JPH09138229A - Respiration rate meter with cleaning mechanism - Google Patents

Respiration rate meter with cleaning mechanism

Info

Publication number
JPH09138229A
JPH09138229A JP7295068A JP29506895A JPH09138229A JP H09138229 A JPH09138229 A JP H09138229A JP 7295068 A JP7295068 A JP 7295068A JP 29506895 A JP29506895 A JP 29506895A JP H09138229 A JPH09138229 A JP H09138229A
Authority
JP
Japan
Prior art keywords
activated sludge
measuring
respiration rate
sludge liquid
measuring tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7295068A
Other languages
Japanese (ja)
Inventor
Miyoko Kusumi
美代子 久住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7295068A priority Critical patent/JPH09138229A/en
Publication of JPH09138229A publication Critical patent/JPH09138229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a respiration rate meter whose measuring accuracy is increased by eliminating an error cause due to aerobic microorganisms in an activated sludge liquid which is stuck to the inside of a respiration rate measuring tank. SOLUTION: In the respiration rate meter, the activated sludge liquid is introduced into the measuring tank 14 by the opening and shutting operation of an upper-part pinch valve V1 and a lower-part pinch valve V2 which are installed additionally at the measuring tank 14 and by an air lift action, and the breathing speed of the activated sludge liquid is measured by the aeration operation of the activated sludge liquid and by the measuring operation of a dissolved oxygen(DO) concentration. In this case, the respiration rate meter is constituted in such a way that an ozone injection port 22 is arranged and installed at the measuring tank 14, that the breathing speed of the activated sludge liquid is measured, that ozone gas is then supplied into the measuring tank 14 and that a sterilizing and cleaning operation is performed. A shutter 20a which prevents damage due to the ozone gas is attached to a part facing the measuring tank 14 of a DO electrode 20 as a dissolved-oxygen-concentration detection part. In addition, after the respiration rate of the activated sludge liquid has been measured, a surface-active agent as a cleaning liquid is injected so as to perform the cleaning operation of an inside wall surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は活性汚泥プロセス制御に
用いられる洗浄機構付き呼吸速度計に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a respiratory rate meter with a cleaning mechanism used for controlling activated sludge process.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されているが、 近時は特に窒素の除去率を高める
ことが要求されており、窒素に関する規制も厳しくなる
ことが予想されるので、これを除去することができる高
度処理プロセスを採用する施設が増加するものと考えら
れる。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. However, recently, it is required to increase the removal rate of nitrogen in particular, and regulations on nitrogen are expected to become stricter.Therefore, the number of facilities adopting advanced treatment processes that can remove this will increase. it is conceivable that.

【0003】このような状況に対応するため、生物学的
に窒素とリンを同時に除去する方法として、従来の標準
活性汚泥法の変法として活性汚泥循環変法が注目されて
いる。この活性汚泥循環変法とは、例えば図2に示した
ように、生物反応槽を溶存酸素(以下DOと略称)の存
在しない嫌気槽1a,1bと、DOの存在する複数段の
好気槽2a,2b,2cとに仕切り、この嫌気槽1a,
1bにより、流入する原水3を無酸素状態下で撹拌機構
10による撹拌を行って活性汚泥中の脱窒菌による脱窒
を行い、次に好気槽2a,2b,2cの内方に配置した
散気管4にブロワ5から空気を供給することにより、エ
アレーションによる酸素の存在下で活性汚泥による有機
物の酸化分解と硝化菌によるアンモニアの硝化を行う。
そして最終段の好気槽2cの硝化液を硝化液循環ポンプ
6を用いて嫌気槽1aに送り込むことにより、嫌気槽1
a,1bでの脱窒効果が促進される。
In order to deal with such a situation, an activated sludge circulation modified method is attracting attention as a modified method of the conventional standard activated sludge method as a method for biologically removing nitrogen and phosphorus simultaneously. The modified activated sludge circulation method is, for example, as shown in FIG. 2, the biological reaction tanks are anaerobic tanks 1a and 1b in which dissolved oxygen (hereinafter abbreviated as DO) does not exist, and a plurality of aerobic tanks in which DO exists. Partitioned into 2a, 2b and 2c, this anaerobic tank 1a,
1b, the inflowing raw water 3 is agitated by an agitation mechanism 10 under anoxic condition to denitrify by denitrifying bacteria in the activated sludge, and then scattered inside the aerobic tanks 2a, 2b, 2c. By supplying air from the blower 5 to the trachea 4, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration.
Then, the nitrification solution in the last-stage aerobic tank 2c is fed into the anaerobic tank 1a by using the nitrification solution circulation pump 6, whereby the anaerobic tank 1
The denitrification effect in a and 1b is promoted.

【0004】上記硝化菌はDO濃度が低くなると活性が
低下するので、最後段の好気槽2cのDOを測定してD
O制御装置12によりブロワ5の駆動を制御しているの
が通例である。
Since the activity of the above nitrifying bacteria decreases as the DO concentration decreases, the DO of the last aerobic tank 2c is measured and D
It is customary that the O controller 12 controls the drive of the blower 5.

【0005】7は最終沈澱池であり、この最終沈澱池7
の上澄液は、処理水11として図外の消毒槽等を経由し
てから放流され、該最終沈澱池7内に沈降した汚泥の一
部は汚泥返送ポンプ8により嫌気槽1aに返送され、他
の汚泥は余剰汚泥引抜ポンプ9から図外の余剰汚泥処理
装置に送り込まれて処理される。
Reference numeral 7 is a final sedimentation pond. This final sedimentation pond 7
The supernatant liquid is discharged as treated water 11 after passing through a disinfecting tank or the like (not shown), and a part of the sludge settled in the final settling tank 7 is returned to the anaerobic tank 1a by the sludge returning pump 8. Other sludge is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0006】かかる活性汚泥循環変法を用いることによ
り、通常の標準活性汚泥法で達成される有機物除去効果
と同程度の効果が得られる上、窒素とリンに関しては標
準活性汚泥法よりも高い除去率が達成される。
[0006] By using such a modified activated sludge circulation method, an effect comparable to the organic matter removal effect achieved by the ordinary standard activated sludge method can be obtained, and nitrogen and phosphorus can be removed more efficiently than the standard activated sludge method. Rate is achieved.

【0007】上記の循環式硝化脱窒法における動作態様
は、嫌気槽1a,1bにおける脱窒反応と、好気槽2
a,2b,2cにおける硝化反応とに大別することが出
来るが、反応の律速となっているのは後者,即ち硝化反
応である。特に上記循環式硝化脱窒法によって効率的に
窒素を除去するためには、嫌気槽における脱窒と好気槽
における硝化を最適な運転条件に保持することが要求さ
れる上、窒素除去工程は硝化工程に影響される度合が高
いため、良好な窒素除去を行うためには硝化工程が良好
に行われていることが必要である。
The operation mode in the above circulation type nitrification denitrification method is the denitrification reaction in the anaerobic tanks 1a and 1b and the aerobic tank 2
It can be roughly divided into nitrification reactions in a, 2b, and 2c, but the rate of the reaction is the latter, that is, the nitrification reaction. In particular, in order to efficiently remove nitrogen by the above circulation type nitrification denitrification method, it is required to maintain the denitrification in the anaerobic tank and the nitrification in the aerobic tank under the optimum operating conditions, and the nitrogen removal step is performed in the nitrification step. Since it is highly influenced by the process, it is necessary that the nitrification process is performed well in order to perform good nitrogen removal.

【0008】このような活性汚泥プロセスにおける活性
度の評価として、活性汚泥の呼吸速度計(以下これを
「Rr計」という。)が用いられている。本出願人は先
に特願平5−104158号によりRr計を用いて硝化
の促進状態をモニタリングする活性汚泥処理装置につい
て提案した。この提案では好気槽の流入側にRr計を設
置して、その測定値から硝化反応の変化を検出してい
る。
As an evaluation of activity in such an activated sludge process, a respiration rate meter for activated sludge (hereinafter referred to as "Rr meter") is used. The present applicant has previously proposed, in Japanese Patent Application No. 5-104158, an activated sludge treatment device for monitoring the promotion of nitrification using an Rr meter. In this proposal, an Rr meter is installed on the inflow side of the aerobic tank and the change in the nitrification reaction is detected from the measured value.

【0009】上記Rr計の測定原理は、活性汚泥液の撹
拌とエアの注入に伴う好気性微生物による酸素消費によ
る溶存酸素濃度の低下を測定して、該溶存酸素濃度の減
少速度から最小自乗法により活性汚泥の呼吸速度〔R
r〕を算出するものである。
The measuring principle of the Rr meter is to measure the decrease in dissolved oxygen concentration due to oxygen consumption by aerobic microorganisms accompanying stirring of activated sludge liquid and injection of air, and the least squares method from the rate of decrease of the dissolved oxygen concentration. Respiration rate of activated sludge [R
r] is calculated.

【0010】[0010]

【発明が解決しようとする課題】このような従来のRr
計は、測定槽内に活性汚泥中の好気性微生物が付着する
と、微生物の呼吸速度が誤差として加わるために呼吸速
度〔Rr〕値が実際の値よりも高目となって測定精度が
低下する惧れがある。特に溶存酸素(DO)の検出器で
あるDO電極とか撹拌機等の付属機器あるいは測定槽自
体に汚泥等の汚染物質が付着して増殖すると、見掛け上
採水された検水中の汚泥濃度が上昇したことになり、測
定誤差の原因となる場合がある。従って標準活性汚泥法
では通常1日1回は次亜塩素酸ナトリウム等の薬品を用
いて測定槽内の殺菌洗浄作業を実施しなければならな
い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
If the aerobic microorganisms in the activated sludge adhere to the measuring tank, the respiration rate [Rr] will be higher than the actual value and the measurement accuracy will decrease because the respiration rate of the microorganisms will add as an error. There is a fear. In particular, when contaminants such as sludge adhere to the DO electrode that is a detector of dissolved oxygen (DO), auxiliary equipment such as a stirrer, or the measuring tank itself and multiply, the sludge concentration in the sample water apparently increases. This may cause a measurement error. Therefore, in the standard activated sludge method, it is usually necessary to perform sterilization and cleaning work in the measuring tank once a day using a chemical such as sodium hypochlorite.

【0011】しかしながら上記薬品の最適注入率は検水
の活性汚泥の濃度やアンモニア性窒素濃度あるいはpH
等により変化するため、通常は過剰に注入する場合が多
く、更に洗浄後の測定槽内には活性汚泥液が含まれるた
め、これを処理するために測定槽内の液を曝気槽に戻す
という手段が用いられるために薬品の使用量が多くな
り、プロセスへの薬品の影響が問題となる。
However, the optimum injection rate of the above chemicals is determined by the concentration of activated sludge in the test water, the concentration of ammonia nitrogen, or the pH.
Since it changes depending on the conditions, etc., it is often injected excessively, and since the activated sludge liquid is contained in the measuring tank after washing, the liquid in the measuring tank is returned to the aeration tank in order to process this. Since the method is used, the amount of chemicals used is large, and the influence of chemicals on the process becomes a problem.

【0012】更に薬品を用いて殺菌洗浄を実施する際に
は、Rr計を一旦エアレーションタンクから引き上げて
測定槽内のDO電極部分の洗浄を頻繁に行わなければな
らず、特に好気槽の流入側にRr計を設置した場合には
汚れが落ちにくいため、繁雑なメンテナンスを必要とす
る上、常時安定した測定値を得ることができないという
難点を有している。
Further, when carrying out sterilization cleaning using chemicals, it is necessary to raise the Rr meter once from the aeration tank to frequently clean the DO electrode portion in the measuring tank, especially in the aerobic tank. When the Rr meter is installed on the side, dirt does not easily come off, which requires complicated maintenance and has the drawback that a stable measurement value cannot always be obtained.

【0013】そこで本発明は測定槽内に付着する活性汚
泥中の好気性微生物による呼吸速度の誤差要因をなくし
て、測定精度を高めた洗浄機構付き呼吸速度計を提供す
ることを目的とするものである。
[0013] Therefore, an object of the present invention is to provide a respiration rate meter with a cleaning mechanism, in which the error factor of the respiration rate due to aerobic microorganisms in the activated sludge adhering to the measuring tank is eliminated to improve the measurement accuracy. Is.

【0014】[0014]

【課題を解決するための手段】本発明は上記の目的を達
成するために、測定槽に付設した上部ピンチバルブと下
部ピンチバルブの開閉動作とエアリフト作用により活性
汚泥液を測定槽内に導入して、該活性汚泥液への曝気操
作及び溶存酸素濃度の測定操作によって活性汚泥液の呼
吸速度を測定する装置において、請求項1として上記測
定槽にオゾン注入口を配設し、活性汚泥液の呼吸速度を
測定した後にオゾン発生装置で得られるオゾンガスを測
定槽内に供給して洗浄作業を行うようにした洗浄機構付
き呼吸速度計の構成にしてある。溶存酸素濃度検出部と
してのDO電極の測定槽に面する部位に、洗浄時のオゾ
ンガスによるダメージを防止するシャッターを取付けて
ある。
In order to achieve the above object, the present invention introduces an activated sludge liquid into the measuring tank by opening / closing operation of an upper pinch valve and a lower pinch valve attached to the measuring tank and an air lift action. In the device for measuring the respiration rate of the activated sludge liquid by aerating the activated sludge liquid and measuring the dissolved oxygen concentration, an ozone inlet is provided in the measuring tank as claimed in claim 1, The respiratory rate meter with a cleaning mechanism is configured such that the ozone gas obtained by the ozone generator is supplied into the measuring tank after the respiratory rate is measured to perform the cleaning operation. A shutter for preventing damage due to ozone gas at the time of cleaning is attached to a portion of the DO electrode serving as the dissolved oxygen concentration detecting portion facing the measuring tank.

【0015】請求項3として、上記活性汚泥液の呼吸速
度を測定した後に、洗浄液として界面活性剤を注入し
て、測定槽内壁面の洗浄作業を行うようにした洗浄機構
付き呼吸速度計を提供する。
According to a third aspect of the present invention, there is provided a respiration rate meter with a cleaning mechanism, which comprises measuring the respiration rate of the activated sludge solution and then injecting a surfactant as a cleaning solution to clean the inner wall surface of the measuring tank. To do.

【0016】[0016]

【作用】かかる洗浄機構付き呼吸速度計によれば、エア
の導入に伴って測定槽内にエアリフトを形成してから上
部ピンチバルブと下部ピンチバルブの開閉により活性汚
泥液を測定槽内に導入し、曝気により溶存酸素濃度を高
めてから曝気を停止して撹拌を実施すると、活性汚泥の
好気性微生物による酸素消費に伴って溶存酸素濃度が低
下するので、これをDO計により測定してDOの減少速
度から最小自乗法により活性汚泥の呼吸速度が算出され
る。
[Function] According to such a respiratory rate meter with a cleaning mechanism, an air lift is formed in the measuring tank with the introduction of air, and then the activated sludge liquid is introduced into the measuring tank by opening and closing the upper pinch valve and the lower pinch valve. When the dissolved oxygen concentration is increased by aeration and then the aeration is stopped and the stirring is performed, the dissolved oxygen concentration decreases with the oxygen consumption by the aerobic microorganisms of the activated sludge. The respiration rate of activated sludge is calculated from the decrease rate by the method of least squares.

【0017】その後にDO電極のシャッターと下部ピン
チバルブを閉じてオゾン注入口を開き、オゾン発生装置
で得られるオゾンガスを該オゾン注入口から測定槽内に
送り込み、撹拌器による撹拌動作とともに測定槽内の殺
菌洗浄工程を実施する。これにより殺菌作用を有するオ
ゾンガスを用いた洗浄工程を実施することによって測定
槽内に付着している活性汚泥中の好気性微生物が死滅す
るので、次回の測定精度を高めることができる。
After that, the shutter of the DO electrode and the lower pinch valve are closed to open the ozone inlet, and the ozone gas obtained by the ozone generator is fed into the measuring tank through the ozone inlet, and the stirring operation by the stirrer is performed inside the measuring tank. Perform the sterilization and washing step of. As a result, the aerobic microorganisms in the activated sludge adhering to the inside of the measuring tank are killed by performing the cleaning process using ozone gas having a sterilizing action, so that the accuracy of the next measurement can be improved.

【0018】更に洗浄液として従来の次亜塩素酸ナトリ
ウム等の薬品に代えて界面活性剤を用いたことにより洗
浄効果が一層高められる。
Furthermore, the cleaning effect can be further enhanced by using a surfactant instead of the conventional chemical such as sodium hypochlorite as the cleaning liquid.

【0019】[0019]

【実施例】以下、図面に基づいて本発明にかかる洗浄機
構付き呼吸速度計の各実施例を、前記従来の構成部分と
同一の構成部分に同一の符号を付して詳述する。図1は
第1実施例の縦断側面図であり、13aは採水口、13
bは排水口、14は測定槽であり、この測定槽14の入
口及び出口側には通水路を形成するチューブ15,16
が連結されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, each embodiment of a respiration rate meter with a cleaning mechanism according to the present invention will be described in detail with reference to the drawings, in which the same reference numerals are given to the same components as the above-mentioned conventional components. FIG. 1 is a vertical sectional side view of the first embodiment, in which 13a is a water collecting port, 13
Reference numeral b is a drainage port, 14 is a measuring tank, and tubes 15 and 16 forming a water passage on the inlet and outlet sides of the measuring tank 14.
Are connected.

【0020】V1は上部ピンチバルブ、V2は下部ピンチ
バルブ、17,18,19はエア注入口であり、エア注
入口17,19からのエアの注入と排気によりチューブ
15,16がピンチ状態と解除状態になって活性汚泥液
の開閉動作が行われる。20は溶存酸素濃度検出部とし
てのDO電極、21は撹拌器である。DO電極20には
測定槽14に面してシャッター20aが取付られてい
る。
V 1 is an upper pinch valve, V 2 is a lower pinch valve, and 17, 18 and 19 are air inlets. The tubes 15 and 16 are in a pinch state by injecting and exhausting air from the air inlets 17 and 19. Then, the activated sludge liquid is opened and closed. Reference numeral 20 is a DO electrode as a dissolved oxygen concentration detector, and 21 is a stirrer. A shutter 20 a is attached to the DO electrode 20 so as to face the measuring tank 14.

【0021】更に本実施例では測定槽14にオゾン注入
口22を配設し、図外のオゾン発生装置で得られるオゾ
ンガスO3を測定槽14内に供給するようにしてある。
Further, in this embodiment, the ozone inlet 22 is provided in the measuring tank 14 so that the ozone gas O 3 obtained by the ozone generator (not shown) is supplied into the measuring tank 14.

【0022】図示は省略したが、この呼吸速度計の外部
にはATU薬液とか洗浄液の注入ボックス、エア供給用
のコンプレッサ及び制御盤が配置されている。
Although not shown in the drawing, an injection box for the ATU chemical liquid or the cleaning liquid, a compressor for supplying air, and a control panel are arranged outside the respiration rate meter.

【0023】活性汚泥の呼吸速度を測定する場合には、
基本的動作として、先ずエア注入口18からエアを導入
してエアリフトを形成し、ピンチバルブV1,V2を開い
て採水口13aから図外の好気槽内の活性汚泥液を試料
水として測定槽14内に導入する。次にエア注入口17
からのエアの注入によって下部ピンチバルブV2を閉じ
てからエア注入口18から測定槽14内にエアを送り込
んで曝気し、DO濃度をある一定値,例えば5(mg/
l)まで高める。
When measuring the respiration rate of activated sludge,
As a basic operation, first, air is introduced from the air inlet 18 to form an air lift, the pinch valves V 1 and V 2 are opened, and the activated sludge liquid in the aerobic tank (not shown) is used as the sample water from the water sampling port 13a. It is introduced into the measuring tank 14. Next, the air inlet 17
After closing the lower pinch valve V 2 by injecting air from the inside, air is sent from the air inlet 18 into the measuring tank 14 for aeration, and the DO concentration is kept at a certain constant value, for example, 5 (mg / mg / mg).
up to l).

【0024】そしてDO濃度が設定値まで上昇した時点
で曝気を停止し、エア注入口19からのエアの注入によ
って上部ピンチバルブV1を閉じて撹拌器21による撹
拌を開始する。すると活性汚泥(好気性微生物)による
酸素消費に伴ってDO濃度が低下するので、これをDO
電極20により測定してDOの減少速度から最小自乗法
により呼吸速度〔Rr〕を算出する。この測定時にはオ
ゾン注入口22は閉止されている。
When the DO concentration rises to the set value, the aeration is stopped, the upper pinch valve V 1 is closed by the injection of air from the air injection port 19, and the stirring by the stirrer 21 is started. Then, the DO concentration decreases as oxygen is consumed by the activated sludge (aerobic microorganisms).
The respiration rate [Rr] is calculated by the least square method from the rate of decrease of DO measured by the electrode 20. At the time of this measurement, the ozone inlet 22 is closed.

【0025】尚、測定時にATU(N−アリルチオ尿
素)試薬を測定槽14に注入し、再度エア注入口18か
らのエアによる曝気を行ってDO濃度を設定値まで高め
てから曝気を停止し、上部ピンチバルブV1を閉じて撹
拌器21による撹拌を行って活性汚泥による酸素消費に
伴うDO濃度の低下を測定し、DOの減少速度から〔R
r〕と同時に〔ATU−Rr〕値を計算によって求め、
得られた〔Rr〕値と〔ATU−Rr〕値の差から〔N
it−Rr〕を求める操作を行う。
At the time of measurement, an ATU (N-allylthiourea) reagent is injected into the measuring tank 14, air is again aerated from the air inlet 18 to increase the DO concentration to a set value, and then the aeration is stopped. The upper pinch valve V 1 was closed and stirring was performed by the stirrer 21 to measure the decrease in DO concentration due to oxygen consumption due to activated sludge.
r] and [ATU-Rr] value by calculation,
From the difference between the obtained [Rr] value and [ATU-Rr] value, [N
It-Rr] is calculated.

【0026】このようにして〔Rr〕及び〔ATU−R
r〕値の計測後は、DO電極20のシャッター20aと
下部ピンチバルブV2を閉じてオゾン注入口22を開
き、図外のオゾン発生装置で得られるオゾンガスを該オ
ゾン注入口22から測定槽14内に送り込む。そして撹
拌器21による撹拌を行って測定槽14内の殺菌洗浄工
程を実施する。DO電極20のシャッター20aを閉じ
る理由は、オゾンガスによってDO電極を構成する薄膜
がダメージを受けないようにするためである。
Thus, [Rr] and [ATU-R]
After the measurement of the [r] value, the shutter 20a of the DO electrode 20 and the lower pinch valve V 2 are closed to open the ozone inlet 22, and ozone gas obtained by an ozone generator (not shown) is supplied from the ozone inlet 22 to the measuring tank 14 Send in. Then, the stirring by the stirrer 21 is performed to perform the sterilizing and cleaning step in the measuring tank 14. The reason for closing the shutter 20a of the DO electrode 20 is to prevent the thin film forming the DO electrode from being damaged by ozone gas.

【0027】洗浄工程終了後は、再度エア注入口18か
らエアを導入してエアリフトを形成し、ピンチバルブV
1,V2を開いて採水口13aから活性汚泥液を試料水と
して測定槽14内に導入し、エア注入口17からのエア
の注入によって下部ピンチバルブV2を閉じてからエア
注入口18から測定槽14内にエアを送り込んで曝気す
る操作を繰り返す。
After the cleaning process is completed, air is introduced again from the air inlet 18 to form an air lift, and the pinch valve V
1 , open V 2 and introduce the activated sludge liquid as sample water into the measuring tank 14 from the water sampling port 13a, close the lower pinch valve V 2 by injecting air from the air injecting port 17, and then from the air injecting port 18. The operation of sending air into the measuring tank 14 and aerating is repeated.

【0028】このように本実施例では殺菌作用を有する
オゾンガスを用いて測定槽14内を洗浄することによ
り、該測定槽14内に付着している活性汚泥中の好気性
微生物を死滅させて次回の測定精度を高めることができ
る。
As described above, in the present embodiment, by cleaning the inside of the measuring tank 14 with ozone gas having a sterilizing action, the aerobic microorganisms in the activated sludge adhering to inside the measuring tank 14 are killed and the next time. The measurement accuracy of can be improved.

【0029】次に本発明の第2実施例を説明する。この
第2実施例では洗浄液として従来の次亜塩素酸ナトリウ
ム等の薬品に代えて界面活性剤を用いたことを特徴とし
ている。前記したように呼吸速度〔Rr〕と〔ATU−
Rr〕値を測定した後、下部ピンチバルブV2を閉じて
測定槽14内に界面活性剤を導入し、撹拌器21による
撹拌を行って測定槽14内の洗浄工程を実施する。
Next, a second embodiment of the present invention will be described. The second embodiment is characterized in that a surfactant is used as the cleaning liquid instead of the conventional chemical such as sodium hypochlorite. As described above, the respiration rate [Rr] and [ATU-
After measuring the Rr] value, the lower pinch valve V 2 is closed, a surfactant is introduced into the measuring tank 14, and stirring is performed by the stirrer 21 to carry out the washing step in the measuring tank 14.

【0030】洗浄工程終了後は、再度エア注入口18か
らエアを導入してエアリフトを形成して界面活性剤と活
性汚泥混合液を排水口13bから排水し、排水が終了し
た時点で下部ピンチバルブV2を閉じて洗浄工程を終了
する。
After the cleaning step, air is again introduced from the air inlet 18 to form an air lift to drain the mixed solution of the surfactant and the activated sludge from the drain 13b, and when the drain is finished, the lower pinch valve V 2 is closed and the washing process is completed.

【0031】尚、前記したATU液を用いた測定動作を
簡単に説明すると、酸素利用速度(Rr)には有機物の
酸化分解の際に消費される酸素量と、活性汚泥の内生呼
吸に消費される酸素量及び硝化反応で消費される酸素量
とが含まれており、この値は有機物の除去や内生呼吸に
よる呼吸速度、即ち、全酸素消費速度から硝化反応に伴
う酸素消費速度を差し引いた値として表わされる。従っ
て硝化反応の進行状況は、〔Rr〕と硝化抑制剤である
N−アリルチオ尿素(化学式C482S,ATU)を
添加して測定したRrの差〔ATU−Rr〕から求める
ことができる。
The measurement operation using the above ATU solution will be briefly described. The oxygen utilization rate (Rr) is the amount of oxygen consumed during the oxidative decomposition of organic matter and the endogenous respiration of activated sludge. The amount of oxygen consumed and the amount of oxygen consumed in the nitrification reaction are included, and this value is the respiratory rate due to removal of organic substances and endogenous respiration, that is, the total oxygen consumption rate minus the oxygen consumption rate associated with the nitrification reaction. It is expressed as a value. Therefore, the progress of the nitrification reaction should be determined from the difference [Rr] and the Rr difference [ATU-Rr] measured by adding the nitrification inhibitor N-allylthiourea (chemical formula C 4 H 8 N 2 S, ATU). You can

【0032】上記の差を〔Nit−Rr〕とすると、一
般に 〔Nit−Rr〕=〔Rr〕−〔ATU−Rr〕・・・・・・・・・・(1) となる。つまり〔Nit−Rr〕値は硝化に伴う酸素消
費速度であり、この値が小さければ硝化反応が終了し、
大きければ硝化反応が終了していないものと判断するこ
とができる。上記〔Nit−Rr〕は硝化反応に基づく
酸素消費量を表すので、この値から好気槽内での硝化速
度を推定することが可能である。
If the above difference is [Nit-Rr], then generally [Nit-Rr] = [Rr]-[ATU-Rr] (1). That is, the [Nit-Rr] value is the oxygen consumption rate associated with nitrification, and if this value is small, the nitrification reaction will end,
If it is larger, it can be judged that the nitrification reaction has not ended. Since the above [Nit-Rr] represents the oxygen consumption based on the nitrification reaction, it is possible to estimate the nitrification rate in the aerobic tank from this value.

【0033】通常は好気槽から採水された検水の〔AT
U−Rr〕値によって硝化反応にかかる酸素消費速度
〔Nit−Rr〕値が測定され、この〔Nit−Rr〕
値に基づいて硝化反応が終了しているか否かが判断され
る。即ち、硝化反応が順調に進行してアンモニア性窒素
の濃度が小さくなると、上記〔Nit−Rr〕値も急激
に小さくなるので、これによって好気槽における硝化反
応が終了していることが分かる。
[0033] Normally, the sample water sampled from the aerobic tank [AT
The oxygen consumption rate [Nit-Rr] value involved in the nitrification reaction is measured by the [U-Rr] value.
Based on the value, it is determined whether or not the nitrification reaction has ended. That is, when the nitrification reaction proceeds smoothly and the concentration of ammonia nitrogen decreases, the above [Nit-Rr] value also sharply decreases, which indicates that the nitrification reaction in the aerobic tank is completed.

【0034】他方で、前記〔ATU−Rr〕値は測定さ
れた硝化反応にかかる酸素消費速度〔Nit−rr〕値
が大きい場合には、好気槽内での硝化反応が終了してい
ないものと判断される。この時には嫌気槽の撹拌機構の
駆動を停止するとともに好気槽への送風量を制御し、理
想的硝化速度に達するようなエアレーションを実施す
る。
On the other hand, when the measured oxygen consumption rate [Nit-rr] value for the nitrification reaction is large, the [ATU-Rr] value is one in which the nitrification reaction in the aerobic tank is not completed. Is judged. At this time, the driving of the stirring mechanism of the anaerobic tank is stopped and the amount of air blown to the aerobic tank is controlled to carry out aeration so as to reach the ideal nitrification rate.

【0035】[0035]

【発明の効果】以上詳細に説明したように、本発明にか
かる洗浄機構付き呼吸速度計によれば、測定槽内にエア
リフトを形成して活性汚泥液を測定槽内に導入して曝気
し、溶存酸素濃度を高めてから曝気を停止して撹拌を実
施し、活性汚泥の好気性微生物による酸素消費に伴って
低下した溶存酸素濃度を測定してDOの減少速度から最
小自乗法により活性汚泥の呼吸速度を算出した後に、D
O電極のシャッターを閉じてオゾン注入口を開き、オゾ
ンガスを測定槽内に送り込んで撹拌することによって測
定槽内の殺菌洗浄工程を実施することができる。特に殺
菌作用を有するオゾンガスを用いた洗浄工程に伴って測
定槽内に付着している活性汚泥中の好気性微生物が死滅
するので、次回の測定精度を高めることができる。更に
洗浄液として従来の次亜塩素酸ナトリウム等の薬品に代
えて界面活性剤を用いたことにより洗浄効果を一層高め
ることができる。
As described in detail above, according to the respiratory rate meter with a cleaning mechanism according to the present invention, an air lift is formed in the measuring tank to introduce the activated sludge liquid into the measuring tank for aeration, After increasing the dissolved oxygen concentration, aeration is stopped and agitation is performed, and the dissolved oxygen concentration decreased with the oxygen consumption by the aerobic microorganisms of the activated sludge is measured. After calculating the respiratory rate, D
By closing the shutter of the O electrode and opening the ozone injection port, and feeding ozone gas into the measuring tank and stirring, the sterilizing and cleaning step in the measuring tank can be performed. In particular, the aerobic microorganisms in the activated sludge adhering to the inside of the measuring tank are killed during the cleaning process using ozone gas having a bactericidal action, so that the accuracy of the next measurement can be improved. Furthermore, the cleaning effect can be further enhanced by using a surfactant instead of a conventional chemical such as sodium hypochlorite as the cleaning liquid.

【0036】従って測定槽内に付着した活性汚泥中の好
気性微生物の呼吸速度が誤差要因となることがなく、検
出器であるDO電極とか撹拌機等の付属機器に汚染物質
が付着することが防止されるので、従来のように頻繁な
洗浄作業は不要であり、メンテナンスが簡易化されると
ともに過剰な薬品によるプロセスへの悪影響をなくすこ
とができる。
Therefore, the respiration rate of the aerobic microorganisms in the activated sludge adhering to the measuring tank does not cause an error, and contaminants may adhere to the DO electrode as a detector or an auxiliary device such as a stirrer. Since it is prevented, frequent cleaning work as in the conventional case is unnecessary, maintenance can be simplified, and adverse effects on the process due to excess chemicals can be eliminated.

【0037】そして得られた活性汚泥の呼吸速度から下
水処理場で用いられる好気槽における硝化効率とそれに
伴う嫌気槽における脱窒効率をともに充分に高めるため
の効率的な運転制御方法の確立をはかることができて、
活性汚泥循環変法のみならず、標準活性汚泥法における
脱窒反応を促進するためのモニタリングとしても使用す
ることができる。
From the obtained respiration rate of the activated sludge, the establishment of an efficient operation control method for sufficiently enhancing both the nitrification efficiency in the aerobic tank used in the sewage treatment plant and the denitrification efficiency in the anaerobic tank associated therewith Can be measured,
It can be used not only as a modified activated sludge circulation method but also as monitoring for promoting the denitrification reaction in the standard activated sludge method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例にかかる洗浄機構付き呼吸速度計を示
す縦断側面図。
FIG. 1 is a vertical cross-sectional side view showing a respiratory rate meter with a cleaning mechanism according to an embodiment.

【図2】通常の循環式硝化脱窒法の一例を示す概要図。FIG. 2 is a schematic diagram showing an example of a normal circulation type nitrification denitrification method.

【符号の説明】[Explanation of symbols]

13a…採水口 13b…排水口 14…測定槽 15,16…チューブ V1…上部ピンチバルブ V2…下部ピンチバルブ 17,18,19…エア注入口 20…DO電極 20a…シャッター 21…撹拌器 22…オゾン注入口13a ... Water sampling port 13b ... Drain port 14 ... Measuring tank 15, 16 ... Tube V 1 ... Upper pinch valve V 2 ... Lower pinch valve 17, 18, 19 ... Air injection port 20 ... DO electrode 20a ... Shutter 21 ... Stirrer 22 ... Ozone inlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定槽に付設した上部ピンチバルブと下
部ピンチバルブの開閉動作とエアリフト作用により活性
汚泥液を測定槽内に導入して、該活性汚泥液への曝気操
作及び溶存酸素濃度の測定操作によって活性汚泥液の呼
吸速度を測定する装置において、 上記測定槽にオゾン注入口を配設し、活性汚泥液の呼吸
速度を測定した後にオゾン発生装置で得られるオゾンガ
スを測定槽内に供給して洗浄作業を行うようにしたこと
を特徴とする洗浄機構付き呼吸速度計。
1. An activated sludge liquid is introduced into the measuring tank by opening and closing operations of an upper pinch valve and a lower pinch valve attached to the measuring tank and an air lift action, and aeration operation to the activated sludge liquid and measurement of dissolved oxygen concentration are performed. In an apparatus for measuring the respiration rate of activated sludge liquid by operation, an ozone inlet is provided in the above-mentioned measurement tank, and after measuring the respiration rate of the activated sludge liquid, ozone gas obtained by an ozone generator is supplied into the measurement tank. Respiratory rate meter with a cleaning mechanism, characterized in that it is designed to perform cleaning work.
【請求項2】 溶存酸素濃度検出部としてのDO電極の
測定槽に面する部位に、洗浄時のオゾンガスによるダメ
ージを防止するシャッターを取付けた請求項1記載の洗
浄機構付き呼吸速度計。
2. The respiratory rate meter with a cleaning mechanism according to claim 1, wherein a shutter for preventing damage due to ozone gas during cleaning is attached to a portion of the DO electrode as the dissolved oxygen concentration detecting section facing the measuring tank.
【請求項3】 測定槽に付設した上部ピンチバルブと下
部ピンチバルブの開閉動作とエアリフト作用により活性
汚泥液を測定槽内に導入して、該活性汚泥液への曝気操
作及び溶存酸素濃度の測定操作によって活性汚泥液の呼
吸速度を測定する装置において、 上記活性汚泥液の呼吸速度を測定した後に、洗浄液とし
て界面活性剤を注入して、測定槽内壁面の洗浄作業を行
うようにしたことを特徴とする洗浄機構付き呼吸速度
計。
3. The activated sludge liquid is introduced into the measurement tank by the opening / closing operation of the upper pinch valve and the lower pinch valve attached to the measurement tank and the air lift action, and the aeration operation to the activated sludge liquid and the measurement of the dissolved oxygen concentration are performed. In the device for measuring the respiration rate of the activated sludge liquid by operation, after measuring the respiration rate of the above activated sludge liquid, a surfactant was injected as a cleaning liquid to perform the cleaning work on the inner wall surface of the measurement tank. Respiratory rate meter with a characteristic cleaning mechanism.
JP7295068A 1995-11-14 1995-11-14 Respiration rate meter with cleaning mechanism Pending JPH09138229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7295068A JPH09138229A (en) 1995-11-14 1995-11-14 Respiration rate meter with cleaning mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295068A JPH09138229A (en) 1995-11-14 1995-11-14 Respiration rate meter with cleaning mechanism

Publications (1)

Publication Number Publication Date
JPH09138229A true JPH09138229A (en) 1997-05-27

Family

ID=17815908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295068A Pending JPH09138229A (en) 1995-11-14 1995-11-14 Respiration rate meter with cleaning mechanism

Country Status (1)

Country Link
JP (1) JPH09138229A (en)

Similar Documents

Publication Publication Date Title
KR102370635B1 (en) Apparatus for treating waste water
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPH09138229A (en) Respiration rate meter with cleaning mechanism
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP4175037B2 (en) Organic wastewater treatment equipment
JP3538960B2 (en) Respiratory rate meter with washing mechanism
KR19980033489A (en) Method and apparatus for optimizing the process of intermittent batch reactor by automatically measuring non-oxygen ratio and nitrate nitrogen in biological wastewater treatment process in real time
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP3493884B2 (en) Microorganism film adhesion detection method for DO electrode
JPH0736281Y2 (en) Respiratory rate measuring device
JP2000084581A (en) Waste liquid treatment and its apparatus
KR0128277Y1 (en) Biological waste water treating equipment using pure oxygen
JP3913129B2 (en) Treatment performance monitoring system for biological treatment equipment
JP4490848B2 (en) Waste water treatment apparatus and waste water treatment method
JP3782738B2 (en) Wastewater treatment method
JPH08294698A (en) Measurement of activity of nitro-bacteria in sewage treatment facilities
JPH07275888A (en) Nitration accelerating method of activated sludge circulation modified method
JPH09133648A (en) Respiration rate meter
JPH08117789A (en) Operation control of two-stage activated sludge circulation variation
JPH0788490A (en) Method and apparatus for treating waste water
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JP2005103337A (en) Nitrification activity detecting device for activated sludge treating tank
JP2008238026A (en) Wastewater treatment apparatus
JP2001029991A (en) Water treatment method