JP3327689B2 - Electrophotographic apparatus and image forming method - Google Patents

Electrophotographic apparatus and image forming method

Info

Publication number
JP3327689B2
JP3327689B2 JP18236194A JP18236194A JP3327689B2 JP 3327689 B2 JP3327689 B2 JP 3327689B2 JP 18236194 A JP18236194 A JP 18236194A JP 18236194 A JP18236194 A JP 18236194A JP 3327689 B2 JP3327689 B2 JP 3327689B2
Authority
JP
Japan
Prior art keywords
magnetic particles
charging
resin
layer
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18236194A
Other languages
Japanese (ja)
Other versions
JPH0869149A (en
Inventor
力 久木元
修一 會田
祥史 杷野
秀幸 矢野
晴美 石山
正 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18236194A priority Critical patent/JP3327689B2/en
Publication of JPH0869149A publication Critical patent/JPH0869149A/en
Application granted granted Critical
Publication of JP3327689B2 publication Critical patent/JP3327689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子写真感光体と該感
光体を接触帯電する部材を有し、該感光体に前記接触帯
電部材から電圧を印加することにより帯電する電子写真
装置及び画像形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus having an electrophotographic photosensitive member and a member for contact-charging the photosensitive member, wherein the electrophotographic device is charged by applying a voltage from the contact charging member to the photosensitive member. It relates to a forming method.

【0002】[0002]

【従来の技術】従来、電子写真法としては多数の方法が
知られているが、一般には光導電性物質を利用し、種々
の手段により感光体上に電気的潜像を形成し、ついで該
潜像をトナーで現像を行って可視像とし、必要に応じて
紙などの転写材にトナー画像を転写した後、熱、圧力な
どにより転写材上にトナー画像を定着して複写物を得る
ものである。また、転写材上に転写されずに感光体上に
残ったトナー粒子はクリーニング工程により感光体上よ
り除去される。
2. Description of the Related Art Conventionally, many methods have been known as electrophotography. In general, a photoconductive substance is used to form an electric latent image on a photoreceptor by various means. The latent image is developed into a visible image by developing with toner, and the toner image is transferred to a transfer material such as paper as necessary, and then the toner image is fixed on the transfer material by heat, pressure, etc. to obtain a copy. Things. Further, toner particles remaining on the photoconductor without being transferred onto the transfer material are removed from the photoconductor by a cleaning process.

【0003】近年、電子写真感光体の光導電性物質とし
て種々の有機光導電物質が開発され、特に電荷発生層と
電荷輸送層を積層した機能分離型のものが実用化され、
複写機やプリンターやファクシミリなどに搭載されてい
る。このような電子写真法での帯電手段としては、コロ
ナ放電を利用した手段が用いられていたが、多量のオゾ
ンを発生することからフィルタを具備する必要性があ
り、装置の大型化、ランニングコストアップなどの問題
点があった。
In recent years, various organic photoconductive materials have been developed as photoconductive materials for electrophotographic photoreceptors, and in particular, a function-separated type having a charge generation layer and a charge transport layer laminated thereon has been put into practical use.
It is installed in copiers, printers, and facsimile machines. As a charging means in such an electrophotographic method, a means utilizing corona discharge has been used. However, since a large amount of ozone is generated, it is necessary to provide a filter. There were problems such as up.

【0004】このような問題点を解決するための技術と
して、ローラー、ブレードなどの帯電部材を感光体表面
に当接させることにより、その接触部分近傍に狭い空間
を形成し所謂パッシェンの法則で解釈できるような放電
を形成することによりオゾン発生を極力抑さえた帯電方
法が開発され、この中でも特に帯電部材として帯電ロー
ラを用いたローラ帯電方式が、帯電の安定性という点か
ら好ましく用いられている。
As a technique for solving such a problem, a charging member such as a roller or a blade is brought into contact with the surface of a photoreceptor to form a narrow space in the vicinity of the contacting portion, which is interpreted according to the so-called Paschen's law. A charging method has been developed in which the generation of ozone is suppressed as much as possible by forming a discharge as possible, and among them, a roller charging method using a charging roller as a charging member is particularly preferably used in terms of charging stability. .

【0005】具体的には、帯電は帯電部材から被帯電体
への放電によって行われるため、ある閾値電圧以上の電
圧を印加することにより帯電が開始される。例えば感光
層の厚さが25μmのOPC感光体に対して帯電ローラ
を当接させた場合には、約640V以上の電圧を印加す
れば感光体の表面電位が上昇し始め、それ以降は印加電
圧に対して傾き1で線形に感光体表面電位が増加する。
以後この閾値電圧を帯電開始電圧Vthと定義する。つ
まり、感光体表面電位Vdを得るためには帯電ローラに
はVd+Vthという必要とされる以上のDC電圧が必
要となる。また環境変動などによって接触帯電部材の抵
抗値が変動するため、感光体の電位を所望の値にするこ
とが難しかった。
More specifically, since charging is performed by discharging from the charging member to the member to be charged, the charging is started by applying a voltage equal to or higher than a certain threshold voltage. For example, when the charging roller is brought into contact with an OPC photosensitive member having a photosensitive layer thickness of 25 μm, the surface potential of the photosensitive member starts to increase when a voltage of about 640 V or more is applied, and thereafter, the applied voltage is increased. The photosensitive member surface potential increases linearly at an inclination of 1.
Hereinafter, this threshold voltage is defined as a charging start voltage Vth. That is, in order to obtain the photoconductor surface potential Vd, the charging roller needs a DC voltage higher than Vd + Vth. Further, since the resistance value of the contact charging member fluctuates due to environmental fluctuations or the like, it has been difficult to set the potential of the photoconductor to a desired value.

【0006】このため、更なる帯電の均一化を図るため
に特開昭63−149669号公報に開示されるよう
に、所望のVdに相当するDC電圧に2×Vth以上の
ピーク間電圧を持つAC成分を重畳した電圧を接触帯電
部材に印加するAC帯電方式が用いられる。これは、A
Cによる電位のならし効果を目的としたものであり、被
帯電体の電位はAC電圧のピークの中央であるVdに収
束し、環境などの外乱には影響されることはない。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 63-149669, a DC voltage corresponding to a desired Vd has a peak-to-peak voltage of 2 × Vth or more, as disclosed in JP-A-63-149669. An AC charging method in which a voltage on which an AC component is superimposed is applied to a contact charging member is used. This is A
The purpose of this is to achieve a leveling effect of the potential by C. The potential of the charged body converges to Vd, which is the center of the peak of the AC voltage, and is not affected by disturbance such as the environment.

【0007】しかしながら、このような接触帯電装置に
おいても、その本質的な帯電機構は、帯電部材から感光
体への放電現象を用いているため、先に述べたように帯
電に必要とされる電圧は感光体表面電位以上の値が必要
とされる。また、帯電均一化のためにAC帯電を行った
場合には、AC電圧の電界による帯電部材と感光体の振
動及び騒音(以下AC帯電音と称す)の発生、また、放
電による感光体表面の劣化などが顕著になり、新たな問
題点となっていた。
However, even in such a contact charging device, the essential charging mechanism uses a discharge phenomenon from the charging member to the photosensitive member, and thus the voltage required for charging as described above. Requires a value equal to or higher than the photoconductor surface potential. When AC charging is performed for uniform charging, vibration and noise (hereinafter referred to as AC charging noise) of the charging member and the photoconductor due to the electric field of the AC voltage are generated, and the surface of the photoconductor is discharged. Deterioration and the like became remarkable, and this was a new problem.

【0008】一方、特開昭61−57958号公報に開
示されるように、導電性保護膜を有する感光体を、導電
性微粒子を用いて帯電する画像形成方法がある。これに
よれば、感光体として107 〜1013Ωcmの抵抗を有
する半導電性保護膜を有する感光体を用い、この感光体
を1010Ωcm以下の抵抗を有する導電性微粒子を用い
て帯電することにより、感光層中に電荷が注入すること
なく、放電により感光体をムラなく均一に帯電すること
ができ、良好な画像再現を行うことができると記載があ
る。この方法によれば、AC帯電における問題点であっ
た振動、騒音などは防止できるが、転写残トナーを帯電
部材である導電性微粒子がかき取ることなどによって帯
電部材にトナーが付着し、その結果帯電特性の変化が起
こる。また、放電により帯電しているため、放電による
感光体表面の劣化などが依然生じており、また高圧電源
も必要であった。
On the other hand, as disclosed in JP-A-61-57958, there is an image forming method in which a photosensitive member having a conductive protective film is charged by using conductive fine particles. According to this, a photosensitive member having a semiconductive protective film having a resistance of 10 7 to 10 13 Ωcm is used as the photosensitive member, and the photosensitive member is charged by using conductive fine particles having a resistance of 10 10 Ωcm or less. It is described that the photoreceptor can be uniformly charged by the discharge without unevenness without injecting electric charge into the photosensitive layer, thereby achieving good image reproduction. According to this method, vibration, noise, and the like, which are problems in AC charging, can be prevented. However, the toner adheres to the charging member due to scraping of the transfer residual toner by the conductive fine particles serving as the charging member. A change in charging characteristics occurs. Further, since the photosensitive member is charged by the discharge, the surface of the photosensitive member is still deteriorated by the discharge, and a high-voltage power source is required.

【0009】このため、感光体への電荷の直接注入によ
る帯電が望まれていた。帯電ローラ、帯電ブラシ、帯電
磁気ブラシなどの接触帯電部材に電圧を印加し、感光体
表面にあるトラップ準位に電荷を注入して接触注入帯電
を行う方法は、Japan Hardcopy 92年
論文集P287の「導電性ローラを用いた接触帯電特
性」などに記載があるが、これらの方法は、暗所絶縁性
の感光体に対して、電圧を印加した低抵抗の帯電部材で
注入帯電を行う方法であり、帯電部材の抵抗値が十分に
低く、更に帯電部材に導電性を持たせる材質(導電性フ
ィラーなど)が表面に十分に露出していることが条件に
なっていた。このため、前記の文献においても帯電部材
としてはアルミ箔や、高湿環境下で十分抵抗値が下がっ
たイオン導電性の帯電部材が好ましいとされている。本
出願人らの検討によれば感光体に対して十分な電荷注入
が可能な帯電部材の抵抗値は1×103 Ωcm以下であ
り、これ以上では印加電圧と帯電電位の間に差が生じ始
め帯電電位の収束性に問題が生じることがわかってい
る。
For this reason, charging by direct injection of charges into the photosensitive member has been desired. A method of applying a voltage to a contact charging member such as a charging roller, a charging brush, a charging magnetic brush, and injecting a charge into a trap level on the surface of the photoreceptor to perform contact injection charging is described in Japan Hardcopy, 1992, P287. As described in "Contact charging characteristics using conductive rollers", etc., these methods are methods in which injection charging is performed with a low-resistance charging member to which a voltage is applied to a photosensitive member having insulated darkness. There is a condition that the resistance value of the charging member is sufficiently low and that a material (conductive filler or the like) for imparting conductivity to the charging member is sufficiently exposed on the surface. For this reason, the above-mentioned literature also states that the charging member is preferably an aluminum foil or an ion-conductive charging member having a sufficiently reduced resistance value in a high-humidity environment. According to the study by the present applicants, the resistance value of the charging member capable of sufficiently injecting electric charge into the photoreceptor is 1 × 10 3 Ωcm or less, and above this, a difference occurs between the applied voltage and the charging potential. It is known that a problem arises in the convergence of the charging potential at first.

【0010】しかしながら、このような抵抗値の低い帯
電部材を実際に使用すると、感光体表面に生じたキズ、
ピンホールなどに対して接触帯電部材から過大なリーク
電流が流れ込み、周辺の帯電不良や、ピンホールの拡
大、帯電部材の通電破壊が生じる。
However, when such a charging member having a low resistance value is actually used, scratches generated on the surface of the photoreceptor,
Excessive leakage current flows from the contact charging member into the pinhole or the like, causing poor charging in the surroundings, enlargement of the pinhole, and destruction of the electrification member.

【0011】これを防止するためには帯電部材の抵抗値
を1×104 Ω程度以上にする必要があるが、この抵抗
値の帯電部材では先に述べたように感光体への電荷注入
性が低下し、帯電が行われないという矛盾が生じてしま
う。
In order to prevent this, the resistance of the charging member must be about 1 × 10 4 Ω or higher. And the contradiction that charging is not performed occurs.

【0012】そこで、接触方式の帯電装置もしくは該帯
電装置を用いた画像形成方法について上記のような問題
点を解消する、即ち、低抵抗の接触帯電部材を用いない
と生じなかった電荷注入による良好な帯電性と、低抵抗
の接触帯電部材では防止することのできなかった被帯電
体上のピンホールリークという背反した特性を両立させ
ることが望まれていた。
In view of the above, the above-described problems in the contact type charging device or the image forming method using the charging device are solved. It has been desired to achieve a balance between excellent charging properties and contradictory characteristics such as pinhole leakage on a member to be charged, which could not be prevented by a low-resistance contact charging member.

【0013】また、接触帯電を用いる画像形成方法にお
いては、帯電部材の汚れ(スペント)による帯電不良に
より画像欠陥を生じ、耐久性に問題が生じる傾向にあ
り、被帯電部材への電荷注入による帯電においても、帯
電部材の汚れによる帯電不良の影響を防止することが多
数枚のプリントを可能にするため急務であった。
Further, in an image forming method using contact charging, image defects tend to occur due to poor charging due to contamination (spent) of the charging member, causing a problem in durability, and charging due to charge injection into a member to be charged. Also, it has been urgently necessary to prevent the influence of poor charging due to contamination of the charging member in order to enable printing of many sheets.

【0014】[0014]

【発明が解決しようとする課題】本発明の目的は、電子
写真感光体と該感光体を注入帯電する部材を有し、該感
光体に該注入帯電用部材から電圧を印加することにより
帯電する、長期にわたって良好な帯電特性を維持できる
電子写真装置及び画像形成方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrophotographic photosensitive member and a member for charging and charging the photosensitive member, and the photosensitive member is charged by applying a voltage from the charging member. Another object of the present invention is to provide an electrophotographic apparatus and an image forming method capable of maintaining good charging characteristics for a long period of time.

【0015】[0015]

【課題を解決するための手段】すなわち、本発明は、導
電性支持体上に感光層を有する電子写真感光体と、磁性
粒子からなり該感光体に接触して電圧を印加する接触帯
電部材を有する電子写真装置において、該感光体が該支
持体より最も離れて10 8 Ωcm以上の体積抵抗値を有
する電荷注入層を有し、該磁性粒子が2×10 6 〜2×
10 8 Ωcmの体積抵抗値を有し、かつ該磁性粒子の粒
度分布が0.1〜200μmの範囲に2つ以上のピーク
または肩を有することを特徴とする電子写真装置であ
る。
That is, the present invention provides an electrophotographic photosensitive member having a photosensitive layer on a conductive support, and a contact charging member comprising magnetic particles and applying a voltage by contacting the photosensitive member. The photoreceptor has a volume resistance of 10 8 Ωcm or more at a position farthest from the support.
And the magnetic particles are 2 × 10 6 to 2 ×.
An electrophotographic apparatus having a volume resistance value of 10 8 Ωcm and a particle size distribution of the magnetic particles having two or more peaks or shoulders in a range of 0.1 to 200 μm.

【0016】また、本発明は、導電性支持体上に感光層
を有する電子写真感光体に、磁性粒子からなる帯電部材
を接触させ、電圧を印加して該感光体を帯電する工程を
有する画像形成方法において、該感光体が該支持体より
最も離れて10 8 Ωcm以上の体積抵抗値を有する電荷
注入層を有し、該磁性粒子が2×10 6 〜2×10 8 Ωc
mの体積抵抗値を有し、かつ該磁性粒子の粒度分布が
0.1〜200μmの範囲に2つ以上のピークまたは肩
を有することを特徴とする画像形成方法である。
Further, the present invention provides an image comprising a step of bringing a charging member made of magnetic particles into contact with an electrophotographic photosensitive member having a photosensitive layer on a conductive support, and applying a voltage to charge the photosensitive member. In the forming method, the photoreceptor has a charge injection layer having a volume resistance value of 10 8 Ωcm or more farthest from the support, and the magnetic particles are 2 × 10 6 to 2 × 10 8 Ωc.
m , and a particle size distribution of the magnetic particles has two or more peaks or shoulders in a range of 0.1 to 200 μm.

【0017】本発明は、帯電特性を維持したまま、トナ
ースペントの影響を受けにくくした、耐久安定性に優れ
た画像形成方法である。
The present invention is an image forming method which is less susceptible to toner spent while maintaining charging characteristics, and which has excellent durability stability.

【0018】接触帯電部材は感光体の電荷注入層に電荷
を注入する役割と、感光体上に生じたピンホールなどの
欠陥に帯電電流が集中して、帯電部材及び感光体の通電
破壊を防止する役割を兼ね備えなければならない。接触
帯電部材の抵抗値が1×104Ω未満ではピンホールリ
ークを防止できず、1×1010Ωを超えると帯電に必要
な電流を流すことができない。従って、帯電部材の電圧
印加部分から感光体に接する部分までの抵抗値は1×1
4Ω〜1×1010Ωの範囲でなければならない。抵抗
値を上記範囲内に制御するために、本発明においては、
磁性粒子の体積抵抗値を2×10 6 〜2×10 8 Ωcmと
する
The contact charging member serves to inject electric charges into the charge injection layer of the photoreceptor, and the charging current is concentrated on defects such as pinholes formed on the photoreceptor, thereby preventing the charging member and the photoreceptor from being electrically destructed. Must have a role to do. If the resistance value of the contact charging member is less than 1 × 10 4 Ω, pinhole leakage cannot be prevented, and if it exceeds 1 × 10 10 Ω, a current required for charging cannot be passed. Accordingly, the resistance value from the voltage application portion of the charging member to the portion in contact with the photoconductor is 1 × 1.
0 4 Ω~1 should be in the range of × 10 10 Ω. The resistance to be controlled within the above range, Oite the present invention,
The volume resistance of the magnetic particles is 2 × 10 6 to 2 × 10 8 Ωcm.
I do .

【0019】更に、該磁性粒子の粒度分布は2つ以上の
ピークまたは肩を有しており、粒子表面の汚染による帯
電劣化の防止が達成されている。即ち、磁性粒子の比表
面積を増大させ、磁気ブラシの密度を密にし、かつ磁性
粒子の入れ代わりが起こり易く、一部表面が汚染された
としても常に安定した帯電が得られることによる。
Further, the particle size distribution of the magnetic particles has two or more peaks or shoulders, thereby preventing the deterioration of charging due to contamination of the particle surface. That is, the specific surface area of the magnetic particles is increased, the density of the magnetic brush is increased, the magnetic particles are easily replaced, and stable charging is always obtained even if the surface is partially contaminated.

【0020】以上のような構成をとることによって、電
荷注入による帯電とピンホールリークの防止を両立する
ことができるようになり、また、安定した帯電特性を維
持することが可能となった。
With the above configuration, it is possible to achieve both charging by charge injection and prevention of pinhole leakage, and it is possible to maintain stable charging characteristics.

【0021】具体的には、接触帯電部材として、鉄粉や
フェライト、マグネタイトなどの酸化鉄などの磁性粒子
からなる帯電磁気ブラシを用いた場合、帯電部材の抵抗
値を1×104 Ω〜1×1010Ωの範囲にすることは可
能ではあるが、耐久を行うと、クリーニングされずに感
光体上に残ったトナーを帯電部材がかき取ることなどに
より、帯電部材へのトナースペントが生じてしまう。一
方、微粒子の磁性粒子を用いれば、表面積が増大するこ
と及び磁気ブラシの密度を密にすることである程度トナ
ースペントの影響を防止できるが、キャリアの流動性が
悪化するためにキャリアの入れ代わりが起きにくく長期
使用には好ましくない。
Specifically, when a charged magnetic brush made of magnetic particles such as iron powder, ferrite, or iron oxide such as magnetite is used as the contact charging member, the resistance of the charging member is 1 × 10 4 Ω to 1 × 10 4 Ω. Although it is possible to make the range of × 10 10 Ω, when the durability is performed, the toner remaining on the photoreceptor without being cleaned is scraped by the charging member, thereby causing toner spent on the charging member. I will. On the other hand, if magnetic particles of fine particles are used, the effect of toner spent can be prevented to some extent by increasing the surface area and increasing the density of the magnetic brush, but the replacement of the carrier occurs because the fluidity of the carrier deteriorates. It is not preferable for long-term use.

【0022】従って、本発明においては、粒径10〜1
00μmの小粒径磁性粒子の間に、粒径0.5〜30μ
mの微粒径磁性粒子を混在させることが、安定した帯電
特性を維持する上で好ましい。また、帯電部材としての
磁性粒子を密にし、感光体との接触点を増加させ、より
均一に感光体を帯電させるという観点から、粒度分布の
最大ピーク位置(P1)は10〜50μm及び2番目の
ピークまたは肩の位置(P2)は0.5〜20μmの範
囲にあることがより好ましい。また、磁性粒子を密にす
るためには、最大ピーク位置と2番目のピークまたは肩
の位置との比(P2/P1)を0.73、好ましくは
0.41以下にすることが有効である。これはP1位置
の粒径の磁性粒子の、立方格子(cubic)の間隙に
入り込めるような(P1の粒径の0.73倍以下)、好
ましくは平面立方格子の間隙に入り込めるような(P1
の粒径の0.41倍以下)P2の粒径を持つ磁性粒子が
ピークまたは肩として粒度分布に存在することが、磁性
粒子を密に配列し、かつ導電経路が確保されるからであ
ると考えられる。また磁性粒子中にトナーが入り込んで
も導電経路が確保され易いという観点から、最大ピーク
位置と2番目のピークまたは肩の位置との差(P1−P
2)は5μm以上あることが好ましい。より好ましくは
10μm以上である。また、(P1−P2)が5μm未
満であると、耐久によって微粒径磁性粒子が減少し、や
や注入帯電性が悪化する傾向にある。また、その全体の
平均粒径は5〜200μmが好ましい。5μmより小さ
いと、感光体への磁気ブラシの付着が生じ易く、また2
00μmより大きいと、スリーブ上での磁気ブラシの穂
立ちの密度を密にできず、感光体への注入帯電性が悪く
なる傾向がある。より好ましくは10〜100μm、特
に好ましくは10〜50μmである。微粒径磁性粒子の
量は小粒径磁性粒子100重量部に対し0.1〜60重
量部が好ましい。
Therefore, in the present invention, the particle size is 10 to 1
A small particle size of 0.5 to 30 μm
It is preferable to mix magnetic particles having a fine particle diameter of m in order to maintain stable charging characteristics. Further, from the viewpoint of increasing the density of magnetic particles as a charging member, increasing the contact points with the photoconductor, and uniformly charging the photoconductor, the maximum peak position (P1) of the particle size distribution is 10 to 50 μm and the second Is more preferably in the range of 0.5 to 20 μm. In order to make the magnetic particles dense, it is effective to set the ratio (P2 / P1) between the maximum peak position and the position of the second peak or shoulder to 0.73, preferably 0.41 or less. . This is such that magnetic particles having a particle size at the position P1 can enter the gaps of the cubic lattice (cubic) (0.73 times or less of the particle size of P1), and preferably can enter the gaps of the planar cubic lattice (P1).
The reason is that magnetic particles having a particle size of P2 are present in the particle size distribution as peaks or shoulders because the magnetic particles are densely arranged and a conductive path is secured. Conceivable. In addition, from the viewpoint that a conductive path is easily secured even when toner enters the magnetic particles, the difference between the maximum peak position and the position of the second peak or shoulder (P1-P
2) is preferably 5 μm or more. More preferably, it is 10 μm or more. When (P1−P2) is less than 5 μm, the magnetic particles having a small particle diameter decrease due to durability, and the injection chargeability tends to slightly deteriorate. Further, the average particle size of the whole is preferably from 5 to 200 μm. If it is smaller than 5 μm, the magnetic brush is likely to adhere to the photoreceptor.
If it is larger than 00 μm, the density of the magnetic brush ears on the sleeve cannot be increased, and the chargeability to be injected into the photoconductor tends to deteriorate. More preferably, it is 10 to 100 μm, particularly preferably 10 to 50 μm. The amount of the fine magnetic particles is preferably 0.1 to 60 parts by weight based on 100 parts by weight of the small magnetic particles.

【0023】なお、全体の平均粒径及び粒度分布は、光
学顕微鏡または走査型電子顕微鏡により、ランダムに1
00個以上抽出し、水平方向最大弦長をもって体積粒度
分布を算出しその50%平均粒径をもって平均粒径とす
る。また、該粒度分布からピークまたは肩を特定する。
また、磁性粒子の平均粒径はレーザー回折式粒度分布測
定装置HEROS(日本電子製)を用いて、0.05μ
m〜200μmの範囲を32対数分割して測定し、体積
分布の50%平均粒径をもって平均粒径としてもよい。
The average particle size and the particle size distribution of the whole were randomly determined by an optical microscope or a scanning electron microscope.
More than 00 pieces are extracted, the volume particle size distribution is calculated based on the maximum chord length in the horizontal direction, and the 50% average particle size is defined as the average particle size. Further, a peak or a shoulder is specified from the particle size distribution.
The average particle diameter of the magnetic particles was measured using a laser diffraction particle size distribution analyzer HEROS (manufactured by JEOL Ltd.).
The range of m to 200 μm may be measured by 32 logarithmic division, and the average particle size may be defined as the 50% average particle size of the volume distribution.

【0024】更には、磁性粒子の表面が中抵抗コート層
でコートされていることも好ましい。
Further, it is preferable that the surface of the magnetic particles is coated with a medium resistance coat layer.

【0025】上記コート層としては、体積抵抗値が1×
104 Ωcm〜1×1010Ωcmの範囲である蒸着膜や
導電性微粒子分散樹脂膜などが考えられるが、帯電特
性、生産性やコストなどの観点から導電性微粒子分散樹
脂膜が好ましい。好ましくは104 Ωcm〜107 Ωc
mである。ここで上記コート層の体積抵抗値の測定方法
は、表面に導電性微粒子分散樹脂膜を蒸着させたポリエ
チレンテレフタラート(PET)フィルム(約100μ
m)上にコート層(約10μm)を作成し、これを体積
抵抗測定装置(ヒューレットパッカード社製4140B
pAMATER)にて、23℃、65%の環境で10
0Vの電圧を印加させて測定した。
The coating layer has a volume resistance of 1 ×.
A vapor-deposited film or a conductive fine particle-dispersed resin film in the range of 10 4 Ωcm to 1 × 10 10 Ωcm is conceivable, but a conductive fine particle-dispersed resin film is preferable from the viewpoint of charging characteristics, productivity, cost, and the like. Preferably 10 4 Ωcm to 10 7 Ωc
m. Here, the method for measuring the volume resistance value of the above-mentioned coat layer is a polyethylene terephthalate (PET) film (about 100 μm) having a conductive fine particle-dispersed resin film deposited on its surface.
m), a coat layer (approximately 10 μm) was formed thereon, and this was coated with a volume resistance measuring device (4140B manufactured by Hewlett-Packard Company).
pAMATOR) at 10% at 23 ° C and 65%
The measurement was performed by applying a voltage of 0V.

【0026】なお、磁性粒子の表面を結着樹脂のみでコ
ートするとトナースペントの防止には有効であるが、こ
の結着樹脂のみのコート層の抵抗は一般に1×1010Ω
cm以上と高いために、電荷注入が起こりにくく、帯電
部材として用いるには不適当である。そこで、導電性微
粒子分散中抵抗樹脂膜をコート層としている。
When the surface of the magnetic particles is coated only with a binder resin, it is effective to prevent toner spent. However, the resistance of a coat layer made of only the binder resin is generally 1 × 10 10 Ω.
cm or more, charge injection is unlikely to occur, and is unsuitable for use as a charging member. Therefore, the resist layer in which the conductive fine particles are dispersed is used as the coating layer.

【0027】磁性粒子のコート層に用いられる結着樹脂
としては、スチレン、クロルスチレンなどのスチレン
類;エチレン、プロピレン、ブチレン、イソブチレンな
どのモノオレフィン;酢酸ビニル、プロピオン酸ビニ
ル、安息香酸ビニル、酪酸ビニルなどのビニルエステ
ル;アクリル酸メチル、アクリル酸エチル、アクリル酸
ブチル、アクリル酸ドデシル、アクリル酸オクチル、ア
クリル酸フェニル、メタクリル酸メチル、メタクリル酸
エチル、メタクリル酸ブチル、メタクリル酸ドデシルな
どのα−メチレン脂肪族モノカルボン酸エステル;ビニ
ルメチルエーテル、ビニルエチルエーテル、ビニルブチ
ルエーテルなどのビニルエーテル;ビニルメチルケト
ン、ビニルヘキシルケトン、ビニルイソプロペニルケト
ンなどのビニルケトン類の単独重合体あるいは共重合体
などが挙げられ、特に代表的な結着樹脂としては、導電
性微粒子の分散性やコート層としての成膜性、トナース
ペント防止、生産性という点などから、ポリスチレン、
スチレン−アクリル酸アルキル共重合体、スチレン−ア
クリロニトリル共重合体、スチレン−ブタジエン共重合
体、スチレン−無水マレイン酸共重合体、ポリエチレ
ン、ポリプロピレンなどが挙げられる。更に、ポリカー
ボネート、フェノール樹脂、ポリエステル、ポリウレタ
ン、エポキシ樹脂、ポリオレフィン、フッ素樹脂、シリ
コーン樹脂、ポリアミドなどが挙げられる。特にスペン
ト防止という観点から、臨界表面張力の小さい樹脂、例
えばポリオレフィン、フッ素樹脂、シリコーン樹脂など
を含んでいることがより好ましい。
Examples of the binder resin used in the coating layer of the magnetic particles include styrenes such as styrene and chlorostyrene; monoolefins such as ethylene, propylene, butylene and isobutylene; vinyl acetate, vinyl propionate, vinyl benzoate and butyric acid. Vinyl esters such as vinyl; α-methylenes such as methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dodecyl methacrylate Aliphatic monocarboxylic acid esters; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether and vinyl butyl ether; vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone and vinyl isopropenyl ketone It is like German polymer or copolymer, particularly typical binder resin, film forming property of the dispersibility and coating layer of the conductive fine particles, and the like toner spent prevented, that productivity, polystyrene,
Examples include styrene-alkyl acrylate copolymer, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyethylene, and polypropylene. Further, polycarbonate, phenol resin, polyester, polyurethane, epoxy resin, polyolefin, fluororesin, silicone resin, polyamide and the like can be mentioned. In particular, from the viewpoint of prevention of spent, it is more preferable to include a resin having a small critical surface tension, for example, a polyolefin, a fluororesin, a silicone resin, or the like.

【0028】ブレンド量は、全結着樹脂量に対するフッ
素系樹脂、ポリオレフィン系樹脂またはシリコーン系樹
脂の割合は、1.0〜60重量%が好ましく、特に2.
0〜40重量%が好ましい。含有量が1.0重量%未満
であると、表面改質効果が十分でなく、トナースペント
に効果が少ない。一方60重量%を越えると、両者が均
一に分散されにくいため、体積抵抗値に部分的なムラが
生じ、帯電特性が悪くなる傾向がある。
As for the blending amount, the ratio of the fluorine-based resin, polyolefin-based resin or silicone-based resin to the total amount of the binder resin is preferably 1.0 to 60% by weight, and particularly preferably 2.
0-40% by weight is preferred. If the content is less than 1.0% by weight, the surface modification effect is not sufficient and the effect on toner spent is small. On the other hand, if it exceeds 60% by weight, both are difficult to be uniformly dispersed, so that a partial unevenness occurs in the volume resistance value, and the charging characteristics tend to deteriorate.

【0029】フッ素樹脂としては、例えばポリフッ化ビ
ニル、ポリフッ化ビニリデン、ポリトリフルオロエチレ
ン、ポリクロロトリフルオロエチレン、ポリジクロロジ
フルオロエチレン、ポリテトラフルオロエチレン、ポリ
ヘキサフルオロプロピレンなどの溶媒可溶の共重合体が
挙げられる。
Examples of the fluorine resin include solvent-soluble copolymers such as polyvinyl fluoride, polyvinylidene fluoride, polytrifluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, polytetrafluoroethylene, and polyhexafluoropropylene. Coalescence.

【0030】シリコーン樹脂としては、例えば信越シリ
コーン社製KR271、KR282、KR311、KR
255、KR155(ストレートシリコーンワニス)、
KR211、KR212、KR216、KR213、K
R217、KR9218(変性用シリコーンワニス)、
SA−4、KR206、KR5206(シリコーンアル
キッドワニス)、ES1001、ES1001N、ES
1002T、ES1004(シリコーンエポキシワニ
ス)、KR9706(シリコーンアクリルワニス)、K
R5203、KR5221(シリコーンポリエステルワ
ニス)や東レシリコーン社製のSR2100、SR21
01、SR2107、SR2110、SR2108、S
R2109、SR2400、SR2410、SR241
1、SH805、SH806A、SH840などが用い
られる。
Examples of the silicone resin include KR271, KR282, KR311, and KR manufactured by Shin-Etsu Silicone Co., Ltd.
255, KR155 (straight silicone varnish),
KR211, KR212, KR216, KR213, K
R217, KR9218 (modified silicone varnish),
SA-4, KR206, KR5206 (silicone alkyd varnish), ES1001, ES1001N, ES
1002T, ES1004 (silicone epoxy varnish), KR9706 (silicone acrylic varnish), K
R5203, KR5221 (silicone polyester varnish) and SR2100, SR21 manufactured by Toray Silicone Co., Ltd.
01, SR2107, SR2110, SR2108, S
R2109, SR2400, SR2410, SR241
1, SH805, SH806A, SH840, etc. are used.

【0031】導電性微粒子としては、銅、ニッケル、
鉄、アルミニウム、金、銀などの金属あるいは酸化鉄、
フェライト、酸化亜鉛、酸化スズ、酸化アンチモン、酸
化チタンなどの金属酸化物、更にはカーボンブラックな
どの導電粉が挙げられる。また、これら導電性微粒子は
体積抵抗値が1×107 Ωcm以下のものが好ましく、
粒径は1μm以下が好ましい。なお、本発明に用いる導
電性微粒子は、必要に応じ疎水化、帯電調整などの目的
で表面処理を施されていてもよい。
As the conductive fine particles, copper, nickel,
Metal such as iron, aluminum, gold, silver or iron oxide,
Metal oxides such as ferrite, zinc oxide, tin oxide, antimony oxide, and titanium oxide, and conductive powders such as carbon black may be used. Further, these conductive fine particles preferably have a volume resistance of 1 × 10 7 Ωcm or less,
The particle size is preferably 1 μm or less. In addition, the conductive fine particles used in the present invention may be subjected to a surface treatment for the purpose of hydrophobicity, charge adjustment, and the like, if necessary.

【0032】コート層の被コート材に対する塗布量は、
被覆樹脂固形分が0.5〜20重量%が好ましい。塗布
量が0.5重量%未満では、被コート材の被覆効果が十
分でなく、20重量%以上では実質的に効果が変わら
ず、むしろコストアップなどの弊害が起こる。
The coating amount of the coating layer on the material to be coated is as follows:
The coating resin solid content is preferably 0.5 to 20% by weight. If the coating amount is less than 0.5% by weight, the effect of covering the material to be coated is not sufficient, and if it is 20% by weight or more, the effect is not substantially changed, but rather an adverse effect such as an increase in cost occurs.

【0033】磁性粒子としては、磁気によって穂立ちさ
せて、この磁気ブラシを感光体に接触させて帯電させる
ために、この材質としては例えば鉄、コバルト、ニッケ
ルなどの強磁性を示す元素を含む合金あるいは化合物な
どが用いられる。これらはそのまま用いると体積抵抗値
が好ましい範囲に入らないため、酸化処理、還元処理な
どを行って体積抵抗値を好ましい範囲に調整したもの、
例えば組成調整したフェライト、水素還元処理したZn
−Cuフェライト、酸化処理したマグネタイトなどが用
いられる。また、その体積抵抗値は、表面に中抵抗コー
ト層を設けたとしても初期と同様な帯電特性を維持させ
るために、1×104 Ωcm〜1×10 10Ωcmの範囲
にあることが好ましい。より好ましくは1×104 Ωc
m〜1×107 Ωcmである。
[0033] As magnetic particles,
And contact the magnetic brush with the photoreceptor to charge it
For example, this material may be iron, cobalt, nickel
Alloys or compounds containing ferromagnetic elements such as
Which is used. If these are used as they are, the volume resistance value
Is not within the preferred range, so that oxidation treatment, reduction treatment, etc.
The volume resistance value adjusted to a preferred range by performing
For example, ferrite with adjusted composition, Zn with hydrogen reduction treatment
-For Cu ferrite and oxidized magnetite
Can be. In addition, the volume resistivity value is
Even if a charge layer is provided, the same charging characteristics as the initial
1 × 10Four Ωcm-1 × 10 TenΩcm range
Is preferred. More preferably 1 × 10Four Ωc
m ~ 1 × 107 Ωcm.

【0034】導電性微粒子含有の樹脂コート磁性粒子の
製造方法としては、導電性微粒子及び被覆樹脂を適当な
溶媒に溶解させて調製したコート層用溶液中に被コート
材粒子を浸漬させた後、スプレードライヤーを用いて溶
剤を揮発させてコート層を形成させる方法、あるいは一
般的な流動床コーティング装置中に被コート材粒子を入
れ流動床を形成させながらコート層用溶液をスプレーし
つつ乾燥させ、徐々にコート層を形成させる方法などが
挙げられる。
As a method for producing the resin-coated magnetic particles containing the conductive fine particles, the coated material particles are immersed in a coating layer solution prepared by dissolving the conductive fine particles and the coating resin in an appropriate solvent. A method for forming a coat layer by volatilizing a solvent using a spray dryer, or drying while spraying a solution for a coat layer while forming a fluidized bed by putting the material to be coated in a general fluidized bed coating apparatus, A method of gradually forming a coat layer may, for example, be mentioned.

【0035】本発明に係わる電子写真感光体としては、
支持体より最も離れた層に、先に述べたように、十分な
帯電性と画像流れを起こさない条件を満足するために体
積抵抗値が1×108Ωcm以上、好ましくは1×10
15Ωcm以下の範囲である電荷注入層を設けた感光体を
用いる。より好ましくは画像流れなどの点から、体積抵
抗値が1×1010Ωcm〜1×1015Ωcm,更には体
積抵抗値の環境変動なども考慮して、体積抵抗値が1×
1012Ωcm〜1×1015Ωcmのものを用いるのが好
ましい。1×108Ωcm未満では高湿環境で帯電電荷
が表面方向に保持されないため画像流れを生じ、1×1
15Ωcmを越えると帯電部材からの帯電電荷を十分注
入、保持できず、帯電不良を生じる傾向にある。このよ
うな機能層を感光体表面に設けることによって、帯電部
材から注入された帯電電荷を保持する役割を果たし、更
に光露光時にこの電荷を感光体の支持体に逃す役割を果
たし、残留電位を低減させる。また、本発明に係わる帯
電部材と感光体を用い、このような構成をとることによ
って、帯電開始電圧Vhが小さく、感光体帯電電位を
帯電部材に印加する電圧のほとんど90%以上に収束さ
せることが可能になった。ここで電荷注入層としては、
絶縁性の結着樹脂に光透過性でかつ導電性の粒子を適量
分散させて中抵抗とした材料で構成することが特徴であ
る。また、電荷注入層として表面に上記範囲の抵抗を有
する無機層を形成することも有効な手段である。
As the electrophotographic photosensitive member according to the present invention,
As described above, the layer farthest from the support has a volume resistivity of 1 × 10 8 Ωcm or more, preferably 1 × 10 8 Ωcm or more, in order to satisfy the conditions for sufficient chargeability and image deletion.
A photoconductor provided with a charge injection layer having a range of 15 Ωcm or less is used. More preferably, the volume resistivity is 1 × 10 10 Ωcm to 1 × 10 15 Ωcm from the viewpoint of image deletion and the like.
It is preferable to use one of 10 12 Ωcm to 1 × 10 15 Ωcm. If the density is less than 1 × 10 8 Ωcm, image charge may not be held in the surface direction in a high humidity environment, causing image deletion.
If it exceeds 0 15 Ωcm, the charge from the charging member cannot be sufficiently injected and held, and the charging tends to be poor. By providing such a functional layer on the surface of the photoreceptor, it plays a role of retaining the charged electric charge injected from the charging member, and also plays a role of releasing this electric charge to the support of the photoreceptor at the time of light exposure, thereby reducing the residual potential. Reduce. Further, using the charging member and the photosensitive member according to the present invention, converged by adopting such a configuration, charge starting voltage V t h is small, more than most 90% of the voltage applied to the photosensitive member charge potential to the charging member It is now possible to do that. Here, as the charge injection layer,
It is characterized by a material having a medium resistance by dispersing an appropriate amount of light-transmitting and conductive particles in an insulating binder resin. It is also an effective means to form an inorganic layer having a resistance in the above range on the surface as a charge injection layer.

【0036】ここで電荷注入層の体積抵抗値の測定方法
は、前述した帯電部材コート層材料の測定法と同様に、
表面に導電膜を蒸着させたポリエチレンテレフタラート
(PET)フィルム上に電荷注入層を作成し、これを体
積抵抗測定装置(ヒューレットパッカード社製4140
B pAMATER)にて、23℃、65%の環境で1
00Vの電圧を印加させて測定した。
Here, the method of measuring the volume resistance value of the charge injection layer is the same as the method of measuring the material of the charging member coat layer described above.
A charge injection layer was formed on a polyethylene terephthalate (PET) film having a conductive film deposited on the surface, and this was used as a volume resistance measuring device (4140 manufactured by Hewlett-Packard Company).
B pAMATER) at 23 ° C and 65% environment.
The measurement was performed by applying a voltage of 00V.

【0037】この電荷注入層は金属蒸着膜あるいは導電
性微粒子を結着樹脂中に分散させた導電性微粒子樹脂分
散膜などによって構成され、蒸着膜では蒸着、導電性微
粒子樹脂分散膜ではディッピング塗工法、スプレー塗工
法、ロールコート塗工法、ビームコート塗工法などの適
当な塗工法にて塗工して電荷注入層とする。また、絶縁
性の結着樹脂に光透過性の高いイオン導電性を持つ樹脂
を混合、もしくは共重合させて構成するもの、または中
抵抗で光導電性のある樹脂単体で構成するものでもよ
い。導電性微粒子樹脂分散膜の場合、導電性微粒子の添
加量は結着樹脂に対して2〜100重量%の範囲に納ま
っていることが好ましい。2重量%未満の場合には、所
望の体積抵抗値を得ることは難しく、また100重量%
を越える場合には膜強度の低下によって電荷注入層が削
り取られ易くなり、感光体寿命が短かくなる傾向があ
る。
The charge injection layer is composed of a metal vapor deposition film or a conductive fine particle resin dispersion film in which conductive fine particles are dispersed in a binder resin. The vapor deposition film is deposited, and the conductive fine particle resin dispersion film is dipped. The charge injection layer is formed by applying an appropriate coating method such as a spray coating method, a roll coating method, and a beam coating method. Further, a resin formed by mixing or copolymerizing an insulating binder resin with a resin having high light transmittance and ionic conductivity, or a resin formed of a single resin having a medium resistance and photoconductive properties may be used. In the case of the conductive fine particle resin dispersion film, the amount of the conductive fine particles preferably falls within the range of 2 to 100% by weight based on the binder resin. If it is less than 2% by weight, it is difficult to obtain a desired volume resistance value,
In the case where the value exceeds, the charge injection layer tends to be scraped off due to a decrease in film strength, and the life of the photoconductor tends to be shortened.

【0038】また、電荷注入層の結着樹脂は下層の結着
樹脂と同じとすることも可能であるが、この場合には電
荷注入層の塗工時に電荷輸送層の塗工面を乱してしまう
可能性があるため、塗工法の選択に注意する。
The binder resin of the charge injection layer can be the same as the binder resin of the lower layer. In this case, the coating surface of the charge transport layer is disturbed when the charge injection layer is coated. Care should be taken in selecting a coating method, as it may result.

【0039】また、好ましくは前記電荷注入層に滑材粉
末が含有させる。その理由は、帯電時に感光体と注入帯
電部材の摩擦が低減されるために帯電ニップが拡大し、
帯電特性が向上するためである。また、感光体表面の離
型性が向上するために、磁性粒子に微粒径のものが混在
していても感光体に付着しにくくなる。特に滑材粉末と
して臨界表面張力の低いフッ素系樹脂、シリコーン系樹
脂またはポリオレフィン系樹脂を用いるのがより好まし
い。特に好ましくは4フッ化エチレン樹脂(PTFE)
が用いられる。この場合、滑材粉末の添加量は、好まし
くは結着樹脂に対して2〜50重量%、より好ましくは
5〜40重量%である。2重量%未満では滑材粉末の量
が十分ではないために、帯電特性の向上が十分でなく、
また50重量%を越えると、画像の分解能、感光体の感
度が大きく低下する傾向がある。また、表面に無機層を
被覆する際には、その下層の光導電層はアモルファスシ
リコンであることが好ましく、グロー放電法などによっ
て、シリンダー上に阻止層、光導電層及び電荷注入表面
層を順次形成することが好ましい。
Preferably, a lubricant powder is contained in the charge injection layer. The reason is that the friction between the photoreceptor and the injection charging member during charging is reduced, so the charging nip expands,
This is because the charging characteristics are improved. In addition, since the releasability of the photoreceptor surface is improved, even if magnetic particles having a small particle size are mixed, it is difficult to adhere to the photoreceptor. In particular, it is more preferable to use a fluorine resin, a silicone resin or a polyolefin resin having a low critical surface tension as the lubricant powder. Particularly preferred is tetrafluoroethylene resin (PTFE).
Is used. In this case, the amount of the lubricant powder is preferably 2 to 50% by weight, more preferably 5 to 40% by weight, based on the binder resin. If the amount is less than 2% by weight, the amount of the lubricant powder is not sufficient, so that the charging characteristics are not sufficiently improved.
If it exceeds 50% by weight, the resolution of the image and the sensitivity of the photoreceptor tend to be greatly reduced. When the surface is coated with an inorganic layer, the underlying photoconductive layer is preferably amorphous silicon, and a blocking layer, a photoconductive layer, and a charge injection surface layer are sequentially formed on a cylinder by a glow discharge method or the like. Preferably, it is formed.

【0040】[0040]

〔トナーの製造例〕[Example of toner production]

スチレン−ブチルアクリレート共重合体 (共重合重量比80:20) 100重量部 マグネタイト 60重量部 含金属アゾ顔料 2重量部 低分子量ポリプロピレン 3重量部 上記材料をヘンシェルミキサーで混合した後に、130
℃に設定したエクストルーダーにて混練した。得られた
混練物を冷却し、カッターミルにより粗粉砕した後に、
ジェット気流を用いたジェットミルで微粉砕し、風力分
級して重量平均粒径12μmの黒色微粉体(磁性トナー
粒子)を得た。この黒色微粉体100重量部に対して、
シリコーンオイルにて疎水化処理をしたシリカ0.9重
量部を加え、ヘンシェルミキサーで混合し、磁性トナー
を得た。
Styrene-butyl acrylate copolymer (copolymer weight ratio 80:20) 100 parts by weight Magnetite 60 parts by weight Metal-containing azo pigment 2 parts by weight Low molecular weight polypropylene 3 parts by weight After mixing the above materials with a Henschel mixer, 130
The mixture was kneaded with an extruder set to ° C. After cooling the obtained kneaded material and coarsely pulverizing with a cutter mill,
The powder was finely pulverized by a jet mill using a jet stream and classified by wind power to obtain a black fine powder (magnetic toner particles) having a weight average particle diameter of 12 μm. For 100 parts by weight of this black fine powder,
0.9 parts by weight of silica hydrophobized with silicone oil was added and mixed with a Henschel mixer to obtain a magnetic toner.

【0041】〔感光体製造例1〕感光体は負帯電の有機
感光体(以下OPC感光体)であり、φ30mmのアル
ミニウム製のドラム上に機能層を5層設ける。
[Photoreceptor Production Example 1] The photoreceptor is a negatively charged organic photoreceptor (hereinafter referred to as an OPC photoreceptor), and five functional layers are provided on an aluminum drum having a diameter of 30 mm.

【0042】第1層は下引層であり、アルミニウムドラ
ムの欠陥等をならすため、またレーザ露光の反射による
モアレの発生を防止するために設けられている厚さ約2
0μmの導電層である。
The first layer is an undercoat layer having a thickness of about 2 which is provided to smooth defects of the aluminum drum and to prevent the occurrence of moire due to the reflection of laser exposure.
It is a conductive layer of 0 μm.

【0043】第2層は正電荷注入防止層であり、アルミ
ニウム支持体から注入された正電荷が感光体表面に帯電
された負電荷を打ち消すのを防止する役割を果たし、ア
ミラン樹脂とメトキシメチル化ナイロンによって106
Ωcm程度に抵抗調整された厚さ約1μmの中抵抗層で
ある。
The second layer is a positive charge injection preventing layer, which functions to prevent the positive charge injected from the aluminum support from canceling the negative charge charged on the surface of the photoreceptor. 10 6 by nylon
This is a medium resistance layer having a thickness of about 1 μm and a resistance adjusted to about Ωcm.

【0044】第3層は電荷発生層であり、ジスアゾ系の
顔料を樹脂に分散した厚さ約0.3μmの層であり、レ
ーザ露光を受けることによって正負の電荷対を発生す
る。
The third layer is a charge generation layer, which is a layer having a thickness of about 0.3 μm in which a disazo pigment is dispersed in a resin, and generates a positive and negative charge pair by receiving laser exposure.

【0045】第4層は電荷輸送層であり、ポリカーボネ
ート樹脂にヒドラゾンを分散したものであり、P型半導
体である。従って、感光体表面に帯電された負電荷はこ
の層を移動することはできず、電荷発生層で発生した正
電荷のみを感光体表面に輸送することができる。
The fourth layer is a charge transport layer, in which hydrazone is dispersed in a polycarbonate resin, and is a P-type semiconductor. Therefore, the negative charges charged on the photoreceptor surface cannot move through this layer, and only the positive charges generated in the charge generation layer can be transported to the photoreceptor surface.

【0046】第5層は本発明の特徴である電荷注入層で
あり、光硬化性のアクリル樹脂にSnO2 超微粒子、更
に接触帯電部材と感光体との接触時間を増加させて、均
一な帯電を行うために粒径約0.25μmの4フッ化エ
チレン樹脂粒子を分散したものである。具体的には、ア
ンチモンをドーピングし、低抵抗化した粒径約0.03
μmのSnO2 粒子を樹脂に対して70重量%、更に4
フッ化エチレン樹脂粒子を30重量%、分散剤を1.2
重量%分散したものである。これによって感光体表面の
抵抗は、電荷輸送層単体の場合2×1015Ωcmであっ
たのに比べ、5×1012Ωcmにまで低下した。
The fifth layer is a charge injection layer which is a feature of the present invention. The fifth layer is made of a photocurable acrylic resin, SnO 2 ultrafine particles, and further increases the contact time between the contact charging member and the photoreceptor to achieve uniform charging. In order to carry out the above, tetrafluoroethylene resin particles having a particle size of about 0.25 μm are dispersed. Specifically, the particle diameter is reduced to about 0.03 by doping with antimony.
μm SnO 2 particles of 70% by weight based on the resin,
30% by weight of fluorinated ethylene resin particles and 1.2 of dispersant
% By weight. As a result, the resistance of the photosensitive member surface was reduced to 5 × 10 12 Ωcm, compared with 2 × 10 15 Ωcm in the case of the charge transport layer alone.

【0047】〔感光体製造例2〕感光体製造例1の第5
層に、4フッ化エチレン樹脂粒子と分散剤を分散しなか
ったこと以外は、感光体製造例1と同様に感光体を作成
した。これによって感光体表面の抵抗は、2×1012Ω
cmにまで低下した。
[Photoconductor Production Example 2]
A photoconductor was prepared in the same manner as in Photoconductor Manufacturing Example 1, except that the tetrafluoroethylene resin particles and the dispersant were not dispersed in the layer. As a result, the resistance of the photoconductor surface is 2 × 10 12 Ω
cm.

【0048】〔感光体製造例3〕感光体製造例1の第5
層を、アンチモンをドーピングし、低抵抗化した粒径約
0.03μmのSnO2 粒子を光硬化性のアクリル樹脂
に対して200重量%分散したものを加えたこと以外
は、感光体製造例1と同様に感光体を作成した。これに
よって感光体表面の抵抗は、4×107 Ωcmにまで低
下した。
[Photoreceptor Production Example 3]
Photoconductor Production Example 1 except that the layer was doped with antimony to reduce the resistance and added SnO 2 particles having a particle size of about 0.03 μm and dispersed in a photocurable acrylic resin at 200% by weight. A photoreceptor was prepared in the same manner as described above. Thereby, the resistance of the photoreceptor surface was reduced to 4 × 10 7 Ωcm.

【0049】[感光体製造例4]鏡面加工を施したアル
ミシリンダーにグロー放電法を用いて、阻止層、光導電
層及び表面層を順次形成した。
[Photoconductor Production Example 4] A blocking layer, a photoconductive layer and a surface layer were sequentially formed on a mirror-finished aluminum cylinder by a glow discharge method.

【0050】まず、反応室を約7.5×10-3Paにし
た後に、アルミシリンダーを250℃に保ちつつ、Si
4 、B26 、NO及びH2 ガスを反応室内に送り込
む一方、反応室よりガスを流出させ、30Pa程度の内
圧にした後にグロー放電を生起させ、5μmの阻止層を
形成した。
First, after setting the reaction chamber to about 7.5 × 10 −3 Pa, while keeping the aluminum cylinder at 250 ° C.,
While H 4 , B 2 H 6 , NO and H 2 gas were fed into the reaction chamber, the gas was allowed to flow out of the reaction chamber, the internal pressure was set to about 30 Pa, and glow discharge was generated to form a 5 μm blocking layer.

【0051】この後、阻止層の形成と同様な方法を用
い、SiH4 及びH2 ガスを使用し、50Paの内圧に
した後に、20μmの光導電層を形成し、更に、SiH
4 、CH4 及びH2 ガスを使用し、55Paの圧力下で
グロー放電により、膜厚0.5μmのSiとCからなる
表面層を形成し、アモルファスシリコン感光体を作成し
た。
After that, using a method similar to that for forming the blocking layer, using SiH 4 and H 2 gas, and setting the internal pressure to 50 Pa, a photoconductive layer of 20 μm is formed.
A surface layer made of Si and C having a film thickness of 0.5 μm was formed by glow discharge under a pressure of 55 Pa using a gas of 4 , CH 4 and H 2 to produce an amorphous silicon photoreceptor.

【0052】〔帯電部材製造例1〕平均粒径25μmの
Zn−Cuフェライト粒子と平均粒径10μmのZn−
Cuフェライト粒子を重量比1:0.05で混合してそ
れぞれの平均粒径の位置にピークを有する平均粒径25
μmのフェライト粒子を中抵抗樹脂層でコートした磁性
粒子を帯電部材として用いた。
[Charging Member Production Example 1] Zn-Cu ferrite particles having an average particle size of 25 μm and Zn-Cu ferrite particles having an average particle size of 10 μm
Cu ferrite particles are mixed at a weight ratio of 1: 0.05, and the average particle diameter 25 having a peak at each average particle position.
Magnetic particles coated with a medium-resistance resin layer of μm ferrite particles were used as a charging member.

【0053】コートに当り、フッ素−アクリル樹脂1重
量部と導電材として導電化処理を施した酸化チタン1重
量部をジメチルフォルムアミドとメチルエチルケトンの
混合溶液6重量部に溶解させ、これをガラスビーズを入
れたペイントシェイカーで2時間分散させ、コート層用
溶液を作成した。このコート層用溶液から作られるコー
ト層の抵抗を前述の方法で測定したところ体積抵抗値が
7×107 Ωcmであった。次に、この溶液を流動床型
の塗布機(スピラコータ、岡田精工社製)を用いて前記
磁性粒子300重量部に塗布した。その表面を日立製作
所製走査型電子顕微鏡S−800(以下単にSEMとす
る)で観察したところ、全体にわたってコート層の存在
が確認された。磁性粒子の体積抵抗値の測定は、図1に
示すセルを用いて測定した。すなわち、セルAに磁性粒
子を充填し、該充填磁性粒子に接するように電極1及び
2を配し、該電極間に電圧を印加し、その時流れる電流
を測定することにより求めた。その測定条件は、23
℃、65%の環境で充填磁性粒子のセルとの接触面積S
=2cm2 、厚みd=1mm、上部電極の荷重10k
g、印加電圧100Vである。乾燥工程を経て得られた
被覆磁性粒子の体積抵抗値は8×106 Ωcmであっ
た。
In the coating, 1 part by weight of a fluorine-acrylic resin and 1 part by weight of titanium oxide subjected to a conductive treatment as a conductive material are dissolved in 6 parts by weight of a mixed solution of dimethylformamide and methyl ethyl ketone, and this is mixed with glass beads. The mixture was dispersed with a paint shaker for 2 hours to prepare a solution for a coat layer. When the resistance of the coat layer formed from this coat layer solution was measured by the method described above, the volume resistivity was 7 × 10 7 Ωcm. Next, this solution was applied to 300 parts by weight of the magnetic particles using a fluid bed type applicator (Spiracoater, manufactured by Okada Seiko Co., Ltd.). When the surface was observed with a scanning electron microscope S-800 (hereinafter simply referred to as SEM) manufactured by Hitachi, Ltd., the presence of the coat layer was confirmed throughout. The measurement of the volume resistance value of the magnetic particles was performed using the cell shown in FIG. That is, the cell A was filled with magnetic particles, the electrodes 1 and 2 were arranged so as to be in contact with the filled magnetic particles, a voltage was applied between the electrodes, and the current flowing at that time was measured. The measurement conditions are 23
Contact area S of filled magnetic particles with cells in an environment of 65 ° C. and 65%
= 2cm 2 , thickness d = 1mm, load of upper electrode 10k
g, the applied voltage is 100V. The volume resistivity of the coated magnetic particles obtained through the drying step was 8 × 10 6 Ωcm.

【0054】〔帯電部材製造例2〕平均粒径40μmの
Zn−Cuフェライト粒子と平均粒径15μmのZn−
Cuフェライト粒子を重量比1:0.5で混合してそれ
ぞれの平均粒径の位置にピークを有する平均粒径30μ
mのフェライト粒子を帯電部材として用いた。この混合
磁性粒子の体積抵抗値5×106 Ωcmであった。
[Charging Member Production Example 2] Zn-Cu ferrite particles having an average particle size of 40 μm and Zn-Cu ferrite particles having an average particle size of 15 μm
Cu ferrite particles are mixed at a weight ratio of 1: 0.5, and an average particle diameter of 30 μm having a peak at each average particle diameter position.
m ferrite particles were used as a charging member. The volume resistivity of the mixed magnetic particles was 5 × 10 6 Ωcm.

【0055】〔帯電部材製造例3〕平均粒径20μmの
Zn−Cuフェライト粒子と平均粒径1.7μmのZn
−Cuフェライト粒子を重量比1:0.05で混合して
それぞれの平均粒径の位置にピークを有する平均粒径2
0μmのフェライト粒子を帯電部材として用いた。この
混合磁性粒子の体積抵抗値2×106 Ωcmであった。
[Charging Member Production Example 3] Zn—Cu ferrite particles having an average particle diameter of 20 μm and Zn having an average particle diameter of 1.7 μm
-Cu ferrite particles are mixed at a weight ratio of 1: 0.05, and an average particle diameter 2 having a peak at each average particle diameter position
0 μm ferrite particles were used as a charging member. The volume resistivity of the mixed magnetic particles was 2 × 10 6 Ωcm.

【0056】〔帯電部材製造例4〕 平均粒径25μm
のZn−Cuフェライト粒子と平均粒径0.3μmのZ
n−Cuフェライト粒子を重量比1:0.03で混合し
てそれぞれの平均粒径の位置にピークを有する平均粒径
20μmのフェライト粒子を帯電部材として用いた。こ
の混合磁性粒子の体積抵抗値2×108 Ωcmであっ
た。
[Charging Member Production Example 4] Average particle size 25 μm
Zn-Cu ferrite particles and Z having an average particle size of 0.3 μm
n-Cu ferrite particles were mixed at a weight ratio of 1: 0.03, and ferrite particles having an average particle diameter of 20 μm and having a peak at each average particle diameter position were used as a charging member. The volume resistivity of the mixed magnetic particles was 2 × 10 8 Ωcm.

【0057】〔帯電部材製造例5〕平均粒径60μm、
体積抵抗値5×1010ΩcmのZn−Cuフェライト粒
子を帯電部材として用いた。
[Charging Member Production Example 5]
Zn—Cu ferrite particles having a volume resistance of 5 × 10 10 Ωcm were used as the charging member.

【0058】〔帯電部材製造例6〕平均粒径40μm、
体積抵抗値4×103 Ωcmのマグネタイト粒子を帯電
部材として用いた。
[Charging member manufacturing example 6]
Magnetite particles having a volume resistance value of 4 × 10 3 Ωcm were used as a charging member.

【0059】〔実施例1〕上に述べた感光体と、接触帯
電部材を用いて帯電を行う際の原理について述べる。本
発明は、中抵抗の接触帯電部材で、中抵抗の表面抵抗を
持つ感光体表面に電荷注入を行うものであるが、本実施
例は感光体表面材質のもつトラップ電位に電荷を注入す
るものではなく、電荷注入層の導電粒子に電荷を充電し
て帯電を行う原理である。
[Embodiment 1] The principle of charging using the above-described photosensitive member and the contact charging member will be described. The present invention relates to a medium-resistance contact charging member for injecting charges into the surface of a photoreceptor having a medium-resistance surface resistance. Instead, the charge is charged by charging the conductive particles of the charge injection layer.

【0060】具体的には、電荷輸送層を誘電体、アルミ
ニウム支持体と電荷注入層内の導電粒子を両電極板とす
る微小なコンデンサーに、接触帯電部材で電荷を充電す
る理論に基づくものである。この際、導電粒子は互いに
電気的には独立であり、一種の微小なフロート電極を形
成している。このため、マクロ的には感光体表面は均一
電位に充電、帯電されているように見えるが、実際には
微小な無数の充電されたSnO2 が感光体表面を覆って
いるような状況となっている。このため、レーザによっ
て画像露光を行なってもそれぞれのSnO2 粒子は電気
的に独立なため、静電潜像を保持することが可能にな
る。
More specifically, it is based on the theory of charging a small capacitor having a charge transport layer as a dielectric and an aluminum support and conductive particles in the charge injection layer as both electrode plates with a contact charging member. is there. At this time, the conductive particles are electrically independent of each other and form a kind of minute float electrode. Therefore, macroscopically, the surface of the photoreceptor appears to be charged and charged to a uniform potential, but in reality, there are situations where countless minutely charged SnO 2 covers the surface of the photoreceptor. ing. For this reason, even if image exposure is performed by laser, each SnO 2 particle is electrically independent, so that an electrostatic latent image can be held.

【0061】次に、本実施例で実験に用いた電子写真方
式のプリンターについて図2を用いて説明する。プロセ
ススピードは48mm/secであり、感光体は感光体
製造例1を用い、23℃、65%の環境において耐久を
行った。
Next, the electrophotographic printer used in the experiment in this embodiment will be described with reference to FIG. The process speed was 48 mm / sec, and the photoreceptor was manufactured under the environment of 23 ° C. and 65% using the photoreceptor production example 1.

【0062】接触帯電部材は、帯電部材製造例1で作成
された被覆磁性粒子及びこれを支持させるための非磁性
の導電スリーブ、これに内包されるマグネットロールに
よって構成され、上記被覆磁性粒子をスリーブ上に厚さ
1mmでコートして感光体との間に幅約5mmの帯電ニ
ップを形成させるようにした。該磁性粒子保持スリーブ
と感光体との間隙は約500μmとした。またマグネッ
トロールは固定、スリーブ表面が感光体表面の周速に対
して2倍の早さで逆方向に摺擦するように回転させ、感
光体と磁気ブラシが均一に接触するようにした。なお、
磁気ブラシと感光体の間に周速差を設けない場合には、
磁気ブラシ自体は物理的な復元力を持たないため、感光
体のフレ、偏心等で磁気ブラシが押し退けられた場合、
磁気ブラシのニップが確保できなくなって帯電不良を起
こす。このため、常に新しい磁気ブラシの面を当てる必
要から、本実施例では3倍の早さで逆方向に回転させ
た。
The contact charging member is composed of the coated magnetic particles prepared in the charging member production example 1, a non-magnetic conductive sleeve for supporting the coated magnetic particles, and a magnet roll contained therein. It was coated with a thickness of 1 mm to form a charging nip having a width of about 5 mm between the photosensitive member and the photosensitive member. The gap between the magnetic particle holding sleeve and the photoconductor was about 500 μm. The magnet roll was fixed and rotated so that the surface of the sleeve rubbed in the opposite direction at twice the peripheral speed of the surface of the photoreceptor so that the photoreceptor and the magnetic brush were in uniform contact. In addition,
If there is no peripheral speed difference between the magnetic brush and the photoconductor,
Since the magnetic brush itself does not have a physical restoring force, if the magnetic brush is pushed away due to deflection or eccentricity of the photoconductor,
The nip of the magnetic brush cannot be secured, causing charging failure. For this reason, since it is necessary to always apply a new magnetic brush surface, in this embodiment, the magnetic brush is rotated in the reverse direction at three times the speed.

【0063】まず、−800Vの直流電圧を印加された
上記接触帯電部材を感光体に対して当接、回転させるこ
とによって帯電を行う。次に露光部で画像露光(イメー
ジ露光)を受ける。次に、画像信号に従って強度変調を
受けたレーザダイオードからのレーザ光13をポリゴン
ミラーで走査して露光手段とし、感光体上に静電潜像を
形成する。
First, the contact charging member to which a DC voltage of -800 V has been applied is brought into contact with the photosensitive member and rotated to perform charging. Next, the exposure unit receives image exposure (image exposure). Next, a laser beam 13 from a laser diode, which has been intensity-modulated in accordance with an image signal, is scanned by a polygon mirror and used as an exposure means to form an electrostatic latent image on the photoconductor.

【0064】次に、製造例の磁性一成分絶縁トナーを用
いて反転現像を行う。マグネットを内包する直径16m
mの非磁性スリーブ14に上記のネガトナーをコート
し、感光体表面との距離を300μmに固定した状態
で、感光ドラムと等速で回転させ、スリーブに電圧を印
加する。電圧は、−500VのDC電圧と、周波数20
00Hz、ピーク間電圧1200Vの矩形のAC電圧を
重畳したものを用い、スリーブと感光体の間でジャンピ
ング現像を行わせる。
Next, reversal development is performed using the magnetic one-component insulating toner of the production example. 16m in diameter with magnet
The non-magnetic sleeve 14 is coated with the above-described negative toner, and is rotated at a constant speed with the photosensitive drum in a state where the distance from the surface of the photosensitive member is fixed at 300 μm to apply a voltage to the sleeve. The voltage is a DC voltage of -500V and a frequency of 20.
Jumping development is performed between the sleeve and the photoreceptor using a superimposed rectangular AC voltage of 00 Hz and a peak-to-peak voltage of 1200 V.

【0065】このようにしてトナーで顕視化された像
は、次に転写材16に転写される。転写部では中抵抗の
転写ローラ15を用いる。本実施例ではローラ抵抗値は
5×108 Ωのものを用い、+2000VのDC電圧を
印加して転写を行った。
The image visualized by the toner in this way is then transferred to the transfer material 16. In the transfer section, a transfer roller 15 having a medium resistance is used. In this embodiment, transfer was performed by applying a DC voltage of +2000 V using a roller having a resistance of 5 × 10 8 Ω.

【0066】転写材上にトナー像を転写されたプリント
画像は、その後熱定着ローラ18によって定着を受け、
機外に排出される。また、転写残トナーはクリーニング
ブレード17で感光ドラム上からかき落され、次の画像
形成に備えられる。
The print image on which the toner image has been transferred onto the transfer material is thereafter fixed by the heat fixing roller 18,
Emitted outside the machine. The transfer residual toner is scraped off from the photosensitive drum by the cleaning blade 17 and is prepared for the next image formation.

【0067】以上のような構成のプリンターで画像評価
を行ったところ、−800VのDC電圧を帯電部材のス
リーブに印加して、感光体が帯電ニップを1回通過した
だけで、始め0Vだった感光体表面電位が−770Vに
まで帯電され、良好な帯電性を得ることができた。ま
た、このとき感光体状にピンホールが生じていてもリー
クは発生せず、また接触帯電部材を構成している磁性粒
子が感光体上に現像されることもなく、良好なベタ黒、
ベタ白画像が得られた。またこれを4000枚耐久して
も初期と同様な帯電特性を示しており、良好なベタ黒、
ベタ白画像が得られた。
When an image was evaluated using a printer having the above configuration, a DC voltage of -800 V was applied to the sleeve of the charging member, and the voltage was initially 0 V just after the photosensitive member passed through the charging nip once. The surface potential of the photoreceptor was charged to -770 V, and good chargeability was obtained. Also, at this time, no leak occurs even if a pinhole is formed on the photoconductor, and the magnetic particles constituting the contact charging member are not developed on the photoconductor.
A solid white image was obtained. Even after 4,000 sheets of this were durable, the same charging characteristics as those at the initial stage were exhibited, and a good solid black
A solid white image was obtained.

【0068】また、反転現像において帯電不良が生じる
際には、感光体上の履歴が帯電に影響することから、A
4縦画像において感光体一周分(本実施例では約94m
m)をベタ黒画像(電位低)としその直後をベタ白(電
位高)とした画像評価(帯電ゴースト評価)も行った。
帯電不良が生じれば、ベタ黒直後に電位が充分に上がら
ず、反転現像においてはかぶりとなって現われるが、耐
久を通じてこの画像においてもかぶりの発生はみられな
かった。
When charging failure occurs in reversal development, the history on the photosensitive member affects the charging.
One round of the photoconductor in four vertical images (about 94 m in this embodiment)
m) was evaluated as a solid black image (low potential), and immediately after that, a solid white image (high potential) was evaluated (charge ghost evaluation).
If charging failure occurs, the potential does not sufficiently rise immediately after solid black, and appears as fog in reversal development. However, no fog was observed in this image throughout the durability test.

【0069】〔実施例2〕実施例1における接触帯電部
材を帯電部材製造例2、感光体を感光体製造例2を用い
たことを除き、実施例1と同様に画像評価を行ったとこ
ろ、帯電ニップの減少による若干の帯電不良により、帯
電ゴースト評価においてベタ白画像上に若干のかぶりが
あったものの実用上問題なく初期から4000枚まで良
好なベタ黒、ベタ白画像が得られた。
Example 2 Image evaluation was performed in the same manner as in Example 1 except that the contact charging member in Example 1 was used for the charging member production example 2 and the photosensitive member was used for the photoconductor production example 2. Due to slight charging failure due to the reduction of the charging nip, there was a slight fog on the solid white image in the evaluation of the charging ghost, but good solid black and solid white images were obtained from the initial stage to 4000 sheets without practical problems.

【0070】〔実施例3〕実施例1における接触帯電部
材を帯電部材製造例3を用いたことを除き、実施例1と
同様に画像評価を行ったところ、初期から4000枚ま
で、良好な帯電特性が得られ、ピンホールリークや帯電
ゴーストのない、良好なベタ黒、ベタ白画像が得られ
た。
Example 3 Image evaluation was performed in the same manner as in Example 1 except that the charging member manufacturing example 3 was used as the contact charging member in Example 1. As a result, good charge was obtained from the initial stage to 4000 sheets. Characteristics were obtained, and good solid black and solid white images were obtained without pinhole leakage or charging ghost.

【0071】〔実施例4〕実施例2における接触帯電部
材を帯電部材製造例4を用いたことを除き、実施例2と
同様に画像評価を行ったところ、初期は良好であった
が、4000枚耐久すると、実用上問題ないが、若干の
帯電不良(帯電ゴースト評価においてベタ白でかぶり画
像)が発生した。この磁性粒子をSEMで観察したとこ
ろ、初期に比べて0.3μmの粒子がやや減少している
様子が見られた。
Example 4 An image evaluation was carried out in the same manner as in Example 2 except that the contact charging member in Example 2 was changed to Production Example 4 of the charging member. When the sheet was durable, there was no problem in practical use, but slight charging failure (a solid white fog image in charging ghost evaluation) occurred. Observation of these magnetic particles by SEM showed that 0.3 μm particles were slightly reduced as compared with the initial stage.

【0072】[実施例5]キヤノン社製複写機、NP6
060を用意し、感光体帯電部分に若干の改造を加え、
以下に説明する帯電部材を設置した。また、感光体は感
光体製造例4、トナーはトナー製造例を用いた。
[Embodiment 5] Canon copier, NP6
060, and slightly modified the charged part of the photoconductor,
The charging member described below was installed. The photoreceptor used was Photoreceptor Production Example 4, and the toner was a toner production example.

【0073】接触帯電部材は、帯電部材製造例3で作成
された磁性粒子を用い、これを保持するために、非磁性
の導電スリーブとこれに内包される、マグネットロール
により構成される。上記磁性粒子をスリーブに厚さ1m
mでコートし、感光体との帯電ニップを8mm形成する
ようにした、該磁性粒子を保持するスリーブと感光体の
間隔は、約0.5mmとした。また、マグネットは固定
であり、スリーブ表面が感光体表面の周速に対して、2
倍の速さで逆方法に摺擦するように回転させ、感光体と
磁性粒子が均一に接触するよう調整する。
The contact charging member uses the magnetic particles prepared in the charging member manufacturing example 3, and is constituted by a non-magnetic conductive sleeve and a magnet roll included therein to hold the magnetic particles. 1m thick magnetic particles on sleeve
m, and the distance between the sleeve holding the magnetic particles and the photoconductor was set to about 0.5 mm so that the charging nip with the photoconductor was formed at 8 mm. The magnet is fixed, and the surface of the sleeve is 2
Rotation is performed at twice the speed in such a way that the photosensitive member and the magnetic particles are in uniform contact with each other.

【0074】まず、+450Vの直流電圧を印加し、上
記接触帯電部材を感光体に対し、当接回転させることに
より、感光体表面を一様に帯電する。現像部分において
感光体帯電電位を測定したところ、+360Vであっ
た。但し、帯電部分から現像位置にかけての暗減衰分は
50Vであり、帯電部分における感光体電位は410V
である。このように得られた感光体の帯電面に画像露光
を行い感光体上に静電潜像を形成し、トナーにより現像
し、更に転写及び定着される。
First, a DC voltage of +450 V is applied, and the contact charging member is rotated in contact with the photosensitive member to uniformly charge the surface of the photosensitive member. The charged potential of the photoreceptor at the developed portion was +360 V when measured. However, the dark decay from the charged portion to the developing position is 50 V, and the photoconductor potential at the charged portion is 410 V.
It is. Image exposure is performed on the charged surface of the photoreceptor thus obtained to form an electrostatic latent image on the photoreceptor, developed with toner, and further transferred and fixed.

【0075】以上のような構成の複写機で画像評価を行
なったところ、初め0Vであった感光体表面電位が帯電
部材と感光体の接触部分を通過することにより、充分な
帯電性能を得、良好なベタ黒及びベタ白画像を得ること
ができた。
When an image was evaluated with a copying machine having the above-described configuration, the surface potential of the photosensitive member, which was initially 0 V, passed through the contact portion between the charging member and the photosensitive member, and sufficient charging performance was obtained. Good solid black and solid white images could be obtained.

【0076】また、該実施例に使用した複写機は、正現
像法を用いており、感光体帯電一様性などのかかる性能
は、ベタ黒画像を評価することで得られる。例えば、帯
電不良は、ベタ黒上に白筋または白ポチとして現れる。
Further, the copying machine used in this embodiment uses the normal development method, and such performances as the charging uniformity of the photosensitive member can be obtained by evaluating a solid black image. For example, poor charging appears as white streaks or white dots on solid black.

【0077】更に、500枚の耐久試験を行い、ベタ黒
画像を評価したところ、白筋あるいは白ポチは現れず、
初期と変わらぬものであった。
Further, when a durability test was performed on 500 sheets and a solid black image was evaluated, no white streak or white spots appeared.
It was no different from the early days.

【0078】〔比較例1〕実施例2における接触帯電部
材を帯電部材製造例5を用いたことを除き、実施例2と
同様に画像評価を行ったところ、初期から帯電不良によ
る画像不良(ベタ白でかぶり画像)が見られた。
Comparative Example 1 Image evaluation was performed in the same manner as in Example 2 except that the charging member manufacturing example 5 was used as the contact charging member in Example 2. Fog image).

【0079】〔比較例2〕実施例2における接触帯電部
材を帯電部材製造例6を用いたことを除き、実施例2と
同様に画像評価を行ったところ、初期からピンホールリ
ークに基づく部分的帯電不良(ベタ白画像で黒ポチ)が
生じた。
Comparative Example 2 Image evaluation was performed in the same manner as in Example 2 except that the charging member manufacturing example 6 was used as the contact charging member in Example 2, and partial evaluation based on pinhole leak was performed from the beginning. Poor charging (black spots in solid white images) occurred.

【0080】〔比較例3〕実施例1における感光体を感
光体製造例3を用いたことを除き、実施例1と同様に画
像評価を行ったところ、初期からピンホールリークに基
づく部分的帯電不良(ベタ白画像で黒ポチ)が生じた。
Comparative Example 3 An image evaluation was performed in the same manner as in Example 1 except that the photosensitive member of Example 1 was changed to Photoconductor Production Example 3. From the initial stage, partial charging based on pinhole leak was performed. Poor (black spot in solid white image) occurred.

【0081】また、電位が横方向に流れて、画像流れが
発生した。
Further, the electric potential flowed in the horizontal direction, causing image deletion.

【0082】[比較例4]実施例5と同じ感光体、及び
NP6060改造機を用い、帯電部材として帯電部材製
造例5を用いて画像評価を行ったところ、初期からベタ
黒上に帯電不良に起因する白筋が発生した。
[Comparative Example 4] Using the same photoreceptor as in Example 5 and a modified NP6060 machine, and performing image evaluation using Charging Member Production Example 5 as a charging member, poor charging was observed on solid black from the beginning. The resulting white streaks occurred.

【0083】[0083]

【発明の効果】本発明では、導電性支持体上に感光層を
有する電子写真感光体と、磁性粒子からなり該感光体に
接触して電圧を印加する接触帯電部材を有する電子写真
装置において、該感光体が該支持体より最も離れて10
8 Ωcm以上の体積抵抗値を有する電荷注入層を有し、
該磁性粒子が2×10 6 〜2×10 8 Ωcmの体積抵抗値
を有し、かつ該磁性粒子の粒度分布が0.1〜200μ
mの範囲に2つ以上のピークまたは肩を有する電子写真
装置、及び該電子写真装置を用いて帯電する工程を有す
る画像形成方法により、均一な帯電を感光体表面に与
え、安定した画像を得ることが可能になった。
According to the present invention, there is provided an electrophotographic apparatus having an electrophotographic photosensitive member having a photosensitive layer on a conductive support, and a contact charging member comprising magnetic particles and applying a voltage in contact with the photosensitive member. The photoreceptor is 10 furthest away from the support
Having a charge injection layer having a volume resistance value of 8 Ωcm or more ,
The magnetic particles have a volume resistivity of 2 × 10 6 to 2 × 10 8 Ωcm.
Having a particle size distribution of 0.1 to 200 μm.
An electrophotographic apparatus having two or more peaks or shoulders in the range of m, and an image forming method including a step of charging using the electrophotographic apparatus, imparts a uniform charge to the photoreceptor surface, and obtains a stable image. It became possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気抵抗測定装置を模式的に示した概略図であ
る。
FIG. 1 is a schematic diagram schematically showing an electric resistance measuring device.

【図2】本発明に基づく電子写真方式のプリンターの構
成を表す概略図である。
FIG. 2 is a schematic diagram illustrating a configuration of an electrophotographic printer according to the present invention.

【符号の説明】[Explanation of symbols]

1 主電極 2 上部電極 3 絶縁物 4 電流計 5 電圧計 6 定電圧装置 7 磁性粒子 8 ガイドリング 11 感光ドラム 12 接触帯電部材 13 露光手段 14 現像器 15 転写ローラ 16 転写材 17 クリーニングブレード 18 熱定着ローラ DESCRIPTION OF SYMBOLS 1 Main electrode 2 Upper electrode 3 Insulator 4 Ammeter 5 Voltmeter 6 Constant voltage device 7 Magnetic particle 8 Guide ring 11 Photosensitive drum 12 Contact charging member 13 Exposure means 14 Developing device 15 Transfer roller 16 Transfer material 17 Cleaning blade 18 Thermal fixing roller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢野 秀幸 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 石山 晴美 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 古屋 正 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平6−258918(JP,A) 特開 平6−274005(JP,A) 特開 平6−282148(JP,A) 特開 平6−301265(JP,A) (58)調査した分野(Int.Cl.7,DB名) G03G 15/02 101 G03G 5/147 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideyuki Yano 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Harumi Ishiyama 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon (72) Inventor Tadashi Furuya 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-6-258918 (JP, A) JP-A-6-274005 (JP) JP-A-6-282148 (JP, A) JP-A-6-301265 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G03G 15/02 101 G03G 5/147

Claims (18)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性支持体上に感光層を有する電子写
真感光体と、磁性粒子からなり該感光体に接触して電圧
を印加する接触帯電部材を有する電子写真装置におい
て、該感光体が該支持体より最も離れて108Ωcm以
上の体積抵抗値を有する電荷注入層を有し、該磁性粒子
が2×106〜2×108Ωcmの体積抵抗値を有し、か
つ該磁性粒子の粒度分布が0.1〜200μmの範囲に
2つ以上のピークまたは肩を有することを特徴とする電
子写真装置。
1. An electrophotographic apparatus comprising: an electrophotographic photosensitive member having a photosensitive layer on a conductive support; and a contact charging member comprising magnetic particles and applying a voltage by contacting the photosensitive member. A charge injection layer having a volume resistance value of 10 8 Ωcm or more farthest from the support, wherein the magnetic particles have a volume resistance value of 2 × 10 6 to 2 × 10 8 Ωcm, and Wherein the particle size distribution has two or more peaks or shoulders in the range of 0.1 to 200 μm.
【請求項2】 該磁性粒子の粒度分布のピークまたは肩
が、0.5〜30μm及び10〜100μmの範囲内に
ある請求項1記載の電子写真装置。
2. The electrophotographic apparatus according to claim 1, wherein the peak or shoulder of the particle size distribution of the magnetic particles is in the range of 0.5 to 30 μm and 10 to 100 μm.
【請求項3】 該磁性粒子の最大ピーク(P1)と2番
目のピークまたは肩(P2)の関係においてP1が10
〜50μmの範囲にあり、P1>P2であり、かつその
差P1−P2が5μm以上である請求項1または2記載
の電子写真装置。
3. The relationship between the maximum peak (P1) of the magnetic particles and the second peak or shoulder (P2) is 10%.
The electrophotographic apparatus according to claim 1, wherein P1> P2, and the difference P1−P2 is 5 μm or more. 4.
【請求項4】 該磁性粒子の最大ピーク(P1)と2番
目のピークまたは肩(P2)の関係においてP1が10
〜50μmの範囲にあり、P1>P2であり、かつその
比P2/P1が0.73以下である請求項1乃至3のい
ずれかに記載の電子写真装置。
4. The relationship between the maximum peak (P1) of the magnetic particles and the second peak or shoulder (P2) is P1 = 10.
In the range of ~50μm, P1> is P2, and claims 1 to 3 Neu the ratio P2 / P1 is 0.73 or less
An electrophotographic apparatus according to any of the preceding claims.
【請求項5】 該磁性粒子の表面が、体積抵抗値104
〜1010Ωcmのコート層でコートされている請求項1
乃至4のいずれかに記載の電子写真装置。
5. The surface of the magnetic particles has a volume resistivity of 10 4.
2. The coating according to claim 1, wherein the coating layer is coated with a coating layer of 10 to 10 10 Ωcm.
5. The electrophotographic apparatus according to any one of claims 1 to 4.
【請求項6】 該磁性粒子のコート層が、導電性微粒
子、及び結着樹脂としてフッ素系樹脂、ポリオレフィン
系樹脂またはシリコーン系樹脂を含有する導電粉分散樹
脂膜である請求項5記載の電子写真装置。
6. The electrophotography according to claim 5, wherein the coating layer of the magnetic particles is a conductive powder-dispersed resin film containing conductive fine particles and a fluorine resin, a polyolefin resin or a silicone resin as a binder resin. apparatus.
【請求項7】 該電荷注入層の体積抵抗値が、1015Ω
cm以下である請求項1乃至6のいずれかに記載の電子
写真装置。
7. The charge injection layer has a volume resistance of 10 15 Ω.
The electrophotographic apparatus according to any one of claims 1 to 6 , wherein the size is not more than cm.
【請求項8】 該電荷注入層が、導電性微粒子、結着樹
脂及び滑材粉末を含有する請求項1乃至7のいずれかに
記載の電子写真装置。
8. The charge injection layer, conductive fine particles, an electrophotographic apparatus <br/> according to any one of claims 1 to 7 containing a binder resin and a lubricant powder.
【請求項9】 該滑材粉末が、フッ素系樹脂、ポリオレ
フィン系樹脂またはシリコーン系樹脂である請求項8記
載の電子写真装置。
9. The electrophotographic apparatus according to claim 8, wherein said lubricant powder is a fluororesin, a polyolefin resin or a silicone resin.
【請求項10】 導電性支持体上に感光層を有する電子
写真感光体に、磁性粒子からなる帯電部材を接触させ、
電圧を印加して該感光体を帯電する工程を有する画像形
成方法において、該感光体が該支持体より最も離れて1
8Ωcm以上の体積抵抗値を有する電荷注入層を有
し、該磁性粒子が2×106〜2×108Ωcmの体積抵
抗値を有し、かつ該磁性粒子の粒度分布が0.1〜20
0μmの範囲に2つ以上のピークまたは肩を有すること
を特徴とする画像形成方法。
10. A charging member made of magnetic particles is brought into contact with an electrophotographic photosensitive member having a photosensitive layer on a conductive support,
An image forming method including a step of charging the photosensitive member by applying a voltage, wherein the photosensitive member is located at a position furthest away from the support;
0 8 having a charge injection layer having the above volume resistivity [Omega] cm, the magnetic particles have a volume resistivity of 2 × 10 6 ~2 × 10 8 Ωcm, and particle size distribution of the magnetic particles is 0.1 ~ 20
An image forming method having two or more peaks or shoulders in a range of 0 μm.
【請求項11】 該磁性粒子の粒度分布のピークまたは
肩が、0.5〜30μm及び10〜100μmの範囲内
にある請求項10記載の画像形成方法。
11. The image forming method according to claim 10, wherein the peak or shoulder of the particle size distribution of the magnetic particles is in the range of 0.5 to 30 μm and 10 to 100 μm.
【請求項12】 該磁性粒子の最大ピーク(P1)と2
番目のピークまたは肩(P2)の関係においてP1が1
0〜50μmの範囲にあり、P1>P2であり、かつそ
の差P1−P2が5μm以上である請求項10または1
1記載の画像形成方法。
12. The maximum peak (P1) of said magnetic particles and 2
P1 is 1 in relation to the second peak or shoulder (P2)
The range of 0 to 50 m, P1> P2, and the difference P1-P2 is 5 m or more.
2. The image forming method according to 1.
【請求項13】 該磁性粒子の最大ピーク(P1)と2
番目のピークまたは肩(P2)の関係においてP1が1
0〜50μmの範囲にあり、P1>P2であり、かつそ
の比P2/P1が0.73以下である請求項10乃至1
のいずれかに記載の画像形成方法
13. The maximum peak (P1) of said magnetic particles and 2
P1 is 1 in relation to the second peak or shoulder (P2)
The thickness is in the range of 0 to 50 μm, P1> P2, and the ratio P2 / P1 is 0.73 or less.
3. The image forming method according to any one of 2.
【請求項14】 該磁性粒子の表面が、体積抵抗値10
4〜1010Ωcmのコート層でコートされている請求項
10乃至13のいずれかに記載の画像形成方法。
14. The magnetic particles having a surface with a volume resistance of 10
The image forming method according to claim 10, wherein the image is coated with a coat layer having a thickness of 4 to 10 10 Ωcm.
【請求項15】 該磁性粒子のコート層が、導電性微粒
子、及び結着樹脂としてフッ素系樹脂、ポリオレフィン
系樹脂またはシリコーン系樹脂を含有する導電粉分散樹
脂膜である請求項14記載の画像形成方法。
15. The image forming method according to claim 14, wherein the coating layer of the magnetic particles is a conductive powder-dispersed resin film containing conductive fine particles and a fluorine resin, a polyolefin resin or a silicone resin as a binder resin. Method.
【請求項16】 該電荷注入層の体積抵抗値が、1015
Ωcm以下である請求項10乃至15のいずれかに記載
の画像形成方法。
16. The charge injection layer having a volume resistance of 10 15
The image forming method according to any one of claims 10 to 15, wherein the value is Ωcm or less.
【請求項17】 該電荷注入層が、導電性微粒子、結着
樹脂及び滑材粉末を含有する請求項10乃至16のいず
れかに記載の画像形成方法。
17. charge injection layer is, claims 10 to 16 noise containing conductive fine particles, a binder resin and a lubricant powder
An image forming method according to any one of the preceding claims.
【請求項18】 該滑材粉末が、フッ素系樹脂、ポリオ
レフィン系樹脂またはシリコーン系樹脂である請求項1
7記載の画像形成方法。
18. The method according to claim 1, wherein the lubricant powder is a fluororesin, a polyolefin resin or a silicone resin.
8. The image forming method according to 7.
JP18236194A 1994-06-22 1994-08-03 Electrophotographic apparatus and image forming method Expired - Fee Related JP3327689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18236194A JP3327689B2 (en) 1994-06-22 1994-08-03 Electrophotographic apparatus and image forming method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14020494 1994-06-22
JP6-140204 1994-06-22
JP18236194A JP3327689B2 (en) 1994-06-22 1994-08-03 Electrophotographic apparatus and image forming method

Publications (2)

Publication Number Publication Date
JPH0869149A JPH0869149A (en) 1996-03-12
JP3327689B2 true JP3327689B2 (en) 2002-09-24

Family

ID=26472801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18236194A Expired - Fee Related JP3327689B2 (en) 1994-06-22 1994-08-03 Electrophotographic apparatus and image forming method

Country Status (1)

Country Link
JP (1) JP3327689B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288401A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device
JP3372749B2 (en) * 1996-04-23 2003-02-04 キヤノン株式会社 Contact charging member and contact charging device
US5930566A (en) * 1996-05-02 1999-07-27 Canon Kabushiki Kaisha Electrostatic charging apparatus having conductive particles with a multi-peaked size distribution
US6026260A (en) * 1997-10-21 2000-02-15 Canon Kabushiki Kaisha Electrophotographic apparatus, image forming method and process cartridge
EP1059569B1 (en) 1999-06-11 2004-11-10 Canon Kabushiki Kaisha Magnetic particles for charging, process for producing the magnetic particles, and charging member, process cartridge and image-forming apparatus which have the magnetic particles
US6366751B1 (en) 1999-09-17 2002-04-02 Ricoh Company, Ltd. Image forming apparatus including preselected range between charge injection layer and voltage potential

Also Published As

Publication number Publication date
JPH0869149A (en) 1996-03-12

Similar Documents

Publication Publication Date Title
KR0153592B1 (en) Electro-photographic apparatus, process cartridge and image development method
JP3327689B2 (en) Electrophotographic apparatus and image forming method
JP3228641B2 (en) Electrophotographic apparatus and image forming method
JPH1165281A (en) Electrophotographic device, image forming method and process cartridge
JP3313942B2 (en) Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method
JP3450678B2 (en) Image forming method
JP3262476B2 (en) Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method
US5724632A (en) Charging apparatus and electrophotographic apparatus
JP3347623B2 (en) Charging device and electrophotographic device
JP3382414B2 (en) Electrophotographic apparatus, process cartridge and image forming method
JPH08211741A (en) Image forming device and process cartridge
JP3313996B2 (en) Charging device and electrophotographic device
JPH09134074A (en) Method and device for forming image and process cartridge
JP3372750B2 (en) Electrophotographic charging device and electrophotographic device
JPH09166905A (en) Electrifying device and electrophotographic device
JP2001125294A (en) Image forming device
JPH08272183A (en) Electrophotographic charging device
JPH1048909A (en) Electrification device and electrophotographic device
JP3327769B2 (en) Magnetic particles for charging member, charging device and image forming method
JPH09288403A (en) Electrophotographic electrifying device
JP2000029274A (en) Image forming method
JPH112939A (en) Image forming method
JP3372749B2 (en) Contact charging member and contact charging device
JPH0973212A (en) Image forming device
JPH11125955A (en) Electrifying member and electrophotographic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees