JPH09281073A - Method for sensing adherence of microorganism membrane to do-electrode - Google Patents

Method for sensing adherence of microorganism membrane to do-electrode

Info

Publication number
JPH09281073A
JPH09281073A JP8095780A JP9578096A JPH09281073A JP H09281073 A JPH09281073 A JP H09281073A JP 8095780 A JP8095780 A JP 8095780A JP 9578096 A JP9578096 A JP 9578096A JP H09281073 A JPH09281073 A JP H09281073A
Authority
JP
Japan
Prior art keywords
electrode
concentration
activated sludge
sensing
adherence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8095780A
Other languages
Japanese (ja)
Other versions
JP3493884B2 (en
Inventor
Takahiro Konishi
隆裕 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP09578096A priority Critical patent/JP3493884B2/en
Publication of JPH09281073A publication Critical patent/JPH09281073A/en
Application granted granted Critical
Publication of JP3493884B2 publication Critical patent/JP3493884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for sensing adherence of microorganism membrane to a DO electrode capable of employing a suitable countermeasure such as cleaning by automatically detecting the adhered state of the membrane to the electrode used for a respiratory speedometer. SOLUTION: A respiratory speedometer by an active sludge process aerates active sludge liquid by introducing the air to the liquid, stops the deaeration after DO concentration is raised to a set value, degases it, measures the change of the concentration due to oxygen dissipation of aerobic microorganism of active sludge by using a DO electrode 20 and a DO meter, and calculates the respiratory speed of the sludge from the reducing speed of the DO by the method of least squares. In this case, the method for sensing the adherence comprises the steps of recording the change in the concentration by an automatic recorder, sensing the adherence of a microorganism membrane to the electrode 20 at the time of abrupt reduction in the DO at the degassing step, lifting the electrode 20, and conducting the countermeasure operation such as cleaning.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は循環式硝化脱窒法を
用いて廃水中の有機物及び窒素を高効率に除去する装置
において用いられるDO電極への微生物膜付着検知方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting microbial film adhesion to a DO electrode used in an apparatus for highly efficiently removing organic matter and nitrogen in wastewater by using a circulating nitrification denitrification method.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。この富栄養化とは、水域中のN,P等
の栄養塩類の濃度が増大し、これらを栄養素とする生物
活動が活発となって生態系が変化することを指してい
る。特に湖沼等に生活排水とか工場廃水が大量に流入す
ると、上記の富栄養化が急速に進行することが知られて
いる。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . This eutrophication refers to an increase in the concentration of nutrient salts such as N, P in the water area, which activates biological activities using these nutrients as nutrients and changes the ecosystem. In particular, it is known that the above-mentioned eutrophication rapidly progresses when a large amount of domestic wastewater or industrial wastewater flows into lakes and the like.

【0003】近時、窒素の除去率を高めることが要求さ
れており、窒素に関する規制も厳しくなることが予想さ
れるので、これを除去することができる高度処理プロセ
スを採用する施設が増加するものと考えられる。
Recently, it has been required to increase the removal rate of nitrogen, and it is expected that the regulations on nitrogen will be stricter. Therefore, the number of facilities adopting an advanced treatment process capable of removing this will increase. it is conceivable that.

【0004】生物学的に窒素とリンを同時に除去する方
法として、従来の活性汚泥法の変法として循環式硝化脱
窒法が注目されている。この循環式硝化脱窒法とは、例
えば図5に示したように、生物反応槽を溶存酸素(以下
DOと略称)の存在しない嫌気槽1a,1bとDOの存
在する複数段の好気槽2a,2b,2cとに仕切り、こ
の嫌気槽1a,1bにより、流入する原水3を無酸素状
態下で撹拌機構10による撹拌を行って活性汚泥中の脱
窒菌による脱窒を行い、次に好気槽2a,2b,2cの
内方に配置した散気管4にブロワ5から空気を供給する
ことにより、エアレーションによる酸素の存在下で活性
汚泥による有機物の酸化分解と硝化菌によるアンモニア
の硝化を行う。そして最終段の好気槽2cの硝化液を硝
化液循環ポンプ6を用いて嫌気槽1aに送り込むことに
より、嫌気槽1a,1bの脱窒効果が促進される。
As a biological method for simultaneously removing nitrogen and phosphorus, a circulation type nitrification denitrification method has attracted attention as a modification of the conventional activated sludge method. This circulation type nitrification denitrification method is, for example, as shown in FIG. 5, the biological reaction tanks are anaerobic tanks 1a and 1b in which dissolved oxygen (hereinafter abbreviated as DO) does not exist and a plurality of aerobic tanks 2a in which DO exists. , 2b, 2c, and the anaerobic tanks 1a, 1b are used to agitate the inflowing raw water 3 by an agitation mechanism 10 under anoxic conditions to denitrify by denitrifying bacteria in the activated sludge, and then aerobic. By supplying air from the blower 5 to the air diffuser 4 arranged inside the tanks 2a, 2b, 2c, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration. Then, the nitrifying solution in the last-stage aerobic tank 2c is fed into the anaerobic tank 1a by using the nitrifying solution circulating pump 6, whereby the denitrifying effect of the anaerobic tanks 1a and 1b is promoted.

【0005】上記硝化菌はDO濃度が低くなると活性が
低下するので、最後段の好気槽2cのDOを測定してD
O制御装置12によりブロワ5の駆動を制御しているの
が通例である。
Since the activity of the above nitrifying bacteria decreases as the DO concentration decreases, the DO of the last aerobic tank 2c is measured to obtain D
It is customary that the O controller 12 controls the drive of the blower 5.

【0006】前記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、原水中のリンは嫌気槽1a,1b
内で放出され、好気槽2a,2b,2c内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、処理水11として図外の消毒
槽等を経由してから放流され、該最終沈澱池7内に沈降
した汚泥の一部は汚泥返送ポンプ8により嫌気槽1aに
返送され、他の汚泥は余剰汚泥引抜ポンプ9から図外の
余剰汚泥処理装置に送り込まれて処理される。
The above-mentioned denitrifying bacterium refers to a bacterium that reduces N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Also, phosphorus in raw water is anaerobic tanks 1a and 1b.
It is released inside and is taken in and removed by the activated sludge in the aerobic tanks 2a, 2b and 2c. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged as treated water 11 after passing through a disinfection tank or the like not shown in the figure, and a part of sludge settled in the final settling basin 7. Is returned to the anaerobic tank 1a by the sludge return pump 8, and other sludge is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0007】かかる循環式硝化脱窒法を用いることによ
り、通常の標準活性汚泥法で達成される有機物除去効果
と同程度の効果が得られる上、窒素とリンに関しては活
性汚泥法よりも高い除去率が達成される。
[0007] By using such a circulating nitrification denitrification method, an effect comparable to the organic matter removal effect achieved by a normal standard activated sludge method can be obtained, and nitrogen and phosphorus removal rates higher than those of the activated sludge method. Is achieved.

【0008】[0008]

【発明が解決しようとする課題】このような循環式硝化
脱窒法における反応は大別して嫌気槽における脱窒と好
気槽における硝化であるが、硝化は脱窒よりも水温とか
DO,pH等の影響を受けやすいという特徴があり、反
応の律速となっている。特に効率的に窒素を除去するた
めには、嫌気槽における脱窒と好気槽における硝化を最
適な運転条件に保持することが要求される上、窒素除去
工程は硝化工程に影響される度合が高いため、良好な窒
素除去を行うためには硝化工程が良好に行われているこ
とが必要である。
The reactions in the circulation type nitrification and denitrification method are roughly classified into denitrification in an anaerobic tank and nitrification in an aerobic tank. Nitrification is more important than denitrification such as water temperature, DO, pH, etc. It has the characteristic of being easily affected, and is the rate-determining reaction. In order to remove nitrogen particularly efficiently, it is required to maintain denitrification in an anaerobic tank and nitrification in an aerobic tank under optimal operating conditions, and the nitrogen removal step may be affected by the nitrification step. Since it is high, it is necessary that the nitrification process is performed well in order to perform good nitrogen removal.

【0009】この硝化反応は有機物除去反応に比べて速
度が小さく、長い滞留時間が必要となり、硝化菌の活性
は、pH,水温等の微妙な変化により容易に影響を受け
ることが知られている。又、エアレーションの時間を十
分にとるために、標準活性汚泥法の場合よりも生物反応
槽の容積を2〜3倍にすることが必要であり、都市部等
の用地確保が困難な条件下での採用が難しいという問題
がある。
It is known that this nitrification reaction has a lower rate than the organic substance removal reaction and requires a long residence time, and the activity of nitrifying bacteria is easily affected by subtle changes in pH, water temperature and the like. . In addition, in order to obtain sufficient aeration time, it is necessary to increase the volume of the biological reaction tank by a factor of 2 to 3 compared with the standard activated sludge method, and under conditions where it is difficult to secure land for urban areas. There is a problem that it is difficult to adopt.

【0010】制御反応の改善で硝化反応を促進しようと
すると、この反応のモニタリングが必要である。しかし
通常の下水場で窒素関係成分の水質分析が毎日行われて
いるわけではなく、しかもこの水質分析は多くの手間と
時間がかかるという問題がある。このような水質分析に
対して呼吸速度計を用いて硝化細菌の呼吸速度(Nit
−Rr)を測定する方法が提案され、自動測定装置が実
用化されている。この方法では呼吸速度を最短30分間
隔で測定することができる。
In order to promote the nitrification reaction by improving the control reaction, it is necessary to monitor this reaction. However, water quality analysis of nitrogen-related components is not carried out daily in ordinary sewage treatment plants, and there is a problem that this water quality analysis requires much labor and time. For such water quality analysis, a respiration rate meter is used to measure the respiration rate (Nit) of nitrifying bacteria.
A method for measuring -Rr) has been proposed, and an automatic measuring device has been put to practical use. With this method, the respiratory rate can be measured at the shortest intervals of 30 minutes.

【0011】自動呼吸速度計はDOの減少速度から測定
されるが、DOを測定するためのDO電極には微生物膜
が付着しやすいという問題がある。DO電極に微生物膜
が付着すると、微生物膜自体がDOを消費することにな
るため、活性汚泥,即ち浮遊微生物の呼吸速度を正確に
測定することができないという難点が生じる。
Although the automatic respiration rate meter is measured from the rate of decrease of DO, there is a problem that a microbial film is easily attached to the DO electrode for measuring DO. When the microbial membrane adheres to the DO electrode, the microbial membrane itself consumes DO, which causes a problem that the respiration rate of activated sludge, that is, suspended microorganisms cannot be accurately measured.

【0012】この呼吸速度計には次亜塩素酸ナトリウム
による自動洗浄機構が付加されているが、下水処理場へ
流入する下水の汚濁濃度が大きい場合とか水温の高い
時、又は呼吸速度計を比較的処理場の生物反応槽の前段
に設置する場合には、DO電極に微生物膜が付着しやす
くなり、頻繁に検出部を引き上げてDO電極を手操作に
よって洗浄する方法はメンテナンス上からも煩瑣であ
り、非効率的である。
This respirometer is equipped with an automatic cleaning mechanism using sodium hypochlorite, but the respirometer is compared when the pollutant concentration of the sewage flowing into the sewage treatment plant is high or when the water temperature is high. When it is installed in the front stage of the biological reaction tank of the biological treatment plant, the microbial membrane is likely to adhere to the DO electrode, and the method of frequently pulling up the detection part and manually cleaning the DO electrode is troublesome from the viewpoint of maintenance. Yes, it is inefficient.

【0013】そこで本発明はこのような循環式硝化脱窒
法に用いられる呼吸速度計が有している課題を解消し
て、この呼吸速度計に用いられているDO電極に対する
微生物膜の付着状況を自動的に検出して洗浄等の適切な
対策を取ることができるDO電極への微生物膜付着検知
方法を提供することを目的とするものである。
Therefore, the present invention solves the problem of the respiration rate meter used in such a circulation type nitrification denitrification method, and shows the state of adhesion of the microbial membrane to the DO electrode used in this respiration rate meter. It is an object of the present invention to provide a method for detecting attachment of a microbial film to a DO electrode that can automatically detect and take appropriate measures such as cleaning.

【0014】[0014]

【課題を解決するための手段】本発明は上記の目的を達
成するために、活性汚泥液に対するエアの注入によって
該活性汚泥液を曝気し、DO濃度を設定値まで高めてか
ら曝気を停止して脱気を行い、活性汚泥の好気性微生物
による酸素消費に伴うDO濃度の変化をDO電極及びD
O計を用いて測定し、このDOの減少速度から最小自乗
法により活性汚泥の呼吸速度を算出するようにした活性
汚泥プロセスにおける呼吸速度計において、前記DO濃
度の変化を自動記録計によつて記録して、脱気工程でD
Oが急激に減少した時点でDO電極に微生物膜が付着し
たことを検知し、該DO電極を引き上げて洗浄等の対策
処理操作を行うようにしたDO電極への微生物膜付着検
知方法を提供する。
In order to achieve the above object, the present invention aerates the activated sludge liquid by injecting air into the activated sludge liquid, raises the DO concentration to a set value, and then stops the aeration. Deaeration by changing the DO concentration with the oxygen consumption by the aerobic microorganisms in the activated sludge.
In the respiration rate meter in the activated sludge process, in which the respiration rate of the activated sludge is calculated by the least square method from the reduction rate of the DO, the change in the DO concentration is recorded by an automatic recorder. Record and D in the degassing process
PROBLEM TO BE SOLVED: To provide a method for detecting attachment of a microbial film to a DO electrode, which detects that a microbial film is attached to the DO electrode when O is sharply decreased, and pulls up the DO electrode to perform a countermeasure operation such as cleaning. .

【0015】かかるDO電極への微生物膜付着検知方法
によれば、好気性微生物による酸素消費に伴うDO濃度
の変化をDO電極に接続されたDO計により測定すると
ともに、このDO濃度の変化を記録計によつて記録して
おき、脱気工程でDOが急激に減少したことが検知され
たならば、その時点でDO電極へ微生物膜が付着したこ
とを検出し、直ちにDO電極の引き上げ及び該DO電極
の洗浄等の対策を行うことができる。
According to the method for detecting the attachment of the microbial film to the DO electrode, the change in the DO concentration due to the oxygen consumption by the aerobic microorganism is measured by the DO meter connected to the DO electrode, and the change in the DO concentration is recorded. If a rapid decrease in DO was detected in the degassing process, it was detected that the microbial film had adhered to the DO electrode at that time, and the DO electrode was immediately pulled up and Measures such as cleaning the DO electrode can be taken.

【0016】[0016]

【発明の実施の形態】以下、本発明にかかるDO電極へ
の微生物膜付着検知方法の一実施例を説明する。図1は
活性汚泥プロセスにおける活性度の評価として用いられ
る呼吸速度計の装置例であり、この構造と作用を簡単に
説明すると、13aは採水口、13bは排水口、14は
測定槽であり、この測定槽14の入口及び出口側には通
水路を形成するチューブ15,16が連結されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the method for detecting microbial film adhesion to a DO electrode according to the present invention will be described below. FIG. 1 is an example of an apparatus for a respiration rate meter used as an evaluation of activity in an activated sludge process. Briefly explaining the structure and action, 13a is a water intake port, 13b is a drain port, and 14 is a measuring tank. Tubes 15 and 16 forming a water passage are connected to the inlet and outlet sides of the measuring tank 14.

【0017】V1は上部ピンチバルブ、V2は下部ピンチ
バルブ、17,18,19はエア注入口であり、エア注
入口17,19からのエアの注入と排気によりチューブ
15,16がピンチ状態と解除状態になって活性汚泥液
の開閉動作が行われる。20は溶存酸素濃度検出部とし
てのDO電極、21は撹拌器である。
V 1 is an upper pinch valve, V 2 is a lower pinch valve, 17, 18 and 19 are air inlets, and the tubes 15 and 16 are in a pinch state by injecting and exhausting air from the air inlets 17 and 19. Then, the activated sludge liquid is opened and closed. Reference numeral 20 is a DO electrode as a dissolved oxygen concentration detector, and 21 is a stirrer.

【0018】22はATU液注入管、23は水道水注入
管、24は洗浄液注入管であり、ATU液注入管22は
図外のATU添加装置に接続されている。又、各注入管
22,23,24と上部ピンチバルブV1との間には第
3のピンチバルブV3とエア注入口25が配設されてい
る。従って各ATU液注入管22、水道水注入管23及
び洗浄液注入管24は第3のピンチバルブV3を介在し
て測定槽14に接続されている。
Reference numeral 22 is an ATU liquid injection pipe, 23 is a tap water injection pipe, and 24 is a cleaning liquid injection pipe. The ATU liquid injection pipe 22 is connected to an ATU addition device (not shown). Further, a third pinch valve V 3 and an air injection port 25 are arranged between each injection pipe 22, 23, 24 and the upper pinch valve V 1 . Therefore, each ATU liquid injection pipe 22, tap water injection pipe 23, and cleaning liquid injection pipe 24 are connected to the measuring tank 14 via the third pinch valve V 3 .

【0019】かかる構成によって活性汚泥の呼吸速度を
測定する操作方法は以下の通りである。先ず基本的な動
作として、エア注入口18から測定槽14内にエアを導
入してエアリフトを形成し、上部ピンチバルブV1と下
部ピンチバルブV2を開いて採水口13aから図外の好
気槽内の活性汚泥液を測定槽14内に導入する。
The operation method for measuring the respiration rate of the activated sludge with the above-mentioned structure is as follows. First, as a basic operation, air is introduced from the air injection port 18 into the measurement tank 14 to form an air lift, and the upper pinch valve V 1 and the lower pinch valve V 2 are opened so that aerobatic air (not shown) from the water sampling port 13a. The activated sludge liquid in the tank is introduced into the measuring tank 14.

【0020】一定時間経過後にエア注入口17からのエ
アの注入によって下部ピンチバルブV2を閉じ、別途に
併設したMLSS計により活性汚泥液のMLSS(活性
汚泥浮遊物濃度)を測定し、次にエア注入口18から測
定槽14内にエアを送り込んで採水した活性汚泥液を曝
気し、DO濃度を設定値,例えば5(mg/l)まで高
める。
After a lapse of a certain time, the lower pinch valve V 2 was closed by injecting air from the air inlet 17, the MLSS (active sludge suspended matter concentration) of the activated sludge liquid was measured by a separately installed MLSS meter, and then, The activated sludge liquid sampled by sending air from the air inlet 18 into the measuring tank 14 is aerated to raise the DO concentration to a set value, for example, 5 (mg / l).

【0021】そしてDO濃度が設定値まで上昇した時点
で曝気を停止し、エア注入口19からのエアの注入によ
って上部ピンチバルブV1を閉じて撹拌器21による撹
拌を開始する。すると脱気及び活性汚泥の好気性微生物
による酸素消費に伴ってDO濃度が低下するので、これ
をDO電極20及び図外のDO計により測定してDOの
減少速度から最小自乗法により活性汚泥の〔Rr〕を算
出する。
When the DO concentration rises to the set value, the aeration is stopped, the upper pinch valve V 1 is closed by the injection of air from the air injection port 19, and the stirring by the stirrer 21 is started. Then, since the DO concentration decreases with deaeration and oxygen consumption by the aerobic microorganisms of the activated sludge, the DO concentration is measured by the DO electrode 20 and a DO meter (not shown). [Rr] is calculated.

【0022】次に上部ピンチバルブV1と第3のピンチ
バルブV3を開いてATU液注入管22からATU(N
−アリルチオ尿素)試薬を測定槽14に注入する。そし
て再度エア注入口18からのエアによる曝気を行ってD
O濃度を設定値まで高めてから曝気を停止し、上部ピン
チバルブV1を閉じて撹拌器21による撹拌を行って活
性汚泥による酸素消費に伴うDO濃度の低下を図外のD
O計により測定し、DOの減少速度から〔Rr〕を算出
する工程を繰り返し実施しながら、〔Rr〕と同時に
〔ATU−Rr〕値を計算によって求める。
Next, the upper pinch valve V 1 and the third pinch valve V 3 are opened to connect the ATU liquid injection pipe 22 to ATU (N
-Allylthiourea) reagent is injected into the measuring tank 14. Then, aeration with air from the air inlet 18 is performed again and D
After increasing the O concentration to the set value, the aeration is stopped, the upper pinch valve V 1 is closed, and the stirring by the stirrer 21 is performed to decrease the DO concentration due to the oxygen consumption by the activated sludge.
The [ATU-Rr] value is calculated by simultaneously with [Rr] while repeating the process of measuring [Rr] from the decrease rate of DO and calculating [Rr].

【0023】そして得られた〔Rr〕値と〔ATU−R
r〕値の差から〔Nit−Rr〕を求め、採水時に求め
たMLSS濃度と〔ATU−Rr〕及び〔Nit−R
r〕から単位汚泥量当たりの呼吸速度〔Kr〕,〔AT
U−Kr〕,〔Nit−Kr〕を求める。
Then, the obtained [Rr] value and [ATU-R
[Nit-Rr] is calculated from the difference in the r] values, and the MLSS concentration and [ATU-Rr] and [Nit-R] obtained at the time of water sampling are calculated.
r] to respiration rate per unit sludge volume [Kr], [AT
U-Kr] and [Nit-Kr] are calculated.

【0024】これを更に説明すると、測定された〔AT
U−Rr〕値は一般に好気槽における硝化反応の進行状
況をモニターするために用いられる。即ち、酸素利用速
度(oxygen utilization rate respiration,Rr)に
は有機物の酸化分解の際に消費される酸素量と、活性汚
泥の内生呼吸に消費される酸素量及び硝化反応で消費さ
れる酸素量とが含まれており、この値は有機物の除去や
内生呼吸による呼吸速度、即ち、全酸素消費速度から硝
化反応に伴う酸素消費速度を差し引いた値として表わさ
れる。従って硝化反応の進行状況は、〔Rr〕と硝化抑
制剤であるN−アリルチオ尿素(化学式C482S,
ATU)を添加して測定したRrの差〔ATU−Rr〕
から求めることができる。
To further explain this, the measured [AT
The U-Rr] value is generally used to monitor the progress of nitrification reaction in an aerobic tank. That is, the oxygen utilization rate (Rr) includes the amount of oxygen consumed during oxidative decomposition of organic matter, the amount of oxygen consumed for endogenous respiration of activated sludge, and the amount of oxygen consumed for nitrification reaction. This value is expressed as a value obtained by subtracting the oxygen consumption rate associated with the nitrification reaction from the respiratory rate due to removal of organic substances and endogenous respiration, that is, the total oxygen consumption rate. Therefore, the progress of the nitrification reaction is [Rr] and the nitrification inhibitor N-allylthiourea (chemical formula C 4 H 8 N 2 S,
ATU) difference in Rr measured by adding [ATU-Rr]
Can be obtained from

【0025】上記の差を〔Nit−Rr〕とすると、 〔Nit−Rr〕=〔Rr〕−〔ATU−Rr〕・・・・・・・・・・(1) となる。つまり〔Nit−Rr〕値は硝化に伴う酸素消
費速度であり、この値が小さければ硝化反応が終了し、
大きければ硝化反応が終了していないものと判断するこ
とができる。上記〔Nit−Rr〕は硝化反応に基づく
酸素消費量を表すので、この値から好気槽内での硝化速
度を推定することが可能である。
When the above difference is [Nit-Rr], [Nit-Rr] = [Rr]-[ATU-Rr] (1) That is, the [Nit-Rr] value is the oxygen consumption rate associated with nitrification, and if this value is small, the nitrification reaction will end,
If it is larger, it can be judged that the nitrification reaction has not ended. Since the above [Nit-Rr] represents the oxygen consumption based on the nitrification reaction, it is possible to estimate the nitrification rate in the aerobic tank from this value.

【0026】通常は好気槽から採水された検水の〔AT
U−Rr〕値によって硝化反応にかかる酸素消費速度
〔Nit−Rr〕値が測定され、この〔Nit−Rr〕
値に基づいて硝化反応が終了しているか否かが判断され
る。即ち、硝化反応が順調に進行してアンモニア性窒素
の濃度が小さくなると、上記〔Nit−Rr〕値も急激
に小さくなるので、これによって好気槽における硝化反
応が終了していることが分かる。
[0026] Normally, the sampled water sampled from the aerobic tank [AT
The oxygen consumption rate [Nit-Rr] value involved in the nitrification reaction is measured by the [U-Rr] value.
Based on the value, it is determined whether or not the nitrification reaction has ended. That is, when the nitrification reaction proceeds smoothly and the concentration of ammonia nitrogen decreases, the above [Nit-Rr] value also sharply decreases, which indicates that the nitrification reaction in the aerobic tank is completed.

【0027】他方で、前記〔ATU−Rr〕値は測定さ
れた硝化反応にかかる酸素消費速度〔Nit−rr〕値
が大きい場合には、好気槽内での硝化反応が終了してい
ないものと判断される。この時には嫌気槽の撹拌機構の
駆動を停止するとともに好気槽への送風量を制御し、理
想的硝化速度に達するようなエアレーションを実施す
る。
On the other hand, the above [ATU-Rr] value is one in which the nitrification reaction in the aerobic tank is not completed when the measured oxygen consumption rate [Nit-rr] value for the nitrification reaction is large. Is judged. At this time, the driving of the stirring mechanism of the anaerobic tank is stopped and the amount of air blown to the aerobic tank is controlled to carry out aeration so as to reach the ideal nitrification rate.

【0028】このようにして呼吸速度〔Rr〕と〔AT
U−Rr〕値を測定した後に洗浄工程を実施する。この
場合、先ず下部ピンチバルブV2と上部ピンチバルブV1
を開いてから水道水注入管23から水道水を導入し、測
定槽14内の下水を図外の曝気槽に排出した後に下部ピ
ンチバルブV2を閉じて測定槽14内を水道水により置
換する。
In this way, the respiratory rate [Rr] and [AT
The washing step is performed after measuring the [U-Rr] value. In this case, first, the lower pinch valve V 2 and the upper pinch valve V 1
After opening the tap water, tap water is introduced from the tap water injection pipe 23, the sewage in the measuring tank 14 is discharged to an aeration tank (not shown), and then the lower pinch valve V 2 is closed to replace the inside of the measuring tank 14 with tap water. .

【0029】次に次塩素酸ナトリウム等の洗浄液を洗浄
液注入管24を通じて測定槽14内に導入し、ある一定
時間経過後に下部ピンチバルブV2を開き、測定槽14
内の洗浄液がなくなるまで水道水を注入する。洗浄水の
排水が終了した時点で下部ピンチバルブV2を閉じて洗
浄工程を終了する。
Next, a cleaning liquid such as sodium hypochlorite is introduced into the measuring tank 14 through the cleaning liquid injection pipe 24, and after a certain period of time, the lower pinch valve V 2 is opened and the measuring tank 14 is opened.
Inject tap water until there is no more cleaning solution inside. When the drain of the washing water is completed, the lower pinch valve V 2 is closed and the washing process is completed.

【0030】この洗浄工程終了後に再度下部ピンチバル
ブV2を開いてエア注入口18から測定槽14内に一定
時間だけエアを送り込む。すると測定槽14内がエアだ
けで満たされるので、ここで下部ピンチバルブV2を閉
じて第3のピンチバルブV3介して水道水注入管23か
ら測定槽14内に水道水を送り込み、その状態を保持し
たまま次回の測定に備える。図2は上記の工程を概略的
に示したタイムチャートである。
After completion of this cleaning step, the lower pinch valve V 2 is opened again to feed air from the air inlet 18 into the measuring tank 14 for a fixed time. Then, since the measurement tank 14 is filled with air only, the lower pinch valve V 2 is closed here, and tap water is fed from the tap water injection pipe 23 into the measurement tank 14 through the third pinch valve V 3 and the state is maintained. While holding, prepare for the next measurement. FIG. 2 is a time chart schematically showing the above steps.

【0031】本実施例では、上記の動作時に活性汚泥の
好気性微生物による酸素消費に伴うDO濃度の変化をD
O電極20に接続された図外のDO計により測定すると
ともに、このDO濃度の変化を自動記録計によつて連続
的に記録する。
In the present embodiment, the change in the DO concentration due to the oxygen consumption by the aerobic microorganisms in the activated sludge during the above operation is D
A DO meter (not shown) connected to the O electrode 20 is used for measurement, and changes in this DO concentration are continuously recorded by an automatic recorder.

【0032】図3はDO電極20が正常時のDO測定値
と時間とのサイクルを示し、図4はDO電極20に微生
物膜が付着した場合のDO測定値と時間とのサイクルを
示している。図2,図3から分かるように、DO電極に
微生物膜が付着するとDOが直線的に減少する区間がほ
とんどなくなっている。この原因として、水中のDOが
DO電極の隔膜に到達する前に、付着した微生物膜によ
って消費されてしまうためであるものと考えられる。
FIG. 3 shows a cycle of the DO measurement value and time when the DO electrode 20 is normal, and FIG. 4 shows a cycle of the DO measurement value and time when the microbial membrane adheres to the DO electrode 20. . As can be seen from FIGS. 2 and 3, when the microbial membrane adheres to the DO electrode, there is almost no section where DO decreases linearly. It is considered that this is because DO in water is consumed by the attached microbial membrane before reaching the diaphragm of the DO electrode.

【0033】従って前記タイムチャートの曝気工程でD
Oを上昇させても次の脱気工程で既にDOが大きく減少
しており、測定時にはDOの減少速度を正確に測定する
ことはできない。
Therefore, in the aeration process of the time chart, D
Even if O is increased, DO is already greatly reduced in the next degassing step, and the rate of decrease of DO cannot be accurately measured during measurement.

【0034】そこで本実施例では、前記自動記録計によ
って脱気工程でDO濃度が急激に減少したことが検知さ
れたならば、その時点でDO電極へ微生物膜が付着した
ことを検出し、直ちにDO検出部であるDO電極20を
引き上げて、手操作もしくは洗浄機により該DO電極2
0の洗浄を行うことが操作上の特徴となっている。
Therefore, in the present embodiment, if it is detected by the automatic recorder that the DO concentration is drastically reduced in the degassing step, it is detected at that point that the microbial membrane is attached to the DO electrode, and immediately. The DO electrode 20 which is the DO detection unit is pulled up, and the DO electrode 2 is manually operated or washed.
It is an operational feature to perform 0 cleaning.

【0035】[0035]

【発明の効果】以上詳細に説明したように、本発明にか
かるDO電極への微生物膜付着検知方法によれば、好気
性微生物による酸素消費に伴うDO濃度の変化をDO計
により測定するとともに、このDO濃度の変化を記録計
によつて記録しておき、脱気工程でDOが急激に減少し
たことが検知されたならば、その時点でDO電極へ微生
物膜が付着したことを検出し、直ちにDO電極の引き上
げ及び該DO電極の洗浄等の対策を行うことができる。
従ってDO電極に微生物膜が付着した場合にのみ検出部
であるDO電極を引き上げて洗浄すればよいため、効率
的であるとともにメンテナンス上からも有利ある。
As described in detail above, according to the method for detecting the attachment of a microbial membrane to a DO electrode according to the present invention, the change in DO concentration due to oxygen consumption by aerobic microorganisms is measured by a DO meter, and The change in the DO concentration was recorded by a recorder, and if it was detected that the DO decreased sharply in the degassing step, it was detected that the microbial film had adhered to the DO electrode at that time, It is possible to immediately take measures such as pulling up the DO electrode and cleaning the DO electrode.
Therefore, only when the microbial film adheres to the DO electrode, the DO electrode, which is the detection unit, may be pulled up and washed, which is efficient and advantageous in terms of maintenance.

【0036】そして下水の汚濁濃度が大きい場合とか、
水温の高い場合等のようにDO電極に微生物膜が付着し
易い状態下でもDO電極に対する微生物膜の付着状況を
自動的に検出して洗浄等の適切な対策を取ることができ
るため、呼吸速度の測定精度が向上するという効果が得
られる。
If the pollutant concentration of sewage is high,
Even when the microbial membrane is easily attached to the DO electrode, such as when the water temperature is high, it is possible to automatically detect the attachment state of the microbial membrane to the DO electrode and take appropriate measures such as cleaning. The effect of improving the measurement accuracy of is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例にかかる活性汚泥循環変法の運転制御
方法の一例を示す概要図。
FIG. 1 is a schematic diagram showing an example of an operation control method of a modified activated sludge circulation method according to the present embodiment.

【図2】本実施例の制御の実際を示すチャート図。FIG. 2 is a chart showing the actual control of the present embodiment.

【図3】正常時のDO測定値と時間とのサイクルを示す
グラフ。
FIG. 3 is a graph showing a cycle of a DO measurement value and time under normal conditions.

【図4】微生物膜付着時のDO測定値と時間とのサイク
ルを示すグラフ。
FIG. 4 is a graph showing a cycle of DO measurement value and time when a microbial film is attached.

【図5】従来の循環式硝化脱窒法の一例を示す概要図。FIG. 5 is a schematic view showing an example of a conventional circulating nitrification denitrification method.

【符号の説明】[Explanation of symbols]

13a…採水口 13b…排水口 14…測定槽 15,16…チューブ V1…上部ピンチバルブ V2…下部ピンチバルブ 17,18,19,25…エア注入口 20…DO電極 21…撹拌器 22…ATU液注入管 23…水道水注入管 24…洗浄液注入管 V3…第3のピンチバルブ13a ... Water sampling port 13b ... Drainage port 14 ... Measuring tank 15, 16 ... Tube V 1 ... Upper pinch valve V 2 ... Lower pinch valve 17, 18, 19, 25 ... Air injection port 20 ... DO electrode 21 ... Stirrer 22 ... ATU liquid injection pipe 23 ... tap water injection pipe 24 ... washing liquid filling tube V 3 ... third pinch valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 活性汚泥液に対するエアの注入によって
該活性汚泥液を曝気し、DO濃度を設定値まで高めてか
ら曝気を停止して脱気を行い、活性汚泥の好気性微生物
による酸素消費に伴うDO濃度の変化をDO電極及びD
O計を用いて測定し、このDOの減少速度から最小自乗
法により活性汚泥の呼吸速度を算出するようにした活性
汚泥プロセスにおける呼吸速度計において、 前記DO濃度の変化を自動記録計によつて記録して、脱
気工程でDOが急激に減少した時点でDO電極に微生物
膜が付着したことを検知し、該DO電極を引き上げて洗
浄等の対策処理操作を行うことを特徴とするDO電極へ
の微生物膜付着検知方法。
1. The activated sludge liquid is aerated by injecting air to the activated sludge liquid, and after increasing the DO concentration to a set value, the aeration is stopped to deaerate the activated sludge to reduce oxygen consumption by aerobic microorganisms. The change in the DO concentration with the change of the DO electrode and D
In the respiration rate meter in the activated sludge process, in which the respiration rate of the activated sludge is calculated by the least square method from the reduction rate of the DO, the change in the DO concentration is recorded by an automatic recorder. A DO electrode characterized by recording and detecting that a microbial film has adhered to the DO electrode when DO is rapidly reduced in the degassing step, and pulling up the DO electrode to perform a countermeasure operation such as cleaning. Method for detecting attachment of microbial membranes to skin.
JP09578096A 1996-04-18 1996-04-18 Microorganism film adhesion detection method for DO electrode Expired - Fee Related JP3493884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09578096A JP3493884B2 (en) 1996-04-18 1996-04-18 Microorganism film adhesion detection method for DO electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09578096A JP3493884B2 (en) 1996-04-18 1996-04-18 Microorganism film adhesion detection method for DO electrode

Publications (2)

Publication Number Publication Date
JPH09281073A true JPH09281073A (en) 1997-10-31
JP3493884B2 JP3493884B2 (en) 2004-02-03

Family

ID=14147000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09578096A Expired - Fee Related JP3493884B2 (en) 1996-04-18 1996-04-18 Microorganism film adhesion detection method for DO electrode

Country Status (1)

Country Link
JP (1) JP3493884B2 (en)

Also Published As

Publication number Publication date
JP3493884B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
JP4304453B2 (en) Operation control device for nitrogen removal system
KR100628908B1 (en) Method and apparatus for instrumentation and control of membrane coupled activated sludge method and reactor operating anoxic/anaerobic process alternatively for removal of nitrogen and phosphorus
JP3058414B1 (en) Water treatment equipment
JP4027217B2 (en) Livestock wastewater treatment equipment
JP3845778B2 (en) Waste water treatment equipment
JP3379199B2 (en) Operation control method of activated sludge circulation method
JP3493884B2 (en) Microorganism film adhesion detection method for DO electrode
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
CN2711156Y (en) Two-section SBR process equipment for removing organic pollutant and denitrification from waste-water
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3538960B2 (en) Respiratory rate meter with washing mechanism
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH08294698A (en) Measurement of activity of nitro-bacteria in sewage treatment facilities
JP2006007132A (en) Apparatus for treating sewage
JP3913129B2 (en) Treatment performance monitoring system for biological treatment equipment
JPH0691294A (en) Operation control method of batch type active sludge treatment
JPH1157771A (en) Biological water treatment and equipment therefor
JP3467905B2 (en) How to measure respiration rate
KR100467173B1 (en) virulence sensing apparatus of waste water
JPH0736281Y2 (en) Respiratory rate measuring device
KR101229455B1 (en) System for managing water quality of discharging water
Chiesa et al. Evaluation of activated sludge oxygen uptake rate test procedures
JPH09138229A (en) Respiration rate meter with cleaning mechanism
JP2005103337A (en) Nitrification activity detecting device for activated sludge treating tank
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees