JPH09288406A - Electrophotographic electrifying device - Google Patents

Electrophotographic electrifying device

Info

Publication number
JPH09288406A
JPH09288406A JP10095996A JP10095996A JPH09288406A JP H09288406 A JPH09288406 A JP H09288406A JP 10095996 A JP10095996 A JP 10095996A JP 10095996 A JP10095996 A JP 10095996A JP H09288406 A JPH09288406 A JP H09288406A
Authority
JP
Japan
Prior art keywords
electrophotographic
charging device
charging
magnetic particles
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10095996A
Other languages
Japanese (ja)
Inventor
Fumihiro Arataira
文弘 荒平
Shuichi Aida
修一 會田
Marekatsu Mizoe
希克 溝江
Takeshi Takiguchi
剛 瀧口
Yoshifumi Hagino
祥史 杷野
Tsutomu Kukimoto
力 久木元
Tomoji Ishihara
友司 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10095996A priority Critical patent/JPH09288406A/en
Publication of JPH09288406A publication Critical patent/JPH09288406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrophotographic electrifying device in which good electrification characteristics can be maintained for a long time and injection of charges can be performed in a good state. SOLUTION: This electrophotographic electrifying device is equipped with an electrophotographic photoreceptor and an electrifying member disposed in contact with the photoreceptor. By applying voltage on the electrifying member, the electrophotographic photoreceptor is charged. The volume resistance of the photoreceptor is specified to >=1×10<8> Ωcm. The electrifying member has magnetic particles containing 0.05 to 1.2wt.% silicon component. The magnetic particle has a surface layer containing a polyolefin resin produced by polymn. on the surface of the magnetic particle. The volume resistance of the magnetic particles is controlled to >=1×10<4> Ωcm and <=1×10<11> Ωcm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真感光体と
該電子写真感光体を接触帯電する部材を有し、該接触帯
電部材に電圧を印加することにより該電子写真感光体を
帯電させる電子写真帯電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an electrophotographic photosensitive member and a member for contact-charging the electrophotographic photosensitive member, and an electron for charging the electrophotographic photosensitive member by applying a voltage to the contact charging member. Photographic charging device

【0002】[0002]

【従来の技術】従来、電子写真法としては多数の方法が
知られているが、一般には以下の方法が用いられる。即
ち、帯電手段及び画像露光手段により感光体上に静電気
的潜像を形成し、次いで該潜像をトナーで現像を行って
可視像(トナー画像)とし、紙等の転写材にトナー画像
を転写した後、熱・圧力等により転写材上にトナー画像
を定着して複写物を得るものである。この際、転写材上
に転写されずに感光体上に残ったトナー粒子はクリーニ
ング工程により感光体上より除去される。
2. Description of the Related Art Conventionally, many methods are known as electrophotography, but the following method is generally used. That is, an electrostatic latent image is formed on a photoconductor by a charging unit and an image exposing unit, then the latent image is developed with toner to form a visible image (toner image), and the toner image is formed on a transfer material such as paper. After the transfer, the toner image is fixed on the transfer material by heat, pressure or the like to obtain a copy. At this time, toner particles remaining on the photoconductor without being transferred onto the transfer material are removed from the photoconductor by a cleaning process.

【0003】近年、電子写真感光体の光導電性物質とし
て種々の有機光導電性物質が開発され、特に電荷発生層
と電荷輸送層を積層した機能分離型のものが実用化され
複写機やプリンターやファクシミリ等に搭載されてい
る。このような電子写真装置での帯電手段としては、コ
ロナ放電を利用した手段が用いられてきたが、多量のオ
ゾンを発生することからフィルターを具備する必要があ
り、装置の大型化またはランニングコストの上昇等の問
題があった。
In recent years, various organic photoconductive materials have been developed as photoconductive materials for electrophotographic photoreceptors, and in particular, a function-separated type in which a charge generation layer and a charge transport layer are laminated has been put into practical use and a copying machine or printer. It is installed in a fax machine, etc. As a charging unit in such an electrophotographic apparatus, a unit using corona discharge has been used. However, since a large amount of ozone is generated, it is necessary to provide a filter. There were problems such as rising.

【0004】このような問題点を解決するための技術と
して、ローラまたはブレード等の帯電部材を感光体表面
に当接させることにより、その接触部分近傍に狭い空間
を形成し所謂パッシェンの法則で解釈できるような放電
を形成することによりオゾン発生を極力抑えた帯電方法
が開発された。
As a technique for solving such a problem, a charging member such as a roller or a blade is brought into contact with the surface of the photoconductor to form a narrow space in the vicinity of the contact portion, which is interpreted by the so-called Paschen's law. A charging method has been developed in which ozone generation is suppressed as much as possible by forming such a discharge.

【0005】この中でも特に帯電部材として帯電ローラ
を用いたローラ帯電方式が、帯電の安定性という点から
好ましく用いられている。この帯電は帯電部材から被帯
電体への放電によって行われるため、あるしきい値電圧
以上の電圧を印加することにより帯電が開始される。
Among them, a roller charging system using a charging roller as a charging member is particularly preferably used from the viewpoint of charging stability. Since the charging is performed by discharging from the charging member to the member to be charged, the charging is started by applying a voltage higher than a certain threshold voltage.

【0006】例えば、感光層の厚さが約25μmの有機
光導電性物質を含有する感光体に対して帯電ローラを当
接させた場合には、約640V以上の電圧を印加すれば
感光体の表面電位が上昇し始め、それ以降は印加電圧に
対して傾き1で線形に感光体表面電位が増加する。以後
このしきい値電圧を帯電開始電圧Vthと定義する。つ
まり、感光体表面電位Vdを得るためには帯電ローラに
はVd+Vthという必要とされる以上の直流電圧が必
要となる。また、環境変動等によって帯電ローラの抵抗
値が変動するため、感光体の電位を所望の値にすること
が難しかった。
For example, when a charging roller is brought into contact with a photosensitive body containing an organic photoconductive substance having a photosensitive layer thickness of about 25 μm, a voltage of about 640 V or more is applied to the photosensitive body. The surface potential starts to rise, and thereafter the surface potential of the photoconductor linearly increases with a slope of 1 with respect to the applied voltage. Hereinafter, this threshold voltage is defined as charging start voltage Vth. That is, in order to obtain the photoreceptor surface potential Vd, the charging roller needs a direct current voltage of Vd + Vth, which is higher than the required DC voltage. Further, since the resistance value of the charging roller fluctuates due to environmental fluctuations, it is difficult to set the potential of the photoconductor to a desired value.

【0007】このため、更なる帯電の均一化を図るため
には特開昭63−149669号公報に開示されるよう
に、所望のVdに相当する直流電圧に2×Vth以上の
ピーク間電圧を持つ交流電圧を重畳した電圧を帯電ロー
ラに印加するDC+AC帯電方式が用いられる。これは
交流による電位のならし効果を目的としたものであり、
被帯電体の電位は交流電圧の中央であるVdに収束し、
環境等の外乱には影響されにくく、帯電性についての向
上は確認された。
Therefore, in order to further uniform the charging, as disclosed in JP-A-63-149669, a peak-to-peak voltage of 2 × Vth or more is applied to a DC voltage corresponding to a desired Vd. A DC + AC charging system is used in which a voltage obtained by superimposing an AC voltage is applied to a charging roller. This is for the purpose of the potential leveling effect of the alternating current,
The potential of the member to be charged converges to Vd, which is the center of the AC voltage,
It was difficult to be affected by external disturbances, and it was confirmed that the charging property was improved.

【0008】しかしながら、このような帯電方法におい
てもその本質的な帯電機構は帯電部材から感光体への放
電現象を用いているため、先に述べたように帯電に必要
とされる電圧は感光体表面電位以上の値が必要とされ
る。また交流電圧の電界に起因する帯電部材と感光体の
振動、騒音(以下交流帯電音)の発生、また放電による
感光体表面の劣化等が顕著になり、新たな問題点となっ
ていた。
However, even in such a charging method, since the essential charging mechanism uses the discharging phenomenon from the charging member to the photoconductor, the voltage required for charging is the photoconductor as described above. A value above the surface potential is required. Further, vibrations of the charging member and the photoconductor due to the electric field of the AC voltage, generation of noise (hereinafter referred to as AC charging sound), deterioration of the photoconductor surface due to discharge, and the like become remarkable, which is a new problem.

【0009】より帯電効率の良い帯電方法として、感光
体への電荷を直接注入する所謂注入帯電が知られてい
る。
As a charging method with higher charging efficiency, so-called injection charging in which charges are directly injected into the photosensitive member is known.

【0010】この帯電ローラ、帯電繊維ブラシ、帯電磁
気ブラシ等の接触帯電部材に電圧を印加した帯電装置を
用い、感光体表面にあるトラップ準位に電荷を注入する
注入帯電を行う方法は、Japan Hardcopy
92年論文集P287の「導電性ローラを用いた接触
帯電特性」等に記載があるが、これらの方法は暗所絶縁
性の感光体に対して、電圧を印加した低抵抗の帯電部材
で注入帯電を行う方法であり、帯電部材の抵抗値が十分
に低く、更に帯電部材に導電性を持たせる材質(導電フ
ィラー等)が表面に十分に露出していることが条件にな
っていた。このため、前記の文献においても帯電部材と
してはアルミ箔や高湿環境下で十分抵抗値が下がったイ
オン導電性の帯電部材が好ましいとされている。本発明
者等の検討によれば感光体に対して十分な電荷注入か可
能な帯電部材の抵抗値は1×10 3 Ωcm以下であり、
これ以上では印加電圧と帯電電位の間に差が生じ始め帯
電電位の収束性に問題が生じることが分かっている。
This charging roller, charging fiber brush, electromagnetic belt
A charging device that applies a voltage to a contact charging member such as a gas brush
Used to inject charge into the trap level on the surface of the photoconductor
The injection charging method is described in Japan Hardcopy.
 1992 Proceedings P287, "Contact Using Conductive Rollers
There is a description in "Charging characteristics" etc.
Low-resistance charging member that applies voltage to a photosensitive member
Is a method of performing injection charging with a
Material that is very low and that makes the charging member conductive (conductive
Under the condition that it is exposed to the surface sufficiently.
I was Therefore, in the above-mentioned document,
As a result, the resistance value has dropped sufficiently in aluminum foil and high humidity environment.
On-conductive charging members are said to be preferred. The present invention
According to the study of the person, it may be possible to inject sufficient charge into the photoconductor.
The effective resistance of the charging member is 1 x 10 ThreeΩcm or less,
Above this, a difference between the applied voltage and the charging potential begins to occur.
It is known that there is a problem in the convergence of the electric potential.

【0011】しかしながら、このような抵抗値の低い帯
電部材を実際に使用すると、感光体表面に生じた傷、ピ
ンホール等に対して注入帯電部材から過大なリーク電流
が流れ込み、周辺の帯電不良や、ピンホールの拡大、帯
電部材の通電破壊が生じ易い。
However, when such a charging member having a low resistance value is actually used, an excessive leak current flows from the injection charging member to the scratches, pinholes, etc. formed on the surface of the photosensitive member, which may cause charging failure in the periphery. It is easy for the pinhole to expand and the charging member to be damaged by electricity.

【0012】これを防止するためには帯電部材の抵抗値
を1×104 Ωcm程度以上にする必要があるが、この
抵抗値の帯電部材では先に述べたように感光体への電荷
注入が低下し帯電が行われないという矛盾が生じてしま
う。
In order to prevent this, it is necessary to set the resistance value of the charging member to about 1 × 10 4 Ωcm or more. However, in the charging member having this resistance value, the charge injection into the photoconductor is as described above. There is a contradiction that the charge is lowered and charging is not performed.

【0013】そこで、接触方式の帯電装置もしくは該帯
電装置を用いた画像形成方法について上記のような問題
点を解消すること、即ち低抵抗の接触帯電部材を用いな
いと生じなかった電荷注入による良好な帯電性と、低抵
抗の接触帯電部材では防止することのできなかった被帯
電体上のピンホールリークという背反した特性を同時に
可能とすることが望まれ、そのためには所望の抵抗値に
調整を行い、また帯電部材として感光体により多くの部
材の接触が可能である磁性粒子を接触帯電部材に用いる
ことにより達成されることが分かった。
Therefore, it is desirable to eliminate the above-mentioned problems in the contact type charging device or the image forming method using the charging device, that is, it is preferable to use the charge injection which does not occur unless the low resistance contact charging member is used. It is desirable to simultaneously achieve the antistatic property and the contradictory characteristic of pinhole leak on the charged body that could not be prevented by the low resistance contact charging member, and for that purpose adjust to the desired resistance value. In addition, it was found that this can be achieved by using magnetic particles that can contact more members as a charging member with the photoconductor.

【0014】帯電部材に磁性粒子を用いるのは、電荷を
直接感光体に注入させて帯電を行う場合においては、感
光体と帯電部材がより多く接触することが好ましく、そ
れを達成させるために帯電部材の形態としては、ローラ
やブレードのような面が感光体に接触するよりは、磁性
粒子などの粒子が感光体に接触するほうが感光体への接
触性が増すため好ましく、該磁性粒子の粒径、粒度分布
及び表面形状が感光体との接触性に大きな影響を与え、
そのために感光体への電荷の注入効率が左右される。
The magnetic particles are used for the charging member. In the case where the charge is directly injected into the photoconductor to carry out the charging, it is preferable that the photoconductor and the charging member are in contact with each other more. As the form of the member, it is preferable that particles such as magnetic particles are in contact with the photoconductor, rather than the surface such as a roller or a blade is in contact with the photoconductor, since the contact with the photoconductor is increased. The diameter, particle size distribution and surface shape greatly affect the contact property with the photoconductor,
Therefore, the efficiency of injecting charges into the photoconductor is affected.

【0015】また、被帯電体に接触させた帯電部材を用
いる帯電装置においては、帯電部材の汚れ(スペント)
等による帯電特性の変化により画像欠陥を生じ易く、耐
久性に問題が生じる傾向がある。
Further, in the charging device using the charging member in contact with the member to be charged, the charging member is contaminated (spent).
Image defects are likely to occur due to changes in charging characteristics due to factors such as the above, and there is a tendency for problems to occur in durability.

【0016】帯電部材のスペントは、転写されずに感光
体上に付着したトナー等がクリーニング部で除去されず
に通過し、これが接触帯電部材に取り込まれ、帯電部材
との摩擦によって帯電部材表面に付着するために生じる
と考えられている。
The spent toner of the charging member, which has not been transferred and adhered to the photosensitive member, passes without being removed by the cleaning unit, is taken into the contact charging member, and is rubbed with the charging member to the surface of the charging member. It is thought to occur due to adhesion.

【0017】そこで、耐スペント性を達成するために、
帯電部材に耐スペント性を有する樹脂をコートした表面
層を設けることが行われている。しかし、一般に耐スペ
ント性の優れた樹脂は芯材との密着性が良好ではなく、
また密着性や表面層の硬さ等の影響で耐久により表面層
が剥がれて効果を失うことが多かった。
Therefore, in order to achieve the spent resistance,
A surface layer coated with a resin having spent resistance is provided on the charging member. However, in general, resins with excellent spent resistance do not have good adhesion to the core material,
Further, due to the influence of adhesion and hardness of the surface layer, the surface layer was often peeled off due to durability, and the effect was often lost.

【0018】従って、磁性粒子表面に耐スペント性に優
れた樹脂を、芯材である磁性粒子と高い密着性で被覆す
ることにより、耐久による帯電部材の汚染を抑制するこ
とができ、長期にわたって良好な帯電特性を示すことが
可能になる。
Therefore, by coating the surface of the magnetic particles with a resin having excellent spent resistance with high adhesion to the magnetic particles as the core material, it is possible to suppress contamination of the charging member due to durability, and it is good for a long time. It is possible to exhibit various charging characteristics.

【0019】また、感光体への電荷注入による帯電にお
いても同様に、上述のような樹脂を磁性粒子表面に被覆
することにより、耐久による帯電部材の汚染を抑制する
ことができ、長期にわたって良好な帯電特性を示すこと
が可能になる。
Also in the charging by the charge injection into the photosensitive member, similarly, by coating the surface of the magnetic particles with the resin as described above, it is possible to suppress the contamination of the charging member due to the durability, which is good for a long period of time. It becomes possible to exhibit charging characteristics.

【0020】[0020]

【発明が解決しようとする課題】本発明の目的は、良好
な帯電を行うことができる電子写真帯電装置、また本発
明の目的は、良好な注入帯電を行うことができる電子写
真帯電装置を提供することにある。
An object of the present invention is to provide an electrophotographic charging device which can perform good charging, and an object of the present invention is to provide an electrophotographic charging device which can perform good injection charging. To do.

【0021】更に、長期にわたって良好な帯電を行うこ
とができる電子写真帯電装置を提供することにある。
Another object of the present invention is to provide an electrophotographic charging device which can perform good charging for a long period of time.

【0022】[0022]

【課題を解決するための手段】本発明は、電子写真感光
体と該電子写真感光体に接触配置される帯電部材を有
し、該帯電部材に電圧を印加することにより該電子写真
感光体を帯電させる電子写真帯電装置において、該電子
写真感光体の体積抵抗値が1×108 Ωcm以上であ
り、かつ該帯電部材が0.05〜1.2重量%のケイ素
成分を含有する磁性粒子を有し、該磁性粒子が磁性粒子
表面上で重合したポリオレフィン系樹脂を含有する表面
層を有し、該磁性粒子の体積抵抗値が1×104 Ωcm
以上1×10 11Ωcm以下であることを特徴とする電子
写真帯電装置である。
SUMMARY OF THE INVENTION The present invention is an electrophotographic photosensitive material.
A charging member disposed in contact with the body and the electrophotographic photosensitive member.
Then, by applying a voltage to the charging member, the electrophotographic
In an electrophotographic charging device for charging a photoreceptor,
The volume resistance value of the photographic photoreceptor is 1 × 10.8 Ωcm or more
And the charging member contains silicon in an amount of 0.05 to 1.2% by weight.
Magnetic particles containing a component, wherein the magnetic particles are magnetic particles
Surface containing polyolefin resin polymerized on the surface
Layer, and the volume resistance value of the magnetic particles is 1 × 10Four Ωcm
More than 1 × 10 11Electrons characterized by being less than Ωcm
It is a photographic charging device.

【0023】[0023]

【発明の実施の形態】ここで、本発明に用いられる帯電
部材について説明する。本発明に用いられる帯電部材は
ケイ素成分(主に二酸化ケイ素として含有)を含有して
いる磁性粒子を有しており、該磁性粒子の粒度分布、5
0%粒径、及び表面形状、具体的には磁性粒子の粒界の
制御をケイ素量の調整により容易に制御することができ
る。
DETAILED DESCRIPTION OF THE INVENTION The charging member used in the present invention will now be described. The charging member used in the present invention has magnetic particles containing a silicon component (mainly contained as silicon dioxide), and the particle size distribution of the magnetic particles is 5
It is possible to easily control the 0% particle diameter and the surface shape, specifically, the grain boundaries of the magnetic particles by adjusting the amount of silicon.

【0024】磁性粒子中に含有される好ましいケイ素量
は0.05〜1.2重量%の範囲であり、より好ましく
は0.15〜1.0重量%の範囲であり、更に好ましく
は0.2〜0.6重量%である。0.05重量%未満で
は表面形状、粒界の制御の効果がほとんどないので粒度
分布の制御が困難であり好ましくなく、1.2重量%を
越えると抵抗が高くなり帯電性が低下するので好ましく
ない。
The preferable amount of silicon contained in the magnetic particles is in the range of 0.05 to 1.2% by weight, more preferably in the range of 0.15 to 1.0% by weight, and further preferably 0.1. It is 2 to 0.6% by weight. If it is less than 0.05% by weight, it is difficult to control the particle size distribution because it has almost no effect of controlling the surface shape and grain boundaries, and if it exceeds 1.2% by weight, the resistance is increased and the charging property is lowered, which is preferable. Absent.

【0025】ケイ素の添加量が少ないと粒界は大きくな
り、増すと粒界は緻密になる。緻密になると、それだけ
表面に凹凸が多くなり、感光体との接触点も向上するた
め帯電性が向上する。
If the amount of silicon added is small, the grain boundary becomes large, and if it is increased, the grain boundary becomes dense. The denser the surface, the more uneven the surface is, and the better the contact point with the photoconductor is.

【0026】また、表面に凹凸形状を有すると、耐久等
による汚染物質がその凹部にトラップされ、実際の帯電
性に関与する感光体と接触する凸の部分への汚染が抑制
され、耐久による帯電部材の汚染による帯電不良が防止
できる。
Further, when the surface has an uneven shape, contaminants due to durability and the like are trapped in the concave portions, and the contamination of the convex portions that come into contact with the photosensitive member, which are involved in the actual charging property, is suppressed, and the charging due to the durability is charged. It is possible to prevent charging failure due to contamination of the member.

【0027】上述したようにケイ素量を調整することで
磁性粒子の表面形状、粒度分布等を容易に調整できる
が、添加量を多くすると抵抗が高くなってしまい、帯電
性が低下する懸念がある。
As described above, the surface shape, particle size distribution and the like of the magnetic particles can be easily adjusted by adjusting the amount of silicon, but if the addition amount is increased, the resistance becomes high and the charging property may be deteriorated. .

【0028】そこで、本発明に用いられる帯電部材は抵
抗調整のために、更に燐成分を含有している磁性粒子で
あってもよい。該磁性粒子の抵抗値を燐量を調整するこ
とにより容易に所望の抵抗に、特に燐の添加により抵抗
を容易に低く制御することができる。
Therefore, the charging member used in the present invention may be magnetic particles further containing a phosphorus component in order to adjust the resistance. The resistance of the magnetic particles can be easily controlled to a desired resistance by adjusting the amount of phosphorus, and the resistance can be easily controlled to be low by adding phosphorus.

【0029】磁性粒子中に含有される好ましい燐量は
0.001〜5.00重量%の範囲であり、より好まし
くは0.01〜0.2重量%の範囲である。0.01重
量%未満では抵抗値の低下作用がほとんどないので好ま
しくなく、5重量%を越えると磁気力が低下し、感光体
へのキャリア付着が多くなるので好ましくない。
The preferred amount of phosphorus contained in the magnetic particles is 0.001 to 5.00% by weight, more preferably 0.01 to 0.2% by weight. If it is less than 0.01% by weight, there is almost no effect of lowering the resistance value, and if it exceeds 5% by weight, the magnetic force is lowered and carrier adhesion to the photoreceptor is increased, which is not preferable.

【0030】つまり、磁性粒子の表面形状や粒径につい
てはケイ素量の調整で、抵抗の調整は燐量の調整によ
り、容易に磁性粒子を所望の物性値への制御が可能にな
る。
That is, the surface shape and particle size of the magnetic particles can be easily controlled to the desired physical properties by adjusting the silicon content and adjusting the resistance by adjusting the phosphorus content.

【0031】本発明における磁性粒子は、磁性中抵抗物
質を磁気によって穂立ちさせて、この磁気ブラシを感光
体に接触させて帯電させる。
In the magnetic particles of the present invention, a magnetic medium resistance material is magnetically erected, and the magnetic brush is brought into contact with the photosensitive member to be charged.

【0032】従って、帯電部材に含有される磁性粒子と
しては鉄、コバルト及びニッケル等の強磁性を示す元素
を含む合金あるいは化合物等が用いられる。好ましく
は、酸化処理、還元処理、組成調整等を行って体積抵抗
値を好ましい範囲に調整したフェライト粒子が用いられ
る。
Therefore, as the magnetic particles contained in the charging member, an alloy or compound containing an element exhibiting ferromagnetism such as iron, cobalt and nickel is used. Preferably, ferrite particles whose volume resistance value is adjusted to a preferable range by performing oxidation treatment, reduction treatment, composition adjustment and the like are used.

【0033】更に、本発明の如く、帯電部材である磁性
粒子表面に直接重合被覆されたポリオレフィン系樹脂層
を設けてなることにより、耐久により混入したトナーと
帯電部材との吸着力が低下するため、磁性粒子へのスペ
ントが生じにくく、耐久での帯電性の劣化が抑制され
る。
Further, as in the present invention, the polyolefin resin layer directly polymerized and coated on the surface of the magnetic particles as the charging member is provided, so that the attraction force between the mixed toner and the charging member is reduced due to durability. Further, spent on the magnetic particles is less likely to occur, and deterioration of chargeability due to durability is suppressed.

【0034】加えて、磁性粒子表面上で直接重合したポ
リオレフィン系樹脂を使用した場合、磁性粒子との密着
性が格段に向上するため、被覆樹脂の剥がれが抑制さ
れ、そのため、耐久性の向上も図られる。
In addition, when the polyolefin resin directly polymerized on the surface of the magnetic particles is used, the adhesiveness with the magnetic particles is remarkably improved, so that the peeling of the coating resin is suppressed, and therefore the durability is also improved. Planned.

【0035】また、本発明に使用されるポリオレフィン
系樹脂としては、エチレン、プロピレン、ブテン、ブタ
ジエン等のオレフィンモノマーの重合物あるいは共重合
物が挙げられる。
Examples of the polyolefin resin used in the present invention include polymers or copolymers of olefin monomers such as ethylene, propylene, butene and butadiene.

【0036】磁性粒子表面上で直接重合したポリオレフ
ィン系樹脂を使用した場合、磁性粒子との密着性が格段
に向上する理由は定かではないが、おそらく、直接重合
法により形成される被覆樹脂が摩耗や剥がれに強い分子
量分布を持つものと推測している。
When a polyolefin resin directly polymerized on the surface of the magnetic particles is used, the reason why the adhesiveness with the magnetic particles is significantly improved is not clear, but the coating resin formed by the direct polymerization method is probably worn. It is presumed that it has a strong molecular weight distribution against peeling.

【0037】また、一般に磁性粒子の粒径が小さく、更
に表面形状がより緻密に、また凹凸形状が多数になる
と、磁性粒子表面全体を均一に樹脂被覆することが難し
くなる。しかしながら、直接重合法によれば、磁性粒子
表面全体を均一に被覆することが可能であり、更に長期
にわたって良好な帯電特性を示すことが可能になる。
In general, if the particle size of the magnetic particles is small, the surface shape is more dense, and the number of irregularities is large, it becomes difficult to uniformly coat the entire surface of the magnetic particles with resin. However, according to the direct polymerization method, the entire surface of the magnetic particles can be uniformly coated, and good charging characteristics can be exhibited for a long period of time.

【0038】このように本発明においては、表面樹脂層
を構成する樹脂が特定の分子量を有することも重要であ
る。即ち、該樹脂のGPCにより測定されたGPCクロ
マトグラムが、メインピークの低分子量側に少なくとも
1つのピークまたはショルダーを有することが非常に好
ましい結果を与える。
As described above, in the present invention, it is important that the resin constituting the surface resin layer has a specific molecular weight. That is, it is highly preferred that the GPC chromatogram of the resin measured by GPC has at least one peak or shoulder on the low molecular weight side of the main peak.

【0039】こういった物性値を持つように被覆樹脂を
調製すれば、高分子量側のメインピークによって樹脂の
耐摩耗性を向上させると共に、トナー等による表面のス
ペントを防止できる。同時に、低分子量側のサブピーク
またはショルダーによって磁性粒子コアと樹脂との密着
性をより向上させ、磁性粒子からの被覆樹脂の剥がれを
防止することも可能となる。これらの相乗効果で、大き
なシェアのかかり易い帯電部材の磁性粒子においても磁
性粒子の劣化や混入トナーによるスペントが少なく、長
期の耐久によっても均一な帯電が得られ、良好な画像を
得ることが可能となる。
When the coating resin is prepared so as to have such physical properties, the abrasion resistance of the resin can be improved by the main peak on the high molecular weight side, and the spent of the surface due to the toner can be prevented. At the same time, it is possible to further improve the adhesion between the magnetic particle core and the resin by the sub-peak or shoulder on the low molecular weight side and prevent the coating resin from peeling off from the magnetic particles. Due to these synergistic effects, even in the case of the magnetic particles of the charging member, which is likely to have a large share, there is little deterioration of the magnetic particles and the spent due to the mixed toner, and even charging can be obtained by long-term durability, and good images can be obtained. Becomes

【0040】更には、該被覆樹脂のGPCクロマトグラ
ムのメインピークの分子量が10000以上、好ましく
は30000〜400000であり、少なくとも1つの
低分子量側のピークまたはショルダーが3000〜30
000の間にあることが好ましく、また、重量平均分子
量Mwが50000〜700000、数平均分子量Mn
が5000〜50000の範囲にあり、Mw/Mnが1
0以上であること、更には、Z平均分子量Mzが100
0000〜5000000の範囲にあることが好まし
い。
Furthermore, the molecular weight of the main peak of the GPC chromatogram of the coating resin is 10,000 or more, preferably 30,000 to 400,000, and at least one peak or shoulder on the low molecular weight side is 3000 to 30.
000, the weight average molecular weight Mw is 50,000 to 700,000, and the number average molecular weight Mn is
Is in the range of 5,000 to 50,000 and Mw / Mn is 1
0 or more, further, Z average molecular weight Mz is 100
It is preferably in the range of 0000 to 5000000.

【0041】メインピークの分子量が10000未満で
あると、耐摩耗性に対する効果が十分でない。また、低
分子量側のピークまたはショルダーが3000未満であ
ると耐摩耗性に対する効果が十分でなく、30000を
超えると磁性粒子表面からの樹脂の剥がれが生じ易くな
る。
If the molecular weight of the main peak is less than 10,000, the effect on wear resistance is not sufficient. If the peak or shoulder on the low molecular weight side is less than 3,000, the effect on abrasion resistance is not sufficient, and if it exceeds 30,000, the resin tends to peel off from the magnetic particle surface.

【0042】同様に、数平均分子量Mn、重量平均分子
量Mw、Z平均分子量Mz、Mw/Mnが上記の範囲で
あることで、樹脂の耐摩耗性、剥がれ防止、トナー等の
スペント防止に有効である。
Similarly, when the number average molecular weight Mn, the weight average molecular weight Mw, the Z average molecular weight Mz, and Mw / Mn are in the above ranges, it is effective for abrasion resistance of the resin, prevention of peeling, and prevention of spent of toners. is there.

【0043】好ましくは、メインピークの分子量が50
000〜300000、低分子量側のピークまたはショ
ルダーが3000〜15000、重量平均分子量Mwが
100000〜500000、数平均分子量Mnが70
00〜40000、Mw/Mnが20以上であることが
好ましい。
The main peak preferably has a molecular weight of 50.
000 to 300,000, the peak or shoulder on the low molecular weight side is 3000 to 15,000, the weight average molecular weight Mw is 100,000 to 500,000, and the number average molecular weight Mn is 70.
It is preferable that 00-400000 and Mw / Mn are 20 or more.

【0044】また、該メインピークの分子量P1と、低
分子量側のピークまたはショルダーの分子量P2の比が
3:1〜100:1であることが磁性粒子への樹脂の密
着性と耐摩耗性の両立の観点から好ましい。特に好まし
くは5:1〜50:1の範囲である。
Further, the ratio of the molecular weight P1 of the main peak to the molecular weight P2 of the peak or shoulder on the low molecular weight side is 3: 1 to 100: 1 so that the adhesion of the resin to the magnetic particles and the abrasion resistance can be improved. It is preferable from the viewpoint of compatibility. Particularly preferably, it is in the range of 5: 1 to 50: 1.

【0045】ここで、磁性粒子表面の樹脂の分子量測定
は以下のように行った。
Here, the molecular weight of the resin on the surface of the magnetic particles was measured as follows.

【0046】装置は、ウォーターズ社製ゲルパーミエイ
ションクロマトグラフィ(GPC)測定装置、GPC−
150Cを使用し、以下の条件で測定した。
The apparatus is a gel permeation chromatography (GPC) measuring apparatus manufactured by Waters, GPC-
Using 150C, it measured on the following conditions.

【0047】カラム:Shodex HT−806M
2本(プレカラム Shodex HT−800P 1
本) 温度:145℃ 溶媒:o−ジクロロベンゼン(0.1%アイオノール添
加) 流速:1.0ml/min 試料:0.15%の試料を0.4ml注入
Column: Shodex HT-806M
Two (pre-column Shodex HT-800P 1
Main) Temperature: 145 ° C. Solvent: o-dichlorobenzene (addition of 0.1% ionol) Flow rate: 1.0 ml / min Sample: 0.4 ml of 0.15% sample injected

【0048】測定試料としては、キシレン溶媒を用いて
20時間磁性粒子のソックスレー抽出を行い、抽出液よ
りキシレンをエバポレーター等で除去、乾燥した後、得
られた固形分を試料として用いた。
As a measurement sample, Soxhlet extraction of magnetic particles was carried out for 20 hours using a xylene solvent, xylene was removed from the extract by an evaporator, etc. and dried, and the obtained solid content was used as a sample.

【0049】試料の分子量算出にあったては単分散ポリ
スチレン標準試料により作成した分子量較正曲線を使用
し算出した。
The molecular weight of the sample was calculated by using a molecular weight calibration curve prepared from a monodisperse polystyrene standard sample.

【0050】また、ピーク/ショルダーの位置決定法と
しては、GPCクロマトグラムの微分曲線の変極点をも
って、ピーク/ショルダーの位置とした。
As a method for determining the position of the peak / shoulder, the inflection point of the differential curve of the GPC chromatogram was used as the position of the peak / shoulder.

【0051】本発明における帯電部材の磁性粒子の抵抗
値は電圧印加部分と該感光体に接する部分との抵抗値が
l×104 Ω〜l×l011Ωであることが好ましい。抵
抗値が1×104 Ω未満ではピンホールリークが生じ易
くなる傾向があり、1×10 11Ωを超えると良好な帯電
がしにくくなる傾向がある。また、帯電部材の抵抗値を
上記範囲内に制御するためには、本発明の帯電部材の体
積抵抗値はl×104Ωcm〜1×1011Ωcmである
ことが好ましい。
Resistance of Magnetic Particles of Charging Member in the Present Invention
The value is the resistance value between the voltage application part and the part in contact with the photoconductor.
lx10Four Ω ~ l × 1011It is preferably Ω. Often
Resistance value is 1 × 10Four If less than Ω, pinhole leak easily occurs
1 x 10 11Good charging when exceeding Ω
It tends to be difficult to remove. Also, change the resistance value of the charging member
In order to control within the above range, the body of the charging member of the present invention
Product resistance is l × 10FourΩcm ~ 1 x 1011Ω cm
Is preferred.

【0052】本発明の帯電装置を注入帯電に用いる場
合、帯電部材はこの感光体の電荷注入層に電荷を良好に
注入する役割と、感光体上に生じたピンホール等の欠陥
に帯電電流が集中してしまうことに起因して生じる帯電
部材及び感光体の通電破壊を防止する役割を兼ね備えな
ければならない。
When the charging device of the present invention is used for injection charging, the charging member plays a role of properly injecting charges into the charge injection layer of the photoconductor, and the charging current is caused by defects such as pinholes formed on the photoconductor. It must also have a role of preventing the electrical breakdown of the charging member and the photoconductor caused by the concentration.

【0053】従って、帯電部材の磁性粒子の抵抗値は電
圧印加部分と該感光体に接する部分との抵抗値がl×1
4 Ω〜l×109 Ωであることが好ましく、特にはl
×104 Ω〜l×108 Ωであることが好ましい。帯電
部材の抵抗値がl×104 Ω未満ではピンホールリーク
が生じ易くなる傾向があり、l×109 Ωを超えると良
好な帯電がしにくくなる傾向がある。
Therefore, regarding the resistance value of the magnetic particles of the charging member, the resistance value between the voltage application portion and the portion in contact with the photosensitive member is 1 × 1.
It is preferably 0 4 Ω to 1 × 10 9 Ω, and particularly 1
It is preferably from 10 4 Ω to 1 × 10 8 Ω. If the resistance value of the charging member is less than 1 × 10 4 Ω, pinhole leakage tends to occur, and if it exceeds 1 × 10 9 Ω, good charging tends to be difficult.

【0054】また、帯電部材の抵抗値を上記範囲内に制
御するためには、本発明の帯電部材の体積抵抗値は1×
104 Ωcm〜l×109 Ωcmであることが好まし
く、特にはl×104 Ωcm〜l×l08 Ωcmである
ことが好ましい。
In order to control the resistance value of the charging member within the above range, the volume resistance value of the charging member of the present invention is 1 ×.
It is preferably 10 4 Ωcm to 1 × 10 9 Ωcm, and particularly preferably 1 × 10 4 Ωcm to 1 × 10 8 Ωcm.

【0055】また、感光体に電荷を直接注入する帯電方
法ではなく帯電部材と感光体との微少な空隙での放電に
より感光体への帯電を行う場合、帯電部材である磁性粒
子の抵抗値は1×l05 Ωcm〜1×1011Ωcmであ
ることが好ましく、帯電部材の体積抵抗値は1×106
Ωcm〜l×1011Ωcmであることが好ましい。
When the photosensitive member is charged by discharging in a minute gap between the charging member and the photosensitive member instead of the charging method of directly injecting electric charge into the photosensitive member, the resistance value of the magnetic particles as the charging member is It is preferably 1 × 10 5 Ωcm to 1 × 10 11 Ωcm, and the volume resistance value of the charging member is 1 × 10 6
It is preferably Ωcm to 1 × 10 11 Ωcm.

【0056】なお、帯電部材に用いられる磁性粒子の体
積抵抗値の測定は、図1に示す電気抵抗測定装置を用い
て測定した。即ち、セルAに粒子を充填し、該充填粒子
に接するように電極1及び電極2を配置する。ここで該
電極間に電圧を印加し、その時流れる電流を測定するこ
とにより測定する。なお測定条件は23℃、65%の環
境で充填粒子のセルとの接触面積S=2cm2 、厚みd
=1mm、上部電極の荷重l0kg、印加電圧l00V
である。
The volume resistance value of the magnetic particles used for the charging member was measured using the electric resistance measuring device shown in FIG. That is, the cell A is filled with particles, and the electrode 1 and the electrode 2 are arranged so as to contact the filled particles. Here, the voltage is applied between the electrodes, and the current flowing at that time is measured to measure. The measurement conditions were 23 ° C. and 65% environment, and the contact area S of the packed particles with the cell was S = 2 cm 2 , and the thickness d.
= 1 mm, upper electrode load 10 kg, applied voltage 100 V
It is.

【0057】ここで、図l中1は主電極、2は上部電
極、3は絶縁物、4は電流計、5は電圧計、6は定電圧
装置、7は磁性粒子、8はガイドリングを示す。
In FIG. 1, 1 is a main electrode, 2 is an upper electrode, 3 is an insulator, 4 is an ammeter, 5 is a voltmeter, 6 is a constant voltage device, 7 is magnetic particles, and 8 is a guide ring. Show.

【0058】更に、電荷注入層を有した感光体に接触し
て、注入により帯電を行う接触帯電部材である磁性粒子
の抵抗値が、接触帯電部材に印加する印加電圧をV、該
感光体と該接触帯電部材のニップ部に突入する(ニップ
部から見て感光体移動方向の上流側)際の該感光体上の
電位VD、接触帯電部材の電圧印加部分と該感光体のと
の距離をdとしたような電子写真帯電装置である場合、
該接触帯電部材の、帯電部材を導体の回転体の基体に接
触させた動的抵抗測定方法における体積抵抗値が、(V
−VD)/dかV/dのどちらか高い方の電界をV1
(V/cm)とした時、20〜V1(V/cm)の印加
電界範囲中において、104 Ωcm〜10 10Ωcmの範
囲中であることが好ましい。
Further, contact with the photoreceptor having a charge injection layer
Magnetic particles that are contact charging members that are charged by injection
Of the applied voltage applied to the contact charging member is V
Plunge into the nip between the photoconductor and the contact charging member (nip
On the photoconductor at the upstream side in the photoconductor moving direction when viewed from the part)
The potential VD, the voltage application portion of the contact charging member and the photosensitive member
If the electrophotographic charging device is such that the distance of
Contact the charging member of the contact charging member to the base of the rotating body of the conductor.
The volume resistance value in the dynamic resistance measuring method that is touched is (V
-VD) / d or V / d, whichever is higher, is V1
(V / cm), application of 20 to V1 (V / cm)
10 in the electric field rangeFour Ωcm-10 TenΩcm range
It is preferable to be in the surrounding area.

【0059】磁性粒子の動的抵抗測定方法による体積抵
抗値の測定は、図3に示すような装置を用いて測定し
た。即ち、22の導電性基体であるアルミドラムと0.
5mmの間隙24を有した21の磁性粒子保持部材であ
るマグ内包スリーブに磁性粒子27をアルミドラムとの
ニップ23が5mmになるように装着させ、実際に画像
形成を行う際の回転速度、回転方向で帯電部材、感光体
を回転させ、帯電部材に直流電圧を印加し、その系に流
れた電流を測定することにより抵抗を求め、更に間隙2
4とニップ23及び磁性粒子とアルミドラムとの接触し
ている幅より体積抵抗を算出した。26は定電圧装置で
ある。
The volume resistance value was measured by the dynamic resistance measuring method of magnetic particles by using an apparatus as shown in FIG. That is, 22 conductive aluminum substrates and 0.
Magnetic particles 27 are attached to 21 magnetic particle holding members having a gap 24 of 5 mm so that the nip 23 between the magnetic drum 27 and the aluminum drum will be 5 mm. The charging member and the photoconductor are rotated in the direction, a DC voltage is applied to the charging member, and the current flowing in the system is measured to obtain the resistance.
The volume resistance was calculated from the contact width between No. 4, the nip 23, and the magnetic particles and the aluminum drum. 26 is a constant voltage device.

【0060】なお、測定環境は23℃/65%の環境下
で行った。
The measurement environment was 23 ° C./65%.

【0061】帯電部材である磁性粒子の抵抗値は、一般
的に帯電部材に印加される印加電界によって変動し、特
に高い印加電界では抵抗が低く、低い印加電界では抵抗
が高くなるという挙動を示し、印加電界の依存性が認め
られる。
The resistance value of the magnetic particles as the charging member generally varies depending on the applied electric field applied to the charging member, and the behavior is such that the resistance is low particularly in a high applied electric field and high in a low applied electric field. , The dependency of the applied electric field is recognized.

【0062】感光体に電荷を注入することにより帯電を
行う場合において、感光体と帯電部材のニップ部に、感
光体の帯電される面が突入(帯電部材からみて上流側)
した場合、突入前の感光体の帯電電位と帯電部材に印加
される電圧の電圧差は大きく、そのために帯電部材にか
かる印加電界は高くなる。しかし、感光体がニップ部を
通過することにより、感光体に電荷が注入され、ニップ
部内において帯電が徐々に行われることにより、感光体
上の電位が、帯電部材に印加される印加電圧に徐々に近
づき、電圧印加部分に印加される印加電圧と感光体上と
の電位との差が小さく、差が0Vの方向に近づくため、
それだけ帯電部材にかかる印加電界は小さくなる。つま
り、感光体を帯電させる工程において帯電部材にかかる
印加電界が帯電部材のニップ部の上流側と下流側では異
なり、上流側では帯電部材にかかる印加電界は高く、下
流側では低いということになる。
When charging is performed by injecting charges into the photoconductor, the charged surface of the photoconductor rushes into the nip portion between the photoconductor and the charging member (upstream side as viewed from the charging member).
In this case, the voltage difference between the charging potential of the photoconductor before the rush and the voltage applied to the charging member is large, and therefore the applied electric field applied to the charging member is high. However, as the photoconductor passes through the nip portion, charges are injected into the photoconductor, and the charging is gradually performed in the nip portion, so that the potential on the photoconductor gradually changes to the applied voltage applied to the charging member. , The difference between the applied voltage applied to the voltage application portion and the potential on the photoconductor is small, and the difference approaches 0 V.
Accordingly, the applied electric field applied to the charging member becomes smaller. That is, in the step of charging the photoconductor, the applied electric field applied to the charging member is different between the upstream side and the downstream side of the nip portion of the charging member, and the applied electric field applied to the charging member is high on the upstream side and low on the downstream side. .

【0063】従って、帯電工程を行う前に前露光などの
電荷を除去する工程を経た場合は、帯電部材のニップ部
に突入する際の感光体上の電位がほぼ0Vであるため、
上流側の印加電界はほぼ帯電部材に印加される印加電圧
によって決定されるが、そのような電荷を除去する工程
を設けない場合は、帯電と転写の印加電圧、極性によ
り、つまり転写後の感光体上の電位と、帯電部材に印加
される印加電圧によって決定される。
Therefore, when a step of removing charges such as pre-exposure is performed before the charging step, the electric potential on the photosensitive member when it enters the nip portion of the charging member is almost 0V,
The applied electric field on the upstream side is almost determined by the applied voltage applied to the charging member, but if such a step of removing the charges is not provided, it depends on the applied voltage and polarity of the charging and transfer, that is, after the transfer. It is determined by the potential on the body and the applied voltage applied to the charging member.

【0064】つまり、感光体上に電荷を注入して帯電を
行う場合においては、帯電部材の抵抗値が、例えば帯電
部材に印加される印加電圧の30%の印加電圧における
印加電界0.3×V/d(V/cm)以下の範囲で10
10Ωcm以上の抵抗になってしまうと、帯電部材のニッ
プ部の下流側での注入による帯電が著しく低下してしま
い、印加電圧の70%までの帯電は良好であるが、残り
30%は電荷の注入性が悪化し、電荷が感光体上に注入
しにくくなり、所望の電位まで帯電出来ず、帯電不良に
なってしまう。つまり、より低電界印加における抵抗値
が感光体への電荷の注入性には大きな影響を及ぼすとい
うことである。
That is, when charging is performed by injecting charges onto the photoconductor, the resistance value of the charging member is, for example, 0.3 × the applied electric field at an applied voltage of 30% of the applied voltage applied to the charging member. 10 in the range of V / d (V / cm) or less
If the resistance is 10 Ωcm or more, the charging due to the injection at the downstream side of the nip portion of the charging member is significantly reduced, and the charging up to 70% of the applied voltage is good, but the remaining 30% is the charge. Injectability deteriorates, and it becomes difficult to inject charges onto the photoconductor, so that a desired potential cannot be charged, resulting in poor charging. That is, the resistance value when a lower electric field is applied has a great influence on the property of injecting charges into the photoconductor.

【0065】従って、該接触帯電部材の、帯電部材を導
体の回転体の基体に接触させた動的抵抗測定方法におけ
る、体積抵抗値が、(V−VD)/dかV/dのどちら
か高い方の電界をV1(V/cm)とした時、20〜V
1(V/cm)の印加電界範囲中において、104 Ωc
m〜1010Ωcmの範囲中にあることが好ましく、ま
た、感光体上の電位が印加電圧の80%程度までであれ
ば良好な画像形成ができるという観点から、0.2×V
/dの電界をV3(V/cm)とした時、V3〜V1
(V/cm)の印加電界範囲中において、104 Ωcm
〜1010Ωcmの範囲中にあることが好ましい。
Therefore, the volume resistance value of the contact charging member in the dynamic resistance measuring method in which the charging member is brought into contact with the substrate of the rotating body of the conductor is either (V-VD) / d or V / d. 20-V when the higher electric field is V1 (V / cm)
10 4 Ωc in the applied electric field range of 1 (V / cm)
It is preferably in the range of m to 10 10 Ωcm, and 0.2 × V from the viewpoint that a good image can be formed when the potential on the photoreceptor is up to about 80% of the applied voltage.
When the electric field of / d is V3 (V / cm), V3 to V1
10 4 Ωcm in the applied electric field range of (V / cm)
It is preferably in the range of 10 to 10 10 Ωcm.

【0066】一方、帯電部材に印加される印加電圧にお
ける印加電界で104 Ωcm以下になってしまうと感光
体表面に生じたキズ、ピンホール等に対して接触帯電部
材から過大なリーク電流が流れ込み、周辺の帯電不良
や、ピンホールの拡大、帯電部材の通電破壊が生じる。
感光体上のキズやピンホール部は感光体の導電層(金属
基体)が表面に露出していることから感光体上の電位は
0Vであり、従って帯電部材にかかる最大印加電界は帯
電部材に印加される印加電圧により決定される。
On the other hand, when the applied electric field at the applied voltage applied to the charging member is 10 4 Ωcm or less, excessive leakage current flows from the contact charging member to scratches, pinholes, etc. generated on the surface of the photoconductor. In addition, defective charging around, enlargement of pinholes, and electrical breakdown of the charging member may occur.
Since the conductive layer (metal substrate) of the photoconductor is exposed on the surface of the photoconductor, the potential on the photoconductor is 0 V, and therefore the maximum applied electric field applied to the charging member is not applied to the charging member. It is determined by the applied voltage applied.

【0067】従って、該感光体を帯電させるために、帯
電部材にかかる最大電界、つまり帯電部材ニップ部の上
流側における感光体電位と帯電部材に印加される印加電
圧の電圧差によって決定される印加電界か、前露光工程
を設置、あるいは感光体上に傷等によりピンホールが存
在する場合の帯電部材に印加される印加電圧により決定
される印加電界のどちらか高い方の印加電界V1(V/
cm)とした時、20〜V1(V/cm)の印加電界範
囲中において、抵抗値が104 Ωcm〜1010Ωcmの
抵抗値であることが好ましい。
Therefore, in order to charge the photosensitive member, the maximum electric field applied to the charging member, that is, the voltage determined by the voltage difference between the photosensitive member potential on the upstream side of the nip portion of the charging member and the applied voltage applied to the charging member. The higher of the applied electric field V1 (V / V) which is determined by the applied voltage applied to the charging member when there is a pinhole due to a scratch or the like on the photoconductor
cm), the resistance value is preferably 10 4 Ωcm to 10 10 Ωcm in the applied electric field range of 20 to V1 (V / cm).

【0068】また、帯電部材と感光体とのニップ幅を広
くすればするほど帯電部材と感光体との接触面積が増
し、接触時間も増すことから、感光体表面への電荷注入
は良好に行われ、帯電が良好に行われる。しかし、ニッ
プ幅を狭くしても十分な電荷注入性を得るために、帯電
部材の抵抗値は、その印加電界の範囲内において、印加
電界による抵抗値の最大R1と最小R2とした時、R1
/R2≦1000の範囲内であることが好ましい。帯電
がニップ内で行われる工程において、急激に抵抗が変化
することで、感光体への電荷の注入が追随せず、ニップ
部を通過してしまい、十分な帯電が行われない場合があ
るためである。
Further, the wider the nip width between the charging member and the photosensitive member, the larger the contact area between the charging member and the photosensitive member and the longer the contact time. That is, the charging is performed well. However, in order to obtain a sufficient charge injection property even when the nip width is narrowed, the resistance value of the charging member is R1 when the resistance value is the maximum R1 and the minimum R2 by the applied electric field within the range of the applied electric field.
It is preferably within the range of / R2 ≦ 1000. In the process where charging is performed in the nip, the resistance changes abruptly, so that the charge may not be injected into the photoconductor and the charge may pass through the nip portion, which may result in insufficient charging. Is.

【0069】本発明に係わる磁性粒子の体積抵抗値の調
整方法としては、先述したような還元処理、組成調整に
加え、表面に設けた樹脂層中に導電性粒子を分散させる
方法も挙げられる。係る導電性粒子としては、カーボン
ブラック、TiO2 、SnO 2 等添加することによりキ
ャリアの抵抗を低下せしめる材料であれば任意に選択す
ることが可能である。こういった導電性粒子は、例えば
特開昭60−106808号公報あるいは特開昭60−
106809号公報中に記載されている方法に従い、重
合触媒で処理した磁性粒子及び導電性粒子の共存下でポ
リオレフィン樹脂層を直接重合形成する方法、あるいは
磁性粒子表面に樹脂層を設けた後機械的処理または熱的
処理により樹脂層表面に固着させる方法等、任意の方法
で使用することができる。
Control of volume resistance of magnetic particles according to the present invention
As the leveling method, the reduction treatment and composition adjustment as described above
In addition, the conductive particles are dispersed in the resin layer provided on the surface.
There is also a method. Such conductive particles include carbon
Black, TiOTwo , SnO Two Etc. by adding
Any material that reduces the carrier resistance can be selected.
It is possible to Such conductive particles are, for example,
JP-A-60-106808 or JP-A-60-
According to the method described in Japanese Patent No. 106809,
In the presence of magnetic particles and conductive particles treated with a combined catalyst,
A method of directly polymerizing the reolefin resin layer, or
After providing a resin layer on the surface of magnetic particles, mechanical treatment or thermal treatment
Arbitrary method such as fixing to the resin layer surface by treatment
Can be used with

【0070】しかし、表面層のみで磁性粒子の抵抗を制
御することは、高電界側での急激な抵抗低下、また感光
体上の傷の大きさ、深さによるリーク画像発生の許容範
囲を広くするという観点から好ましくなく、母体の磁性
粒子の抵抗も上述の範囲に収まっていることが好まし
い。
However, controlling the resistance of the magnetic particles only by the surface layer makes the resistance range abruptly decreased on the high electric field side, and the allowable range of leak image generation due to the size and depth of scratches on the photoconductor is widened. It is not preferable from the viewpoint of the above, and it is preferable that the resistance of the magnetic particles of the matrix is also within the above range.

【0071】従って、表面層の抵抗はコア材の抵抗と同
程度にする必要がある。
Therefore, the resistance of the surface layer needs to be approximately the same as the resistance of the core material.

【0072】直接重合法により磁性粒子表面に被覆され
たポリオレフィン系樹脂層は必ずしも該磁性粒子を完全
に被覆する必要は無く、本発明の効果が得られる範囲で
該磁性粒子が露出していてもよい。つまり、表面層が不
連続に形成されていてもよい。
The polyolefin resin layer coated on the surface of the magnetic particles by the direct polymerization method does not necessarily have to completely cover the magnetic particles, and even if the magnetic particles are exposed to the extent that the effect of the present invention can be obtained. Good. That is, the surface layer may be formed discontinuously.

【0073】また、本発明に係わる導電性微粒子として
は、銅、ニッケル、鉄、アルミニウム、金、銀等の金属
あるいは酸化鉄、フェライト、酸化亜鉛、酸化スズ、酸
化アンチモン、酸化チタン等の金属酸化物更にはカーボ
ンブラック等の電子伝導性の導電紛が挙げられ、更にイ
オン導電剤として、過塩素酸リチウム、4級アンモニウ
ム塩などが挙げられる。
The conductive fine particles according to the present invention include metals such as copper, nickel, iron, aluminum, gold and silver or metal oxides such as iron oxide, ferrite, zinc oxide, tin oxide, antimony oxide and titanium oxide. Further, an electron-conducting conductive powder such as carbon black can be used, and further, an ion conductive agent can be lithium perchlorate, a quaternary ammonium salt, or the like.

【0074】また、帯電として放電を用いる場合には、
オゾンの発生や放電エネルギー等によるダメージによっ
て磁性粒子への汚染が悪化する傾向にある。一方注入帯
電を用いると、放電のように帯電に大きな電圧を必要と
しないので、これらの点から注入帯電が好ましい。
When discharging is used for charging,
Contamination of magnetic particles tends to be exacerbated by the generation of ozone, damage by discharge energy, and the like. On the other hand, when the injection charging is used, injection charging is preferable because a large voltage is not required for charging like discharge.

【0075】また、例えば反転現像を用いた電子写真装
置の場合、トナーの電荷量を感光体の極性にそろえるこ
とで、帯電装置中に混入したトナーを感光体に現像する
ことによってトナーを吐きだすことが可能になる。従っ
て、被覆しない場合に比べ耐スペント性も向上すると考
えられる。
Further, for example, in the case of an electrophotographic apparatus using the reversal development, by aligning the charge amount of the toner with the polarity of the photoconductor, the toner mixed in the charging device is developed on the photoconductor to discharge the toner. It will be possible. Therefore, it is considered that the spent resistance is improved as compared with the case where the coating is not applied.

【0076】該磁性粒子の粒径は体積分布径2.2μm
以上の磁性粒子において、体積分布50%径が10μm
以上100μm以下であり、かつ体積分布50%径と体
積分布5%径の比(以降、粒径比と記す))が1.40
以上であることが好ましく、より好ましくは体積分布5
0%径は10μm以上60μm以下、粒径比は1.55
以上5.00以下である。
The particle size of the magnetic particles is 2.2 μm in volume distribution diameter.
In the above magnetic particles, the volume distribution 50% diameter is 10 μm
And 100 μm or less, and the ratio of the volume distribution 50% diameter to the volume distribution 5% diameter (hereinafter referred to as the particle size ratio) is 1.40.
The volume distribution is preferably 5 or more, more preferably 5
0% diameter is 10 μm or more and 60 μm or less, particle diameter ratio is 1.55
It is above 5.00.

【0077】接触帯電では、感光体との接触性向上が帯
電能を高める重要な要素であり、その達成手段として上
記の粒径及び粒径比の範囲にある磁性粒子を用いること
が有効である。
In the contact charging, improvement of the contact property with the photosensitive member is an important factor for enhancing the charging ability, and it is effective to use magnetic particles having the above particle diameter and particle diameter ratio as means for achieving the improvement. .

【0078】即ち、上記粒度分布をもつ磁性粒子の場
合、体積分布50%径よりも小さい粒径の磁性粒子は、
補助粒子として磁性粒子間を移動し付着(磁力による拘
束)することができるので、以下のような効果が得られ
る。
That is, in the case of magnetic particles having the above particle size distribution, magnetic particles having a particle size smaller than the 50% volume distribution are:
As the auxiliary particles, they can move between the magnetic particles to be attached (restrained by magnetic force), so that the following effects can be obtained.

【0079】1)磁性粒子と感光体との接触面をより密
接に接触させる。
1) The contact surface between the magnetic particles and the photoconductor is brought into closer contact.

【0080】2)磁性粒子間を密にし、磁気ブラシ内の
抵抗を均一にする。
2) The magnetic particles are closely packed and the resistance in the magnetic brush is made uniform.

【0081】ここで、粒径比が1.40未満では補助粒
子としての効果が低下し、低温低湿条件下で帯電不良が
発生することがある。また、体積分布の小粒径側におい
て、体積分布径が2.2μm未満である磁性粒子は感光
体に付着することがあり、このような場合には感光体の
削れを引き起こす要因にもなる。
Here, if the particle size ratio is less than 1.40, the effect as auxiliary particles is reduced, and charging failure may occur under low temperature and low humidity conditions. On the small particle size side of the volume distribution, magnetic particles having a volume distribution diameter of less than 2.2 μm may adhere to the photoconductor, and in such a case, it may cause abrasion of the photoconductor.

【0082】ここで、磁性粒子の体積分布径はレーザー
回折式粒度分布測定装置HEROS(日本電子(株)
製)を用いて、0.05μm〜200μmの範囲を32
対数分割して測定した。
Here, the volume distribution diameter of the magnetic particles is measured by a laser diffraction particle size distribution measuring device HEROS (JEOL Ltd.).
Manufactured), and a range of 0.05 μm to 200 μm is set to 32.
The measurement was performed by logarithmic division.

【0083】ところで、以上に述べた磁性粒子は一般
に、磁性粒子を拘束させるためのマグネット等の永久磁
石を内包した任意の表面粗さを有する金属筒や金属箔に
よって保持させた形態で用いられる。
By the way, the above-mentioned magnetic particles are generally used in the form of being held by a metal tube or a metal foil having an arbitrary surface roughness and containing a permanent magnet such as a magnet for restraining the magnetic particles.

【0084】このようにして作製された帯電部材はバネ
等の抑圧手段を用いて帯電ニップを形成させ、感光体に
対して抑圧接触させた状態で用いられる。
The charging member manufactured in this manner is used in a state in which the charging nip is formed by using a suppressing means such as a spring and the pressing contact is made with the photosensitive member.

【0085】磁性粒子を保持する保持部材と感光体との
間隙は0.2〜2mmの範囲が好ましい。0.2mmよ
り小さいと磁性粒子がその間隙を通りにくくなり、スム
ーズに保持部材上を磁性粒子が搬送されずに帯電不良
や、ニップ部に磁性粒子が過剰に溜り、感光体への付着
が生じ易くなり、2mm以上では感光体と磁性粒子のニ
ップ幅を広く形成しにくいので好ましくない。更に好ま
しくは0.2〜1mm、特には0.3〜0.7mmが好
ましい。
The gap between the holding member holding the magnetic particles and the photoconductor is preferably in the range of 0.2 to 2 mm. If the diameter is less than 0.2 mm, it becomes difficult for the magnetic particles to pass through the gap, and the magnetic particles are not smoothly transported on the holding member, resulting in poor charging or excessive accumulation of magnetic particles in the nip portion, resulting in adhesion to the photoconductor. If it is 2 mm or more, it is difficult to form a wide nip width between the photoconductor and the magnetic particles, which is not preferable. It is more preferably 0.2 to 1 mm, and particularly preferably 0.3 to 0.7 mm.

【0086】本発明の帯電装置が注入帯電に用いられる
場合、本発明に用いられる感光体は支持体より最も離れ
た層、即ち表面層として電荷注入層を有する。この電荷
注入層の体積抵抗値は、十分な帯電性が得られ、また画
像流れを起こしにくくするため、体積抵抗値が1×10
8 〜1×1015Ωcmであることが好ましく、特に画像
流れの点から、体積抵抗値が1×1010〜1×1014Ω
cm、更に体積抵抗値の環境変動等も考慮すると1×1
12〜1×1014Ωcmであることが好ましい。
When the charging device of the present invention is used for injection charging, the photosensitive member used in the present invention has a charge injection layer as a layer farthest from the support, that is, a surface layer. The charge injection layer has a volume resistance value of 1 × 10 in order to obtain sufficient chargeability and to prevent image deletion from occurring.
It is preferably from 8 to 1 × 10 15 Ωcm, and particularly from the viewpoint of image deletion, the volume resistance value is from 1 × 10 10 to 1 × 10 14 Ω.
cm × 1 × 1 considering the environmental change of volume resistance
It is preferably 0 12 to 1 × 10 14 Ωcm.

【0087】体積抵抗値が1×108 Ωcm未満では高
湿環境で帯電電荷が表面方向に保持されないため画像流
を生じ易くなる。また1×1015Ωcmを超えると帯電
部材からの帯電電荷を十分注入保持できず帯電不良を生
じ易くなる傾向にある。
If the volume resistance value is less than 1 × 10 8 Ωcm, the image charge tends to occur because the charged electric charges are not retained in the surface direction in a high humidity environment. On the other hand, if it exceeds 1 × 10 15 Ωcm, the charged electric charge from the charging member cannot be sufficiently injected and held, and charging failure tends to occur.

【0088】ここで、本発明における電荷注入層の体積
抵抗値の測定方法は、表面に金を蒸着させたポリエチレ
ンテレフタレート(PET)フィルム上に表面層を作成
しこれを体積抵抗測定装置(ヒューレットパッカード社
製4140B pA MATER)にて、23℃、65
%の環境で100Vの電圧を印加して測定するというも
のである。
Here, the method for measuring the volume resistance value of the charge injection layer in the present invention is as follows. A surface layer is formed on a polyethylene terephthalate (PET) film having gold deposited on the surface, and a volume resistance measuring device (Hewlett Packard) is used. Manufactured by 4140B pA MATER) at 23 ° C., 65
The measurement is performed by applying a voltage of 100 V in an environment of 100%.

【0089】このような機能層を感光体表面に設けるこ
とによって、帯電部材から注入された帯電電荷を保持す
る役割を果し、更に光露光時にこの電荷を感光体支持体
に逃がす役割を果し残留電位を低減させる。
By providing such a functional layer on the surface of the photoconductor, it plays a role of retaining the charged electric charge injected from the charging member, and also plays a role of releasing the electric charge to the photoconductor support during light exposure. Reduce the residual potential.

【0090】また、本発明の帯電装置と上述した感光体
を用いることによって、帯電開始電圧Vthが小さく感
光体帯電電位を帯電部材に印加する電圧の殆ど90%以
上までに帯電させることが可能になった。
Further, by using the charging device of the present invention and the above-mentioned photosensitive member, the charging start voltage Vth is small and the charging potential of the photosensitive member can be charged to almost 90% or more of the voltage applied to the charging member. became.

【0091】例えば、本発明の帯電装置に絶対値で10
0〜2000Vの直流電圧を1000mm/分以下のプ
ロセススピードで印加した時、本発明における電荷注入
層を有する電子写真感光体の帯電電位を印加電圧の80
%以上、更には90%以上にすることができる。これに
対し従来の放電を利用した帯電によって得られる感光体
の帯電電位は、印加電圧が640V以下では殆ど0Vで
あり、640V以上では印加電圧から640Vを引いた
値の帯電電位程度しか得られなかった。
For example, the charging device of the present invention has an absolute value of 10
When a direct current voltage of 0 to 2000 V is applied at a process speed of 1000 mm / min or less, the charging potential of the electrophotographic photosensitive member having a charge injection layer of the present invention is 80% of the applied voltage.
%, Or even 90% or more. On the other hand, the charging potential of the photoconductor obtained by charging using conventional discharge is almost 0 V when the applied voltage is 640 V or less, and when the applied voltage is 640 V or more, only a charging potential of a value obtained by subtracting 640 V from the applied voltage can be obtained. It was

【0092】この電荷注入層は金属蒸着膜等の無機の層
あるいは導電性微粒子を結着樹脂中に分散させた導電粉
分散樹脂層等によって構成され、蒸着膜は蒸着、導電粉
分散樹脂膜はディッピング塗工法、スプレー塗工法、ロ
ールコート塗工法及びビーム塗工法等の適当な塗工法に
て塗工することによって形成される。また絶縁性の結着
樹脂に光透過性の高いイオン導電性を持つ樹脂を混合も
しくは共重合させて構成するもの、または中抵抗で光導
電性のある樹脂単体で構成するものでもよい。
This charge injection layer is composed of an inorganic layer such as a metal vapor deposition film or a conductive powder-dispersed resin layer in which conductive fine particles are dispersed in a binder resin. The vapor deposition film is vapor-deposited and the conductive powder-dispersed resin film is It is formed by applying an appropriate coating method such as a dipping coating method, a spray coating method, a roll coating method and a beam coating method. Further, it may be constituted by mixing or copolymerizing an insulating binder resin with a resin having a high light-transmitting ion conductivity, or a resin having a medium resistance and a photoconductivity alone.

【0093】導電性微粒子分散膜の場合、導電性微粒子
の添加量は結着樹脂100重量部に対して2〜250重
量部、より好ましくは2〜190重量部である。2重量
部より少ない場合には所望の体積抵抗値を得にくくな
り、また250重量部より多い場合には膜強度が低下し
てしまい電荷注入層が削りとられ易くなり、感光体の寿
命が短くなる。また、抵抗が低くなってしまい潜像電位
が流れることによる画像不良を生じ易くなるからであ
る。
In the case of the conductive fine particle dispersed film, the amount of the conductive fine particles added is 2 to 250 parts by weight, more preferably 2 to 190 parts by weight, based on 100 parts by weight of the binder resin. When the amount is less than 2 parts by weight, it is difficult to obtain a desired volume resistance value, and when the amount is more than 250 parts by weight, the film strength is lowered and the charge injection layer is easily scraped off, and the life of the photoreceptor is shortened. Become. Further, the resistance becomes low, and the image defect due to the flow of the latent image potential is likely to occur.

【0094】また、電荷注入層の結着樹脂は下層の結着
樹脂と同じとすることも可能であるが、この場合には電
荷注入層の塗工時に電荷輸送層の塗工面を乱してしまう
可能性があるため、被覆方法を特に選択する必要があ
る。
The binder resin for the charge injection layer may be the same as the binder resin for the lower layer, but in this case, the coating surface of the charge transport layer is disturbed when the charge injection layer is coated. Therefore, the coating method needs to be particularly selected because it may occur.

【0095】また、本発明においては、感光体の耐久性
を向上させるために、電荷注入層が滑材粒子を含有する
ことが好ましい。特に、滑材粒子として臨界表面張力の
低いフッ素系樹脂、シリコーン系樹脂またはポリオレフ
ィン系樹脂を用いるのがより望ましい。更に好ましくは
四フッ化エチレン樹脂(PTFE)が用いられる。この
場合、滑材粒子の添加量は、結着樹脂100重量部に対
して好ましくは2〜50重量部であり、より好ましくは
5〜40重量部である。2重量部より少ない場合には耐
久性の向上が不十分になる傾向があり、また50重量部
より多い場合には、画像の分解能や感光体の感度が低下
する傾向がある。
In the present invention, the charge injection layer preferably contains lubricant particles in order to improve the durability of the photoreceptor. In particular, it is more preferable to use a fluorine resin, a silicone resin, or a polyolefin resin having a low critical surface tension as the lubricant particles. More preferably, tetrafluoroethylene resin (PTFE) is used. In this case, the amount of lubricant particles added is preferably 2 to 50 parts by weight, and more preferably 5 to 40 parts by weight, based on 100 parts by weight of the binder resin. If the amount is less than 2 parts by weight, the improvement of the durability tends to be insufficient, and if the amount is more than 50 parts by weight, the resolution of the image and the sensitivity of the photoreceptor tend to decrease.

【0096】また、本発明における電荷注入層の膜厚は
0.1〜10μmであることが好ましく、特には1〜7
μmであることが好ましい。
The film thickness of the charge injection layer in the present invention is preferably 0.1 to 10 μm, and particularly preferably 1 to 7.
μm is preferred.

【0097】以下に本発明に使用される部材の構成、材
質、製造方法等を例示する。 [トナー製造例] ポリエステル樹脂 100部(重量部、以下同様) カーボンブラック 3部 ジ−tert−ブチルサリチル酸のクロム化合物 4部 上記材料をヘンシェルミキサーにより十分予備混合を行
い、2軸押出式混練機により溶融混練し、冷却後ハンマ
ーミルを用いて約1mm程度に粗粉砕し、次いでエアー
ジェット方式による微粉砕機で微粉砕した。更に得られ
た微粉砕物を風力分級して、重量平均粒径が10μmで
ある黒色粉体を得た。
The constitution, material, manufacturing method, etc. of the members used in the present invention will be illustrated below. [Toner Production Example] Polyester resin 100 parts (parts by weight, the same shall apply hereinafter) Carbon black 3 parts Di-tert-butylsalicylic acid chromium compound 4 parts The above materials are sufficiently premixed by a Henschel mixer, and then a biaxial extrusion kneader is used. The mixture was melt-kneaded, cooled, roughly crushed to about 1 mm using a hammer mill, and then finely crushed by a fine crusher using an air jet system. Further, the obtained finely pulverized product was subjected to air classification to obtain a black powder having a weight average particle size of 10 μm.

【0098】上記黒色粉体100部と表面を疎水化処理
したシリカ微粉末(平均粒径0.05μm)1.5部と
をヘンシェルミキサーで混合し、トナーを得た。
100 parts of the above black powder and 1.5 parts of silica fine powder (average particle size: 0.05 μm) whose surface was hydrophobized were mixed with a Henschel mixer to obtain a toner.

【0099】[感光体製造例1]感光体は負帯電用の有
機光導電性物質を用いた感光体であり、φ30mmのア
ルミニウム製のシリンダー上に機能層を5層設ける。
[Photoreceptor Production Example 1] A photoreceptor is a photoreceptor using an organic photoconductive substance for negative charging, and five functional layers are provided on a cylinder made of aluminum having a diameter of 30 mm.

【0100】第1層は導電層であり、アルミニウムシリ
ンダーの欠陥等をならすため、またレーザ露光の反射に
よるモアレの発生を防止するために設けられている厚さ
約20μmの導電性粒子分散樹脂層である。
The first layer is a conductive layer, and is a conductive particle-dispersed resin layer having a thickness of about 20 μm, which is provided to smooth defects such as aluminum cylinders and to prevent the generation of moire due to reflection of laser exposure. Is.

【0101】第2層は正電荷注入防止層(下引層)であ
り、アルミニウム支持体から注入された正電荷が感光体
表面に帯電された負電荷を打ち消すのを防止する役割を
果たし、6−66−610−12ナイロン樹脂とメトキ
シメチル化ナイロンによって106 Ωcm程度に抵抗調
整された厚さ約1μmの中抵抗層である。
The second layer is a positive charge injection preventing layer (undercoat layer), which plays a role of preventing the positive charges injected from the aluminum support from canceling out the negative charges charged on the surface of the photosensitive member. It is a medium resistance layer having a thickness of about 1 μm, the resistance of which is adjusted to about 10 6 Ωcm by using -66-610-12 nylon resin and methoxymethylated nylon.

【0102】第3層は電荷発生層であり、ジスアゾ系の
顔料を樹脂に分散した厚さ約0.3μmの層であり、レ
ーザ露光を受けることによって正負の電荷対を発生す
る。
The third layer is a charge generating layer, which is a layer having a thickness of about 0.3 μm in which a disazo pigment is dispersed in a resin, and generates positive and negative charge pairs by being exposed to laser.

【0103】第4層は電荷輸送層であり、ポリカーボネ
ート樹脂にヒドラゾンを分散した厚さ約25μmの層で
あり、P型半導体である。従って、感光体表面に帯電さ
れた負電荷はこの層を移動することはできず、電荷発生
層で発生した正電荷のみを感光体表面に輸送することが
できる。
The fourth layer is a charge transport layer, which is a layer having a thickness of about 25 μm in which hydrazone is dispersed in polycarbonate resin, and is a P-type semiconductor. Therefore, the negative charges charged on the photoreceptor surface cannot move through this layer, and only the positive charges generated in the charge generation layer can be transported to the photoreceptor surface.

【0104】第5層は本発明の特徴である電荷注入層で
あり、光硬化性のアクリル樹脂にSnO2 超微粒子、更
に粒径約0.25μmの四フッ化エチレン樹脂粒子を分
散したものである。具体的にはアンチモンをドーピング
し低抵抗化した粒径約0.03μmのSnO2 粒子を樹
脂100部に対して167部、更に四フッ化エチレン樹
脂粒子を20部、分散剤を1.2部分散したものであ
る。このようにして調製した塗工液をスプレー塗工法に
て厚さ約2.5μmに塗工して電荷注入層とした。
The fifth layer is a charge injection layer, which is a feature of the present invention, and is formed by dispersing SnO 2 ultrafine particles and tetrafluoroethylene resin particles having a particle size of about 0.25 μm in a photocurable acrylic resin. is there. Specifically, 167 parts of SnO 2 particles having a particle size of about 0.03 μm, which has been doped with antimony and has a low resistance, per 100 parts of resin, further 20 parts of tetrafluoroethylene resin particles, and 1.2 parts of a dispersant. It is dispersed. The coating solution prepared in this manner was applied by spray coating to a thickness of about 2.5 μm to form a charge injection layer.

【0105】これによって感光体表面層の体積抵抗値は
電荷輸送層単体の場合の1×1015Ωcmであったのに
比べ、感光体表面の抵抗は5×1012Ωcmにまで低下
した。
As a result, the volume resistance of the surface layer of the photoreceptor was 1 × 10 15 Ωcm in the case of the charge transport layer alone, whereas the resistance of the surface of the photoreceptor was lowered to 5 × 10 12 Ωcm.

【0106】[感光体製造例2]感光体製造例1で第5
層を設けなかったこと以外は、感光体製造例1と同様に
感光体を作成した。
[Photoreceptor Manufacturing Example 2]
A photoconductor was prepared in the same manner as in Photoconductor Production Example 1 except that no layer was provided.

【0107】これにより、感光体表面層の体積抵抗値
は、1×1015Ωcmであった。
As a result, the volume resistance value of the surface layer of the photoconductor was 1 × 10 15 Ωcm.

【0108】[感光体製造例3]感光体製造例1の第5
層を、アンチモンをドーピングし、低抵抗化した粒径約
0.03μmのSnO2 粒子を光硬化性のアクリル樹脂
100部に対して300部分散したものを加えたこと以
外は、感光体製造例1と同様に感光体を作成した。
[Photoreceptor Production Example 3] Fifth of Photoreceptor Production Example 1
Photoreceptor Manufacturing Example except that a layer was prepared by adding 300 parts of SnO 2 particles having a particle size of about 0.03 μm, which was doped with antimony and reduced in resistance, to 100 parts of a photocurable acrylic resin. A photoconductor was prepared in the same manner as in 1.

【0109】これにより、感光体表面層の体積抵抗値
は、2×107 Ωcmにまで低下した。
As a result, the volume resistivity of the surface layer of the photoconductor was lowered to 2 × 10 7 Ωcm.

【0110】[感光体製造例4]鏡面加工を施したアル
ミシリンダーにグロー放電法を用いて、阻止層、光導電
層及び表面層を順次形成した。
[Photoreceptor Production Example 4] A blocking layer, a photoconductive layer and a surface layer were sequentially formed on a mirror-finished aluminum cylinder by the glow discharge method.

【0111】まず、反応室を約7.5×10-3Paにし
た後、アルミシリンダーを250℃に保ちつつ、SiH
4 ,B26 ,NO及びH2 ガスを反応室に送り込む一
方、反応室よりガスを流出させ、30Pa程度の内圧に
した後にグロー放電を生起させ、5μmの阻止層を形成
した。
First, the reaction chamber was set to about 7.5 × 10 -3 Pa, and then the aluminum cylinder was kept at 250 ° C. while SiH
4 , B 2 H 6 , NO, and H 2 gas were fed into the reaction chamber, while the gas was allowed to flow out from the reaction chamber, and an internal pressure of about 30 Pa was applied to cause glow discharge to form a 5 μm blocking layer.

【0112】この後、阻止層の形成と同様な方法を用
い、SiH4 及びH2 ガスを使用し、50Paの内圧に
した後に、20μmの光導電層を形成し、更に、SiH
4 、CH4 及びH2 ガスを使用し、55Paの圧力下で
グロー放電により膜厚0.5μmのSiとCからなる表
面層を形成し、アモルファスシリコン感光体を作成し
た。
Then, using a method similar to that for forming the blocking layer, SiH 4 and H 2 gases were used to adjust the internal pressure to 50 Pa, and then a photoconductive layer having a thickness of 20 μm was formed.
A surface layer made of Si and C having a film thickness of 0.5 μm was formed by glow discharge under a pressure of 55 Pa using 4 , CH 4 and H 2 gas to prepare an amorphous silicon photoreceptor.

【0113】[帯電部材用磁性芯材粒子製造例1]Fe
23 、CuO、ZnOれぞれの金属酸化物をモル比
2.2:1:1になるように秤量混合し、更に二酸化ケ
イ素をケイ素成分が全重量の0.22重量%となるよう
に添加し、得られた混合粉に結着樹脂としてPVA(ポ
リビニルアルコール)の水溶液(PVA量としては0.
5〜5.0重量%)を加え、スラリーとした後、スプレ
ードライヤーにより造粒した。得られた造粒粉を大気中
で1100〜1300℃で焼成し、解砕した後、分級に
よる所望の粒度の磁性粒子を得た。
[Production Example 1 of magnetic core material particles for charging member] Fe
Metal oxides of 2 O 3 , CuO, and ZnO were weighed and mixed so that the molar ratio was 2.2: 1: 1, and silicon dioxide was added so that the silicon content was 0.22% by weight based on the total weight. And an aqueous solution of PVA (polyvinyl alcohol) as a binder resin (the amount of PVA is 0.
(5 to 5.0% by weight) was added to make a slurry and then granulated by a spray dryer. The obtained granulated powder was fired in the air at 1100 to 1300 ° C. and crushed, and then magnetic particles having a desired particle size were obtained by classification.

【0114】[帯電部材用磁性芯材粒子製造例2]製造
例1の処方に更に、燐を全重量の0.042重量%とな
るように添加した以外は製造例1と同様の磁性粒子を得
た。
[Manufacturing Example 2 of Magnetic Core Material Particles for Charging Member] The same magnetic particles as in Manufacturing Example 1 were added except that phosphorus was added to the formulation of Manufacturing Example 1 so as to be 0.042 wt% of the total weight. Obtained.

【0115】[帯電部材用磁性芯材粒子製造例3]製造
例1の金属酸化物であるFe23 、CuO、Zn0モ
ル比が2.1:1:0.6になるように秤量混合し、更
に二酸化ケイ素をケイ素成分が全重量の0.07重量%
となるようにした以外は製造例1と同様の磁性粒子を得
た。
[Manufacturing Example 3 of Magnetic Core Material Particles for Charging Member] The metal oxides of manufacturing example 1, Fe 2 O 3 , CuO and Zn, were weighed and mixed so that the molar ratio was 2.1: 1: 0.6. In addition, silicon dioxide contains 0.07% by weight of the total weight of silicon.
The same magnetic particles as in Production Example 1 were obtained except that the above was adopted.

【0116】[帯電部材用磁性芯材粒子製造例4]製造
例1の二酸化ケイ素の添加量をケイ素成分の全重量に対
する含有量が1.5重量%となるようにしたした以外は
製造例1と同様にして得られた磁性粒子。
[Manufacturing Example 4 of Magnetic Core Particles for Charging Member] Manufacturing Example 1 except that the amount of silicon dioxide added in Manufacturing Example 1 was changed to 1.5% by weight based on the total weight of the silicon component. Magnetic particles obtained in the same manner as.

【0117】[帯電部材用磁性芯材粒子製造例5]磁性
芯材粒子としてマグネタイト(FeO・Fe23 )粒
子の帯電部材である磁性粒子を用いた。
[Production Example 5 of Magnetic Core Material Particles for Charging Member] As the magnetic core material particles, magnetic particles of magnetite (FeO.Fe 2 O 3 ) particles as a charging member were used.

【0118】表面への樹脂層の形成は特開昭60−10
6809、特開昭60−106808等で公知の方法に
基づき、触媒量、重合条件、導電剤量等を調整して上記
磁性芯材フェライト粒子表面上にポリエチレン樹脂層を
直接重合形成し、後表に示す様な分子量分布を持つ樹脂
被覆磁性粒子を作製した。
The formation of the resin layer on the surface is described in JP-A-60-10.
6809, JP-A-60-106808, etc., a polyethylene resin layer is directly polymerized on the surface of the ferrite particles of the magnetic core by adjusting the amount of catalyst, polymerization conditions, amount of conductive agent, etc. Resin-coated magnetic particles having a molecular weight distribution as shown in were prepared.

【0119】なお、粒度分布をレーザー回折式粒度分布
測定装置HEROS(日本電子製)を用いて測定し、ま
た、樹脂被覆磁性粒子の抵抗値を図1で示す粒子を充填
させる方法で−100V印加電圧で測定した。
The particle size distribution was measured using a laser diffraction type particle size distribution measuring device HEROS (made by JEOL Ltd.), and the resistance value of the resin-coated magnetic particles was applied at −100 V by the method shown in FIG. It was measured by voltage.

【0120】[0120]

【表1】 [Table 1]

【0121】[0121]

【実施例】【Example】

(実施例1)前記感光体と接触帯電部材を用いて帯電を
行う際の原理について説明する。
(Embodiment 1) The principle of charging using the photoconductor and the contact charging member will be described.

【0122】本発明においては中抵抗の接触帯電部材
で、中抵抗の表面抵抗を持つ感光体表面に電荷注入を行
うものであるが、本実施例は感光体表面材質の持つトラ
ップ電位に電荷を注入するものではなく、電荷注入層の
導電性粒子に電荷を充電して帯電を行うものである。
In the present invention, a medium resistance contact charging member is used to inject charges into the surface of the photoconductor having a medium resistance surface resistance. In the present embodiment, charges are applied to the trap potential of the surface material of the photoconductor. Instead of injecting, the conductive particles in the charge injection layer are charged with electric charges to perform charging.

【0123】具体的には電荷輸送層を誘電体、アルミ基
板と電荷注入層内の導電粒子を両電極板とする微小なコ
ンデンサーに接触帯電部材で電荷を充電する理論に基づ
くものである。この際、導電性粒子は互いに電気的には
独立であり、一種の微小なフロート電極を形成してい
る。このため、マクロ的には感光体表面は均一電位に充
電、帯電されているように見えるが、実際には微小な無
数の充電された導電性粒子が感光体表面を覆っているよ
うな状況となっている。このため、レーザーによって画
像露光を行ってもそれぞれの粒子は電気的に独立である
ため静電潜像を保持することが可能になる。
Specifically, it is based on the theory that a contact charging member charges a minute capacitor having a charge transport layer as a dielectric and an aluminum substrate and conductive particles in the charge injection layer as both electrode plates. At this time, the conductive particles are electrically independent of each other and form a kind of minute float electrode. For this reason, the surface of the photoconductor appears to be charged and charged to a uniform potential on a macroscopic scale, but in reality, innumerable minute charged conductive particles cover the photoconductor surface. Has become. Therefore, even if image exposure is performed with a laser, each particle is electrically independent and can hold an electrostatic latent image.

【0124】次に、本実施例で用いた電子写真方式のプ
リンターについて図2を用いて説明する。プロセススピ
ードは150mm/secであり、感光体10は感光体
製造例1で製造された感光体を使用した。
Next, the electrophotographic printer used in this embodiment will be described with reference to FIG. The process speed was 150 mm / sec, and the photoconductor 10 used was the photoconductor produced in Photoconductor Production Example 1.

【0125】接触帯電部材l1は磁気ブラシとして穂立
ちさせるための表面をブラスト処理した非磁性のアルミ
ニウム製の導電スリーブと、これに内包されるマグネッ
トロールから構成されるものを用い、該磁性粒子保持ス
リーブと感光体との間隙は約500μmとし、帯電部材
として上記で作製した帯電部材用粒子No.1の磁性粒
子を、感光体との間に幅約5mmの帯電ニップを形成さ
せるようにスリーブ上にコートした。また、マグネット
ロールは固定、スリーブ表面が感光体表面の周速に対し
て1倍の速さで逆方向に回転するようにし、感光体と磁
気ブラシが均一に接触するようにした。
The contact charging member 11 is composed of a non-magnetic conductive sleeve made of non-magnetic aluminum whose surface is blasted as a magnetic brush, and a magnet roll contained therein, which holds the magnetic particles. The gap between the sleeve and the photoconductor is set to about 500 μm, and the charging member particles No. No. The magnetic particles of No. 1 were coated on the sleeve so as to form a charging nip with a width of about 5 mm between the magnetic particles. The magnet roll was fixed, and the surface of the sleeve was rotated in the opposite direction at a speed 1 times the peripheral speed of the surface of the photoconductor so that the photoconductor and the magnetic brush were in uniform contact.

【0126】なお、磁気ブラシと感光体の間に周速差を
設けない場合には、磁気ブラシ自体は物理的な復元力を
持たないため、感光体のフレ、偏心等で磁気ブラシが押
し退けられた場合、磁気ブラシのニップが確保できなく
なり易く帯電不良を起こすことがある。このため常に新
しい磁気ブラシの面を当てることが好ましいので、本実
施例では2倍の速さで逆方向に回転させるようにした帯
電装置を用いて帯電を行った。
When the peripheral speed difference is not provided between the magnetic brush and the photoconductor, the magnetic brush itself does not have a physical restoring force, so that the magnetic brush is pushed away by the deflection or eccentricity of the photoconductor. In such a case, the nip of the magnetic brush cannot be secured easily and charging failure may occur. For this reason, it is preferable to always contact the surface of a new magnetic brush. Therefore, in the present embodiment, charging was performed using a charging device that was rotated in the opposite direction at twice the speed.

【0127】次に、露光部で画像露光を受ける。これ
は、画像信号に従って強度変調を受けたレーザダイオー
ドからのレーザ光12をポリゴンミラーを用いて走査す
ることにより、感光体にレーザー光を照射し静電潜像を
形成する。
Next, the exposure unit receives image exposure. This scans a laser beam 12 from a laser diode whose intensity is modulated in accordance with an image signal with a polygon mirror to irradiate the photoconductor with the laser beam to form an electrostatic latent image.

【0128】次に、前記製造例のトナーを用いて2成分
現像を行う。
Next, two-component development is carried out using the toner of the above manufacturing example.

【0129】現像剤は平均粒径が35μmであり、表面
をシリコーン樹脂で被覆したCu−Znフェライトキャ
リアとトナー製造例のトナーからなる現像剤を用いる。
トナーとキャリアは重量比で5:100の比率で混合し
た。
The developer has a mean particle size of 35 μm and is composed of a Cu—Zn ferrite carrier whose surface is coated with a silicone resin and a toner of the toner production example.
The toner and the carrier were mixed at a weight ratio of 5: 100.

【0130】マグネットを内包したトナー担持体13上
に現像剤のコート層制御のために500μmのギャップ
を設けて非磁性のステンレス製ブレードを取り付け、こ
れに前記現像材をコートし、コート厚を規制した。
A non-magnetic stainless steel blade is attached to the toner carrier 13 containing a magnet with a gap of 500 μm for controlling the developer coating layer, and the developer is coated on the blade to regulate the coating thickness. did.

【0131】この状態で、−550Vの直流電圧に周波
数2000Hz、ピーク間電圧2.0KVの交流電圧を
重畳した電圧を印加して、トナー担持体と感光体の間で
2成分現象を行った。なお、トナー担持体であるステン
レススリーブの回転速度は、感光体との対向部分におい
て同方向に、感光体と200%に設定した。
In this state, a voltage in which a DC voltage of -550 V and an AC voltage of a frequency of 2000 Hz and a peak-to-peak voltage of 2.0 KV were superposed was applied to cause a two-component phenomenon between the toner carrier and the photoconductor. The rotation speed of the stainless steel sleeve, which is the toner carrier, was set to 200% of that of the photoconductor in the same direction in the portion facing the photoconductor.

【0132】このようにしてトナーで顕視化された像
は、次に転写材14に転写される。転写手段としては中
抵抗の転写ローラ15を用いる。本実施例ではローラ抵
抗値は5×108 Ωのものを用い、+2500VのDC
電圧を印加して転写を行った。
The image visualized with the toner in this manner is then transferred to the transfer material 14. A medium resistance transfer roller 15 is used as the transfer means. In this embodiment, a roller resistance value of 5 × 10 8 Ω is used, and DC of + 2500V is used.
Transfer was performed by applying a voltage.

【0133】転写材上にトナー像を転写されたプリント
画像は、その後熱定着ローラ17によって定着を受け、
機外に排出される。また、転写されなかったトナーはク
リーニングブレード16で感光体表面からかき落とさ
れ、次の画像形成に備えられる。
The print image on which the toner image has been transferred onto the transfer material is then fixed by the heat fixing roller 17,
Emitted outside the machine. Further, the toner that has not been transferred is scraped off from the surface of the photoconductor by the cleaning blade 16 and prepared for the next image formation.

【0134】以上のような構成のプリンターで感光体の
表面電位、リーク、流れ画像評価を23℃/65%の環
境下で、以下の評価項目に従って評価を行った。結果を
表3に示す。
The surface potential, leak, and flow image of the photoconductor were evaluated by the printer having the above-mentioned configuration in the environment of 23 ° C./65% according to the following evaluation items. The results are shown in Table 3.

【0135】評価1)帯電装置の評価として帯電部材に
−700Vの直流電圧を印加し、0Vであった感光体の
1周目の表面電位と、2周目以降の飽和電位を測定し、
飽和電位と1周目電位の電位差(電位の収束性)を測定
した。
Evaluation 1) As an evaluation of the charging device, a DC voltage of -700 V was applied to the charging member, and the surface potential of the photosensitive member at the first revolution which was 0 V and the saturation potential after the second revolution were measured,
The potential difference between the saturation potential and the first-round potential (convergence of potential) was measured.

【0136】 ○:電位差が15V以内 ○△:電位差が15〜30V △:電位差が30〜60V(実用下限レベル) ×:電位差が60V以上◯: Potential difference is within 15 V ○ Δ: Potential difference is 15 to 30 V Δ: Potential difference is 30 to 60 V (practical lower limit level) ×: Potential difference is 60 V or more

【0137】評価2)感光体製造例1の感光体を使用
し、感光体上の感光層を1mm2 程度剥ぎ取りアルミ基
層を露出させた状態の欠陥感光体を用いて、画像出しを
行い、絶縁破壊による帯電不良による画像不良の程度を
以下の評価項目に従って評価を行った。
Evaluation 2) Photoreceptor Using the photoconductor of Production Example 1, the photosensitive layer on the photoconductor was peeled off by about 1 mm 2, and a defective photoconductor in which the aluminum base layer was exposed was used to form an image. The degree of image failure due to charging failure due to dielectric breakdown was evaluated according to the following evaluation items.

【0138】 ○:優秀(画像不良が感光体の欠陥部分にとどまってい
る) △:実用下限(画像不良が感光体の欠陥部分から30m
m程度のもの) ×:実用不可(画像不良が画像全体に拡がっているも
の)
◯: Excellent (image defect remains in the defective portion of the photoconductor) Δ: Lower limit of practical use (image defect is 30 m from the defective portion of the photoconductor)
m) x: Not practical (image defects spread over the entire image)

【0139】評価3)電位が横方向に流れることによる
画像流れの評価を文字画像によって、以下の評価項目に
従って評価を行った。
Evaluation 3) The evaluation of the image deletion due to the potential flowing in the lateral direction was evaluated by a character image according to the following evaluation items.

【0140】 ○:優秀(画像流れ未発生) ×:実用不可(画像流れ発生)◯: Excellent (image deletion did not occur) ×: Practical use (image deletion occurred)

【0141】評価4)耐久性の促進評価としてクリーニ
ング部材であるクリーニングブレードを除去し、ベタ黒
画像の画像出し耐久を2000枚行い、耐久前後の帯電
性を、新品な感光体に交換して評価2)と同様の方法で
評価し、耐久前後での帯電性の低下を以下の評価項目に
従い評価をした。
Evaluation 4) As a durability promotion evaluation, the cleaning blade, which is a cleaning member, was removed, 2000 sheets of solid black images were printed and the durability was evaluated, and the electrification before and after the durability was exchanged with a new photosensitive member for evaluation. Evaluation was carried out in the same manner as in 2), and the decrease in chargeability before and after running was evaluated according to the following evaluation items.

【0142】 ◎:耐久後の帯電性が耐久前に比べて20V以内の低下 ○:耐久後の帯電性が耐久前に比べて20〜30Vの範
囲の低下 ○△:耐久後の帯電性が耐久前に比べて30〜50Vの
範囲の低下 △:耐久後の帯電性が耐久前に比べて50〜90Vの範
囲の低下(実用下限レベル) ×:耐久後の帯電性が耐久前に比べて90V以上の低下
⊚: The chargeability after endurance is reduced within 20 V compared to before endurance ◯: The chargeability after endurance is reduced in the range of 20 to 30 V compared to before endurance ○ Δ: The chargeability after endurance is endurance Decrease in the range of 30 to 50 V compared to before Δ: Charge property after endurance decreases in the range of 50 to 90 V compared to before endurance (practical lower limit level) ×: Charger property after endurance is 90 V compared to before endurance More than

【0143】(実施例2〜10、比較例1〜3)表2に
実施例1〜10、比較例1〜3の内容を整理し、結果を
表3に示す。
(Examples 2 to 10, Comparative Examples 1 to 3) Table 2 summarizes the contents of Examples 1 to 10 and Comparative Examples 1 to 3, and the results are shown in Table 3.

【0144】なお、実施例10の画像出し耐久評価は画
像露光を非画像部へのレーザー露光であるバックスキャ
ンにして正現像を行い、現像バイアスを+180Vの直
流電圧に周波数2000Hz、ピーク間電圧1.5KV
の交流電圧を重畳した電圧と変更して画像出しを行っ
た。
In the image output durability evaluation of Example 10, the image exposure was back-scanning which was laser exposure to the non-image area to perform positive development, and the developing bias was a DC voltage of +180 V, the frequency was 2000 Hz, and the peak-to-peak voltage was 1. .5KV
The image was displayed by changing the AC voltage of 1 to the superimposed voltage.

【0145】 [0145]

【0146】 [0146]

【0147】[0147]

【発明の効果】本発明では、電子写真感光体と該電子写
真感光体に接触配置される帯電部材を有し、該帯電部材
に電圧を印加することにより該電子写真感光体を帯電さ
せる電子写真帯電装置において、該電子写真感光体の体
積抵抗値が1×108 Ωcm以上であり、かつ該帯電部
材が0.05〜1.2重量%のケイ素成分を含有する磁
性粒子を有し、該磁性粒子が磁性粒子表面上で重合した
ポリオレフィン系樹脂を含有する表面層を有し、該磁性
粒子の体積抵抗値が1×104 Ωcm以上1×1011Ω
cm以下であることにより、感光体上へ良好な帯電を行
うことが可能になり、更に、感光体表面に電荷を注入さ
せるための電荷注入層を設け、これに対して上述と同様
な磁性粒子による接触帯電装置で帯電を行うことによ
り、注入帯電により均一な帯電を感光体表面に与え、感
光体に欠陥が生じてもリーク画像等の画像不良の無い、
安定した画像を得ることが可能になり、磁性粒子の表面
形状を制御することにより耐久による帯電不良が抑制さ
れ、また磁性粒子表面にポリオレフィン系樹脂が磁性粒
子表面上で重合して磁性粒子を被覆した樹脂被覆磁性粒
子を用いることで、磁性粒子へのトナーの付着、汚染を
更に抑制することが可能となり、長期にわたり良好な画
像を得ることが可能となった。
INDUSTRIAL APPLICABILITY In the present invention, an electrophotographic apparatus having an electrophotographic photosensitive member and a charging member arranged in contact with the electrophotographic photosensitive member, and charging the electrophotographic photosensitive member by applying a voltage to the charging member. In a charging device, the electrophotographic photoreceptor has a volume resistance value of 1 × 10 8 Ωcm or more, and the charging member has magnetic particles containing 0.05 to 1.2% by weight of a silicon component. The magnetic particles have a surface layer containing a polyolefin resin polymerized on the surface of the magnetic particles, and the volume resistance value of the magnetic particles is 1 × 10 4 Ωcm or more and 1 × 10 11 Ω.
When it is not more than cm, it becomes possible to perform good charging on the photoconductor, and further, a charge injection layer for injecting charges to the surface of the photoconductor is provided. By charging with a contact charging device according to the above, uniform charging is given to the surface of the photoconductor by injection charging, and even if a defect occurs in the photoconductor, there is no image defect such as a leak image,
It is possible to obtain a stable image and control the surface shape of the magnetic particles to prevent charging failure due to durability.In addition, the polyolefin resin is polymerized on the surface of the magnetic particles to coat the magnetic particles. By using the resin-coated magnetic particles described above, it becomes possible to further suppress the adhesion and contamination of the toner on the magnetic particles, and it is possible to obtain a good image for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】電気抵抗測定装置を模式的に示した概略図であ
る。
FIG. 1 is a schematic view schematically showing an electric resistance measuring device.

【図2】本発明の電子写真方式のプリンターの概略構成
図である。
FIG. 2 is a schematic configuration diagram of an electrophotographic printer of the present invention.

【図3】動的電気抵抗測定装置を模式的に示した概略図
である。
FIG. 3 is a schematic view schematically showing a dynamic electric resistance measuring device.

【符号の説明】[Explanation of symbols]

1 主電極 2 上部電極 3 絶縁物 4 電流計 5 電圧計 6 定電圧装置 7 磁性粒子 8 ガイドリング 10 感光ドラム 11 接触帯電部材 12 露光手段 13 トナー担持体 14 転写材 15 転写ローラ 16 クリーニングブレード 17 熱定着ローラ 21 はマグ内包スリーブ 21−a 導電スリーブ 21−b マグネットロール 22 アルミドラム 23 帯電部材とアルミドラムとのニップ幅 24 マグ内包スリーブとアルミドラムとのギャップ 25 電流計 26 定電圧装置 27 帯電部材である磁性粒子 1 Main Electrode 2 Upper Electrode 3 Insulator 4 Ammeter 5 Voltmeter 6 Constant Voltage Device 7 Magnetic Particles 8 Guide Ring 10 Photosensitive Drum 11 Contact Charging Member 12 Exposure Means 13 Toner Carrier 14 Transfer Material 15 Transfer Roller 16 Cleaning Blade 17 Heat The fixing roller 21 includes a mug-containing sleeve 21-a, a conductive sleeve 21-b, a magnet roll 22, an aluminum drum 23, a nip width between the charging member and the aluminum drum 24, a gap between the mag-containing sleeve and the aluminum drum 25, an ammeter 26, a constant voltage device 27, and a charging member. Magnetic particles that are

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀧口 剛 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 杷野 祥史 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 久木元 力 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 石原 友司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Go Takiguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yoshifumi Hino 3-30-2 Shimomaruko, Ota-ku, Tokyo Kya Non-Incorporated (72) Inventor Motoki Hisagi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Yuji Ishihara 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. In the company

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 電子写真感光体と該電子写真感光体に接
触配置される帯電部材を有し、該帯電部材に電圧を印加
することにより該電子写真感光体を帯電させる電子写真
帯電装置において、該電子写真感光体の体積抵抗値が1
×108 Ωcm以上であり、かつ該帯電部材が0.05
〜1.2重量%のケイ素成分を含有する磁性粒子を有
し、該磁性粒子が磁性粒子表面上で重合したポリオレフ
ィン系樹脂を含有する表面層を有し、該磁性粒子の体積
抵抗値が1×104 Ωcm以上1×1011Ωcm以下で
あることを特徴とする電子写真帯電装置。
1. An electrophotographic charging device comprising an electrophotographic photosensitive member and a charging member arranged in contact with the electrophotographic photosensitive member, and charging the electrophotographic photosensitive member by applying a voltage to the charging member, The volume resistance value of the electrophotographic photosensitive member is 1
× 10 8 Ωcm or more, and the charging member is 0.05
To 1.2 wt% of silicon particles, the magnetic particles have a surface layer containing a polyolefin resin polymerized on the surface of the magnetic particles, and the magnetic particles have a volume resistance value of 1 An electrophotographic charging device, characterized in that it is not less than × 10 4 Ωcm and not more than 1 × 10 11 Ωcm.
【請求項2】 該磁性粒子に含有されるケイ素量が0.
15〜1.0重量%である請求項1記載の電子写真帯電
装置。
2. The amount of silicon contained in the magnetic particles is 0.
The electrophotographic charging device according to claim 1, wherein the amount is 15 to 1.0% by weight.
【請求項3】 該磁性粒子に含有されるケイ素成分が二
酸化ケイ素である請求項1または2記載の電子写真帯電
装置。
3. The electrophotographic charging device according to claim 1, wherein the silicon component contained in the magnetic particles is silicon dioxide.
【請求項4】 該磁性粒子がケイ素成分及び燐成分を含
有する請求項1乃至3のいずれか記載の電子写真帯電装
置。
4. The electrophotographic charging device according to claim 1, wherein the magnetic particles contain a silicon component and a phosphorus component.
【請求項5】 該磁性粒子に含有される燐成分が酸化燐
である請求項4記載の電子写真帯電装置。
5. The electrophotographic charging device according to claim 4, wherein the phosphorus component contained in the magnetic particles is phosphorus oxide.
【請求項6】 該ポリオレフィン系樹脂のGPCクロマ
トグラムのメインピークの分子量P1が10000以上
である請求項1乃至5のいずれか記載の電子写真帯電装
置。
6. The electrophotographic charging device according to claim 1, wherein the molecular weight P1 of the main peak of the GPC chromatogram of the polyolefin resin is 10,000 or more.
【請求項7】 該ポリオレフィン系樹脂のGPCクロマ
トグラムが、メインピークの低分子量側に少なくとも1
つのピークまたはショルダーを有する請求項1乃至6の
いずれか記載の電子写真帯電装置。
7. The GPC chromatogram of the polyolefin resin has at least 1 on the low molecular weight side of the main peak.
7. The electrophotographic charging device according to claim 1, which has three peaks or shoulders.
【請求項8】 該メインピークの分子量P1と、低分子
量側のピークまたはショルダーの分子量P2の比P1:
P2が3:1〜100:1である請求項7記載の電子写
真帯電装置。
8. A ratio P1: of the molecular weight P1 of the main peak and the molecular weight P2 of the peak or shoulder on the low molecular weight side.
The electrophotographic charging device according to claim 7, wherein P2 is 3: 1 to 100: 1.
【請求項9】 該メインピークの分子量が30000〜
400000であり、少なくとも1つの低分子量側のピ
ークまたはショルダーの分子量が3000〜30000
である請求項7または8記載の電子写真帯電装置。
9. The molecular weight of the main peak is from 30,000 to
And the molecular weight of at least one peak or shoulder on the low molecular weight side is 3000 to 30000.
The electrophotographic charging device according to claim 7, wherein
【請求項10】 該ポリオレフィン系樹脂の重量平均分
子量Mwが50000〜700000、数平均分子量M
nが5000〜50000であり、Mw/Mnが10以
上である請求項1乃至9のいずれか記載の電子写真帯電
装置。
10. The polyolefin resin has a weight average molecular weight Mw of 50,000 to 700,000 and a number average molecular weight M.
The electrophotographic charging device according to claim 1, wherein n is 5,000 to 50,000 and Mw / Mn is 10 or more.
【請求項11】 該磁性粒子の体積分布の50%径が1
0μm以上100μm以下であり、かつ体積分布の50
%径と体積分布の5%径の比が1.40以上である請求
項1乃至10のいずれか記載の電子写真帯電装置。
11. The 50% diameter of the volume distribution of the magnetic particles is 1
0 μm to 100 μm and a volume distribution of 50
The electrophotographic charging device according to claim 1, wherein the ratio of the% diameter to the 5% diameter of the volume distribution is 1.40 or more.
【請求項12】 該磁性粒子の電圧印加部分と該電子写
真感光体に接する部分との抵抗値が1×104 〜1×1
11Ωである請求項1乃至11のいずれか記載の電子写
真帯電装置。
12. The resistance value of a portion of the magnetic particles to which a voltage is applied and a portion in contact with the electrophotographic photosensitive member is 1 × 10 4 to 1 × 1.
The electrophotographic charging device according to claim 1, wherein the electrophotographic charging device has a resistance of 0 11 Ω.
【請求項13】 該ポリオレフィン系樹脂が導電性粒子
を含有している請求項1乃至12のいずれか記載の電子
写真帯電装置。
13. The electrophotographic charging device according to claim 1, wherein the polyolefin resin contains conductive particles.
【請求項14】 該電子写真感光体の表面層が電荷注入
層である請求項1乃至13のいずれか記載の電子写真帯
電装置。
14. The electrophotographic charging device according to claim 1, wherein the surface layer of the electrophotographic photosensitive member is a charge injection layer.
【請求項15】 該電荷注入層の体積抵抗値が1×10
8 Ωcm〜1×10 15Ωcmである請求項14記載の電
子写真帯電装置。
15. The volume resistance value of the charge injection layer is 1 × 10.
8 Ωcm ~ 1 x 10 Fifteen15. The electrode according to claim 14, which is Ωcm.
Child photo charging device.
【請求項16】 該電荷注入層が導電性粒子及び結着樹
脂を含有する請求項14または15記載の電子写真帯電
装置。
16. The electrophotographic charging device according to claim 14, wherein the charge injection layer contains conductive particles and a binder resin.
【請求項17】 該電荷注入層が滑材粉末を含有する請
求項14乃至16のいずれか記載の電子写真帯電装置。
17. The electrophotographic charging device according to claim 14, wherein the charge injection layer contains a lubricant powder.
【請求項18】 該滑材粉末がフッ素系樹脂、シリコー
ン系樹脂またはポリオレフィン系樹脂である請求項17
記載の電子写真帯電装置。
18. The lubricant powder is a fluorine resin, a silicone resin or a polyolefin resin.
The described electrophotographic charging device.
【請求項19】 該電荷注入層が無機半導体層である請
求項14記載の電子写真帯電装置。
19. The electrophotographic charging device according to claim 14, wherein the charge injection layer is an inorganic semiconductor layer.
JP10095996A 1996-04-23 1996-04-23 Electrophotographic electrifying device Pending JPH09288406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10095996A JPH09288406A (en) 1996-04-23 1996-04-23 Electrophotographic electrifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10095996A JPH09288406A (en) 1996-04-23 1996-04-23 Electrophotographic electrifying device

Publications (1)

Publication Number Publication Date
JPH09288406A true JPH09288406A (en) 1997-11-04

Family

ID=14287902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10095996A Pending JPH09288406A (en) 1996-04-23 1996-04-23 Electrophotographic electrifying device

Country Status (1)

Country Link
JP (1) JPH09288406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445469B1 (en) * 2010-04-30 2014-09-26 캐논 가부시끼가이샤 Charging member, process cartridge, and electrophotographic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101445469B1 (en) * 2010-04-30 2014-09-26 캐논 가부시끼가이샤 Charging member, process cartridge, and electrophotographic device

Similar Documents

Publication Publication Date Title
KR0151324B1 (en) Charging device
KR0151323B1 (en) Magnetic particles for charging means and electrophotographic apparatus, process cartridge and image forming method using including same
US5940662A (en) Charging apparatus and electrophotographic apparatus
JP3119431B2 (en) Charging device and image forming device
US6088548A (en) Image forming apparatus having charging member with control of voltage after resumption of jam
EP0805378B1 (en) Charging apparatus and electrophotographic apparatus
JP3313942B2 (en) Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method
JP3327689B2 (en) Electrophotographic apparatus and image forming method
JPH09288406A (en) Electrophotographic electrifying device
US5724632A (en) Charging apparatus and electrophotographic apparatus
JP3313996B2 (en) Charging device and electrophotographic device
JPH09288405A (en) Electrophotographic electrifying device
JP3372750B2 (en) Electrophotographic charging device and electrophotographic device
JP3347623B2 (en) Charging device and electrophotographic device
JP3327769B2 (en) Magnetic particles for charging member, charging device and image forming method
JPH09288403A (en) Electrophotographic electrifying device
JP3382414B2 (en) Electrophotographic apparatus, process cartridge and image forming method
JPH09288402A (en) Electrophotographic electrifying device
EP0864937B1 (en) An image forming apparatus
JP3262476B2 (en) Magnetic particles for charging member, electrophotographic apparatus using the same, process cartridge and image forming method
JP3372749B2 (en) Contact charging member and contact charging device
JP2001125294A (en) Image forming device
JP2006301495A (en) Image forming apparatus
JPH08272183A (en) Electrophotographic charging device
JPH09166905A (en) Electrifying device and electrophotographic device