JP3538960B2 - Respiratory rate meter with washing mechanism - Google Patents

Respiratory rate meter with washing mechanism

Info

Publication number
JP3538960B2
JP3538960B2 JP11803495A JP11803495A JP3538960B2 JP 3538960 B2 JP3538960 B2 JP 3538960B2 JP 11803495 A JP11803495 A JP 11803495A JP 11803495 A JP11803495 A JP 11803495A JP 3538960 B2 JP3538960 B2 JP 3538960B2
Authority
JP
Japan
Prior art keywords
activated sludge
atu
rate
measuring
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11803495A
Other languages
Japanese (ja)
Other versions
JPH08313512A (en
Inventor
美代子 久住
雅英 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP11803495A priority Critical patent/JP3538960B2/en
Publication of JPH08313512A publication Critical patent/JPH08313512A/en
Application granted granted Critical
Publication of JP3538960B2 publication Critical patent/JP3538960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は活性汚泥プロセス制御に
用いられる洗浄機構付き呼吸速度計に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a respiration rate meter with a washing mechanism used for controlling an activated sludge process.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されているが、 近時は特に窒素の除去率を高める
ことが要求されており、窒素に関する規制も厳しくなる
ことが予想されるので、これを除去することができる高
度処理プロセスを採用する施設が増加するものと考えら
れる。
2. Description of the Related Art Various methods have heretofore been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus, which are considered to be substances causing eutrophication in closed water bodies. However, recently it has been required to increase the nitrogen removal rate in particular, and it is expected that regulations on nitrogen will be stricter, so the number of facilities adopting advanced treatment processes capable of removing nitrogen will increase. it is conceivable that.

【0003】このような状況に対応するため、生物学的
に窒素とリンを同時に除去する方法として、従来の標準
活性汚泥法の変法として循環式硝化脱窒法が注目されて
いる。この循環式硝化脱窒法とは、例えば図2に示した
ように、生物反応槽を溶存酸素(以下DOと略称)の存
在しない嫌気槽1a,1bと、DOの存在する複数段の
好気槽2a,2b,2cとに仕切り、この嫌気槽1a,
1bにより、流入する原水3を無酸素状態下で撹拌機構
10による撹拌を行って活性汚泥中の脱窒菌による脱窒
を行い、次に好気槽2a,2b,2cの内方に配置した
散気管4にブロワ5から空気を供給することにより、エ
アレーションによる酸素の存在下で活性汚泥による有機
物の酸化分解と硝化菌によるアンモニアの硝化を行う。
そして最終段の好気槽2cの硝化液を硝化液循環ポンプ
6を用いて嫌気槽1aに送り込むことにより、嫌気槽1
a,1bでの脱窒効果が促進される。
In order to cope with such a situation, as a method of biologically removing nitrogen and phosphorus at the same time, a circulating nitrification and denitrification method is receiving attention as a modification of the conventional standard activated sludge method. This circulation type nitrification denitrification method is, for example, as shown in FIG. 2, a biological reaction tank is composed of anaerobic tanks 1a and 1b in which dissolved oxygen (hereinafter abbreviated as DO) does not exist, and a plurality of aerobic tanks in which DO exists. 2a, 2b, and 2c.
1b, the inflowing raw water 3 is agitated by the agitation mechanism 10 under anoxic condition to perform denitrification by denitrifying bacteria in the activated sludge, and then dispersed in the aerobic tanks 2a, 2b, 2c. By supplying air from the blower 5 to the trachea 4, oxidative decomposition of organic substances by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration.
The nitrification liquid in the last aerobic tank 2c is fed into the anaerobic tank 1a by using the nitrification liquid circulation pump 6, whereby the anaerobic tank 1c is discharged.
The denitrification effect in a and 1b is promoted.

【0004】上記硝化菌はDO濃度が低くなると活性が
低下するので、最後段の好気槽2cのDOを測定してD
O制御装置12によりブロワ5の駆動を制御しているの
が通例である。
Since the activity of the nitrifying bacteria decreases as the DO concentration decreases, the DO of the last aerobic tank 2c is measured to determine
Generally, the drive of the blower 5 is controlled by the O control device 12.

【0005】7は最終沈澱池であり、この最終沈澱池7
の上澄液は、処理水11として図外の消毒槽等を経由し
てから放流され、該最終沈澱池7内に沈降した汚泥の一
部は汚泥返送ポンプ8により嫌気槽1aに返送され、他
の汚泥は余剰汚泥引抜ポンプ9から図外の余剰汚泥処理
装置に送り込まれて処理される。
[0005] Reference numeral 7 denotes a final sedimentation basin.
The supernatant is discharged as treated water 11 through a disinfection tank or the like (not shown), and part of the sludge settled in the final sedimentation basin 7 is returned to the anaerobic tank 1a by the sludge return pump 8; Other sludge is sent from the surplus sludge extraction pump 9 to a surplus sludge treatment device (not shown) and processed.

【0006】かかる循環式硝化脱窒法を用いることによ
り、通常の標準活性汚泥法で達成される有機物除去効果
と同程度の効果が得られる上、窒素とリンに関しては標
準活性汚泥法よりも高い除去率が達成される。
By using such a recirculation type nitrification and denitrification method, the same effect as the organic substance removal effect achieved by the ordinary standard activated sludge method can be obtained, and nitrogen and phosphorus can be removed at a higher removal rate than the standard activated sludge method. Rate is achieved.

【0007】上記の循環式硝化脱窒法における動作態様
は、嫌気槽1a,1bにおける脱窒反応と、好気槽2
a,2b,2cにおける硝化反応とに大別することが出
来るが、反応の律速となっているのは後者,即ち硝化反
応である。特に上記循環式硝化脱窒法によって効率的に
窒素を除去するためには、嫌気槽における脱窒と好気槽
における硝化を最適な運転条件に保持することが要求さ
れる上、窒素除去工程は硝化工程に影響される度合が高
いため、良好な窒素除去を行うためには硝化工程が良好
に行われていることが必要である。
The operation of the above-mentioned recirculation type nitrification and denitrification method includes the denitrification reaction in the anaerobic tanks 1a and 1b and the aerobic tank 2
The nitrification reaction can be roughly classified into the nitrification reactions in a, 2b, and 2c, and the latter, that is, the nitrification reaction, is the rate-determining reaction. In particular, in order to efficiently remove nitrogen by the above-mentioned circulating nitrification denitrification method, it is necessary to maintain denitrification in an anaerobic tank and nitrification in an aerobic tank under optimal operating conditions. Since the degree of influence by the process is high, it is necessary that the nitrification process be performed well in order to perform good nitrogen removal.

【0008】このような活性汚泥プロセスにおける活性
度の評価として、活性汚泥の呼吸速度計(以下これを
「Rr計」という。)が用いられている。従来から呼吸
速度〔Rr〕を自動的に測定するために図3に示す装置
が用いられている。この構造と作用を簡単に説明する
と、13aは採水口、13bは排水口、14は測定槽で
あり、測定槽14の入口及び出口側には通水路を形成す
るチューブ15,16が連結されている。V1は上部ピ
ンチバルブ、V2は下部ピンチバルブ、17,18,1
9はエア注入口であり、エア注入口17,19からのエ
アの注入と排気によりチューブ15,16がピンチ状態
と解除状態になって開閉動作が行われる。20は溶存酸
素濃度検出部としてのDO電極、21は撹拌器である。
As an evaluation of the activity in such an activated sludge process, a respiratory rate meter for activated sludge (hereinafter referred to as "Rr meter") is used. Conventionally, an apparatus shown in FIG. 3 has been used to automatically measure the respiration rate [Rr]. Briefly describing this structure and operation, 13a is a water sampling port, 13b is a drain port, 14 is a measuring tank, and tubes 15 and 16 forming a water passage are connected to the inlet and outlet sides of the measuring tank 14. I have. V 1 is the upper pinch valve, V 2 is the lower pinch valve, 17, 18, 1
Reference numeral 9 denotes an air inlet, and the tubes 15 and 16 are brought into a pinched state and a released state by the injection and exhaust of air from the air inlets 17 and 19, so that opening and closing operations are performed. Reference numeral 20 denotes a DO electrode as a dissolved oxygen concentration detection unit, and 21 denotes a stirrer.

【0009】活性汚泥の呼吸速度を測定する場合には、
先ずエア注入口18からエアを導入してエアリフトを形
成し、ピンチバルブV1,V2を開いて採水口13aから
図外の好気槽内の活性汚泥液を測定槽14内に導入す
る。次にエア注入口17からのエアの注入によって下部
ピンチバルブV2を閉じてからエア注入口18から測定
槽14内にエアを送り込んで曝気し、DO濃度をある一
定値,例えば5(mg/l)まで高める。
When measuring the respiration rate of activated sludge,
First, air is introduced from the air inlet 18 to form an air lift, the pinch valves V 1 and V 2 are opened, and the activated sludge liquid in the aerobic tank (not shown) is introduced into the measuring tank 14 from the water sampling port 13a. Next, the lower pinch valve V 2 is closed by injecting air from the air inlet 17, and air is sent from the air inlet 18 into the measuring tank 14 to be aerated, so that the DO concentration becomes a certain value, for example, 5 (mg / mg). l).

【0010】そしてDO濃度が設定値まで上昇した時点
で曝気を停止し、エア注入口19からのエアの注入によ
って上部ピンチバルブV1を閉じて撹拌器21による撹
拌を開始する。すると活性汚泥(好気性微生物)による
酸素消費に伴ってDO濃度が低下するので、これをDO
電極20及び図外のDO計により測定してDOの減少速
度から最小自乗法により呼吸速度〔Rr〕を算出する。
When the DO concentration rises to the set value, the aeration is stopped, and the upper pinch valve V 1 is closed by injecting air from the air inlet 19 to start stirring by the stirrer 21. Then, the DO concentration decreases with oxygen consumption by activated sludge (aerobic microorganisms).
The respiration rate [Rr] is calculated by the least squares method from the rate of decrease of DO measured by the electrode 20 and a DO meter (not shown).

【0011】[0011]

【発明が解決しようとする課題】このような従来のRr
計は、測定槽内に活性汚泥中の好気性微生物が付着する
と、微生物の呼吸速度が誤差として加わるために呼吸速
度〔Rr〕値が実際の値よりも高目となって測定精度が
低下する惧れがある。特に測定槽14内の検出器である
DO電極20とか撹拌機21等の付属機器あるいは測定
槽14自体に汚泥等の汚染物質が付着して増殖すると、
見掛け上採水された検水中の汚泥濃度が上昇したことに
なり、測定誤差の原因となる場合がある。従って標準活
性汚泥法では通常1日1回は次亜塩素酸ナトリウム等の
薬品を用いて測定槽14内の殺菌洗浄作業を実施しなけ
ればならない。
SUMMARY OF THE INVENTION Such a conventional Rr
When the aerobic microorganism in the activated sludge adheres to the measuring tank, the respiration rate of the microorganism is added as an error, so that the respiration rate [Rr] value becomes higher than the actual value and the measurement accuracy is reduced. There is fear. In particular, if contaminants such as sludge grow on attached equipment such as the DO electrode 20 or the stirrer 21 which is a detector in the measuring tank 14 or the measuring tank 14 itself,
The sludge concentration in the apparently sampled water has increased, which may cause measurement errors. Therefore, in the standard activated sludge method, the sterilization and cleaning operation in the measuring tank 14 must usually be performed once a day using a chemical such as sodium hypochlorite.

【0012】しかしながら上記薬品の最適注入率は検水
の活性汚泥の濃度やアンモニア性窒素濃度あるいはpH
等により変化するため、通常は過剰に注入する場合が多
く、更に洗浄後の測定槽14内には活性汚泥液が含まれ
るため、これを処理するために測定槽14内の液を曝気
槽に戻すという手段が用いられるために薬品の使用量が
多くなり、プロセスへの薬品の影響が問題となる。
However, the optimum injection rate of the above chemicals depends on the concentration of activated sludge, ammonia nitrogen concentration or pH
In general, excessive injection is often performed, and activated sludge liquid is contained in the measurement tank 14 after washing. Therefore, the liquid in the measurement tank 14 is supplied to the aeration tank in order to treat the activated sludge liquid. Since the means of returning is used, the amount of use of the chemical increases, and the influence of the chemical on the process becomes a problem.

【0013】更に薬品を用いて殺菌洗浄を実施する際に
は、Rr計を一旦エアレーションタンクから引き上げて
測定槽14内のDO電極部分の洗浄を頻繁に行わなけれ
ばならず、繁雑なメンテナンスを必要とする上、常時安
定した測定値を得ることができないという難点を有して
いる。
Further, when performing sterilization cleaning using chemicals, the Rr meter must be once pulled out of the aeration tank to frequently clean the DO electrode portion in the measurement tank 14, which requires complicated maintenance. In addition, there is a problem that a stable measurement value cannot always be obtained.

【0014】そこで本発明は測定槽内に付着する活性汚
泥中の好気性微生物による呼吸速度の誤差要因をなくし
て、測定精度を高めた洗浄機構付き呼吸速度計を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a respiratory rate meter with a washing mechanism which has improved measurement accuracy by eliminating an error factor of respiratory rate due to aerobic microorganisms in activated sludge adhering to a measuring tank. It is.

【0015】[0015]

【課題を解決するための手段】本発明は上記の目的を達
成するために、測定槽に付設した上部ピンチバルブと下
部ピンチバルブの開閉動作とエアリフト作用により活性
汚泥液を測定槽内に導入して、該活性汚泥液への曝気操
作及び溶存酸素濃度の測定操作によって活性汚泥液の呼
吸速度を測定する装置において、上記測定槽に第3のピ
ンチバルブを介在してATU液注入管と水道水注入管及
び洗浄液注入管を接続したことにより、活性汚泥液の呼
吸速度を測定した後に洗浄液と水道水の注入による測定
槽内壁面の洗浄作業を行い、しかる後に該測定槽内を水
道水で満たした状態を保持して次回の測定に備えるよう
にした洗浄機構付き呼吸速度計の構成を提供する。
In order to achieve the above object, the present invention introduces an activated sludge liquid into a measuring tank by opening and closing an upper pinch valve and a lower pinch valve attached to the measuring tank and by an air lift action. In the apparatus for measuring the respiration rate of the activated sludge by aerating the activated sludge and measuring the dissolved oxygen concentration, an ATU liquid injection pipe and tap water are connected to the measurement tank via a third pinch valve. By connecting the injection pipe and the cleaning liquid injection pipe, after measuring the respiration rate of the activated sludge liquid, the cleaning tank and the tap water were injected to wash the inner wall surface of the measuring tank, and then the measuring tank was filled with tap water. Provided is a configuration of a respiratory rate meter with a washing mechanism, which keeps the state of being kept ready for the next measurement.

【0016】上記呼吸速度の測定は活性汚泥液の撹拌と
エアの注入に伴う好気性微生物による酸素消費による溶
存酸素濃度の低下を測定して、該溶存酸素濃度の減少速
度から最小自乗法により活性汚泥の呼吸速度〔Rr〕を
算出する操作と、更にATU(N−アリルチオ尿素)の
注入後に曝気,撹拌を実施して全酸素消費速度から硝化
反応に伴う酸素消費速度を差し引いた値である〔ATU
−Rr〕値を求め、〔Rr〕と〔ATU−Rr〕の差か
ら硝化に伴う酸素消費速度である〔Nit−Rr〕を求
め、採水時の活性汚泥浮遊物濃度と〔ATU−Rr〕及
び〔Nit−Rr〕から単位汚泥量当たりの呼吸速度を
求めている。
The respiration rate is measured by measuring the decrease in the dissolved oxygen concentration due to the consumption of oxygen by the aerobic microorganisms accompanying the stirring of the activated sludge and the injection of air. This is a value obtained by subtracting the oxygen consumption rate associated with the nitrification reaction from the total oxygen consumption rate by performing an operation for calculating the respiration rate [Rr] of the sludge and further performing aeration and stirring after injecting ATU (N-allylthiourea) [ ATU
-Rr] value, and from the difference between [Rr] and [ATU-Rr], [Nit-Rr], which is the oxygen consumption rate associated with nitrification, was determined, and the activated sludge suspended matter concentration during water sampling and [ATU-Rr] And [Nit-Rr], the respiration rate per unit sludge amount is determined.

【0017】[0017]

【作用】かかる洗浄機構付き呼吸速度計によれば、エア
の導入に伴って測定槽内にエアリフトを形成してから上
部ピンチバルブと下部ピンチバルブの開閉により活性汚
泥液を測定槽内に導入し、この活性汚泥の活性汚泥浮遊
物濃度を測定した後に曝気し、溶存酸素濃度を高めてか
ら曝気を停止して撹拌を実施すると、活性汚泥の好気性
微生物による酸素消費に伴って溶存酸素濃度が低下する
ので、これをDO計により測定してDOの減少速度から
最小自乗法により活性汚泥の呼吸速度を算出する。
According to the respiration rate meter with the washing mechanism, an air lift is formed in the measuring tank with the introduction of air, and then the activated sludge liquid is introduced into the measuring tank by opening and closing the upper pinch valve and the lower pinch valve. After measuring the activated sludge suspended solids concentration of this activated sludge, aeration is performed, the dissolved oxygen concentration is increased, and then the aeration is stopped and agitation is performed. Since it decreases, this is measured by a DO meter, and the respiration rate of the activated sludge is calculated by the least square method from the DO reduction rate.

【0018】その後に洗浄液と水道水の注入による測定
槽内壁面の洗浄作業を行い、測定槽内を水道水で満たす
ことにより、測定していない時間帯での測定槽内が常時
水道水で満たされており、従って測定槽の内壁面が活性
汚泥その他の汚染物質に接触しておらず、汚染物質に起
因する測定精度の低下は防止される。
Thereafter, the inner wall surface of the measuring tank is washed by injecting a washing liquid and tap water, and the measuring tank is filled with tap water, so that the measuring tank is always filled with tap water during a time when measurement is not being performed. Therefore, the inner wall surface of the measuring tank is not in contact with activated sludge or other contaminants, so that a decrease in measurement accuracy due to the contaminants is prevented.

【0019】又、ATU液注入管からのATU(N−ア
リルチオ尿素)試薬の注入と再度のエア注入による曝気
を行って活性汚泥による酸素消費に伴うDO濃度の低下
を測定して呼吸速度を算出する工程を繰り返し実施しな
がら、同時に全酸素消費速度から硝化反応に伴う酸素消
費速度を差し引いた値である〔ATU−Rr〕値を計算
によって求め、〔Rr〕と〔ATU−Rr〕の差から硝
化に伴う酸素消費速度である〔Nit−Rr〕を求めて
採水時の活性汚泥浮遊物濃度と〔ATU−Rr〕及び
〔Nit−Rr〕から単位汚泥量当たりの呼吸速度を求
める。
The respiration rate is calculated by injecting the ATU (N-allylthiourea) reagent from the ATU liquid injection tube and performing aeration by injecting air again to measure the decrease in DO concentration due to oxygen consumption by activated sludge. While repeatedly performing the step of performing, the [ATU-Rr] value, which is a value obtained by subtracting the oxygen consumption rate accompanying the nitrification reaction from the total oxygen consumption rate at the same time, is calculated, and the difference between [Rr] and [ATU-Rr] is calculated. [Nit-Rr], which is the rate of oxygen consumption due to nitrification, is determined, and the respiration rate per unit sludge amount is determined from the activated sludge suspended matter concentration at the time of water sampling and [ATU-Rr] and [Nit-Rr].

【0020】[0020]

【実施例】以下、図面に基づいて本発明にかかる洗浄機
構付き呼吸速度計の一実施例を、前記従来の構成部分と
同一の構成部分に同一の符号を付して詳述する。図1は
本実施例の縦断側面図であり、13aは採水口、13b
は排水口、14は測定槽であり、この測定槽14の入口
及び出口側には通水路を形成するチューブ15,16が
連結されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view showing an embodiment of a respiration rate meter with a washing mechanism according to the present invention. FIG. 1 is a vertical sectional side view of the present embodiment, in which 13a is a water sampling port, 13b.
Is a drain port, and 14 is a measuring tank. Tubes 15 and 16 forming a water passage are connected to the inlet and outlet sides of the measuring tank 14.

【0021】V1は上部ピンチバルブ、V2は下部ピンチ
バルブ、17,18,19はエア注入口であり、エア注
入口17,19からのエアの注入と排気によりチューブ
15,16がピンチ状態と解除状態になって活性汚泥液
の開閉動作が行われる。20は溶存酸素濃度検出部とし
てのDO電極、21は撹拌器である。
V 1 is an upper pinch valve, V 2 is a lower pinch valve, 17, 18 and 19 are air inlets, and tubes 15 and 16 are in a pinched state by injecting and exhausting air from air inlets 17 and 19. Then, the opening and closing operation of the activated sludge liquid is performed. Reference numeral 20 denotes a DO electrode as a dissolved oxygen concentration detection unit, and 21 denotes a stirrer.

【0022】22はATU液注入管、23は水道水注入
管、24は洗浄液注入管であり、ATU液注入管22は
図外のATU添加装置に接続されている。又、各注入管
22,23,24と上部ピンチバルブV1との間には第
3のピンチバルブV3とエア注入口25が配設されてい
る。従って各ATU液注入管22、水道水注入管23及
び洗浄液注入管24は第3のピンチバルブV3を介在し
て測定槽14に接続されている。
Reference numeral 22 denotes an ATU liquid injection pipe, 23 denotes a tap water injection pipe, 24 denotes a cleaning liquid injection pipe, and the ATU liquid injection pipe 22 is connected to an ATU adding device (not shown). The third pinch valve V 3 and the air inlet 25 is disposed between each injection tube 22, 23, 24 and the upper pinch valve V 1. Thus the ATU solution injection tube 22, the tap water injection pipe 23 and the washing liquid filling tube 24 is connected to the measuring vessel 14 by interposing a third pinch valve V 3.

【0023】かかる本実施例によって活性汚泥の呼吸速
度を測定する操作方法は以下の通りである。先ず基本的
な動作として、従来例と同様にエア注入口18から測定
槽14内にエアを導入してエアリフトを形成し、上部ピ
ンチバルブV1と下部ピンチバルブV2を開いて採水口1
3aから図外の好気槽内の活性汚泥液を測定槽14内に
導入する。
The operation method for measuring the respiration rate of the activated sludge according to this embodiment is as follows. First, as a basic operation, air is introduced from the air inlet 18 into the measurement tank 14 to form an air lift, and the upper pinch valve V 1 and the lower pinch valve V 2 are opened to open the water sampling port 1 as in the conventional example.
The activated sludge liquid in the aerobic tank (not shown) is introduced into the measuring tank 14 from 3a.

【0024】一定時間経過後にエア注入口17からのエ
アの注入によって下部ピンチバルブV2を閉じ、別途に
併設したMLSS計により活性汚泥液のMLSS(活性
汚泥浮遊物濃度)を測定する。
After a certain period of time, the lower pinch valve V 2 is closed by injecting air from the air inlet 17, and the MLSS (activated sludge suspended matter concentration) of the activated sludge is measured by a separately provided MLSS meter.

【0025】次にエア注入口18から測定槽14内にエ
アを送り込んで採水した活性汚泥液を曝気し、DO濃度
を設定値,例えば5(mg/l)まで高める。
Next, air is sent from the air inlet 18 into the measuring tank 14 to aerate the collected activated sludge to increase the DO concentration to a set value, for example, 5 (mg / l).

【0026】そしてDO濃度が設定値まで上昇した時点
で曝気を停止し、エア注入口19からのエアの注入によ
って上部ピンチバルブV1を閉じて撹拌器21による撹
拌を開始する。すると活性汚泥の好気性微生物による酸
素消費に伴ってDO濃度が低下するので、これをDO電
極20及び図外のDO計により測定してDOの減少速度
から最小自乗法により活性汚泥の〔Rr〕を算出する。
When the DO concentration rises to the set value, the aeration is stopped, and the upper pinch valve V 1 is closed by injecting air from the air inlet 19 to start stirring by the stirrer 21. Then, the DO concentration decreases with the oxygen consumption of the activated sludge by the aerobic microorganisms. The DO concentration is measured by the DO electrode 20 and a DO meter (not shown), and the [Rr] of the activated sludge is calculated from the DO decreasing rate by the least square method. Is calculated.

【0027】次に上部ピンチバルブV1と第3のピンチ
バルブV3を開いてATU液注入管22からATU(N
−アリルチオ尿素)試薬を測定槽14に注入する。そし
て再度エア注入口18からのエアによる曝気を行ってD
O濃度を設定値まで高めてから曝気を停止し、上部ピン
チバルブV1を閉じて撹拌器21による撹拌を行って活
性汚泥による酸素消費に伴うDO濃度の低下を図外のD
O計により測定し、DOの減少速度から〔Rr〕を算出
する工程を繰り返し実施しながら、〔Rr〕と同時に
〔ATU−Rr〕値を計算によって求める。
Next, the upper pinch valve V 1 and the third pinch valve V 3 are opened, and the ATU (N
(Allylthiourea) reagent is injected into the measuring tank 14. Then, aeration with air from the air inlet 18 is performed again, and D
Aeration from increasing the O concentration to a set value is stopped, a decrease in DO concentration due to oxygen consumption by activated sludge performs agitation by stirrer 21 closes the upper pinch valve V 1 of the unshown D
The value of [ATU-Rr] is obtained by calculation at the same time as [Rr] while repeatedly performing the step of measuring [Rr] from the DO reduction rate by measuring with an O meter.

【0028】そして得られた〔Rr〕値と〔ATU−R
r〕値の差から〔Nit−Rr〕を求め、採水時に求め
たMLSS濃度と〔ATU−Rr〕及び〔Nit−R
r〕から単位汚泥量当たりの呼吸速度〔Kr〕,〔AT
U−Kr〕,〔Nit−Kr〕を求める。
Then, the obtained [Rr] value and [ATU-R
[Nit-Rr] was determined from the difference between the [ML] r] values, the MLSS concentration determined at the time of water sampling, and [ATU-Rr] and [Nit-R]
r], the respiration rate per unit sludge amount [Kr], [AT
U-Kr] and [Nit-Kr].

【0029】これを更に説明すると、測定された〔AT
U−Rr〕値は一般に好気槽における硝化反応の進行状
況をモニターするために用いられる。即ち、酸素利用速
度(oxygen utilization rate respiration,Rr)に
は有機物の酸化分解の際に消費される酸素量と、活性汚
泥の内生呼吸に消費される酸素量及び硝化反応で消費さ
れる酸素量とが含まれており、この値は有機物の除去や
内生呼吸による呼吸速度、即ち、全酸素消費速度から硝
化反応に伴う酸素消費速度を差し引いた値として表わさ
れる。従って硝化反応の進行状況は、〔Rr〕と硝化抑
制剤であるN−アリルチオ尿素(化学式C482S,
ATU)を添加して測定したRrの差〔ATU−Rr〕
から求めることができる。
To explain this further, the measured [AT
The U-Rr] value is generally used to monitor the progress of the nitrification reaction in an aerobic tank. That is, the oxygen utilization rate (Rr) includes the amount of oxygen consumed in the oxidative decomposition of organic matter, the amount of oxygen consumed in the endogenous respiration of activated sludge, and the amount of oxygen consumed in the nitrification reaction. This value is expressed as a value obtained by subtracting the oxygen consumption rate associated with the nitrification reaction from the respiration rate due to the removal of organic substances and endogenous respiration, that is, the total oxygen consumption rate. Therefore, the progress of the nitrification reaction is determined by [Rr] and N-allylthiourea (chemical formula C 4 H 8 N 2 S,
(ATU) and the difference in Rr measured [ATU-Rr]
Can be obtained from

【0030】上記の差を〔Nit−Rr〕とすると、 〔Nit−Rr〕=〔Rr〕−〔ATU−Rr〕・・・・・・・・・・(1) となる。つまり〔Nit−Rr〕値は硝化に伴う酸素消
費速度であり、この値が小さければ硝化反応が終了し、
大きければ硝化反応が終了していないものと判断するこ
とができる。上記〔Nit−Rr〕は硝化反応に基づく
酸素消費量を表すので、この値から好気槽内での硝化速
度を推定することが可能である。
If the above difference is [Nit-Rr], [Nit-Rr] = [Rr]-[ATU-Rr] (1) That is, the [Nit-Rr] value is an oxygen consumption rate accompanying nitrification, and if this value is small, the nitrification reaction ends,
If it is larger, it can be determined that the nitrification reaction has not been completed. Since [Nit-Rr] represents the oxygen consumption based on the nitrification reaction, the nitrification rate in the aerobic tank can be estimated from this value.

【0031】通常は好気槽から採水された検水の〔AT
U−Rr〕値によって硝化反応にかかる酸素消費速度
〔Nit−Rr〕値が測定され、この〔Nit−Rr〕
値に基づいて硝化反応が終了しているか否かが判断され
る。即ち、硝化反応が順調に進行してアンモニア性窒素
の濃度が小さくなると、上記〔Nit−Rr〕値も急激
に小さくなるので、これによって好気槽における硝化反
応が終了していることが分かる。
Normally, a sample of water sampled from an aerobic tank [AT
The oxygen consumption rate [Nit-Rr] value for the nitrification reaction is measured based on the [U-Rr] value.
It is determined whether the nitrification reaction has been completed based on the value. That is, when the nitrification reaction proceeds smoothly and the concentration of ammoniacal nitrogen decreases, the [Nit-Rr] value also sharply decreases, indicating that the nitrification reaction in the aerobic tank has been completed.

【0032】他方で、前記〔ATU−Rr〕値は測定さ
れた硝化反応にかかる酸素消費速度〔Nit−rr〕値
が大きい場合には、好気槽内での硝化反応が終了してい
ないものと判断される。この時には嫌気槽の撹拌機構の
駆動を停止するとともに好気槽への送風量を制御し、理
想的硝化速度に達するようなエアレーションを実施す
る。
On the other hand, when the measured oxygen consumption rate [Nit-rr] is large, the [ATU-Rr] value indicates that the nitrification reaction in the aerobic tank has not been completed. Is determined. At this time, the drive of the stirring mechanism of the anaerobic tank is stopped, and the amount of air blown to the aerobic tank is controlled, so that aeration is performed to reach an ideal nitrification rate.

【0033】このようにして呼吸速度〔Rr〕と〔AT
U−Rr〕値を測定した後に洗浄工程を実施する。この
場合、先ず下部ピンチバルブV2と上部ピンチバルブV1
を開いてから水道水注入管23から水道水を導入し、測
定槽14内の下水を図外の曝気槽に排出した後に下部ピ
ンチバルブV2を閉じて測定槽14内を水道水により置
換する。
Thus, the respiration rate [Rr] and [AT
After measuring the [U-Rr] value, the washing step is performed. In this case, first, the lower pinch valve V 2 and the upper pinch valve V 1
Introducing tap water from the tap water injection pipe 23 from the opening, the measuring vessel 14 by closing the lower pinch valve V 2 after discharging the sewage in the measuring tank 14 to the aeration tank, not shown replaced by tap water .

【0034】次に次塩素酸ナトリウム等の洗浄液を洗浄
液注入管24を通じて測定槽14内に導入し、ある一定
時間経過後に下部ピンチバルブV2を開き、測定槽14
内の洗浄液がなくなるまで水道水を注入する。洗浄水の
排水が終了した時点で下部ピンチバルブV2を閉じて洗
浄工程を終了する。
[0034] Then the cleaning liquid such as sodium next chlorate introduced into the measurement chamber 14 through the cleaning solution injection tube 24, to open the lower pinch valve V 2 after the lapse a certain time, measuring tank 14
Fill with tap water until there is no cleaning solution inside. When the draining of the washing water is finished by closing the lower pinch valve V 2 ends the washing process.

【0035】この洗浄工程終了後に再度下部ピンチバル
ブV2を開いてエア注入口18から測定槽14内に一定
時間だけエアを送り込む。すると測定槽14内がエアだ
けで満たされるので、ここで下部ピンチバルブV2を閉
じて第3のピンチバルブV3介して水道水注入管23か
ら測定槽14内に水道水を送り込み、その状態を保持し
たまま次回の測定に備える。
After the completion of the cleaning step, the lower pinch valve V 2 is opened again to send air from the air inlet 18 into the measuring tank 14 for a predetermined time. Then since the measuring chamber 14 is filled with only air, wherein feeding the tap water from the third pinch valve V 3 tap water injection pipe 23 through closing the lower pinch valve V 2 in the measuring chamber 14, the condition While preparing for the next measurement.

【0036】上記のように、測定していない時間帯での
測定槽14内は常時水道水注入管23から送り込まれた
水道水で満たされており、従って測定槽14の内壁面が
活性汚泥その他の汚染物質に接触しておらず、DO電極
20に汚染物質が付着することがないという動作態様が
得られる。
As described above, the inside of the measuring tank 14 during the non-measurement time period is always filled with the tap water sent from the tap water injection pipe 23, and therefore the inner wall surface of the measuring tank 14 is activated sludge or the like. Thus, an operation mode in which no contaminant adheres to the DO electrode 20 without contact with the contaminant is obtained.

【0037】[0037]

【発明の効果】以上詳細に説明したように、本発明にか
かる洗浄機構付き呼吸速度計によれば、測定槽内にエア
リフトを形成して活性汚泥液を測定槽内に導入し、活性
汚泥浮遊物濃度を測定した後に曝気し、溶存酸素濃度を
高めてから曝気を停止して撹拌を実施し、活性汚泥の好
気性微生物による酸素消費に伴って低下した溶存酸素濃
度を測定してDOの減少速度から最小自乗法により活性
汚泥の呼吸速度を算出した後に洗浄液と水道水の注入に
よる測定槽内壁面の洗浄作業を行ってから測定槽内を水
道水で満たすことにより、測定していない時間帯の測定
槽内が常時水道水で満たされており、従って測定槽の内
壁面が活性汚泥その他の汚染物質に接触しておらず、汚
染物質に起因する測定精度の低下を防止することができ
る。
As described above in detail, according to the respiratory rate meter with a washing mechanism according to the present invention, an air lift is formed in the measuring tank to introduce the activated sludge into the measuring tank, and the activated sludge floats. The aeration is performed after measuring the concentration of dissolved matter, the aeration is stopped after increasing the dissolved oxygen concentration, and the stirring is performed. The dissolved oxygen concentration reduced with the oxygen consumption of the activated sludge by the aerobic microorganisms is measured to reduce the DO. After calculating the respiration rate of activated sludge from the velocity by the least squares method, cleaning the inner wall of the measuring tank by injecting the washing liquid and tap water, and then filling the measuring tank with tap water, during which time is not measured Is always filled with tap water, and therefore the inner wall surface of the measurement tank is not in contact with activated sludge or other contaminants, thereby preventing a decrease in measurement accuracy due to the contaminants.

【0038】特に測定槽内に付着した活性汚泥中の好気
性微生物の呼吸速度が誤差要因となることがなく、検出
器であるDO電極とか撹拌機等の付属機器に汚染物質が
付着することが防止されるので、従来のように頻繁な殺
菌洗浄作業は不要であり、メンテナンスが簡易化される
とともに過剰な薬品によるプロセスへの悪影響をなくす
ことができる。
In particular, the respiration rate of the aerobic microorganisms in the activated sludge adhering to the measuring tank does not become an error factor, and contaminants adhere to the detector such as the DO electrode or an accessory such as a stirrer. As a result, frequent sterilization and cleaning operations as in the related art are unnecessary, so that maintenance can be simplified and adverse effects on the process due to excessive chemicals can be eliminated.

【0039】そして得られた活性汚泥の呼吸速度から下
水処理場で用いられる好気槽における硝化効率とそれに
伴う嫌気槽における脱窒効率をともに充分に高めるため
の効率的な運転制御方法の確立をはかることができて、
循環式硝化脱窒法のみならず、標準活性汚泥法における
脱窒反応を促進するためのモニタリングとしても使用す
ることができる。
Based on the obtained respiration rate of the activated sludge, it is necessary to establish an efficient operation control method for sufficiently increasing both the nitrification efficiency in the aerobic tank used in the sewage treatment plant and the denitrification efficiency in the anaerobic tank associated therewith. Can be measured,
It can be used not only for the circulation type nitrification denitrification method but also for monitoring for promoting the denitrification reaction in the standard activated sludge method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例にかかる洗浄機構付き呼吸速度計を示
す縦断側面図。
FIG. 1 is a longitudinal sectional side view showing a respiratory rate meter with a washing mechanism according to the present embodiment.

【図2】通常の循環式硝化脱窒法の一例を示す概要図。FIG. 2 is a schematic diagram showing an example of a normal circulation type nitrification and denitrification method.

【図3】従来の呼吸速度計の一例を示す縦断側面図。FIG. 3 is a vertical sectional side view showing an example of a conventional respirometer.

【符号の説明】[Explanation of symbols]

13a…採水口 13b…排水口 14…測定槽 15,16…チューブ V1…上部ピンチバルブ V2…下部ピンチバルブ 17,18,19,25…エア注入口 20…DO電極 21…撹拌器 22…ATU液注入管 23…水道水注入管 24…洗浄液注入管 V3…第3のピンチバルブ13a ... adopted Mizuguchi 13b ... drain outlet 14 ... measuring tank 15, 16 ... tube V 1 ... upper pinch valve V 2 ... lower pinch valves 17,18,19,25 ... Air inlet 20 ... DO electrodes 21 agitator 22 ... ATU liquid injection pipe 23 ... tap water injection pipe 24 ... cleaning liquid injection pipe V 3 ... third pinch valve

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 33/18 G01N 27/416 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 33/18 G01N 27/416

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 測定槽に付設した上部ピンチバルブと下
部ピンチバルブの開閉動作とエアリフト作用により活性
汚泥液を測定槽内に導入して、該活性汚泥液への曝気操
作及び溶存酸素濃度の測定操作によって活性汚泥液の呼
吸速度を測定する装置において、 上記測定槽に、第3のピンチバルブを介在してATU液
注入管と水道水注入管及び洗浄液注入管を接続したこと
により、活性汚泥液の呼吸速度を測定した後に洗浄液と
水道水の注入による測定槽内壁面の洗浄作業を行い、し
かる後に該測定槽内を水道水で満たした状態を保持して
次回の測定に備えるようにしたことを特徴とする洗浄機
構付き呼吸速度計。
1. An activated sludge liquid is introduced into a measuring tank by an opening / closing operation and an air lifting action of an upper pinch valve and a lower pinch valve attached to the measuring tank, and the activated sludge is aerated and the dissolved oxygen concentration is measured. An apparatus for measuring a respiration rate of an activated sludge liquid by an operation, wherein an ATU liquid injection pipe, a tap water injection pipe, and a cleaning liquid injection pipe are connected to the measurement tank via a third pinch valve, whereby the activated sludge liquid is measured. After measuring the respiration rate, the inner wall of the measuring tank was washed by injecting the washing liquid and tap water, and then the measuring tank was kept filled with tap water to prepare for the next measurement. A respiratory rate meter with a washing mechanism.
【請求項2】 上記呼吸速度の測定は、活性汚泥液の撹
拌とエアの注入に伴う好気性微生物による酸素消費によ
る溶存酸素濃度の低下を測定して、該溶存酸素濃度の減
少速度から最小自乗法により活性汚泥の呼吸速度〔R
r〕を算出する操作と、更にATU(N−アリルチオ尿
素)の注入後に曝気,撹拌を実施して全酸素消費速度か
ら硝化反応に伴う酸素消費速度を差し引いた値である
〔ATU−Rr〕値を求め、〔Rr〕と〔ATU−R
r〕の差から硝化に伴う酸素消費速度である〔Nit−
Rr〕を求め、採水時の活性汚泥浮遊物濃度と〔ATU
−Rr〕及び〔Nit−Rr〕から単位汚泥量当たりの
呼吸速度を求めることを特徴とする請求項1記載の洗浄
機構付き呼吸速度計。
2. The respiration rate is measured by measuring a decrease in dissolved oxygen concentration due to consumption of oxygen by aerobic microorganisms caused by agitation of activated sludge and injection of air. The respiration rate of activated sludge [R
[ATU-Rr] value, which is a value obtained by subtracting the oxygen consumption rate accompanying the nitrification reaction from the total oxygen consumption rate by performing aeration and stirring after injecting ATU (N-allylthiourea) and further injecting ATU (N-allylthiourea). [Rr] and [ATU-R
r], which is the rate of oxygen consumption due to nitrification [Nit−
Rr], the activated sludge suspended matter concentration at the time of water sampling and [ATU
The respiratory rate meter with a washing mechanism according to claim 1, wherein a respiratory rate per unit sludge amount is obtained from [-Rr] and [Nit-Rr].
JP11803495A 1995-05-17 1995-05-17 Respiratory rate meter with washing mechanism Expired - Fee Related JP3538960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11803495A JP3538960B2 (en) 1995-05-17 1995-05-17 Respiratory rate meter with washing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11803495A JP3538960B2 (en) 1995-05-17 1995-05-17 Respiratory rate meter with washing mechanism

Publications (2)

Publication Number Publication Date
JPH08313512A JPH08313512A (en) 1996-11-29
JP3538960B2 true JP3538960B2 (en) 2004-06-14

Family

ID=14726416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11803495A Expired - Fee Related JP3538960B2 (en) 1995-05-17 1995-05-17 Respiratory rate meter with washing mechanism

Country Status (1)

Country Link
JP (1) JP3538960B2 (en)

Also Published As

Publication number Publication date
JPH08313512A (en) 1996-11-29

Similar Documents

Publication Publication Date Title
KR100628908B1 (en) Method and apparatus for instrumentation and control of membrane coupled activated sludge method and reactor operating anoxic/anaerobic process alternatively for removal of nitrogen and phosphorus
JP3538960B2 (en) Respiratory rate meter with washing mechanism
JP4027217B2 (en) Livestock wastewater treatment equipment
JP3379199B2 (en) Operation control method of activated sludge circulation method
JP3493884B2 (en) Microorganism film adhesion detection method for DO electrode
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH09150181A (en) Sewage purifying device
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPH11347550A (en) Membrane separation method and apparatus
JPH09138229A (en) Respiration rate meter with cleaning mechanism
JPH0736281Y2 (en) Respiratory rate measuring device
JP5801506B1 (en) Operation method of biological denitrification equipment
KR0128277Y1 (en) Biological waste water treating equipment using pure oxygen
JP3913129B2 (en) Treatment performance monitoring system for biological treatment equipment
JPH0691294A (en) Operation control method of batch type active sludge treatment
JP3387718B2 (en) Wastewater treatment method and apparatus
JP3118783B2 (en) Batch type wastewater treatment method and its treatment device
JP3782738B2 (en) Wastewater treatment method
JPH08294698A (en) Measurement of activity of nitro-bacteria in sewage treatment facilities
JP3359851B2 (en) Wastewater treatment method
JPH09133648A (en) Respiration rate meter
JPS62132598A (en) Treatment of waste water
JP2005103337A (en) Nitrification activity detecting device for activated sludge treating tank
JPH06182390A (en) Operation control method for batch type active sludge treatment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees