JPH08272183A - Electrophotographic charging device - Google Patents

Electrophotographic charging device

Info

Publication number
JPH08272183A
JPH08272183A JP7283795A JP7283795A JPH08272183A JP H08272183 A JPH08272183 A JP H08272183A JP 7283795 A JP7283795 A JP 7283795A JP 7283795 A JP7283795 A JP 7283795A JP H08272183 A JPH08272183 A JP H08272183A
Authority
JP
Japan
Prior art keywords
charging
magnetic particles
charging member
ωcm
electrophotographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7283795A
Other languages
Japanese (ja)
Inventor
Fumihiro Arataira
文弘 荒平
Yoshifumi Tsukano
祥史 杷野
Shuichi Aida
修一 會田
Marekatsu Mizoe
希克 溝江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7283795A priority Critical patent/JPH08272183A/en
Publication of JPH08272183A publication Critical patent/JPH08272183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE: To provide an electrophotographic charging device which gives uniform electrostatic charge on the surface of a photoreceptor and produces a stable image. CONSTITUTION: An electrophotographic charging device includes a photoreceptor 11 having a photosensitive layer on an electroconductive support and a contact type charging member 12 which performs electrostatic charging of the photosensitive element 11 by impressing a voltage upon contacting with the photosensitive element 11, wherein the photosensitive element 11 has an electric charge implant layer located the most apart from the support, and the implant layer has a volume resistivity of 10<8> Ωcm-10<15> Ωcm, and the member 12 is in the form of magnetic particles to which electron conjugate polymer is attached, and the volume resistivity of these magnetic partcles lies between 10<4> Ωcm-10<10> Ωcm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子写真感光体と該感
光体を接触帯電する部材を有し、該感光体に前記接触帯
電部材から電圧を印加することにより帯電を行う電子写
真装置に用いられる電子写真帯電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic apparatus having an electrophotographic photosensitive member and a member for contact-charging the photosensitive member, and charging the photosensitive member by applying a voltage from the contact charging member. The present invention relates to an electrophotographic charging device used.

【0002】[0002]

【従来の技術】従来、電子写真法としては多数の方法が
知られているが、一般には光導電性物質を利用し、種々
の手段により感光体上に電気的潜像を形成し、次いで該
潜像をトナーで現像を行って可視像とし、必要に応じて
紙などの転写材にトナー画像を転写した後、熱・圧力な
どにより転写材上にトナー画像を定着して複写物を得る
ものである。また、転写材上に転写されずに感光体上に
残ったトナー粒子はクリーニング工程により感光体上よ
り除去される。
2. Description of the Related Art Conventionally, a number of electrophotographic methods are known, but generally, a photoconductive material is used to form an electric latent image on a photoconductor by various means, and then the electrophotographic image is formed. The latent image is developed with toner to form a visible image, and if necessary, the toner image is transferred to a transfer material such as paper, and then the toner image is fixed on the transfer material by heat or pressure to obtain a copy. It is a thing. Further, the toner particles remaining on the photoconductor without being transferred onto the transfer material are removed from the photoconductor by the cleaning process.

【0003】近年、電子写真感光体の光導電性物質とし
て種々の有機光導電物質が開発され、特に電荷発生層と
電荷輸送層を積層した機能分離型のものが実用化され、
複写機やプリンターやファクシミリなどに搭載されてい
る。このような電子写真法での帯電手段としては、コロ
ナ放電を利用した手段が用いられていたが、多量のオゾ
ンを発生することからフィルタを具備する必要性があ
り、装置の大型化又は、ランニングコストアップなどの
問題点があった。
In recent years, various organic photoconductive materials have been developed as photoconductive materials for electrophotographic photoreceptors, and in particular, a function-separated type in which a charge generation layer and a charge transport layer are laminated has been put into practical use.
It is installed in copiers, printers, and facsimiles. As a charging means in such an electrophotographic method, a means utilizing a corona discharge has been used, but it is necessary to provide a filter because a large amount of ozone is generated, so that the apparatus becomes large or running. There were problems such as increased costs.

【0004】このような問題点を解決するための技術と
して、ローラーまたはブレードなどの帯電部材を感光体
表面に当接させることにより、その接触部分近傍に狭い
空間を形成し所謂パッシェンの法則で解釈できるような
放電を形成することによりオゾン発生を極力抑えた帯電
方法が開発され、この中でも特に帯電部材として帯電ロ
ーラを用いたローラ帯電方式が、帯電の安定性という点
から好ましく用いられている。
As a technique for solving such a problem, a charging member such as a roller or a blade is brought into contact with the surface of the photosensitive member to form a narrow space in the vicinity of the contact portion, which is interpreted by the so-called Paschen's law. A charging method in which ozone generation is suppressed as much as possible by forming such a discharge has been developed. Among them, a roller charging method using a charging roller as a charging member is particularly preferably used from the viewpoint of charging stability.

【0005】具体的には、帯電は帯電部材から被帯電体
への放電によって行われるため、ある閾値電圧以上の電
圧を印加することにより帯電が開始される。例えば、感
光層の厚さが25μmのOPC感光体に対して帯電ロー
ラを当接させた場合には、約640V以上の電圧を印加
すれば感光体の表面電位が上昇し始め、それ以降は印加
電圧に対して傾き1で線形に感光体表面電位が増加す
る。以後この閾値電圧を帯電開始電圧Vthと定義する。
つまり、感光体表面電位Vd を得るためには帯電ローラ
にはVd +Vthという必要とされる以上のDC電圧が必
要となる。また環境変動等によって接触帯電部材の抵抗
値が変動するため、感光体の電位を所望の値にすること
が難しかった。
Specifically, since charging is performed by discharging from the charging member to the body to be charged, the charging is started by applying a voltage equal to or higher than a certain threshold voltage. For example, when the charging roller is brought into contact with an OPC photosensitive member having a photosensitive layer thickness of 25 μm, the surface potential of the photosensitive member begins to rise when a voltage of about 640 V or higher is applied, and thereafter, the voltage is applied. The surface potential of the photoconductor increases linearly with a slope of 1 with respect to the voltage. Hereinafter, this threshold voltage is defined as the charging start voltage V th .
That is, in order to obtain the photoreceptor surface potential V d , the charging roller needs a DC voltage of V d + V th , which is higher than the required DC voltage. Further, since the resistance value of the contact charging member fluctuates due to environmental fluctuations, it is difficult to set the potential of the photoconductor to a desired value.

【0006】このため、更なる帯電の均一化を図るため
に特開昭63−149669号公報に開示されるよう
に、所望のVd に相当するDC電圧に2×Vth以上のピ
ーク間電圧を持つAC成分を重畳した電圧を接触帯電部
材に印加するAC帯電方式が用いられる。これは、AC
による電位のならし効果を目的としたものであり、被帯
電体の電位はAC電圧のピークの中央であるVd に収束
し、環境等の外乱には影響されることはない。
Therefore, as disclosed in Japanese Patent Laid-Open No. 63-149669, the peak-to-peak voltage of 2 × V th or more is added to the DC voltage corresponding to the desired V d in order to further uniformize the charging. An AC charging method is used in which a voltage superposed with an AC component having is applied to the contact charging member. This is AC
By is intended for the purpose of Shi effects become potentials, the potential of the member to be charged converges to V d is the central peak of the AC voltage, it will not be affected by disturbance such as environmental.

【0007】しかしながら、このような接触帯電装置に
おいても、その本質的な帯電機構は、帯電部材から感光
体への放電現象を用いているため、先に述べたように帯
電に必要とされる電圧は感光体表面電位以上の値が必要
とされる。また、帯電均一化のためにAC帯電を行なっ
た場合には、AC電圧の電界による帯電部材と感光体の
振動、騒音(以下AC帯電音と称す)の発生、また、放
電による感光体表面の劣化等が顕著になり、新たな問題
点となっていた。
However, even in such a contact charging device, since the essential charging mechanism uses the discharge phenomenon from the charging member to the photosensitive member, the voltage required for charging as described above. Is required to have a value equal to or higher than the surface potential of the photoconductor. When AC charging is performed for uniform charging, vibration and noise of the charging member and the photoconductor due to the electric field of the AC voltage (hereinafter referred to as AC charging sound) are generated, and the surface of the photoconductor is discharged. Deterioration and the like became noticeable, which was a new problem.

【0008】一方、特開昭61−57958号公報に開
示されるように、導電性保護膜を有する感光体を、導電
性微粒子を用いて帯電する画像形成方法がある。これに
よれば、感光体として107 〜1013Ωcmの抵抗を有
する半導電性保護膜を有する感光体を用い、この感光体
を1010Ωcm以下の抵抗を有する導電性微粒子を用い
て帯電することにより、感光層中に電荷が注入すること
なく、放電により感光体をムラなく均一に帯電すること
ができ、良好な画像再現を行うことができると記載があ
る。この方法によれば、AC帯電における問題であった
振動、騒音等は防止できる。しかしながら、放電により
帯電を行っているため、放電による感光体表面の劣化等
が依然生じており、また高圧電源も必要であるなどの問
題点があった。
On the other hand, as disclosed in Japanese Patent Laid-Open No. 61-57958, there is an image forming method in which a photosensitive member having a conductive protective film is charged with conductive fine particles. According to this, a photoconductor having a semiconductive protective film having a resistance of 10 7 to 10 13 Ωcm is used as the photoconductor, and the photoconductor is charged by using conductive fine particles having a resistance of 10 10 Ωcm or less. It is described that, by doing so, it is possible to uniformly charge the photosensitive member by discharge without injecting charges into the photosensitive layer and to perform good image reproduction. According to this method, it is possible to prevent vibration, noise, etc., which are problems in AC charging. However, since charging is performed by electric discharge, deterioration of the surface of the photoconductor due to electric discharge still occurs, and a high voltage power source is also required.

【0009】このため、感光体への電荷の直接注入によ
る帯電が望まれていた。
Therefore, there has been a demand for charging by directly injecting charges into the photoconductor.

【0010】帯電ローラ、帯電ブラシ、帯電磁気ブラシ
などの接触帯電部材に電圧を印加し、感光体表面にある
トラップ準位に電荷を注入して接触注入帯電を行う方法
は、Japan Hardcopy92年論文集P28
7の「導電性ローラを用いた接触帯電特性」などに記載
があるが、これらの方法は、暗所絶縁性の感光体に対し
て、電圧を印加した低抵抗の帯電部材で注入帯電を行う
方法であり、帯電部材の抵抗値が十分に低く、更に帯電
部材に導電性を持たせる材質(導電フイラーなど)が表
面に十分に露出していることが条件になっていた。この
ため、前記の文献においても帯電部材としてはアルミ箔
や、高湿環境下で十分抵抗値が下がったイオン導電性の
帯電部材が好ましいとされている。本出願人らの検討に
よれば感光体に対して十分な電荷注入が可能な帯電部材
の抵抗値は1×103 Ωcm以下であり、これ以上では
印加電圧と帯電電位の間に差が生じ始め帯電電位の収束
性に問題が生じることがわかっている。
A method for performing contact injection charging by applying a voltage to a contact charging member such as a charging roller, a charging brush, a charging magnetic brush, and injecting a charge into a trap level on the surface of the photosensitive member is described in Japan Hardcopy 1992. P28
Although it is described in "Contact charging characteristics using a conductive roller" of 7, etc., these methods perform injection charging to a dark insulating photoconductor with a low resistance charging member to which a voltage is applied. In this method, the resistance value of the charging member is sufficiently low, and the material (conducting filler, etc.) that makes the charging member conductive is sufficiently exposed on the surface. For this reason, in the above-mentioned documents, it is said that the charging member is preferably an aluminum foil or an ion-conducting charging member having a sufficiently low resistance value in a high humidity environment. According to the study by the present applicants, the resistance value of the charging member capable of sufficiently injecting charge into the photoconductor is 1 × 10 3 Ωcm or less, and above this, a difference occurs between the applied voltage and the charging potential. At the beginning, it is known that a problem occurs in the convergence of the charging potential.

【0011】しかしながら、このような抵抗値の低い帯
電部材を実際に使用すると、感光体表面に生じたキズ、
ピンホールなどに対して接触帯電部材から過大なリーク
電流が流れ込み、周辺の帯電不良や、ピンホールの拡
大、帯電部材の通電破壊が生じる。
However, when such a charging member having a low resistance value is actually used, scratches generated on the surface of the photosensitive member,
Excessive leakage current flows from the contact charging member to the pinhole and the like, resulting in defective charging around the pinhole, enlargement of the pinhole, and electrical breakdown of the charging member.

【0012】これを防止するためには帯電部材の抵抗値
を1×104 Ω程度以上にする必要があるが、この抵抗
値の帯電部材では先に述べたように感光体への電荷注入
性が低下し、帯電が行なわれないという矛盾が生じてし
まう。
In order to prevent this, it is necessary to set the resistance value of the charging member to about 1 × 10 4 Ω or more. However, the charging member having this resistance value has the property of injecting charge into the photosensitive member as described above. Will decrease, resulting in a contradiction that charging is not performed.

【0013】そこで、接触方式の帯電装置もしくは該帯
電装置を用いた画像形成方法について上記のような問題
点を解消する、すなわち、低抵抗の接触帯電部材を用い
ないと生じなかった電荷注入による良好な帯電性と、低
抵抗の接触帯電部材では防止することのできなかった被
帯電体上のピンホールリークという背反した特性を同時
に両立することを可能とすることが望まれ、そのために
は所望の抵抗値に調整を行った磁性粒子を接触帯電部材
として用いることにより達成される。また磁性粒子はあ
る程度以上の磁気力を有していなければならず、磁気力
が弱いと帯電部材に磁性粒子を保持することが困難にな
り感光体への付着が生じてしまい、それに伴う画像不良
が発生してしまう。
Therefore, the problems as described above in the contact type charging device or the image forming method using the charging device are solved, that is, good charge injection can be achieved without using the low resistance contact charging member. It is desirable to be able to simultaneously achieve both the antistatic property and the contradictory property of pinhole leak on the charged body that could not be prevented by the low resistance contact charging member, and for that purpose, This is achieved by using magnetic particles whose resistance is adjusted as a contact charging member. Further, the magnetic particles must have a magnetic force of a certain level or more, and if the magnetic force is weak, it becomes difficult to hold the magnetic particles on the charging member, and the particles adhere to the photoconductor, resulting in image defects. Will occur.

【0014】つまり、磁性粒子は所望の抵抗値と磁気力
の両者を満足させるように調整しなければならない。
That is, the magnetic particles must be adjusted so as to satisfy both the desired resistance value and magnetic force.

【0015】しかしながら、磁性粒子の抵抗値を調整す
ると、磁気力が低下し、磁気力を上げると抵抗値が低下
してしまうという問題点が生じる場合があった。そこ
で、磁性粒子の特性を容易に、かつ安定に、任意の抵抗
値、任意の磁気特性に調整できる方法が望まれていた。
更に長期の使用により、特に高湿環境下でのいわゆる
“さび”などによる抵抗値、磁気力の変化も防止しなけ
ればならない。
However, when the resistance value of the magnetic particles is adjusted, the magnetic force may be reduced, and when the magnetic force is increased, the resistance value may be reduced. Therefore, there has been a demand for a method capable of easily and stably adjusting the characteristics of magnetic particles to an arbitrary resistance value and an arbitrary magnetic characteristic.
Furthermore, it is necessary to prevent changes in the resistance value and magnetic force due to so-called "rust", especially in a high-humidity environment, by long-term use.

【0016】[0016]

【発明が解決しようとする課題】本発明の目的は、電子
写真感光体と該感光体を注入帯電する磁性粒子からなる
接触帯電部材を有し、該感光体に該帯電部材から電圧を
印加することにより該感光体を帯電する電子写真帯電装
置において、良好、均一な帯電と、感光体上に生じたピ
ンホールなどの欠陥に電流が集中して帯電部材及び感光
体の通電破壊を防止するために、抵抗ムラの無い、均一
な所望の抵抗を有した接触帯電部材を有する電子写真帯
電装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to have a contact charging member composed of an electrophotographic photosensitive member and magnetic particles for injecting and charging the photosensitive member, and applying a voltage to the photosensitive member from the charging member. In order to prevent good and uniform charging in the electrophotographic charging device that charges the photosensitive member, and to prevent current destruction of the charging member and the photosensitive member due to current concentration on defects such as pinholes generated on the photosensitive member. Another object of the present invention is to provide an electrophotographic charging device having a contact charging member having a uniform and desired resistance without uneven resistance.

【0017】[0017]

【課題を解決するための手段】すなわち、本発明は、導
電性支持体上に感光層を有する電子写真感光体と、帯電
部材を該感光体に接触させて電圧を印加することによっ
て該感光体の帯電を行う接触帯電部材を有する電子写真
帯電装置において、該感光体が該支持体より最も離れて
電荷注入層を有し、該電荷注入層が108 Ωcm〜10
15Ωcmの体積抵抗値を有し、該接触帯電部材が電子共
役性ポリマーを付与した磁性粒子であり、該磁性粒子の
体積抵抗値が104 Ωcm〜1010Ωcmであることを
特徴とする電子写真帯電装置である。
That is, the present invention relates to an electrophotographic photosensitive member having a photosensitive layer on a conductive support, and a photosensitive member by contacting a charging member with the photosensitive member and applying a voltage thereto. In an electrophotographic charging device having a contact charging member for charging, the photoconductor has a charge injection layer farthest from the support, and the charge injection layer is 10 8 Ωcm-10.
An electron having a volume resistance value of 15 Ωcm, wherein the contact charging member is a magnetic particle to which an electron-conjugated polymer is added, and the magnetic particle has a volume resistance value of 10 4 Ωcm to 10 10 Ωcm. It is a photographic charging device.

【0018】本発明においては、感光体電位を帯電部材
の印加電圧の90%以上まで帯電することが可能となっ
ている。
In the present invention, it is possible to charge the photosensitive member potential to 90% or more of the voltage applied to the charging member.

【0019】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0020】接触帯電部材に用いられる磁性粒子が電子
共役性ポリマーを付与することにより導電性を発揮させ
たものである。
The magnetic particles used in the contact charging member exhibit conductivity by imparting an electron conjugated polymer.

【0021】本発明の電子共役性ポリマーとしては例え
ば、ポリピロール、ポリチオフェン、ポリキノリン、ポ
リフェニレン、ポリナフチレン、ポリアセチレン、ポリ
フェニレンスルフィド、ポリアニリン、ポリフェニレン
ビニレンや、ピロールまたはチオフェンのそれぞれの3
位をC1 からC12までのアルキル基で置換した誘導体の
重合物などが挙げられるが、これらは、単独または2種
類以上組み合わせて用いることができる。中でも、ポリ
マー分子中に複素環を含むポリピロールやポリチオフェ
ン、窒素原子と同素環を含むポリアニリン、およびこれ
らの誘導体は帯電部材として耐高電圧性に優れるので特
に好ましい。
Examples of the electron-conjugated polymer of the present invention include polypyrrole, polythiophene, polyquinoline, polyphenylene, polynaphthylene, polyacetylene, polyphenylene sulfide, polyaniline, polyphenylene vinylene, and pyrrole or thiophene.
Examples thereof include polymers of derivatives in which the position is substituted with a C 1 to C 12 alkyl group, and these can be used alone or in combination of two or more kinds. Among them, polypyrrole and polythiophene having a heterocycle in the polymer molecule, polyaniline having a nitrogen atom and an allocyclic ring, and derivatives thereof are particularly preferable because they have excellent high voltage resistance as a charging member.

【0022】本発明の磁性粒子は、粒子表面に重合触媒
を付与した後に、導電性ポリマーの前駆体であるモノマ
ーを接触させることにより、粒子表面を導電性ポリマー
でコートできる。ここで、モノマーは、蒸気または溶液
状態で接触させることができる。可溶性導電性ポリマー
の場合は、適当な溶媒に溶解させたポリマー溶液に磁性
粒子を含浸させたり、スプレーコートなどの手段で導電
性を直接磁性粒子に付与できる。適当な溶媒に溶解した
可溶性導電性ポリマー溶液は、バインダーを必要とせず
溶媒の除去のみで導電性ポリマーから成る導電層を形成
できる。また、導電性フィラーを分散させた樹脂を磁性
粒子にコートした場合とは異なり、コート層の厚みを規
制することなく均一な抵抗値を有する磁性粒子が得られ
る。
The magnetic particles of the present invention can be coated with a conductive polymer by applying a polymerization catalyst to the surface of the particles and then contacting them with a monomer which is a precursor of the conductive polymer. Here, the monomers can be contacted in a vapor or solution state. In the case of a soluble conductive polymer, magnetic particles can be impregnated with a polymer solution dissolved in a suitable solvent, or conductivity can be imparted directly to the magnetic particles by means such as spray coating. A soluble conductive polymer solution dissolved in a suitable solvent can form a conductive layer made of a conductive polymer only by removing the solvent without using a binder. Further, unlike the case where the magnetic particles are coated with a resin in which a conductive filler is dispersed, magnetic particles having a uniform resistance value can be obtained without controlling the thickness of the coating layer.

【0023】更に、上記のように磁性粒子の表面を導電
処理することにより、非常に薄いコート層を形成して導
電性を調整していることから、磁性粒子の磁気特性を導
電処理前後で測定した結果、全く変化は無く、磁性粒子
の磁気特性を全く損なわないで導電処理を施すことがで
きる。
Further, since the surface of the magnetic particles is subjected to the conductive treatment as described above to form a very thin coat layer to adjust the conductivity, the magnetic characteristics of the magnetic particles are measured before and after the conductive treatment. As a result, there is no change, and the conductive treatment can be performed without impairing the magnetic properties of the magnetic particles.

【0024】更に、上記のように磁性粒子の表面を処理
することにより、磁性粒子表面が外気に曝されることが
無いため、長期の放置、使用による磁性粒子の酸化を防
止することができ、いわゆる“さび”などによる抵抗お
よび磁気特性の変化を防止することができる。
Further, by treating the surface of the magnetic particle as described above, the surface of the magnetic particle is not exposed to the outside air, so that it is possible to prevent the magnetic particle from being oxidized by being left unused for a long period of time. It is possible to prevent changes in resistance and magnetic characteristics due to so-called "rust".

【0025】具体例を挙げると、ポリピロールを付与す
る場合は、20質量%の塩化第二鉄水溶液(酸化触媒)
中に磁性粒子を浸し塩化鉄を吸着させた後、ピロールモ
ノマー蒸気で満たされた密閉容器内にセットする。磁性
粒子表面でピロールの気相重合が進行し、導電性のポリ
ピロールが生成する。この時、ピロールモノマー濃度、
気相重合時間、または触媒付与量を調整することで容易
に、かつ安定に任意の導電性が得られる。次に、十分に
洗浄を行い、加熱乾燥し、未反応モノマーや水分を除去
すればよい。また、ピロールモノマーの接触反応に於て
は、触媒を付与した磁性粒子を液状モノマー中に直接浸
漬させてもよい。この場合、液状モノマーを適当な溶媒
で希釈したり接触反応時間により抵抗値が調整できる。
To give a specific example, when polypyrrole is added, a 20 mass% ferric chloride aqueous solution (oxidation catalyst) is used.
After immersing magnetic particles therein to adsorb iron chloride, the magnetic particles are set in a closed container filled with pyrrole monomer vapor. Vapor-phase polymerization of pyrrole proceeds on the surface of the magnetic particles to produce conductive polypyrrole. At this time, the pyrrole monomer concentration,
Arbitrary conductivity can be easily and stably obtained by adjusting the gas phase polymerization time or the catalyst application amount. Next, sufficient washing is performed and heat drying is performed to remove unreacted monomers and water. Further, in the catalytic reaction of the pyrrole monomer, the magnetic particles to which the catalyst is added may be directly immersed in the liquid monomer. In this case, the resistance value can be adjusted by diluting the liquid monomer with an appropriate solvent or the contact reaction time.

【0026】可溶性導電性ポリマーとしては、例えばポ
リアニリンが挙げられる。ポリアニリンは、アニリンを
ペルオキソ二硫酸アンモニウム(酸化剤)と硫酸(プロ
トン酸)の存在下で化学酸化することにより重合でき、
これをアンモニア水で処理し可溶性とする。溶媒には、
N−メチル−2−ピロリドン(NMP)が適切である
が、その他にN,N−ジメチルアセトアミドやN,N−
ジメチルホルムアミドなども用いることができる。ポリ
マー濃度を1%〜10%程度に調製したNMP溶液に磁
性粒子を含浸させ、その後乾燥することにより磁性粒子
を導電化できる。また、磁性粒子は、酸化触媒の吸着や
導電性ポリマーのコートを容易にする目的で、酸やアル
カリ性溶液でエッチングしたり、カップリング剤などで
粒子表面を改質することも可能である。
Examples of the soluble conductive polymer include polyaniline. Polyaniline can be polymerized by chemically oxidizing aniline in the presence of ammonium peroxodisulfate (oxidizer) and sulfuric acid (protic acid),
This is treated with aqueous ammonia to make it soluble. The solvent is
N-methyl-2-pyrrolidone (NMP) is suitable, but in addition, N, N-dimethylacetamide and N, N-
Dimethylformamide and the like can also be used. The magnetic particles can be made conductive by impregnating the magnetic particles with an NMP solution having a polymer concentration adjusted to about 1% to 10% and then drying. Further, the magnetic particles can be etched with an acid or alkaline solution or the surface of the particles can be modified with a coupling agent or the like for the purpose of facilitating adsorption of an oxidation catalyst and coating of a conductive polymer.

【0027】接触帯電部材は感光体の電荷注入層に電荷
を注入する役割と、感光体上に生じたピンホールなどの
欠陥に帯電電流が集中して、帯電部材、感光体の通電破
壊を防止する役割を兼ね備えなければならない。接触帯
電部材の磁性粒子の抵抗値が1×104 Ωcm未満では
ピンホールリークを防止できず1×1010Ωcmを超え
ると帯電に必要な電流を流すことができない。従って、
接触帯電部材に用いられる磁性粒子の抵抗値は1×10
4 Ωcm〜1×1010Ωcmの範囲でなければならな
い。好ましくは1×104 Ωcm〜1×108 Ωcmの
抵抗値の範囲である。
The contact charging member plays a role of injecting charges into the charge injection layer of the photosensitive member, and the charging current is concentrated on defects such as pinholes formed on the photosensitive member to prevent the charging member and the photosensitive member from being broken due to electric conduction. Must also have the role to play. If the resistance value of the magnetic particles of the contact charging member is less than 1 × 10 4 Ωcm, pinhole leakage cannot be prevented, and if it exceeds 1 × 10 10 Ωcm, the current required for charging cannot be passed. Therefore,
The resistance value of the magnetic particles used for the contact charging member is 1 × 10.
It should be in the range of 4 Ωcm to 1 × 10 10 Ωcm. The resistance value is preferably in the range of 1 × 10 4 Ωcm to 1 × 10 8 Ωcm.

【0028】また、該磁性粒子を用いた接触帯電部材の
電圧印加部分と該感光体に接する部分との抵抗値が10
4 〜1010Ωの範囲であることが好ましく、より好まし
くは104 〜108 Ωの範囲である。
Further, the resistance value between the voltage application portion of the contact charging member using the magnetic particles and the portion in contact with the photosensitive member is 10
It is preferably in the range of 4 to 10 10 Ω, more preferably in the range of 10 4 to 10 8 Ω.

【0029】更に、該磁性粒子の平均粒径は5〜200
μmが好ましい。5μmより小さいと、感光体への磁気
ブラシの付着が生じ易く、また200μmより大きい
と、スリーブ上での磁気ブラシの穂立ちの密度を密にで
きず、感光体への注入帯電性が悪くなる傾向にある。更
に好ましくは10〜100μm、特に好ましくは15〜
50μmである。
Further, the average particle size of the magnetic particles is 5 to 200.
μm is preferred. If it is less than 5 μm, the magnetic brush is apt to adhere to the photoconductor, and if it is more than 200 μm, the density of the spikes of the magnetic brush on the sleeve cannot be made dense, and the charging property to the photoconductor is deteriorated. There is a tendency. More preferably 10 to 100 μm, and particularly preferably 15 to
It is 50 μm.

【0030】なお、全体の平均粒径は、光学顕微鏡また
は走査型電子顕微鏡により、ランダムに100個以上抽
出し、水平方向最大弦長をもって体積粒度分布を算出
し、その50%平均粒径をもって平均粒径としてもよい
し、また、レーザー回折式粒度分布測定装置HEROS
(日本電子製)を用いて、0.05μm〜200μmの
範囲を32対数分割して測定し、50%平均粒径をもっ
て平均粒径としてもよい。
The average particle size of the whole is randomly extracted by an optical microscope or a scanning electron microscope, and 100 or more particles are extracted. The volume particle size distribution is calculated with the maximum chord length in the horizontal direction, and the average particle size is calculated with 50% of the average particle size. Particle size may be used, or laser diffraction particle size distribution measuring device HEROS
(Manufactured by JEOL Ltd.), the range of 0.05 μm to 200 μm is divided into 32 logarithms and measured, and the 50% average particle size may be used as the average particle size.

【0031】本発明に係わる磁性粒子としては、磁気に
よって穂立ちさせて、この磁気ブラシを感光体に接触さ
せて帯電させるために、この材質としては例えば鉄、コ
バルト、ニッケルなどの強磁性を示す元素を含む合金あ
るいは化合物などが用いられる。また、その体積抵抗値
は、ピンホールリークによる画像不良防止の点から1×
104 Ωcm以上の抵抗を有した磁性粒子を使用しなけ
ればならない。抵抗の上限は電子共役性ポリマーを付着
することで調整できるので特に制限を設ける必要はな
い。従って、酸化処理、還元処理などを行って体積抵抗
値を調整したもの、例えば組成調整したフェライト、水
素還元処理したZn−Cuフェライト、酸化処理したマ
グネタイトなどが用いられる。
The magnetic particles according to the present invention are magnetically erected, and the magnetic brush is brought into contact with the photosensitive member to be charged, so that the material exhibits ferromagnetism such as iron, cobalt and nickel. Alloys or compounds containing elements are used. The volume resistance value is 1 × from the viewpoint of preventing image defects due to pinhole leak.
Magnetic particles having a resistance of 10 4 Ωcm or more must be used. Since the upper limit of the resistance can be adjusted by attaching the electron-conjugated polymer, it is not necessary to set the upper limit. Therefore, those whose volume resistance value has been adjusted by performing oxidation treatment, reduction treatment, etc., such as composition-adjusted ferrite, hydrogen reduction-treated Zn-Cu ferrite, and oxidation-treated magnetite, are used.

【0032】本発明に係わる感光体としては、支持体よ
り最も離れた層に、先に述べたように、十分な帯電性と
画像流れを起こさない条件を満足するために体積抵抗値
が1×108 Ωcm〜1×1015Ωcmの範囲である電
荷注入層を設けた感光体を用いなければならない。望ま
しくは画像流れなどの点から、体積抵抗値が1×10 11
Ωcm〜1×1014Ωcm、特には体積抵抗値の環境変
動なども考慮して、体積抵抗値が1×1012Ωcm〜1
×1014Ωcmのものを用いるのが望ましい。1×10
10Ωcm未満では高湿環境で帯電電荷が表面方向に保持
されないため画像流れを生じ、1×1015Ωcmを越え
ると帯電部材からの帯電電荷を十分注入および保持がで
きず、帯電不良を生じる傾向にある。このような機能層
を感光体表面に設けることによって、帯電部材から注入
された帯電電荷を保持する役割を果たし、更に光露光時
にこの電荷を感光体支持体に逃す役割を果たし、残留電
位を低減させる。また、本発明に係わる帯電部材と感光
体に関してこのような構成をとることによって、帯電開
始電圧Vthが小さく、感光体帯電電位を帯電部材に印加
する電圧のほとんど90%以上に収束させることが可能
になった。ここで電荷注入層としては、絶縁性のバイン
ダーに光透過性でかつ導電性の粒子を適量分散させて中
抵抗とした材料で構成することが特徴である。
The photoreceptor of the present invention is a support.
In the farthest layer, as described above,
Volume resistance value to satisfy the condition that does not cause image deletion
Is 1 × 108 Ωcm ~ 1 x 10FifteenVoltage in the range of Ωcm
A photoreceptor provided with a load injection layer must be used. Hope
The volume resistance value is 1 × 10 from the viewpoint of image deletion. 11
Ωcm ~ 1 x 1014Ωcm, especially environmental change of volume resistance
Considering movement, etc., the volume resistance value is 1 × 1012Ωcm ~ 1
× 1014It is desirable to use one having an Ωcm. 1 × 10
TenIf it is less than Ωcm, the charged electric charge is retained in the surface direction in high humidity
Image deletion occurs because it is not performed, and 1 × 10FifteenOver Ωcm
Then, the charged electric charge from the charging member can be sufficiently injected and retained.
There is a tendency that defects will result in poor charging. Such a functional layer
Inject from charging member by providing
Plays a role of retaining the charged electric charge that is generated, and during light exposure
It also plays the role of releasing this charge to the photoconductor support,
Reduce the rank. Further, the charging member and the photosensitive member according to the present invention
By taking this kind of configuration for the body,
Starting voltage VthIs small, and the photoconductor charging potential is applied to the charging member.
It is possible to converge to almost 90% or more of the voltage
Became. Here, the charge injection layer is an insulating vine.
Disperse an appropriate amount of light-transmissive and conductive particles in the
The feature is that it is made of a resistance material.

【0033】ここで、電荷注入層の体積抵抗値の測定方
法は、前述した帯電部材コート剤の測定法と同様に、表
面に導電膜を蒸着させたポリエチレンテレフタレート
(PET)フィルム上に電荷注入層を作成し、これを体
積抵抗測定装置(ヒューレットパッカード社製4140
B pAMATER)にて、23℃、65%の環境で1
00Vの電圧を印加させて測定した。
Here, the method for measuring the volume resistance value of the charge injection layer is the same as the method for measuring the charging member coating agent described above, and the charge injection layer is formed on a polyethylene terephthalate (PET) film having a conductive film deposited on its surface. And a volume resistance measuring device (4140 manufactured by Hewlett Packard).
B pAMASTER) at 23 ° C, 65% environment 1
The measurement was performed by applying a voltage of 00V.

【0034】この電荷注入層は金属蒸着膜あるいは導電
性微粒子をバインダー樹脂中に分散させた導電粉樹脂分
散膜などによって構成され、蒸着膜では蒸着、導電粉樹
脂分散膜ではディッピング塗工法、スプレー塗工法、ロ
ールコート塗工法、ビームコート塗工法などの適当な塗
工法にて塗工して電荷注入層とする。また、絶縁性のバ
インダーに光透過性の高いイオン導電性を持つ樹脂を混
合、もしくは共重合させて構成するもの、または中抵抗
で光導電性のある樹脂単体で構成するものでもよい。導
電性微粒子分散膜の場合、導電性微粒子の添加量はバイ
ンダーに対して2〜100質量パーセントの範囲に納ま
っていることが好ましい。2質量パーセント未満の場合
には、所望の体積抵抗値を得ることは難しく、また10
0質量パーセントを越える場合には膜強度の低下によっ
て電荷注入層が削り取られ易くなり、感光体寿命が短か
過ぎるからである。
This charge injection layer is composed of a metal vapor deposition film or a conductive powder resin dispersion film in which conductive fine particles are dispersed in a binder resin. The vapor deposition film is vapor-deposited, and the conductive powder resin dispersion film is dipping coating method or spray coating. A charge injection layer is formed by applying an appropriate coating method such as a coating method, a roll coat coating method, or a beam coat coating method. Further, it may be constituted by mixing or copolymerizing an insulating binder with a resin having a high light-transmitting ionic conductivity, or may be constituted by a single resin having a medium resistance and a photoconductivity. In the case of the conductive fine particle dispersed film, the added amount of the conductive fine particles is preferably within the range of 2 to 100 mass% with respect to the binder. If it is less than 2% by mass, it is difficult to obtain the desired volume resistance value, and
If it exceeds 0 mass%, the charge injection layer is easily scraped off due to the decrease in film strength, and the life of the photoreceptor is too short.

【0035】また、電荷注入層のバインダーは下層のバ
インダーと同じとすることも可能であるが、この場合に
は電荷注入層の塗工時に電荷輸送層の塗工面を乱してし
まう可能性があるため、コート法を特に選択することが
好ましい。
The binder of the charge injection layer may be the same as the binder of the lower layer, but in this case, the coating surface of the charge transport layer may be disturbed when the charge injection layer is coated. Therefore, it is particularly preferable to select the coating method.

【0036】また、前記電荷注入層に滑材粉末が含有さ
れていることが望ましい。その理由は、帯電時に感光体
と注入帯電部材の摩擦が低減されるために帯電ニップが
拡大し、帯電特性が向上するためである。特に滑材粉末
として臨界表面張力の低いフッ素系樹脂、シリコーン系
樹脂、またはポリオレフィン系樹脂を用いるのがより望
ましい。特に好ましくは4フッ化エチレン樹脂(PTF
E)が用いられる。この場合、滑材粉末の添加量は、バ
インダーに対して好ましくは2〜50質量パーセント、
より好ましくは5〜40質量パーセントである。2質量
パーセント未満では滑材粉末の量が十分ではないため
に、帯電特性の向上が十分でなく、また50質量パーセ
ントを越えると、画像の分解能、感光体の感度が大きく
低下してしまうからである。
It is desirable that the charge injection layer contains lubricant powder. The reason is that the friction between the photoconductor and the injection charging member is reduced during charging, so that the charging nip is enlarged and the charging characteristics are improved. In particular, it is more preferable to use a fluorine-based resin, a silicone-based resin, or a polyolefin-based resin having a low critical surface tension as the lubricant powder. Particularly preferably, tetrafluoroethylene resin (PTF
E) is used. In this case, the amount of lubricant powder added is preferably 2 to 50 mass% with respect to the binder,
More preferably, it is 5 to 40 mass%. If it is less than 2% by mass, the amount of the lubricant powder is not sufficient, so that the charging property is not sufficiently improved, and if it exceeds 50% by mass, the resolution of the image and the sensitivity of the photosensitive member are significantly lowered. is there.

【0037】以下に本発明に使用される部材を構成、材
質、製造方法などを例示する。
The constitution, material, manufacturing method and the like of the member used in the present invention will be exemplified below.

【0038】 [トナーの製造例] スチレン−ブチルアクリレート共重合体 (共重合質量比80:20) 100質量部 マグネタイト 100質量部 含金属アゾ顔料 2質量部 低分子量ポリプロピレン 3質量部 上記材料をヘンシェルミキサーで混合した後に、130
℃に設定したエクストルーダーにて混練した。得られた
混練物を冷却し、カッターミルにより粗粉砕した後に、
ジェット気流を用いたジェットミルで微粉砕し、風力分
級して重量平均粒径7μmの黒色微粉体(磁性トナー粒
子)を得た。この黒色微粉体質量100部に対して、シ
リコーンオイルにて疎水化処理をしたシリカ1.0質量
部を加え、ヘンシェルミキサーで混合し、磁性トナーを
得た。
[Production Example of Toner] Styrene-butyl acrylate copolymer (copolymerization mass ratio 80:20) 100 parts by mass Magnetite 100 parts by mass Metal azo pigment 2 parts by mass Low molecular weight polypropylene 3 parts by mass The above materials are used in a Henschel mixer. After mixing in 130
The mixture was kneaded in an extruder set at ℃. The obtained kneaded product is cooled, and after roughly crushing with a cutter mill,
The mixture was finely pulverized with a jet mill using a jet stream and subjected to air classification to obtain a black fine powder (magnetic toner particles) having a weight average particle diameter of 7 μm. To 100 parts by mass of this black fine powder, 1.0 part by mass of silica hydrophobized with silicone oil was added and mixed with a Henschel mixer to obtain a magnetic toner.

【0039】[感光体製造例1]感光体は負帯電の有機
感光体(以下OPC感光体)であり、φ30mmのアル
ミニウム製のドラム上に機能層を5層設ける。
[Photoreceptor Production Example 1] The photoreceptor is a negatively charged organic photoreceptor (hereinafter referred to as an OPC photoreceptor), and five functional layers are provided on a drum made of aluminum having a diameter of 30 mm.

【0040】第1層は下引層であり、アルミニウムドラ
ムの欠陥などをならすため、またレーザ露光の反射によ
るモアレの発生を防止するために設けられている厚さ約
20μmの導電層である。
The first layer is a subbing layer, and is a conductive layer having a thickness of about 20 μm, which is provided in order to smooth defects such as the aluminum drum and to prevent moire due to reflection of laser exposure.

【0041】第2層は正電荷注入防止層であり、アルミ
ニウム支持体から注入された正電荷が感光体表面に帯電
された負電荷を打ち消すのを防止する役割を果たし、ア
ミラン樹脂とメトキシメチル化ナイロンによって106
Ωcm程度に抵抗調整された厚さ約1μmの中抵抗層で
ある。
The second layer is a positive charge injection preventing layer, which plays a role of preventing the positive charges injected from the aluminum support from canceling out the negative charges charged on the surface of the photosensitive member, and the amylan resin and methoxymethylation. By nylon 10 6
It is a medium resistance layer having a thickness of about 1 μm whose resistance is adjusted to about Ωcm.

【0042】第3層は電荷発生層であり、ジスアゾ系の
顔料を樹脂に分散した厚さ約0.3μmの層であり、レ
ーザ露光を受けることによって正負の電荷対を発生す
る。
The third layer is a charge generating layer, which is a layer having a thickness of about 0.3 μm in which a disazo pigment is dispersed in a resin, and generates positive and negative charge pairs by being subjected to laser exposure.

【0043】第4層は電荷輸送層であり、ポリカーボネ
ート樹脂にヒドラゾンを分散したものであり、P型半導
体である。従って、感光体表面に帯電された負電荷はこ
の層を移動することはできず、電荷発生層で発生した正
電荷のみを感光体表面に輸送することができる。
The fourth layer is a charge transport layer, which is a polycarbonate resin in which hydrazone is dispersed, and is a P-type semiconductor. Therefore, the negative charges charged on the surface of the photoconductor cannot move in this layer, and only the positive charges generated in the charge generation layer can be transported to the surface of the photoconductor.

【0044】第5層は本発明の特徴である電荷注入層で
あり、光硬化性のアクリル樹脂にSnO2 超微粒子、更
に接触帯電部材と感光体との接触時間を増加させて、均
一な帯電を行うために粒径約0.25μmの4フッ化エ
チレン樹脂粒子を分散したものである。具体的には、ア
ンチモンをドーピングし、低抵抗化した粒径約0.03
μmのSnO2 粒子を樹脂に対して70質量パーセン
ト、更に4フッ化エチレン樹脂粒子を30質量パーセン
ト、分散剤を1.2質量パーセント分散したものであ
る。
The fifth layer is a charge injection layer, which is a feature of the present invention, and includes a photo-curable acrylic resin, SnO 2 ultrafine particles, and a contact charging member and a photosensitive member for a longer contact time to achieve uniform charging. For this purpose, tetrafluoroethylene resin particles having a particle size of about 0.25 μm are dispersed. Specifically, antimony is doped to reduce the resistance, and the particle size is about 0.03.
70% by weight of SnO 2 particles having a particle diameter of μm are dispersed in the resin, 30% by weight of tetrafluoroethylene resin particles and 1.2% by weight of a dispersant are dispersed therein.

【0045】また、感光体表面の抵抗は、5×1012Ω
cmであった。
The surface resistance of the photoconductor is 5 × 10 12 Ω.
It was cm.

【0046】[感光体製造例2]感光体製造例1の第5
層に、4フッ化エチレン樹脂粒子と分散剤を分散しなか
ったこと以外は、感光体製造例1と同様に感光体を作成
した。
[Photoreceptor Manufacturing Example 2] Fifth of Photoreceptor Manufacturing Example 1
A photoconductor was prepared in the same manner as in Photoconductor Production Example 1 except that the tetrafluoroethylene resin particles and the dispersant were not dispersed in the layer.

【0047】また、感光体表面の抵抗は、2×1012Ω
cmであった。
The surface resistance of the photoconductor is 2 × 10 12 Ω.
It was cm.

【0048】[感光体製造例3]感光体製造例1の第5
層を、アンチモンをドーピングし、低抵抗化した粒径約
0.03μmのSnO2 粒子を光硬化性のアクリル樹脂
に対して120質量パーセント分散したものを加えたこ
と以外は、感光体製造例1と同様に感光体を作成した。
[Photoreceptor Manufacturing Example 3] Fifth of Photoreceptor Manufacturing Example 1
Photoreceptor Production Example 1 except that the layer was added with antimony-doped SnO 2 particles having a resistance of about 0.03 μm dispersed in a photocurable acrylic resin in an amount of 120% by mass. A photoconductor was prepared in the same manner as in.

【0049】これによって感光体表面の抵抗は、6×1
7 Ωcmにまで低下した。
As a result, the resistance of the surface of the photoconductor is 6 × 1.
It was reduced to 0 7 Ωcm.

【0050】[感光体製造例4]鏡面加工を施したアル
ミシリンダーにグロー放電法を用いて、阻止層、光導電
層及び表面層を順次形成した。
[Photoreceptor Manufacturing Example 4] A blocking layer, a photoconductive layer and a surface layer were sequentially formed on a mirror-finished aluminum cylinder by the glow discharge method.

【0051】まず、反応室を約7.5×10-3Paにし
た後、アルミシリンダーを250℃に保ちつつ、SiH
4 ,B26 ,NO及びH2 ガスを反応室に送り込む一
方、反応室よりガスを流出させ、30Pa程度の内圧に
した後にグロー放電を生起させ、5μmの阻止層を形成
した。
First, the reaction chamber was set to about 7.5 × 10 −3 Pa, and then the aluminum cylinder was kept at 250 ° C. while SiH
4 , B 2 H 6 , NO, and H 2 gas were fed into the reaction chamber, while the gas was allowed to flow out from the reaction chamber, and an internal pressure of about 30 Pa was applied to cause glow discharge to form a 5 μm blocking layer.

【0052】この後、阻止層の形成と同様な方法を用
い、SiH4 及びH2 ガスを使用し、50Paの内圧に
した後に、20μmの光導電層を形成し、更に、SiH
4 ,CH4 及びH2 ガスを使用し、55Paの圧力下で
グロー放電により膜厚0.5μmのSiとCからなる表
面層を形成し、アモルファスシリコン感光体を作成し
た。
Then, using a method similar to that for forming the blocking layer, SiH 4 and H 2 gases were used to adjust the internal pressure to 50 Pa, and then a photoconductive layer having a thickness of 20 μm was formed.
A surface layer made of Si and C having a film thickness of 0.5 μm was formed by glow discharge under a pressure of 55 Pa using 4 , CH 4 and H 2 gas to prepare an amorphous silicon photoreceptor.

【0053】帯電部材の製造例として磁性粒子の表面を
電子共役性ポリマーでコートした導電性を発揮させた磁
性粒子からなる帯電部材の例を述べる。なお、これは本
発明を何ら限定するものではない。
As an example of manufacturing a charging member, an example of a charging member made of magnetic particles having the surface of magnetic particles coated with an electron-conjugated polymer and exhibiting conductivity will be described. However, this does not limit the present invention in any way.

【0054】[帯電部材製造例1]平均粒径25μm、
8×1011ΩcmのZn−Cuフェライトを用意する。
磁性粒子の体積抵抗値の測定は、図1に示すセルを用い
て測定した。すなわち、セルAに磁性粒子を充填し、該
充填磁性粒子に接するように電極1及び2を配し、該電
極間に電圧を印加し、その時流れる電流を測定すること
により求めた。その測定条件は、23℃、65%の環境
で充填磁性粒子のセルとの接触面積S=2cm2 、厚み
d=1mm、上部電極の荷重10kg、印加電圧100
Vである。
[Charging Member Manufacturing Example 1] Average particle diameter 25 μm,
8 × 10 11 Ωcm Zn—Cu ferrite is prepared.
The volume resistance value of the magnetic particles was measured using the cell shown in FIG. That is, it was determined by filling the cell A with magnetic particles, arranging the electrodes 1 and 2 so as to contact the filled magnetic particles, applying a voltage between the electrodes, and measuring the current flowing at that time. The measurement conditions are as follows: contact area S of the filled magnetic particles with the cell at 23 ° C. and 65% environment S = 2 cm 2 , thickness d = 1 mm, upper electrode load 10 kg, applied voltage 100.
V.

【0055】上記Zn−Cuフェライトを希塩酸で洗浄
しエッチングを行った後、酸化触媒としての塩化第2鉄
水溶液(濃度30質量%)に含浸させ、20分間撹拌さ
せ、塩化第2鉄をフェライト表面に吸着させた。そのフ
ェライトをピロール蒸気(ピロール溶液純度98%)で
満たされた密閉容器内(23℃)にセットしピロール蒸
気と接触(気相酸化重合)させた後、純水とエタノール
で十分に洗浄してから乾燥させ、所望の磁性粒子を得
た。この磁性粒子を上述した抵抗測定の方法で測定した
ところ、5×106 Ωcmであった。
The above Zn-Cu ferrite was washed with dilute hydrochloric acid and etched, and then impregnated with an aqueous ferric chloride solution (concentration: 30% by mass) as an oxidation catalyst and stirred for 20 minutes to allow ferric chloride to surface the ferrite. Adsorbed on. The ferrite was set in a closed container (23 ° C.) filled with pyrrole vapor (pyrrole solution purity 98%), brought into contact with pyrrole vapor (gas phase oxidative polymerization), and then thoroughly washed with pure water and ethanol. And dried to obtain the desired magnetic particles. When the magnetic particles were measured by the above-described resistance measuring method, it was 5 × 10 6 Ωcm.

【0056】[帯電部材製造例2]平均粒径40μm、
2×1011ΩcmのZn−Cuフェライトを用意する。
[Charging Member Manufacturing Example 2] Average particle diameter 40 μm,
2 × 10 11 Ωcm Zn—Cu ferrite is prepared.

【0057】上記Zn−Cuフェライトを希塩酸で洗浄
しエッチングを行った後、酸化触媒としての塩化第2鉄
水溶液(濃度20質量%)に含浸させ、25分間撹拌さ
せ、塩化第2鉄をフェライト表面に吸着させた。そのフ
ェライトをピロール蒸気(ピロール溶液純度98%)で
満たされた密閉容器内(23℃)にセットしピロール蒸
気と接触(気相酸化重合)させた後、純水とエタノール
で十分に洗浄してから乾燥させ、所望の磁性粒子を得
た。この磁性粒子を上述した抵抗測定の方法で測定した
ところ、8×105 Ωcmであった。
The Zn-Cu ferrite was washed with dilute hydrochloric acid and etched, and then impregnated with an aqueous ferric chloride solution (concentration 20% by mass) as an oxidation catalyst and stirred for 25 minutes to allow ferric chloride to surface on the ferrite. Adsorbed on. The ferrite was set in a closed container (23 ° C.) filled with pyrrole vapor (pyrrole solution purity 98%), brought into contact with pyrrole vapor (gas phase oxidative polymerization), and then thoroughly washed with pure water and ethanol. And dried to obtain the desired magnetic particles. When the magnetic particles were measured by the above-mentioned resistance measuring method, it was 8 × 10 5 Ωcm.

【0058】[帯電部材製造例3]平均粒径40μm、
5×1011Ωcmのストロンチウムフェライトを用意す
る。
[Charging Member Manufacturing Example 3] Average particle diameter 40 μm,
Prepare 5 × 10 11 Ωcm strontium ferrite.

【0059】上記ハードフェライトを希塩酸で洗浄しエ
ッチングを行った後、酸化触媒としての塩化第2鉄水溶
液(濃度20質量%)に含浸させ、40分間撹拌させ、
塩化第2鉄をフェライト表面に吸着させた。そのフェラ
イトをピロール蒸気(ピロール溶液純度98%)で満た
された密閉容器内(23℃)にセットしピロール蒸気と
接触(気相酸化重合)させた後、純水とエタノールで十
分に洗浄してから乾燥させ、所望の磁性粒子を得た。こ
の磁性粒子を上述した抵抗測定の方法で測定したとこ
ろ、2×105 Ωcmであった。
The above hard ferrite was washed with diluted hydrochloric acid and etched, and then impregnated with an aqueous ferric chloride solution (concentration: 20% by mass) as an oxidation catalyst and stirred for 40 minutes,
Ferric chloride was adsorbed on the ferrite surface. The ferrite was set in a closed container (23 ° C.) filled with pyrrole vapor (pyrrole solution purity 98%), brought into contact with pyrrole vapor (gas phase oxidative polymerization), and then thoroughly washed with pure water and ethanol. And dried to obtain the desired magnetic particles. When the magnetic particles were measured by the above-described resistance measuring method, it was 2 × 10 5 Ωcm.

【0060】[帯電部材製造例4]まず、アニリンをペ
ルオキソ二硫酸アンモニウム(酸化剤)と硫酸(プロト
ン酸)の存在下で化学酸化しポリアニリンを得た。この
ポリアニリンをアンモニア水で洗浄した後、ポリマー濃
度が5質量%になるようにN−メチル−2−ピロリドン
(NMP)に溶解させ、更にトルエンスルホン酸のNM
P溶液を混合した。この溶液に帯電部材製造例1で示し
た導電処理前のZn−Cuフェライトを含浸させ、ポリ
アニリンを粒子表面にコートし、溶液を乾燥させ所望の
導電性磁性粒子を得た。この磁性粒子を上述した抵抗測
定の方法で測定したところ、3×10 6 Ωcmであっ
た。
[Charging Member Manufacturing Example 4] First, aniline was added.
Ammonium luoxodisulfate (oxidizer) and sulfuric acid (prototype)
Acid) to give polyaniline. this
After washing polyaniline with ammonia water,
N-methyl-2-pyrrolidone so that the degree becomes 5% by mass
(NMP) and then toluenesulfonic acid NM
The P solution was mixed. Shown in this solution in Production Example 1 of charging member
Impregnated with Zn-Cu ferrite before conductive treatment
Coat the surface of the particles with aniline and dry the solution to obtain the desired
Conductive magnetic particles were obtained. This magnetic particle was measured by the resistance measurement described above.
3 × 10 when measured by a fixed method 6 Ω cm
Was.

【0061】[帯電部材製造例5]導電処理を行わない
帯電部材製造例1のフェライト粒子を帯電部材として用
いた。
[Charging Member Manufacturing Example 5] The ferrite particles of charging member manufacturing example 1 which were not subjected to the conductive treatment were used as the charging member.

【0062】[帯電部材製造例6]導電処理を行わない
帯電部材製造例2のフェライト粒子を帯電部材として用
いた。
[Charging Member Manufacturing Example 6] The ferrite particles of charging member manufacturing example 2 which were not subjected to the conductive treatment were used as the charging member.

【0063】[帯電部材製造例7]導電処理を行わない
帯電部材製造例3のフェライト粒子を帯電部材として用
いた。
[Charging Member Manufacturing Example 7] The ferrite particles of charging member manufacturing example 3 which were not subjected to the conductive treatment were used as the charging member.

【0064】[帯電部材製造例8]平均粒径40μm、
5×103 Ωcmのマグネタイトを用い、帯電部材製造
例1と同様な導電処理を行い、導電性の磁性粒子を得
た。この磁性粒子の抵抗を測定したところ7×102 Ω
cmであった。
[Charging Member Manufacturing Example 8] Average particle diameter 40 μm,
Using 5 × 10 3 Ωcm of magnetite, the same conductive treatment as in Charging Member Production Example 1 was performed to obtain conductive magnetic particles. When the resistance of these magnetic particles was measured, it was 7 × 10 2 Ω.
It was cm.

【0065】[0065]

【実施例】以下に、本発明の具体的実施例を示すがこれ
に限られるものではない。 [実施例1]上に述べた感光体と、接触帯電部材を用い
て帯電を行う際の原理について述べる。本発明は、中抵
抗の接触帯電部材で、中抵抗の表面抵抗を持つ感光体表
面に電荷注入を行なうものであるが、本実施例は感光体
表面材質のもつトラップ電位に電荷を注入するものでは
なく、電荷注入層の導電粒子に電荷を充電して帯電を行
なう原理である。
EXAMPLES Specific examples of the present invention are shown below, but the invention is not limited thereto. [Embodiment 1] The principle of charging using the above-mentioned photoreceptor and the contact charging member will be described. The present invention is a medium-resistance contact charging member for injecting charges into the surface of a photoconductor having a medium resistance surface resistance. In this embodiment, charges are injected into the trap potential of the surface material of the photoconductor. Instead, it is the principle of charging by charging the conductive particles of the charge injection layer.

【0066】具体的には、電荷輸送層を誘電体、アルミ
ニウム支持体と電荷注入層内の導電粒子を両電極板とす
る微小なコンデンサーに、接触帯電部材で電荷を充電す
る理論に基づくものである。この際、導電粒子は互いに
電気的には独立であり、一種の微小なフロート電極を形
成している。このため、マクロ的には感光体表面は均一
電位に充電、帯電されているように見えるが、実際には
微小な無数の充電されたSnO2 が感光体表面を覆って
いるような状況となっている。このため、レーザによっ
て画像露光を行ってもそれぞれのSnO2 粒子は電気的
に独立なため、静電潜像を保持することが可能になる。
Specifically, it is based on the theory that a contact charging member charges a minute capacitor having a charge transport layer as a dielectric and an aluminum support and conductive particles in the charge injection layer as both electrode plates. is there. At this time, the conductive particles are electrically independent of each other and form a kind of minute float electrode. For this reason, the surface of the photoconductor seems to be charged and charged to a uniform electric potential on a macroscopic scale, but in reality, a myriad of minute charged SnO 2 covers the surface of the photoconductor. ing. Therefore, even if image exposure is performed with a laser, each SnO 2 particle is electrically independent, so that an electrostatic latent image can be held.

【0067】次に、本実施例で実験に用いた電子写真方
式のプリンターについて図2を用いて説明する。プロセ
ススピードは48mm/secであり、感光体は感光体
製造例1を用い、接触帯電部材は、帯電部材製造例1で
作成された被覆磁性粒子およびこれを支持させるための
非磁性の導電スリーブ、これに内包されるマグネットロ
ールによって構成され、上記被覆磁性粒子をスリーブ上
に厚さ1mmでコートして感光体との間に幅約5mmの
帯電ニップを形成させるようにした。該磁性粒子保持ス
リーブと感光体との間隙は約500μmとした。また、
マグネットロールは固定、スリーブ表面が感光体表面の
周速に対して2倍の早さで逆方向に摺擦するように回転
させ、感光体と磁気ブラシが均一に接触するようにし
た。なお、磁気ブラシと感光体の間に周速差を設けない
場合には、磁気ブラシ自体は物理的な復元力を持たない
ため、感光体のフレ、偏心などで磁気ブラシが押し退け
られた場合、磁気ブラシのニップが確保できなくなって
帯電不良を起こす。このため、常に新しい磁気ブラシの
面を当てる必要から、本実施例では2倍の早さで逆方向
に回転させるようにした帯電装置を用いて帯電を行う。
Next, the electrophotographic printer used in the experiment of this embodiment will be described with reference to FIG. The process speed is 48 mm / sec, the photoconductor uses the photoconductor manufacturing example 1, the contact charging member is the coated magnetic particles prepared in the charging member manufacturing example 1, and a non-magnetic conductive sleeve for supporting the coated magnetic particles. It was constituted by a magnet roll contained therein, and the above coated magnetic particles were coated on the sleeve to a thickness of 1 mm to form a charging nip with a width of about 5 mm between the sleeve and the photoconductor. The gap between the magnetic particle holding sleeve and the photoconductor was about 500 μm. Also,
The magnet roll was fixed and rotated so that the surface of the sleeve rubs in the opposite direction at twice the peripheral speed of the surface of the photoconductor, so that the photoconductor and the magnetic brush come into uniform contact. If the peripheral speed difference is not provided between the magnetic brush and the photoconductor, the magnetic brush itself does not have a physical restoring force, so when the magnetic brush is pushed away by the deflection or eccentricity of the photoconductor, The nip of the magnetic brush cannot be secured, resulting in poor charging. For this reason, since it is necessary to constantly contact the surface of a new magnetic brush, in this embodiment, charging is performed using a charging device that rotates in the opposite direction at twice the speed.

【0068】次に、露光部で画像露光(イメージ露光)
を受ける。次に、画像信号に従って強度変調を受けたレ
ーザダイオードからのレーザ光13をポリゴンミラーで
走査して露光手段とし、感光体上に静電潜像を形成す
る。
Next, image exposure (image exposure) is performed in the exposure section.
Receive. Next, the laser light 13 from the laser diode whose intensity is modulated in accordance with the image signal is scanned by the polygon mirror to serve as an exposing means, and an electrostatic latent image is formed on the photoconductor.

【0069】次に、製造例の磁性一成分絶縁トナーを用
いて反転現像を行なう。マグネットを内包する直径16
mmの非磁性スリーブ14に上記のネガトナーをコート
し、感光体表面との距離を300μmに固定した状態
で、感光ドラムと等速で回転させ、スリーブに電圧を印
加する。電圧は、−500VのDC電圧と、周波数20
00Hz、ピーク間電圧1200Vの矩形のAC電圧を
重畳したものを用い、スリーブと感光体の間でジャンピ
ング現像を行わせる。
Next, reversal development is performed using the magnetic one-component insulating toner of the manufacturing example. Diameter 16 including magnet
The non-magnetic sleeve 14 of mm is coated with the above-mentioned negative toner, and is fixed at a distance of 300 μm from the surface of the photoconductor, and is rotated at the same speed as the photoconductor drum to apply a voltage to the sleeve. The voltage is a DC voltage of -500V and a frequency of 20.
A rectangular AC voltage having a frequency of 00 Hz and a peak-to-peak voltage of 1200 V is superimposed, and jumping development is performed between the sleeve and the photoconductor.

【0070】このようにしてトナーで顕視化された像
は、次に転写材16に転写される。転写部では中抵抗の
転写ローラ15を用いる。本実施例ではローラ抵抗値は
5×108 Ωのものを用い、+2000VのDC電圧を
印加して転写を行なった。
The image visualized with the toner in this manner is then transferred to the transfer material 16. A transfer roller 15 having a medium resistance is used in the transfer section. In this embodiment, a roller having a resistance value of 5 × 10 8 Ω was used, and a DC voltage of +2000 V was applied to transfer.

【0071】転写材上にトナー像を転写されたプリント
画像は、その後熱定着ローラ18によって定着を受け、
機外に排出される。また、転写残トナーはクリーニング
ブレード17で感光ドラム上からかき落とされ、次の画
像形成に備えられる。
The print image on which the toner image has been transferred onto the transfer material is then fixed by the heat fixing roller 18,
It is discharged outside the aircraft. Further, the transfer residual toner is scraped off from the photosensitive drum by the cleaning blade 17 and prepared for the next image formation.

【0072】以上のような構成のプリンターで感光体の
表面電位、画像評価を23℃/60%の環境下で、以下
の評価項目に従って評価を行った。結果を表1に示す。
The surface potential of the photosensitive member and the image were evaluated in the printer having the above-mentioned constitution under the environment of 23 ° C./60% according to the following evaluation items. The results are shown in Table 1.

【0073】評価1)帯電部材に−700Vの直流電圧
を印加し、0Vであった感光体の表面電位の立ち上がり
(感光体1周目の電位)を測定した。
Evaluation 1) A DC voltage of -700 V was applied to the charging member, and the rise of the surface potential of the photoconductor, which was 0 V (potential on the first revolution of the photoconductor), was measured.

【0074】評価2)画像評価は反転現像において帯電
不良が生じる際には、感光体上の履歴が帯電に影響する
ことから、A4縦画像において感光体一周分(本実施例
では約94mm)をベタ黒画像(電位低)としその直後
をベタ白(電位高)とした画像評価(帯電ゴースト評
価)を行った。帯電不良が生じれば、ベタ黒直後に電位
が充分に上がらず、反転現像においてはかぶりとなって
現われる。そのかぶりの程度を以下の評価項目に従って
評価を行った。かぶりは反射式濃度計(TOKYO D
ENSHOKU CO.,LTD社製REFLECTO
METER ODEL TC−6DS)を用いて測定
(プリント後の白地部反射濃度最悪値をDs 、プリント
前の用紙の反射濃度平均値をDr とした時のDs −Dr
をかぶり量とした)した。
Evaluation 2) In the image evaluation, when a charging failure occurs in the reversal development, the history on the photosensitive member influences the charging. Therefore, in the A4 vertical image, one round of the photosensitive member (about 94 mm in this embodiment) is used. Image evaluation (charging ghost evaluation) was performed with a solid black image (potential low) and immediately after that a solid white (potential high). If a charging failure occurs, the potential does not rise sufficiently immediately after solid black and appears as a fog in reversal development. The degree of fogging was evaluated according to the following evaluation items. Fogging is a reflection densitometer (TOKYO D
ENSHOKU CO. , LTD REFLECTO
METER ODEL TC-6DS) measured using (a white portion reflection density worst value after printing D s, before printing D s -D r when the reflection average density value was D r of the paper
Was taken as the fogging amount).

【0075】○:良好(5%以下) ×:実用不可、帯電不良によるかぶり画像発生(5%を
越える)
◯: Good (5% or less) ×: Not practical, fog image generation due to poor charging (more than 5%)

【0076】評価3)電位が横方向に流れることによる
画像流れの評価を文字画像によって、以下の評価項目に
従って評価を行った。
Evaluation 3) The evaluation of the image deletion due to the lateral flow of the electric potential was carried out by a character image according to the following evaluation items.

【0077】○:優秀(画像流れ未発生) ×:実用不可(画像流れ発生)◯: Excellent (image deletion did not occur) ×: Practical use (image deletion occurred)

【0078】評価4)感光体製造例1の感光体を使用
し、感光体上の感光層を1mm2 程度剥ぎ取りアルミニ
ウム支持体を露出させた状態の欠陥感光体を用いて、−
1kVの直流電圧を印加で画像出しを行い、絶縁破壊に
よる帯電不良による画像不良の程度を以下の評価項目に
従って評価を行った。
Evaluation 4) Photoreceptor Using the photoreceptor of Production Example 1, the photosensitive layer on the photoreceptor was peeled off by about 1 mm 2, and a defective photoreceptor in which the aluminum support was exposed was used.
An image was displayed by applying a DC voltage of 1 kV, and the degree of image failure due to charging failure due to dielectric breakdown was evaluated according to the following evaluation items.

【0079】○:優秀(画像不良が感光体の欠陥部分に
とどまっている) △:実用下限(画像不良が感光体の欠陥部分から30m
m程度のもの) ×:実用不可(画像不良が画像全体に拡がっているも
の)
◯: Excellent (image defect remains in the defective portion of the photoconductor) Δ: Lower limit of practical use (image defect is 30 m from the defective portion of the photoconductor)
m) x: Not practical (image defects spread over the entire image)

【0080】[実施例2]実施例1における接触帯電部
材の磁性粒子を帯電部材製造例2を用いた以外は実施例
1と同様の評価を行った。
Example 2 The same evaluation as in Example 1 was carried out except that the magnetic particles of the contact charging member in Example 1 were used in the charging member manufacturing example 2.

【0081】[実施例3]実施例1における接触帯電部
材の磁性粒子を帯電部材製造例3を用いた以外は実施例
1と同様の評価を行った。
Example 3 The same evaluation as in Example 1 was carried out except that the magnetic particles of the contact charging member in Example 1 were used in Manufacturing Example 3 for charging member.

【0082】[実施例4]実施例1における接触帯電部
材の磁性粒子を帯電部材製造例4を用いた以外は実施例
1と同様の評価を行った。
Example 4 The same evaluation as in Example 1 was carried out except that the magnetic particles of the contact charging member in Example 1 were used in Manufacturing Example 4 for charging member.

【0083】[実施例5]実施例1における感光体を感
光体製造例2を用いた以外は実施例1と同様の評価を行
った。
Example 5 The same evaluation as in Example 1 was carried out except that the photosensitive member manufacturing example 2 was used as the photosensitive member in the example 1.

【0084】[実施例6]キヤノン社製複写機、NP6
060を用意し、一次帯電部分を改造し、以下に説明す
る帯電部材を設置した。また、感光体は感光体製造例4
を用いた。
[Embodiment 6] Canon Copier, NP6
060 was prepared, the primary charging part was modified, and the charging member described below was installed. Further, the photoconductor is the photoconductor production example 4.
Was used.

【0085】接触帯電部材は帯電部材製造例1で作成さ
れた磁性粒子を用い、これを保持するために、非磁性の
導電スリーブと、これに内包されるマグネットロールに
よって構成され、上記被覆磁性粒子をスリーブ上に厚さ
1mmでコートして感光体との間に幅約8mmの帯電ニ
ップを形成させるようにした。該磁性粒子保持スリーブ
と感光体の間隙は約500μmとした。またマグネット
ロールは固定、スリーブ表面が感光体表面の周速に対し
て2倍の早さで逆方向に摺擦するように回転させ、感光
体と磁気ブラシが均一に接触するように調整を行った構
成の複写機により実施例1と同様な評価を行った。
The contact charging member uses the magnetic particles prepared in Manufacturing Example 1 of the charging member, and in order to hold the magnetic particles, the contact charging member is constituted by a non-magnetic conductive sleeve and a magnet roll contained therein. Was coated on the sleeve with a thickness of 1 mm to form a charging nip with a width of about 8 mm between the sleeve and the photosensitive member. The gap between the magnetic particle holding sleeve and the photoconductor was about 500 μm. Also, the magnet roll is fixed and rotated so that the sleeve surface rubs in the opposite direction at twice the peripheral speed of the photoconductor surface, and adjustment is made so that the photoconductor and the magnetic brush come into uniform contact. The same evaluation as in Example 1 was performed using the copying machine having the above configuration.

【0086】ここで評価1の帯電部材に印加される直流
電圧は+450Vとし、評価2の画像評価も上記の複写
機は正現像法を用いているため、ベタ黒画像の評価を行
った。(帯電不良はベタ黒上に白スジ、ポチとして現れ
る)評価4も+600V印加での評価を行った。
Here, the direct current voltage applied to the charging member of Evaluation 1 was +450 V, and the image evaluation of Evaluation 2 was also performed for the solid black image because the above copying machine uses the positive development method. (Poor charging appears as solid lines and spots on solid black.) Evaluation 4 was also performed by applying + 600V.

【0087】[比較例1]実施例1における感光体を感
光体製造例3を用いた以外は実施例1と同様の評価を行
った。
[Comparative Example 1] The same evaluation as in Example 1 was carried out except that the photosensitive member manufacturing example 3 was used as the photosensitive member in the example 1.

【0088】[比較例2]実施例1における接触帯電部
材の磁性粒子を帯電部材製造例5を用いた以外は実施例
1と同様の評価を行った。
[Comparative Example 2] The same evaluation as in Example 1 was carried out except that the magnetic particles of the contact charging member in Example 1 were used in Manufacturing Example 5 for charging member.

【0089】[比較例3]実施例1における接触帯電部
材の磁性粒子を帯電部材製造例6を用いた以外は実施例
1と同様の評価を行った。
Comparative Example 3 The same evaluation as in Example 1 was carried out except that the magnetic particles of the contact charging member in Example 1 were used in the charging member manufacturing example 6.

【0090】[比較例4]実施例1における接触帯電部
材の磁性粒子を帯電部材製造例7を用いた以外は実施例
1と同様の評価を行った。
Comparative Example 4 The same evaluation as in Example 1 was carried out except that the magnetic particles of the contact charging member in Example 1 were used in the charging member manufacturing example 7.

【0091】[比較例5]実施例1における接触帯電部
材の磁性粒子を帯電部材製造例8を用いた以外は実施例
1と同様の評価を行った。
[Comparative Example 5] The same evaluation as in Example 1 was carried out except that the magnetic particles of the contact charging member in Example 1 were used in Manufacturing Example 8 of Charging Member.

【0092】 [0092]

【0093】[0093]

【発明の効果】本発明では、感光体表面に電荷を注入さ
せるための電荷注入層を設け、該感光体を接触帯電する
磁性粒子からなる接触帯電部材を有し、該磁性粒子が電
子共役性ポリマーを付与することによって導電性を発現
させた粒子であり、該磁性粒子の体積抵抗値が104 Ω
cm〜1010Ωcmであり、該感光体に該磁性粒子を用
いた接触帯電部材から電圧を印加することにより該感光
体を帯電させる電子写真帯電装置により、均一な帯電を
感光体表面に与え、安定した画像を得ることが可能にな
った。
According to the present invention, a charge injection layer for injecting charges to the surface of a photoconductor is provided, and a contact charging member made of magnetic particles for contact-charging the photoconductor is provided. The particles have conductivity by adding a polymer, and the volume resistance value of the magnetic particles is 10 4 Ω.
cm to 10 10 Ωcm, a uniform charge is applied to the surface of the photoconductor by an electrophotographic charging device that charges the photoconductor by applying a voltage from the contact charging member using the magnetic particles to the photoconductor, It became possible to obtain stable images.

【図面の簡単な説明】[Brief description of drawings]

【図1】電気抵抗測定装置を模式的に示した概略図であ
る。
FIG. 1 is a schematic view schematically showing an electric resistance measuring device.

【図2】本発明に基づく電子写真方式のプリンターの構
成を表す概略図である。
FIG. 2 is a schematic diagram showing a configuration of an electrophotographic printer according to the present invention.

【符号の説明】 1 主電極 2 上部電極 3 絶縁物 4 電流計 5 電圧計 6 定電圧装置 7 磁性粒子 8 ガイドリング 11 感光ドラム 12 接触帯電部材 13 露光手段 14 現像器 15 転写ローラ 16 転写材 17 クリーニングブレード 18 熱定着ローラ[Explanation of Codes] 1 Main electrode 2 Upper electrode 3 Insulator 4 Ammeter 5 Voltmeter 6 Constant voltage device 7 Magnetic particles 8 Guide ring 11 Photosensitive drum 12 Contact charging member 13 Exposure means 14 Developing device 15 Transfer roller 16 Transfer material 17 Cleaning blade 18 Heat fixing roller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 溝江 希克 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nozomi Mizoe 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 導電性支持体上に感光層を有する電子写
真感光体と、帯電部材を該感光体に接触させて電圧を印
加することによって該感光体の帯電を行う接触帯電部材
を有する電子写真帯電装置において、該感光体が該支持
体より最も離れて電荷注入層を有し、該電荷注入層が1
8 Ωcm〜1015Ωcmの体積抵抗値を有し、該接触
帯電部材が電子共役性ポリマーを付与した磁性粒子であ
り、該磁性粒子の体積抵抗値が104 Ωcm〜1010Ω
cmであることを特徴とする電子写真帯電装置。
1. An electron having an electrophotographic photosensitive member having a photosensitive layer on a conductive support, and a contact charging member for charging the photosensitive member by bringing a charging member into contact with the photosensitive member and applying a voltage thereto. In a photographic charger, the photoreceptor has a charge injection layer furthest away from the support, the charge injection layer being 1
The magnetic particles having a volume resistance value of 0 8 Ωcm to 10 15 Ωcm, and the contact charging member is a magnetic particle provided with an electron-conjugated polymer, and the volume resistance value of the magnetic particles is 10 4 Ωcm to 10 10 Ω.
An electrophotographic charging device characterized by being cm.
【請求項2】 該電子共役性ポリマーが、複素環また
は、窒素原子と同素環を含有する請求項1記載の電子写
真帯電装置。
2. The electrophotographic charging device according to claim 1, wherein the electron-conjugated polymer contains a heterocycle or a homocycle with a nitrogen atom.
【請求項3】 該磁性粒子が気相中で導電性モノマーを
粒子表面に重合させた導電性の磁性粒子である請求項1
または2記載の電子写真帯電装置。
3. The magnetic particles are conductive magnetic particles obtained by polymerizing a conductive monomer on the particle surface in a gas phase.
Or the electrophotographic charging device according to 2.
【請求項4】 該接触帯電部材の電圧印加部分と該感光
体に接する部分との間の抵抗値が104 〜1010Ωであ
る請求項1乃至3記載の電子写真帯電装置。
4. The electrophotographic charging device according to claim 1, wherein a resistance value between a voltage application portion of the contact charging member and a portion in contact with the photosensitive member is 10 4 to 10 10 Ω.
【請求項5】 該接触帯電部材に用いられる磁性粒子の
平均粒径が5〜200μmである請求項1乃至4記載の
電子写真帯電装置。
5. The electrophotographic charging device according to claim 1, wherein the magnetic particles used in the contact charging member have an average particle size of 5 to 200 μm.
【請求項6】 電子写真感光体の該電荷注入層が少なく
とも導電性微粒子、結着樹脂および滑材粉末を含有する
請求項1乃至5記載の電子写真帯電装置。
6. The electrophotographic charging device according to claim 1, wherein the charge injection layer of the electrophotographic photosensitive member contains at least conductive fine particles, a binder resin and a lubricant powder.
【請求項7】 該滑材粉末がフッ素系樹脂、シリコーン
系樹脂またはポリオレフィン系樹脂の粉末である請求項
6の電子写真帯電装置。
7. The electrophotographic charging device according to claim 6, wherein the lubricant powder is a powder of fluorine resin, silicone resin or polyolefin resin.
JP7283795A 1995-03-30 1995-03-30 Electrophotographic charging device Pending JPH08272183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7283795A JPH08272183A (en) 1995-03-30 1995-03-30 Electrophotographic charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7283795A JPH08272183A (en) 1995-03-30 1995-03-30 Electrophotographic charging device

Publications (1)

Publication Number Publication Date
JPH08272183A true JPH08272183A (en) 1996-10-18

Family

ID=13500929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7283795A Pending JPH08272183A (en) 1995-03-30 1995-03-30 Electrophotographic charging device

Country Status (1)

Country Link
JP (1) JPH08272183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288401A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device
JPH09288400A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288401A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device
JPH09288400A (en) * 1996-04-23 1997-11-04 Canon Inc Contact electrifying member and contact electrifying device

Similar Documents

Publication Publication Date Title
JPH075748A (en) Electrostatic charge device, process cartridge and image forming device
JPH08227253A (en) Image forming device
KR0153592B1 (en) Electro-photographic apparatus, process cartridge and image development method
EP0689102B1 (en) Magnetic particles for charging means, and electrophotographic apparatus, process cartridge and image forming method including same
JPH1195474A (en) Electrophotographic device and process cartridge
JPH0635220A (en) Electrophotographic device
US5940662A (en) Charging apparatus and electrophotographic apparatus
JP3327689B2 (en) Electrophotographic apparatus and image forming method
JPH08272183A (en) Electrophotographic charging device
JP3228641B2 (en) Electrophotographic apparatus and image forming method
JP3313942B2 (en) Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method
JP3347623B2 (en) Charging device and electrophotographic device
US5724632A (en) Charging apparatus and electrophotographic apparatus
JP3382414B2 (en) Electrophotographic apparatus, process cartridge and image forming method
KR100340652B1 (en) Electrophotographic Photosensitive Member, and Process Cartridge and Electrophotographic Apparatus Employing the Same
JP3262476B2 (en) Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method
JP3372750B2 (en) Electrophotographic charging device and electrophotographic device
JP3313996B2 (en) Charging device and electrophotographic device
US5747207A (en) Electrophotographic apparatus with charge injection layer on photosensitive member
JPH02148059A (en) Electrophotographic device
JP3327769B2 (en) Magnetic particles for charging member, charging device and image forming method
JP3296536B2 (en) Charging device and electrophotographic device
JPH09166905A (en) Electrifying device and electrophotographic device
JPH11125955A (en) Electrifying member and electrophotographic device
JPH0869120A (en) Electrophotographic device and process cartridge