JPH0927412A - Cut core and manufacture thereof - Google Patents

Cut core and manufacture thereof

Info

Publication number
JPH0927412A
JPH0927412A JP7175950A JP17595095A JPH0927412A JP H0927412 A JPH0927412 A JP H0927412A JP 7175950 A JP7175950 A JP 7175950A JP 17595095 A JP17595095 A JP 17595095A JP H0927412 A JPH0927412 A JP H0927412A
Authority
JP
Japan
Prior art keywords
core
cut
element selected
cut core
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7175950A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7175950A priority Critical patent/JPH0927412A/en
Publication of JPH0927412A publication Critical patent/JPH0927412A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a cut core, having low magnetic loss, which is used for a high frequency transformer and a choke coil etc. SOLUTION: This cut core of a structure which has a winding of a nanocrystal alloy strip, containing at least a kind of element selected from Cu and Au, at least a kind of element selected from the group consisting of Nb, Mo, Ta Ti, Zr, Hf, V and W, at least a kind of element, which is selected from the group of Si and B, and Fe as essential element, with at least 50% of its structure composed of the crystal grain of 50nm or smaller in grain diameter, and with at least a part of magnetic path cut has a resistance value of 1Ω or higher per 10mm thickness between the inner circumferential part and the outer circumferential part of the cut core.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波トランス、チョ
ークコイル等に用いられるナノ結晶軟磁性合金を用いた
特に磁心損失の低いカットコアおよびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cut core using a nanocrystalline soft magnetic alloy used for a high frequency transformer, a choke coil, etc., and having a particularly low core loss, and a method for manufacturing the cut core.

【0002】[0002]

【従来の技術】従来、高周波トランス等に用いられる磁
心としては、珪素鋼やフェライト等からなる磁心が主に
用いられてきた。フェライト磁心は高周波における磁心
損失が低いため特に100kHz以上の高周波領域で使用され
ている。一方珪素鋼磁心は飽和磁束密度が高く低周波領
域では磁心を他の材料に比べて小型化できるため数kHz
以下の周波数帯で主に使用されている。一般的には、こ
れらの用途に使用する金属磁心はカットコアの形態で使
用される場合が多い。カットコアは巻線コイルを単体で
別途自動で巻き製造し、その後カットコアを挿入するこ
とによりトランスやチョ−クコイルを製造できる。これ
に対して、カットコアではない閉磁路コアでは巻線コイ
ルをあらかじめ製造してコアを挿入することができない
ため、コアに対して巻線作業を行うため自動化するのが
困難であり、トランス製造の際に大幅にコストが上昇す
るため、カットコア以外の形態では高インダクタンスが
必要なパルストランス等一部の用途を除きほとんど使用
されていない。
2. Description of the Related Art Conventionally, as a magnetic core used in a high frequency transformer or the like, a magnetic core made of silicon steel or ferrite has been mainly used. Ferrite cores are used especially in the high frequency region of 100 kHz or higher because they have low core loss at high frequencies. On the other hand, the silicon steel core has a high saturation magnetic flux density and can be made smaller than other materials in the low frequency range, so it is several kHz.
It is mainly used in the following frequency bands. Generally, the metal magnetic cores used for these applications are often used in the form of cut cores. For the cut core, the winding coil is separately and automatically wound separately, and then the cut core is inserted to manufacture the transformer or the choke coil. On the other hand, in a closed magnetic circuit core that is not a cut core, it is not possible to manufacture the winding coil in advance and insert the core, which makes it difficult to automate the winding work for the core. In this case, the cost is significantly increased, so that it is rarely used except for some applications such as a pulse transformer that requires high inductance in a form other than the cut core.

【0003】ところで、近年インバータ等の駆動周波数
は騒音を防ぐ目的と、トランスを小型化する目的のため
に可聴周波数以上の数10kHz帯に設計される場合が増加
している。しかし、珪素鋼を用いたカットコアは磁心損
失が大きくなりすぎるため発熱が大きく使用することが
困難である。最近、飽和磁束密度が高く比較的高周波特
性に優れたFe基アモルファス合金を用いたカットコアが
製品化されている。合金薄帯を使用してカットコアを製
造する場合には、含浸を行うのが必須である。これは、
切断の際に薄帯が剥がれたりするのを防ぐ目的で行われ
る。しかし、Fe基アモルファス合金は磁歪が著しく大き
く、カットコアにするために樹脂含浸を行なうと磁心損
失が著しく増加し、素材の特性が活かせないのが現状で
ある。このため、Fe基アモルファスカットコアを用いた
トランスは素材のもつ特性を十分活かすことができず、
発熱が大きくなり、回路の効率も悪くなってしまう。Co
基アモルファス合金は磁心損失が低く磁歪が小さいため
特性面では適しているが、経時変化が大きく実用的に使
用するのには問題がある。また、特開平1-110707に記載
されているように近年微細結晶粒を有するFe基ナノ結晶
合金が開発され、磁歪が小さく含浸による磁気特性の劣
下が小さいためにこれらの用途に適することが報告され
ている。
By the way, in recent years, the drive frequency of inverters and the like has been designed to be several tens of kHz higher than the audible frequency for the purpose of preventing noise and downsizing of the transformer. However, since the cut core using silicon steel has too large a core loss, it generates a large amount of heat and is difficult to use. Recently, a cut core using an Fe-based amorphous alloy having a high saturation magnetic flux density and a relatively high frequency characteristic has been commercialized. When manufacturing a cut core using an alloy ribbon, impregnation is essential. this is,
The purpose is to prevent the ribbon from peeling off during cutting. However, the Fe-based amorphous alloy has a remarkably large magnetostriction, and when resin impregnation is performed to form a cut core, the core loss is remarkably increased and the characteristics of the material cannot be utilized at present. Therefore, the transformer using the Fe-based amorphous cut core cannot fully utilize the characteristics of the material,
The amount of heat generated increases, and the efficiency of the circuit deteriorates. Co
The base amorphous alloy is suitable in terms of characteristics because it has a low magnetic core loss and a small magnetostriction, but it has a large change over time and is problematic for practical use. Further, as described in JP-A 1-110707, an Fe-based nanocrystal alloy having fine crystal grains has been developed in recent years, and since it has a small magnetostriction and a small deterioration of magnetic properties due to impregnation, it is suitable for these applications. It has been reported.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらのFe基
ナノ結晶合金を用いたカットコアは珪素鋼やFe基アモル
ファス合金を用いたカットコアに比べると磁心損失は著
しく低いが、含浸後の切断前の磁心損失に比べると、切
断後の磁心損失が大きく、素材が本来持っている特性を
十分活かしきれていない問題があることが分った。
However, the cut cores using these Fe-based nanocrystalline alloys have remarkably lower magnetic core loss than the cut cores using silicon steel or Fe-based amorphous alloys, but the cut cores after cutting are impregnated. Compared with the previous core loss, the core loss after cutting was large, and there was a problem that the characteristics originally possessed by the material could not be fully utilized.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに本発明者らは、鋭意検討を行った結果、切断後磁心
損失が増加する主原因が切断時に切断面に発生するバリ
によることを見い出し、さらにこの磁心損失はカットコ
アの内周部と外周部との間の抵抗値に関係があることを
突き止め本発明に想到した。すなわち、本発明は、Cu、
Auから選ばれる少なくとも一種の元素、Nb,Mo,Ta,Ti,Z
r,Hf,V及びWからなる群から選ばれた少なくとも1種の元
素、Si,Bからなる群から選ばれた少なくとも1種の元素
とFeを必須元素として含み、組織の少なくとも50%が粒
径50nm以下の結晶粒からなるナノ結晶合金薄帯が巻回
され、かつ磁路の少なくとも一部が切断された構造のカ
ットコアにおいて、カットコアの内周部と外周部との間
の抵抗値が10mm厚さ当たり1Ω以上であることを特徴
とするカットコアである。さらにカットコアの内周部と
外周部との間の抵抗値が10mm厚さ当たり5Ω以上であ
ると磁心損失も著しく低くなり、好ましい。さらに、1
kHzにおける実効比透磁率μeが5000以上であると良
く、20kHz,0.2Tにおける磁心損失が20W/kg以下であ
るとカットコアとして好適である。また前記ナノ結晶薄
帯の厚さが3μmから50μmであると磁気特性に優れるカ
ットコアが得られる。
In order to solve the above problems, the inventors of the present invention have conducted diligent studies and, as a result, have found that the main cause of the increase in the core loss after cutting is the burr generated on the cutting surface during cutting. Further, they found out that the magnetic core loss is related to the resistance value between the inner peripheral portion and the outer peripheral portion of the cut core, and arrived at the present invention. That is, the present invention is Cu,
At least one element selected from Au, Nb, Mo, Ta, Ti, Z
At least one element selected from the group consisting of r, Hf, V and W, at least one element selected from the group consisting of Si, B and Fe as essential elements, and at least 50% of the texture is a grain In a cut core having a structure in which a nanocrystalline alloy ribbon made of crystal grains with a diameter of 50 nm or less is wound and at least part of the magnetic path is cut, the resistance value between the inner and outer circumferences of the cut core Is 1 Ω or more per 10 mm thickness, which is a cut core. Furthermore, if the resistance value between the inner peripheral portion and the outer peripheral portion of the cut core is 5 Ω or more per 10 mm thickness, the core loss is also significantly reduced, which is preferable. In addition, 1
The effective relative permeability μ e at kHz is preferably 5000 or more, and the core loss at 20 kHz, 0.2T is 20 W / kg or less, which is suitable as a cut core. When the thickness of the nanocrystalline ribbon is 3 μm to 50 μm, a cut core having excellent magnetic properties can be obtained.

【0006】さらにもう一つの発明はCu、Auから選ばれ
る少なくとも一種の元素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWか
らなる群から選ばれた少なくとも1種の元素、Si,Bから
なる群から選ばれた少なくとも1種の元素とFeを必須元
素として含むアモルファス合金薄帯を巻回しトロイダル
形状にする工程と、これを熱処理し組織の少なくとも50
%が粒径50nm以下の結晶粒からなるナノ結晶合金薄帯
からなる磁心とする工程と、樹脂により含浸し樹脂を硬
化する工程と、磁路の少なくとも一部を切断する工程
と、切断後の切断面を研磨する工程とからなることを特
徴とするカットコアの製造方法であり、切断後の切断面
を研磨した後にさらにエッチング処理すると好ましい。
また別の発明はCu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含むアモルフ
ァス合金薄帯を巻回しトロイダル形状にする工程と、こ
れを熱処理し組織の少なくとも50%が粒径50nm以下の
結晶粒からなるナノ結晶合金薄帯からなる磁心とする工
程と、樹脂により含浸し樹脂を硬化する工程と、磁路の
少なくとも一部を切断する工程と、切断後の切断面をエ
ッチング処理する工程とからなることを特徴とするカッ
トコアの製造方法である。
Yet another invention is Cu, at least one element selected from Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, Si, At least one element selected from the group consisting of B and the step of winding an amorphous alloy ribbon containing Fe as an essential element into a toroidal shape, and at least 50 of the structure by heat treatment
%, A step of forming a magnetic core made of a nanocrystalline alloy ribbon made of crystal grains having a particle size of 50 nm or less, a step of impregnating with a resin and hardening the resin, a step of cutting at least a part of a magnetic path, and a step after cutting It is a method of manufacturing a cut core, which comprises a step of polishing a cut surface, and it is preferable that the cut core after the cutting is polished and further etched.
Another invention is Cu, at least one element selected from Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, a group consisting of Si and B. A step of winding an amorphous alloy ribbon containing at least one element selected from the above and Fe as an essential element into a toroidal shape, and heat-treating this to form a nano-particle composed of crystal grains with a grain size of 50 nm or less at least 50% It comprises a step of forming a magnetic core made of a crystalline alloy ribbon, a step of impregnating with a resin and hardening the resin, a step of cutting at least a part of the magnetic path, and a step of etching the cut surface after cutting. It is a characteristic method of manufacturing a cut core.

【0007】以下に本発明を詳細に説明する。本発明の
カットコアはCu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含み、組織の
少なくとも50%が粒径50nm以下の結晶粒からなるナノ
結晶合金薄帯を用いる。図1に本発明に係わるカットコ
アを2つに分割した際の概略図を示す。実際に使用する
場合は、巻線を別に行い、コイルを作成しコアにはめ込
み2つのコアを切断面で突き合わせて使用する。本発明
者らが鋭意検討した結果、GC砥石等で切断したナノ結
晶合金を用いたカットコアはそのままでは切断面の薄帯
にバリが生じ各薄帯層が電気的に導通し薄帯の層間に渦
電流が流れるため、これに起因する渦電流損失の増大に
よりカットコアにした場合に磁心損失が大幅に増加して
いることが分った。さらにこの切断面の導通の影響はコ
ア内部の層間絶縁の不完全な部分の導通の影響よりもは
るかに大きいことも分かった。この切断面の電気的導通
は、砥石の目詰まりにより薄帯同士が切断面で接触し電
気的に導通することが関係していると考えられるが、切
断条件を変えてもこれを完全に解消するのは困難であっ
た。そこでこのバリの除去方法について検討した結果、
カット面を研磨したり、エッチングすることによりこの
バリを取り除くことが可能であり、これらの方法を行う
ことにより切断面の電気的導通が低減することを見い出
した。さらに切断面の電気的導通が低減する、つまり切
断面の抵抗が増加するとコアの磁心損失が低減すること
も分かった。
Hereinafter, the present invention will be described in detail. The cut core of the present invention is Cu, at least one element selected from Au, Nb, Mo, Ta, Ti, Zr, Hf, at least one element selected from the group consisting of V and W, Si, consisting of B A nanocrystalline alloy ribbon is used which contains at least one element selected from the group and Fe as essential elements, and in which at least 50% of the structure is composed of crystal grains having a grain size of 50 nm or less. FIG. 1 shows a schematic diagram when the cut core according to the present invention is divided into two. When actually using, winding is done separately, a coil is created, and it is inserted into the core and the two cores are used by abutting at the cut surface. As a result of diligent studies by the present inventors, the cut core using the nanocrystalline alloy cut with a GC grindstone or the like remains burrs on the thin ribbon of the cut surface, and each thin ribbon layer is electrically conducted and the interlayer of the thin ribbon is electrically connected. Since eddy current flows in the core, it was found that the magnetic core loss increased significantly when the cut core was used due to the increase in eddy current loss caused by this. It was also found that the effect of conduction on the cut surface is much larger than the effect of conduction on an incomplete portion of interlayer insulation inside the core. It is considered that this electrical continuity of the cut surface is related to the fact that the thin strips come into contact with each other at the cut surface and become electrically conductive due to the clogging of the grindstone, but this is completely eliminated even if the cutting conditions are changed. It was difficult to do. Therefore, as a result of examining this burr removal method,
It has been found that this burr can be removed by polishing or etching the cut surface, and the electrical conduction of the cut surface is reduced by performing these methods. Furthermore, it was also found that the electrical conductivity of the cut surface is reduced, that is, the core resistance of the core is reduced when the resistance of the cut surface is increased.

【0008】切断面の研磨条件やエッチング時間を変え
てカットコアの20kHz、0.2Tの室温の磁心損失およびコ
ア内周部と外周部の間の抵抗を測定し結果を図4に示
す。抵抗値Rは10mm厚さ当たりの値で示した。Rが1
Ω未満の場合著しく磁心損失が増大しているのが分か
る。Rが特に低いのは研磨やエッチングを行っていない
コアである。コアが10mm厚さ当たり1Ω以上の抵抗を
有する場合にはコアの磁心損失は極めて少なくなる。10
mm厚さ当たり1Ωとは内周と外周の間隔が10mmの場
合内周部と外周部との間の抵抗値が1Ωであることを意
味し、20mm厚さのコアでは2Ω、5mm厚さでは0.5Ω
であることを意味する。抵抗値の測定は切断面上の内周
部と外周部側の2点に測定端子を接触させて抵抗測定器
により行う。この効果はSiO2等で層間絶縁した薄帯を用
いたカットコアの場合にも認められる。この場合は抵抗
値の研磨、エッチングによる変化は層間絶縁を行なう場
合より大きくなり研磨やエッチング前に10mm当たり1
Ωに至った抵抗値が5Ω以上に増加する。これに伴い磁
心損失も著しく低くなりより好ましい結果が得られる。
また使用に際しては実効比透磁率を調整するために突き
合わせ部にスペーサをはさむ場合もある。またコア胴体
は固定バンド等でしめ固定する場合が多い。さらにコア
が動かないように突き合わせ部を樹脂等で接着し固定す
る場合が多い。必要に応じてワニス等でコイルごと含浸
する。
FIG. 4 shows the results of measuring the core loss of the cut core at room temperature of 20 kHz and 0.2 T and the resistance between the inner and outer peripheral portions of the core by changing the polishing conditions and etching time of the cut surface. The resistance value R is shown as a value per 10 mm thickness. R is 1
It can be seen that the magnetic core loss is remarkably increased when it is less than Ω. The core having a particularly low R is a core that has not been polished or etched. When the core has a resistance of 1 Ω or more per 10 mm thickness, the core loss of the core becomes extremely small. Ten
1 Ω per mm thickness means that the resistance value between the inner and outer circumferences is 1 Ω when the distance between the inner and outer circumferences is 10 mm, and it is 2 Ω for a 20 mm thick core and 5 Ω for a 5 mm thick core. 0.5 Ω
Means that The resistance value is measured with a resistance measuring instrument by contacting the measuring terminals with two points on the cut surface, that is, the inner peripheral portion and the outer peripheral portion side. This effect is also observed in the case of a cut core using a thin strip with interlayer insulation such as SiO2. In this case, the change in resistance value due to polishing and etching is larger than that when interlayer insulation is performed, and it is 1 per 10 mm before polishing and etching.
The resistance value reaching Ω increases to 5Ω or more. Along with this, the magnetic core loss is also significantly reduced, and more preferable results are obtained.
In use, a spacer may be sandwiched between the abutting portions in order to adjust the effective relative magnetic permeability. Further, the core body is often fastened and fixed with a fixing band or the like. Further, in many cases, the butted portion is fixed by adhering it with resin or the like so that the core does not move. If necessary, impregnate the coil with varnish or the like.

【0009】次に本発明に係わるカットコアの製造方法
について詳述する。合金薄帯は通常次のように製造され
る。まず、単ロ−ル法や双ロ−ル法等の液体急冷法によ
り板厚3〜100μm程度のCu、Auから選ばれる少なくとも
一種の元素と、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群か
ら選ばれた少なくとも1種の元素と、Si,Bからなる群か
ら選ばれた少なくとも1種の元素と、Feを必須元素とし
て含むアモルファス合金薄帯を大気中、アルゴンやヘリ
ウム等の不活性ガス雰囲気中あるいはヘリウム等の減圧
雰囲気で作製する。次に、この合金薄帯を巻回しトロイ
ダル状にした後、アルゴンガスや窒素ガス等の不活性ガ
ス雰囲気中あるいは真空中等で熱処理し組織の少なくと
も50%が粒径500オンク゛ストローム以下の結晶粒からなるナノ結
晶合金薄帯からなる磁心を作製する。この際、合金薄帯
表面をSiO2やAl2O3等の酸化物で被覆し層間絶縁を行う
と特に広幅材においてより好ましい結果が得られる。ま
た、本発明の製造方法の特性改善の効果がより顕著とな
る。層間絶縁の方法としては、電気泳動法によりMgO等
の酸化物を付着させる方法、金属アルコキシド溶液を表
面につけこれを熱処理しSiO2、Li2O、MgO等の酸化物の
膜を形成させる方法、リン酸塩やクロム酸塩処理を行い
表面に酸化物の被覆を行う方法、セラミックスの微粉末
を流動させその中に薄帯を通過させ付着する方法等があ
る。
Next, the method of manufacturing the cut core according to the present invention will be described in detail. The alloy ribbon is usually manufactured as follows. First, by a liquid quenching method such as a single roll method or a twin roll method, a plate thickness of about 3 to 100 μm Cu, at least one element selected from Au, and Nb, Mo, Ta, Ti, Zr, Hf, At least one element selected from the group consisting of V and W, at least one element selected from the group consisting of Si, B, and an amorphous alloy ribbon containing Fe as an essential element in the atmosphere, argon or It is produced in an inert gas atmosphere such as helium or in a reduced pressure atmosphere such as helium. Next, this alloy ribbon is wound into a toroidal shape and then heat-treated in an atmosphere of an inert gas such as argon gas or nitrogen gas or in a vacuum so that at least 50% of the structure consists of crystal grains having a grain size of 500 angstroms or less. A magnetic core composed of a nanocrystalline alloy ribbon is prepared. At this time, if the surface of the alloy ribbon is covered with an oxide such as SiO 2 or Al 2 O 3 to perform interlayer insulation, particularly preferable results can be obtained in a wide material. Further, the effect of improving the characteristics of the manufacturing method of the present invention becomes more remarkable. As a method of interlayer insulation, a method of depositing an oxide such as MgO by an electrophoretic method, a method of forming a film of an oxide such as SiO 2 , Li 2 O and MgO by applying a metal alkoxide solution on the surface and subjecting it to heat treatment, There are a method of applying a phosphate or chromate treatment to coat the surface with an oxide, and a method of flowing fine ceramic powder and passing it through a thin ribbon to adhere it.

【0010】次に切断の際に薄帯が剥がれるのを防止す
るために含浸が行われる。含浸樹脂としてはエポキシ
系、ポリイミド系、アクリル系等の樹脂が耐熱性、温度
特性、付着力の点で好ましい結果が得られる。含浸は樹
脂をできるだけ完全に層間に入れるために真空含浸を行
うのが望ましいが、これに限定されるものではなく、樹
脂が層間に入るのであれば必ずしも真空含浸にする必要
はない。次に切断が行われる。切断は通常は外周スライ
サ等で行われる。切断砥石は特に限定はされないがGC
砥石が脱落等が起きにくく最も適している。切断に用い
る砥石としてはレジノイド結合剤を使用したGC砥石が
適しており、結合度K〜P、粒度80〜150の範囲のものが
望ましい。切断の条件としては、送り速度0.5から30mm/
min、砥石回転数1000〜4000rpm程度が適している。砥石
の厚さは0.5mmから1.5mm程度の範囲のものが適してい
る。この範囲を越えると薄帯のはがれや切断面のきずが
発生しやすくなる。また、砥石の磨耗や破損が起こりや
すくなる。
Next, impregnation is carried out in order to prevent the ribbon from peeling off during cutting. As the impregnating resin, an epoxy resin, a polyimide resin, an acrylic resin, or the like can provide preferable results in terms of heat resistance, temperature characteristics, and adhesive strength. The impregnation is preferably vacuum impregnation so that the resin can be inserted between the layers as completely as possible. However, the impregnation is not limited to this, and the vacuum impregnation is not necessarily required if the resin enters the layers. Then the cutting is performed. The cutting is usually performed with a peripheral slicer or the like. The cutting grindstone is not particularly limited, but is GC
The grindstone is most suitable because it does not fall off. As a grindstone used for cutting, a GC grindstone using a resinoid binder is suitable, and a grindstone having a bond degree of K to P and a grain size of 80 to 150 is desirable. The cutting conditions include a feed rate of 0.5 to 30 mm /
A min of about 1000 to 4000 rpm is suitable for the whetstone. A grindstone thickness of 0.5 mm to 1.5 mm is suitable. If it exceeds this range, peeling of the ribbon and flaws on the cut surface are likely to occur. Further, the grindstone is easily worn or damaged.

【0011】次に切断面の研磨またエッチングを行う。
切断面の研磨は実効比透磁率の増加をもたらし、スペー
サ等を入れずに突き合わせた場合に1kHzにおける実
効比透磁率μeが5000以上を示すものが得られるように
なる。これは切断したままのカットコアではコアが変形
するため、突き合わせ面に空隙が生じ実効比透磁率が低
いが、これを研磨すると空隙が減少するためμeが上昇
すると考えられる。さらに研磨を完全に行なうと15000
程度のμeの実現も可能である。このようなカットコア
はトランスに使用した場合励磁電流を低減することが可
能となるため使い方によってはより好ましい結果が得ら
れる。また、このようなカットコアでは薄帯に垂直方向
成分を持つ漏れ磁束が減少し薄帯面内の渦電流も減少す
る。このためμeの大きいカットコアでは20kHz,
0.2Tにおける磁心損失が20W/kg以下のカット
コアがより容易に得られる。層間絶縁を行ったコアでは
5W/kg以下の特性を得ることも可能である。研磨する場
合には、薄帯幅方向に向って研磨した場合により効果が
著しい。また、初期の研磨の際は荒く研磨しても良いが
最終段階では平滑に仕上げ研磨した方がより好ましい結
果が得られる。研磨方法としては、例えばエメリ−紙に
よる研磨やバフ研磨等の方法が行える。
Next, the cut surface is polished or etched.
Polishing the cut surface increases the effective relative magnetic permeability, and when the surfaces are abutted without a spacer or the like, the effective relative magnetic permeability μ e at 1 kHz shows 5000 or more. This is because in a cut core that has been cut, the core is deformed, so that voids occur at the abutting surfaces and the effective relative magnetic permeability is low. However, if this is ground, the voids decrease and μ e is considered to increase. 15,000 when completely polished
It is possible to realize a degree of μe. When such a cut core is used for a transformer, it is possible to reduce the exciting current, and therefore more preferable results can be obtained depending on the usage. Further, in such a cut core, the leakage magnetic flux having a vertical component in the ribbon decreases, and the eddy current in the ribbon surface also decreases. Therefore, a cut core with a large μe has a frequency of 20 kHz,
A cut core having a magnetic core loss at 0.2 T of 20 W / kg or less can be obtained more easily. In the core with interlayer insulation
It is also possible to obtain characteristics of 5 W / kg or less. When polishing, the effect is more remarkable than when polishing in the width direction of the ribbon. Further, rough polishing may be performed at the initial polishing, but smoother final polishing at the final stage gives more preferable results. As a polishing method, for example, a method such as polishing with emery paper or buffing can be performed.

【0012】またエッチング処理する場合のエッチング
する液の例としては硝酸や硫酸等の希釈液が挙げられる
がこのほかのエッチング液を使用しても良い。また、電
解エッチングを行っても良い。エッチング後コアは水
洗、乾燥し、防錆油や防錆剤を塗布し、錆を防止した方
が信頼性の高いものが得られる。また、切断面に電気的
絶縁を行なうためにセラミックや樹脂系の膜を形成する
場合もある。さらに切断後切断面を研磨し更にエッチン
グ処理すると、更に磁心損失が低く、実効比透磁率の高
いカットコアを実現できる。
Further, as an example of the etching liquid for the etching treatment, a diluting liquid such as nitric acid or sulfuric acid may be mentioned, but other etching liquids may be used. Further, electrolytic etching may be performed. After etching, the core is washed with water and dried, and a rust-preventing oil or rust-preventive agent is applied to prevent rusting, so that a more reliable product can be obtained. Also, a ceramic or resin film may be formed on the cut surface for electrical insulation. Further, after cutting, if the cut surface is polished and further etched, a cut core having a lower magnetic core loss and a higher effective relative magnetic permeability can be realized.

【0013】本発明に用いられる好ましい合金系として
は一般式:(Fe1-aMa100-x-y-z-bAxM'yM''zXb (原子
%)で表され、式中MはCo,Niから選ばれた少なくとも1種
の元素を、AはCu,Auから選ばれた少なくとも1種の元
素、M'はTi,V,Zr,Nb,Mo,Hf,TaおよびWから選ばれた少な
くとも1種の元素、M''はCr,Mn,Al,Sn,Zn,Ag,In,白金属
元素,Mg,Ca,Sr,Y,希土類元素,N,OおよびSから選ばれた
少なくとも1種の元素、XはB,Si,C,Ge,GaおよびPから選
ばれた少なくとも1種の元素を示し、a,x,y,zおよびbは
それぞれ0≦a<0.5、0≦x≦10、0.1≦y≦20、0≦z≦2
0、2≦b≦30を満足する数で表される組成の合金が挙げ
られる。上記の合金においてAで表される添加元素であ
るCu,Auから選ばれた少なくとも1種の元素の含有
量xは0〜10原子%の範囲である。これらの元素は透磁率
改善の効のために添加するが、10原子%より多いと飽和
磁束密度、透磁率の著しい低下をもたらし好ましくな
い。より好ましい範囲は0.1〜3原子%、特に好ましい範
囲は0.5〜2原子%であり、この範囲では特に高い透磁率
が得られる。また、M'はTi,V,Zr,Nb,Mo,Hf,Ta及びWから
なる群から選ばれた少なくとも1種の元素でありCu,Au
等との複合添加により結晶粒を微細化し、軟磁気特性を
改善する効果を有する。M'の含有量yは0.1〜20原子%で
あり、0.1原子%未満だと結晶粒微細化の効果が不十分で
あり、20原子%を越えると飽和磁束密度の著しい低下を
招く。好ましいM'の含有量yは2〜8原子%である。Ti,Zr,
Nb,Mo,Hf,Ta及びW等が存在しない場合は結晶粒はあまり
微細化されず軟磁気特性は悪い。Nb,Mo,Taは特に効果が
大きいが、これらの元素の中でNbを添加した場合特に結
晶粒が細かくなりやすく、軟磁気特性も優れたものが得
られる。
[0013] general formula as preferred alloy system used in the present invention: (Fe 1-a M a ) is represented by 100-xyzb A x M 'y M''z X b ( atomic%), M in the formula is At least one element selected from Co, Ni, A is at least one element selected from Cu, Au, M'is selected from Ti, V, Zr, Nb, Mo, Hf, Ta and W. At least one element, M '' is at least selected from Cr, Mn, Al, Sn, Zn, Ag, In, white metal elements, Mg, Ca, Sr, Y, rare earth elements, N, O and S One element, X represents at least one element selected from B, Si, C, Ge, Ga and P, and a, x, y, z and b are 0 ≦ a <0.5 and 0 ≦ x, respectively. ≦ 10, 0.1 ≦ y ≦ 20, 0 ≦ z ≦ 2
An alloy having a composition represented by a number satisfying 0 and 2 ≦ b ≦ 30 can be mentioned. The content x of at least one element selected from the additive elements Cu and Au represented by A in the above alloy is in the range of 0 to 10 atomic%. These elements are added for the purpose of improving the magnetic permeability, but if it is more than 10 atomic%, the saturation magnetic flux density and the magnetic permeability are significantly lowered, which is not preferable. A more preferable range is 0.1 to 3 atomic%, and a particularly preferable range is 0.5 to 2 atomic%. In this range, particularly high magnetic permeability is obtained. M'is at least one element selected from the group consisting of Ti, V, Zr, Nb, Mo, Hf, Ta and W, and is Cu, Au.
And the like have the effect of making crystal grains finer and improving soft magnetic properties. The content y of M'is 0.1 to 20 atomic%. If it is less than 0.1 atomic%, the effect of grain refinement is insufficient, and if it exceeds 20 atomic%, the saturation magnetic flux density is remarkably lowered. The preferable content y of M'is 2 to 8 atom%. Ti, Zr,
When Nb, Mo, Hf, Ta and W are not present, the crystal grains are not refined so much and the soft magnetic properties are poor. Nb, Mo, and Ta are particularly effective, but when Nb is added among these elements, the crystal grains tend to become finer and soft magnetic characteristics are excellent.

【0014】Cu,AuとTi,Zr,Nb,Mo,Hf,Ta及びW等との複
合添加により透磁率が上昇する理由は明かではないが次
のように考えられる。Cu,AuとFeの相互作用パラメータ
は正であり、分離する傾向があるため、非晶質状態の合
金を加熱するとFe原子同志またはCu,Au原子同志が寄り
集まり、クラスターを形成するため組成ゆらぎが生ず
る。このため部分的に結晶化しやすい領域が多数でき、
そこを核として多数の微細結晶粒が形成される。この結
晶粒はFeを主成分とするものであり、FeとCu、Auの固溶
度はほとんどないため、結晶粒周辺のCu、Au濃度が高く
なる。また、この結晶粒の周辺はSi等が多くTi,Zr,Nb,M
o,Hf,Ta及びW等が存在する場合結晶化しにくいため結晶
粒は成長しにくいと考えられる。このため結晶粒は微細
化されると考えられる。このように結晶粒が微細化され
ることにより、結晶磁気異方性がみかけ上相殺されるこ
と、結晶相がbcc構造のFe固溶体が主体であり磁歪が小
さく、内部応力−歪による磁気異方性が小さくなること
等により、軟磁気特性が改善され、高透磁率が得られる
と考えられる。
The reason why the magnetic permeability is increased by the combined addition of Cu, Au and Ti, Zr, Nb, Mo, Hf, Ta and W is not clear, but it is considered as follows. Since the interaction parameters of Cu, Au and Fe tend to be positive and tend to separate, when the alloy in the amorphous state is heated, Fe atoms or both Cu and Au atoms gather together to form clusters, resulting in composition fluctuations. Occurs. For this reason, there are many regions that are easy to partially crystallize,
A large number of fine crystal grains are formed from the nuclei. This crystal grain contains Fe as a main component, and since there is almost no solid solubility of Fe, Cu, and Au, the Cu and Au concentrations around the crystal grain become high. In addition, there are many Si etc. around this crystal grain, and Ti, Zr, Nb, M
When o, Hf, Ta, W, etc. are present, it is difficult to crystallize and it is considered that the crystal grains are difficult to grow. Therefore, it is considered that the crystal grains are made finer. As the crystal grains are made finer in this way, the magnetocrystalline anisotropy apparently cancels each other out, and the crystal phase is mainly Fe solid solution of bcc structure and the magnetostriction is small. It is considered that the soft magnetic properties are improved and the high magnetic permeability is obtained due to the reduced magnetic properties.

【0015】M"で表される添加元素であるCr,Mn,Sn,Zn,
Ag,In,白金属元素,Mg,Ca,Sr,Y,希土類元素,N,OおよびS
からなる群から選ばれた少なくとも1種の元素は耐食性
を改善したり、磁気特性を改善する、又は磁歪を調整す
る等の効果を有するものであるが、その含有量はせいぜ
い10原子%以下である。上記の合金において、Xで表され
るSi,B,C,Ge,Ga,AlおよびPからなる群から選ばれた少な
くとも1種の元素を2〜20原子%以下含み得る。Si及びB
は、合金の微細化に特に有用な元素である。本発明のFe
基軟磁性合金膜は好ましくは、一旦Si,Bの添加効果によ
り非晶質合金膜とした後で熱処理により微細結晶粒を形
成させることにより得られる。C,Ge,Ga,AlおよびPから
なる群から選ばれた少なくとも1種の元素は非晶質化に
有効な元素であり、Si,Bと共に添加することにより合金
の非晶質化を助けると共に、磁歪やキュリー温度調整に
効果がある。また、Xの含有量bが2原子%より少ないと結
晶粒微細化の効果がなく、20原子%より多いと飽和磁束
密度の減少と軟磁気特性の劣化が起こるためである。
The additive elements represented by M "are Cr, Mn, Sn, Zn,
Ag, In, white metal element, Mg, Ca, Sr, Y, rare earth element, N, O and S
At least one element selected from the group consisting of has the effect of improving corrosion resistance, improving magnetic properties, adjusting magnetostriction, etc., but its content is at most 10 atomic% or less. is there. The above alloy may contain 2 to 20 atom% or less of at least one element selected from the group consisting of Si, B, C, Ge, Ga, Al and P represented by X. Si and B
Is an element particularly useful for refining the alloy. Fe of the present invention
The base soft magnetic alloy film is preferably obtained by once forming an amorphous alloy film by the effect of adding Si and B and then forming fine crystal grains by heat treatment. At least one element selected from the group consisting of C, Ge, Ga, Al and P is an element effective for amorphization, and it is added together with Si and B to help amorphization of the alloy. , Effective in adjusting magnetostriction and Curie temperature. Also, if the content b of X is less than 2 at%, there is no effect of grain refinement, and if it is more than 20 at%, the saturation magnetic flux density decreases and the soft magnetic properties deteriorate.

【0016】残部は不純物を除いて実質的にFeが主体
であるが、Feの一部は成分M(Co及び/又はNi)により置
換されていても良い。Mの含有量aは0≦a<0.5であるが、
好ましくは0≦a≦0.3である。aが0.3を越えると、透磁
率が低下する場合があるためである。より好ましくはa
は0.1以下である。Co置換はまた飽和磁束密度を上昇さ
せる効果があり、高保磁力記録媒体に使用する平滑チョ
ークコイル、低周波用トランス材としてより有利であ
る。
The balance consists essentially of Fe except for impurities, but part of Fe may be replaced by the component M (Co and / or Ni). The content a of M is 0 ≦ a <0.5,
Preferably 0 ≦ a ≦ 0.3. This is because if a exceeds 0.3, the magnetic permeability may decrease. More preferably a
Is less than or equal to 0.1. Co substitution also has the effect of increasing the saturation magnetic flux density, and is more advantageous as a smooth choke coil and a low frequency transformer material used in a high coercive force recording medium.

【0017】[0017]

【実施例】以下本発明を実施例にしたがって説明するが
本発明はこれらに限定されるものではない。 (実施例1)単ロ−ル法により幅25mm厚さ17μmのFe
bal.Cu1Nb3Si15.5B7アモルファス合金薄帯を作製した。
次にこの合金薄帯をリチウムシリケ−ト溶液中を通した
後200゜Cで乾燥し厚さ約0.5μmの絶縁層を薄帯両面に形
成し、ステンレスリングを巻芯として図2示す形状の角
形状の巻磁心を作製した。次にこの磁心を窒素ガス雰囲
気中550゜Cで1時間熱処理を行った。昇温速度は10゜C/mi
n、冷却速度は20゜C/minとした。この磁心の20kHz、0.2T
の磁心損失を測定後、この磁心をスリ−ボンド製エポキ
シ樹脂2287Bで真空含浸し、コア外側を板で押さえ成形
した後、120゜Cで2hと150゜Cで5h保持し硬化させ、20kH
z、0.2Tの磁心損失を測定した。次に、GC砥石により
前記磁心を切断しカットコアを作製した。また合金の組
織を透過電子顕微鏡により観察した結果、平均結晶粒径
は13nm、結晶粒の割合は80%以上であった。次に切断面
を研磨する前と後およびエッチング前後のカットコアの
20kHz、0.2Tの室温の磁心損失およびコア内周部と外周
部の間の抵抗を測定した。ここで抵抗値Rは10mm厚さ
当たりの値で示す。得られた結果及び従来の研磨やエッ
チングを行わないナノ結晶合金を用いたカットコア、珪
素鋼やFe基アモルファス合金で作製したカットコアの
磁心損失を表1示す。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) Fe having a width of 25 mm and a thickness of 17 μm was formed by a single roll method.
bal. Cu 1 Nb 3 Si 15.5 B 7 Amorphous alloy ribbon was prepared.
Next, this alloy ribbon was passed through a lithium silicate solution and then dried at 200 ° C to form an insulating layer with a thickness of about 0.5 μm on both sides of the ribbon, and a stainless steel ring was used as a core to form the corners of the shape shown in FIG. A wound magnetic core having a shape was produced. Next, this magnetic core was heat-treated at 550 ° C for 1 hour in a nitrogen gas atmosphere. Temperature rising rate is 10 ° C / mi
The cooling rate was 20 ° C / min. 20kHz, 0.2T of this magnetic core
After measuring the magnetic core loss, vacuum-impregnate this magnetic core with three-bond epoxy resin 2287B, press the outside of the core with a plate, and then hold it for 2 hours at 120 ° C and 5h at 150 ° C to cure it for 20kH
The magnetic core loss of z and 0.2T was measured. Next, the magnetic core was cut with a GC grindstone to produce a cut core. As a result of observing the structure of the alloy with a transmission electron microscope, the average crystal grain size was 13 nm and the proportion of crystal grains was 80% or more. Next, before and after polishing the cut surface and before and after etching,
The core loss and the resistance between the inner and outer circumferences of the core at room temperature of 20 kHz and 0.2 T were measured. Here, the resistance value R is shown as a value per 10 mm thickness. Table 1 shows the obtained results and the core loss of the cut core using the nanocrystalline alloy which has not been conventionally polished or etched and the cut core made of silicon steel or Fe-based amorphous alloy.

【0018】[0018]

【表1】 [Table 1]

【0019】本発明カットコアの方が1オーダ近く磁心
損失が低く著しく低磁心損失であることが分かる。ま
た、本発明と同じ工程をFe基アモルファス合金を使用
したカットコアに適用してみた結果も表1に示すが磁心
損失低下の効果は小さいことが分かる。このことから本
発明の製造方法はナノ結晶合金を用いたカットコアにお
いて顕著であり、Rが大きく低磁心損失のカットコアで
あることが確認できた。従来のカットコアの製造工程と
本発明の製造方法の工程を図3に示す。
It can be seen that the cut core of the present invention has a low core loss of about one order and a remarkably low core loss. The results of applying the same process as the present invention to a cut core using an Fe-based amorphous alloy are also shown in Table 1, but it can be seen that the effect of reducing the core loss is small. From this, it was confirmed that the manufacturing method of the present invention is remarkable in the cut core using the nanocrystalline alloy and has a large R and a low core loss. FIG. 3 shows a conventional manufacturing process of a cut core and the manufacturing process of the present invention.

【0020】(実施例2)Febal.Cu1Ta3Si15.5B6.5 (at
%)なる組成を有する幅25mm厚さ17μmのアモルファス合
金薄帯を単ロ−ル法により作製した。次にこの合金薄帯
表面にMgOによる電気泳動法により絶縁層を形成しなが
ら図2に示す形状のトロイダル磁心を作製した。次にこ
の磁心をアルゴンガス雰囲気中550゜Cで1時間熱処理を行
った。昇温速度は15゜C/min、冷却速度は10゜C/minとし
た。この磁心の20kHz、0.2Tの磁心損失を測定後、この
磁心をスリ−ボンド製アクリル樹脂TB3934Bで真空含浸
し150゜Cで3h放置し硬化させ、20kHz、0.2Tの磁心損失を
測定した。次に、GC砥石により前記磁心を切断しカッ
トコアを作製した。また合金の組織を透過電子顕微鏡に
より観察した結果、結晶粒径は12nm、結晶粒の割合は80
%以上であった。次に切断面の研磨条件やエッチング時
間を変えてカットコアの20kHz、0.2Tの室温の磁心損失
およびコア内周部と外周部の間の抵抗を測定した。抵抗
値Rは10mm厚さ当たりの値で示す。Rと磁心損失の関
係を図4に示す。Rが1Ω未満の場合著しく磁心損失が
増大しているのが分かる。Rが特に低いのは研磨やエッ
チングを行っていないコアであることが分かる。本発明
カットコアは研磨やエッチングを行わない従来のカット
コアに比べ磁心損失が低く優れており、本発明の有効性
が確認された。
Example 2 Fe bal. Cu 1 Ta 3 Si 15.5 B 6.5 (at
%), And an amorphous alloy ribbon with a width of 25 mm and a thickness of 17 μm was prepared by the single roll method. Next, a toroidal magnetic core having the shape shown in FIG. 2 was produced while forming an insulating layer on the surface of this alloy ribbon by an electrophoresis method using MgO. Next, this magnetic core was heat-treated at 550 ° C. for 1 hour in an argon gas atmosphere. The temperature rising rate was 15 ° C / min and the cooling rate was 10 ° C / min. After measuring the core loss of this core at 20 kHz and 0.2 T, this core was vacuum impregnated with three-bond acrylic resin TB3934B, left standing at 150 ° C. for 3 hours to cure, and the core loss at 20 kHz and 0.2 T was measured. Next, the magnetic core was cut with a GC grindstone to produce a cut core. As a result of observing the structure of the alloy with a transmission electron microscope, the crystal grain size was 12 nm and the crystal grain ratio was 80.
It was over%. Next, while changing the polishing conditions and etching time of the cut surface, the core loss of the cut core at room temperature of 20 kHz and 0.2 T and the resistance between the inner and outer peripheral portions of the core were measured. The resistance value R is shown as a value per 10 mm thickness. The relationship between R and the core loss is shown in FIG. It can be seen that when R is less than 1Ω, the core loss is significantly increased. It can be seen that the R is particularly low in the core that has not been polished or etched. The cut core of the present invention has a lower magnetic core loss and is superior to the conventional cut core that is not polished or etched, and the effectiveness of the present invention was confirmed.

【0021】(実施例3)表2に示す組成の幅20mm厚さ
15μmのアモルファス合金薄帯を単ロ−ル法により作製
した。次にこの合金薄帯を図5に示す形状に巻回し巻磁
心を作製した。次にこの磁心をアルゴンガス雰囲気中55
0゜Cで1時間熱処理を行った。昇温速度は20゜C/min、冷却
速度は20゜C/minとした。薄帯を層間絶縁しない場合や層
間絶縁した場合等についても検討した。この磁心を各種
樹脂で真空含浸を行い硬化させ、外周スライサによりGC
砥石で切断しカットコアを作製した。次に、切断面を研
磨する前と後およびエッチング前後のカットコアの20kH
z、0.2Tの室温の磁心損失およびコア内周部と外周部の
間の抵抗を測定した。抵抗値Rは10mm厚さ当たりの値
で示す。得られた結果を表2に示す。層間絶縁を行って
いない場合についても研磨やエッチングにより磁心損失
低減やRの改善が認められた。層間絶縁した場合はその
改善効果は更に顕著である。本発明カットコアは磁心損
失が低く従来のカットコアより優れている。特に、研磨
したコアは実効比透磁率が5000以上と高く励磁電流の小
さいトランスを実現可能である。
(Example 3) Width 20 mm thickness of the composition shown in Table 2
A 15 μm amorphous alloy ribbon was prepared by the single roll method. Next, this alloy ribbon was wound into a shape shown in FIG. 5 to produce a wound magnetic core. Next, this magnetic core is placed in an argon gas atmosphere 55
Heat treatment was performed at 0 ° C for 1 hour. The temperature rising rate was 20 ° C / min and the cooling rate was 20 ° C / min. We also examined the cases where the ribbon was not insulated between layers or when it was insulated. This magnetic core is vacuum impregnated with various resins and hardened, and the GC is
It cut with the grindstone and produced the cut core. Next, 20kH of the cut core before and after polishing the cut surface and before and after etching
The core loss at room temperature of z and 0.2T and the resistance between the inner and outer circumferences of the core were measured. The resistance value R is shown as a value per 10 mm thickness. Table 2 shows the obtained results. Even when the interlayer insulation was not performed, reduction of magnetic core loss and improvement of R were recognized by polishing and etching. In the case of interlayer insulation, the improvement effect is more remarkable. The cut core of the present invention has a low core loss and is superior to the conventional cut core. In particular, the ground core has a high effective relative magnetic permeability of 5000 or more and can realize a transformer with a small exciting current.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明によれば、高周波トランス、チョ
ークコイル等に適する磁心損失の低いカットコアおよび
その製造方法を実現できるためその効果は著しいものが
ある。
According to the present invention, a cut core having a low magnetic core loss suitable for a high frequency transformer, a choke coil and the like and a method for manufacturing the cut core can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるカットコアを2つに分割した際
の概略図である。
FIG. 1 is a schematic diagram when a cut core according to the present invention is divided into two.

【図2】発明に係わるカットコアのカット前の形状の一
実施例を示した図である。
FIG. 2 is a diagram showing an example of a shape of a cut core according to the present invention before being cut.

【図3】ナノ結晶合金を用いたカットコアの従来の製造
方法と本発明の製造方法を示した図である。
FIG. 3 is a diagram showing a conventional manufacturing method of a cut core using a nanocrystalline alloy and a manufacturing method of the present invention.

【図4】本発明に関わるカットコアの磁心損失とRの関
係の一例を示した図である。
FIG. 4 is a diagram showing an example of the relationship between the core loss of a cut core and R according to the present invention.

【図5】本発明に係わるカットコアのカット前の形状の
一実施例を示した図である。
FIG. 5 is a diagram showing an example of a shape of a cut core according to the present invention before being cut.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Cu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含み、組織の
少なくとも50%が粒径50nm以下の結晶粒からなるナノ
結晶合金薄帯が巻回され、かつ磁路の少なくとも一部が
切断された構造のカットコアにおいて、カットコアの内
周部と外周部との間の抵抗値が10mm厚さ当たり1Ω以
上であることを特徴とするカットコア。
1. A group consisting of at least one element selected from Cu and Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, and Si and B. A nanocrystalline alloy ribbon containing at least one element selected from among Fe and Fe as an essential element, at least 50% of which has a grain size of 50 nm or less, and at least a part of a magnetic path A cut core having a cut structure, wherein a resistance value between an inner peripheral portion and an outer peripheral portion of the cut core is 1 Ω or more per 10 mm thickness.
【請求項2】 カットコアの内周部と外周部との間の抵
抗値が10mm厚さ当たり5Ω以上であることを特徴とす
る請求項1に記載のカットコア。
2. The cut core according to claim 1, wherein a resistance value between an inner peripheral portion and an outer peripheral portion of the cut core is 5 Ω or more per 10 mm thickness.
【請求項3】 1kHzにおける実効比透磁率μeが5000
以上であることを特徴とする請求項1又は請求項2に記
載のカットコア。
3. The effective relative permeability μ e at 1 kHz is 5000.
It is above, The cut core of Claim 1 or Claim 2 characterized by the above-mentioned.
【請求項4】 20kHz,0.2Tにおける磁心損失が20W/
kg以下であることを特徴とする請求項1乃至請求項3の
いずれかに記載のカットコア。
4. The core loss at 20 kHz, 0.2T is 20 W /
The cut core according to any one of claims 1 to 3, which has a weight of not more than kg.
【請求項5】 前記ナノ結晶薄帯の厚さが3μmから50μ
mであることを特徴とする請求項1乃至請求項4のいず
れかに記載のカットコア。
5. The thickness of the nanocrystalline ribbon is 3 μm to 50 μm.
It is m, The cut core in any one of Claim 1 thru | or 4 characterized by the above-mentioned.
【請求項6】 Cu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含むアモルフ
ァス合金薄帯を巻回しトロイダル形状にする工程と、こ
れを熱処理し組織の少なくとも50%が粒径50nm以下の
結晶粒からなるナノ結晶合金薄帯からなる磁心とする工
程と、樹脂により含浸し樹脂を硬化する工程と、磁路の
少なくとも一部を切断する工程と、切断後の切断面を研
磨する工程とからなることを特徴とするカットコアの製
造方法。
6. A group consisting of at least one element selected from Cu and Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, and Si and B. A step of winding an amorphous alloy ribbon containing at least one element selected from the above and Fe as an essential element into a toroidal shape, and heat-treating this to form a nano-particle composed of crystal grains with a grain size of 50 nm or less at least 50% Characterized by comprising a step of forming a magnetic core made of a crystal alloy ribbon, a step of impregnating with a resin and hardening the resin, a step of cutting at least a part of a magnetic path, and a step of polishing a cut surface after cutting. And a method for manufacturing a cut core.
【請求項7】 Cu、Auから選ばれる少なくとも一種の元
素、Nb,Mo,Ta,Ti,Zr,Hf,V及びWからなる群から選ばれた
少なくとも1種の元素、Si,Bからなる群から選ばれた少
なくとも1種の元素とFeを必須元素として含むアモルフ
ァス合金薄帯を巻回しトロイダル形状にする工程と、こ
れを熱処理し組織の少なくとも50%が粒径50nm以下の
結晶粒からなるナノ結晶合金薄帯からなる磁心とする工
程と、樹脂により含浸し樹脂を硬化する工程と、磁路の
少なくとも一部を切断する工程と、切断後の切断面をエ
ッチング処理する工程とからなることを特徴とするカッ
トコアの製造方法。
7. A group consisting of at least one element selected from Cu and Au, at least one element selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V and W, and Si and B. A step of winding an amorphous alloy ribbon containing at least one element selected from the above and Fe as an essential element into a toroidal shape, and heat-treating this to form a nano-particle composed of crystal grains with a grain size of 50 nm or less at least 50% It comprises a step of forming a magnetic core made of a crystalline alloy ribbon, a step of impregnating with a resin and hardening the resin, a step of cutting at least a part of the magnetic path, and a step of etching the cut surface after cutting. A method of manufacturing a cut core having the characteristics.
【請求項8】 請求項6に記載のカットコアの製造方法
において、切断後の切断面を研磨した後、さらにエッチ
ング処理する工程とからなることを特徴とするカットコ
アの製造方法。
8. The method for manufacturing a cut core according to claim 6, comprising a step of polishing the cut surface after cutting and further performing etching treatment.
【請求項9】 前記アモルファス合金薄帯の厚さが3μm
から50μmであることを特徴とする請求項6乃至請求項
8のいずれかに記載のカットコアの製造方法。
9. The amorphous alloy ribbon has a thickness of 3 μm.
To 50 μm, the method for producing a cut core according to any one of claims 6 to 8.
JP7175950A 1995-07-12 1995-07-12 Cut core and manufacture thereof Pending JPH0927412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7175950A JPH0927412A (en) 1995-07-12 1995-07-12 Cut core and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7175950A JPH0927412A (en) 1995-07-12 1995-07-12 Cut core and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0927412A true JPH0927412A (en) 1997-01-28

Family

ID=16005091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7175950A Pending JPH0927412A (en) 1995-07-12 1995-07-12 Cut core and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0927412A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134329A (en) * 2000-10-24 2002-05-10 Hitachi Metals Ltd Magnetic parts for suppressing common mode lightning surge current of signal link
CN1297994C (en) * 2004-11-26 2007-01-31 中国兵器工业第五二研究所 Method for preparing specific squareness ratio nanocrystalline soft magnetic material without magnetic field treatment
WO2008099803A1 (en) * 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Fe-base nanocrystal soft magnetic alloy, amorphous alloy ribbon, process for producing fe-base nanocrystal soft magnetic alloy, and magnetic part
WO2018080129A1 (en) * 2016-10-27 2018-05-03 주식회사 아모센스 Core for current transformer and manufacturing method for same
KR20180058572A (en) * 2016-11-24 2018-06-01 주식회사 아모센스 Core for current transformer and manufacturing method for the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134329A (en) * 2000-10-24 2002-05-10 Hitachi Metals Ltd Magnetic parts for suppressing common mode lightning surge current of signal link
CN1297994C (en) * 2004-11-26 2007-01-31 中国兵器工业第五二研究所 Method for preparing specific squareness ratio nanocrystalline soft magnetic material without magnetic field treatment
WO2008099803A1 (en) * 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Fe-base nanocrystal soft magnetic alloy, amorphous alloy ribbon, process for producing fe-base nanocrystal soft magnetic alloy, and magnetic part
WO2018080129A1 (en) * 2016-10-27 2018-05-03 주식회사 아모센스 Core for current transformer and manufacturing method for same
KR20180046234A (en) * 2016-10-27 2018-05-08 주식회사 아모센스 Core for current transformer and manufacturing method for the same
CN109983552A (en) * 2016-10-27 2019-07-05 阿莫善斯有限公司 Manufacturing method for the core of current transformer and the core
CN109983552B (en) * 2016-10-27 2021-07-16 阿莫善斯有限公司 Core for current transformer and method of manufacturing the core
US11322300B2 (en) 2016-10-27 2022-05-03 Amosense Co., Ltd Method for manufacturing a core for a current transformer
KR20180058572A (en) * 2016-11-24 2018-06-01 주식회사 아모센스 Core for current transformer and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP5664934B2 (en) Soft magnetic alloy and magnetic component using the same
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP2573606B2 (en) Magnetic core and manufacturing method thereof
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP4547671B2 (en) High saturation magnetic flux density low loss magnetic alloy and magnetic parts using the same
JP3357386B2 (en) Soft magnetic alloy, method for producing the same, and magnetic core
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JPH07268566A (en) Production of fe-base soft-magnetic alloy and laminated magnetic core using the same
JP3759191B2 (en) Thin film magnetic element
JP2001516506A (en) Electric chalk
JPH0927412A (en) Cut core and manufacture thereof
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JP2704157B2 (en) Magnetic parts
JPH08153614A (en) Magnetic core
JP4688029B2 (en) Core for common mode choke coil and manufacturing method thereof
JP3287481B2 (en) Magnetic core made of ultra-microcrystalline alloy excellent in direct current superposition characteristics, method of manufacturing the same, and choke coil and transformer using the same
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP3638291B2 (en) Low loss core
JP3032260B2 (en) Fe-based soft magnetic alloy and method for producing the same
JPH0853739A (en) Soft magnetic alloy
JP2002327226A (en) Co-BASED MAGNETIC ALLOY AND MAGNETIC COMPONENT THEREWITH
JP2561573B2 (en) Amorphous ribbon saturable core
JPH0757920A (en) Core
JPH09102408A (en) Magnetic foil and its manufacture and high-frequency magnetic core using it