Method for manufacturing electrophotographic photoreceptor
JP2005165118A (en) Method for polishing electrophotographic photoreceptor, electrophotographic photoreceptor, and electrophotographic apparatus using the same
JP2004206090A (en) Electrophotographic photoreceptor and method for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11340729

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11340729

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580027687.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005774924

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005774924

Country of ref document: EP