JP4688029B2 - Core for common mode choke coil and manufacturing method thereof - Google Patents

Core for common mode choke coil and manufacturing method thereof Download PDF

Info

Publication number
JP4688029B2
JP4688029B2 JP2005287379A JP2005287379A JP4688029B2 JP 4688029 B2 JP4688029 B2 JP 4688029B2 JP 2005287379 A JP2005287379 A JP 2005287379A JP 2005287379 A JP2005287379 A JP 2005287379A JP 4688029 B2 JP4688029 B2 JP 4688029B2
Authority
JP
Japan
Prior art keywords
core
common mode
resin
mode choke
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005287379A
Other languages
Japanese (ja)
Other versions
JP2007103404A (en
Inventor
慎太郎 東田
恭 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005287379A priority Critical patent/JP4688029B2/en
Publication of JP2007103404A publication Critical patent/JP2007103404A/en
Application granted granted Critical
Publication of JP4688029B2 publication Critical patent/JP4688029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、ナノ結晶合金薄帯の巻き磁心に樹脂を含浸させたコモンモードチョークコイル用コアおよびその製造方法に関する。   The present invention relates to a core for a common mode choke coil in which a wound core of a nanocrystalline alloy ribbon is impregnated with a resin and a method for manufacturing the same.

半導体スイッチング素子の高性能化の進展に伴い、スイッチング電源やインバータ装置が急速に普及している。特にIGBTに代表される高周波化対応の大出力用半導体スイッチング素子の開発により、スイッチング周波数を可聴周波数帯の上限以上とした低騒音インバータ装置をはじめとして、大容量インバータ装置の高周波化が急速に図られつつある。しかし、このようなスイッチング電源と高周波インバータ装置の普及にともない、これらの装置の半導体スイッチング素子のスイッチング動作により発生する高周波ノイズが電源ラインを介して同一の電源ラインに接続される他の電子機器に障害を与えてしまう問題がある。このため、このようなスイッチング動作を行う装置から電源ライン側に伝搬される高周波ノイズを抑制するため、従来、例えば図7に示すような回路構成のノイズフィルタが前記のスイッチング動作を行う装置と電源ライン間に挿入される。また、これらのノイズフィルタは電源ラインから装置に高周波ノイズが進入し装置が誤動作するのを防ぐ機能も付加されている。   With the progress of high performance of semiconductor switching elements, switching power supplies and inverter devices are rapidly spreading. In particular, the development of high-power semiconductor switching elements, such as IGBTs, that are capable of high-frequency operation has led to the rapid increase in frequency of high-capacity inverter devices, including low-noise inverter devices that have switching frequencies above the upper limit of the audible frequency band. It is being However, with the widespread use of such switching power supplies and high-frequency inverter devices, high-frequency noise generated by the switching operation of the semiconductor switching elements of these devices is transmitted to other electronic devices connected to the same power supply line via the power supply line. There is a problem that gives an obstacle. For this reason, in order to suppress high-frequency noise propagated from the device that performs such a switching operation to the power supply line side, for example, a noise filter having a circuit configuration as shown in FIG. Inserted between lines. These noise filters also have a function of preventing high-frequency noise from entering the apparatus from the power line and causing the apparatus to malfunction.

図7は単相用のノイズフィルタの回路構成であり、同図で31と32は電源ラインに接続される入力端子、33と35は電源ライン間コンデンサ、34はコモンモードチョークコイル、36と37はそれぞれ電源ラインとアース間のコンデンサ、38は電源ライン間抵抗、39と40は装置に接続される出力端子である。用途によっては入力と出力とを逆に接続して使うことも可能である。   FIG. 7 shows a circuit configuration of a noise filter for a single phase, in which 31 and 32 are input terminals connected to the power supply line, 33 and 35 are capacitors between the power supply lines, 34 is a common mode choke coil, and 36 and 37 Is a capacitor between the power line and the ground, 38 is a resistance between the power lines, and 39 and 40 are output terminals connected to the apparatus. Depending on the application, the input and output can be connected in reverse.

上記のコモンモードチョークコイルは環状形の磁心に単相若しくは三相の導線を巻いて形成したものである(図5は単相巻の例である)。従来、上記磁心はMn−Znフェライト、圧粉鉄心、Fe基アモルファス合金、Co基アモルファス合金等によって形成されていた。コモンモードチョークコイル用コアに用いる磁心は比透磁率と飽和磁束密度とが共に高いことが望ましいが、上記の材質はその点で必ずしも満足のいくものではなかった。従って、この様な材質を磁心に用いたコモンモードチョークコイルを有するノイズフィルタは、その特性において十分なものではなく、多段接続で使用されるため大型化するなどして今日要求されている高周波化や小型化が十分に図られなかった。   The common mode choke coil is formed by winding a single-phase or three-phase conductor around an annular magnetic core (FIG. 5 is an example of single-phase winding). Conventionally, the magnetic core has been formed of Mn—Zn ferrite, a dust core, an Fe-based amorphous alloy, a Co-based amorphous alloy, or the like. The magnetic core used for the core for the common mode choke coil desirably has a high relative permeability and a high saturation magnetic flux density, but the above materials are not always satisfactory in that respect. Therefore, a noise filter having a common mode choke coil using such a material as a magnetic core is not sufficient in its characteristics, and is used today in multistage connection, so that it is required to increase the size of the noise filter. And miniaturization was not achieved sufficiently.

特許文献1や特許文献2では、上記材質に変わりうるものとして日立金属株式会社が開発した合金であるファインメット(商品名)を磁心に用いたコモンモードチョークコイル用コアが開示され、高い比透磁率と飽和磁束密度が得られ、コモンモードチョークコイルおよびノイズフィルタの高周波化や小型化が可能となったことが記載されている。
特開平8−115830号公報 特開平10−172841号公報
Patent Document 1 and Patent Document 2 disclose a core for a common mode choke coil using a fine core (trade name), which is an alloy developed by Hitachi Metals Co., Ltd., as a magnetic core that can be changed to the above-mentioned materials. It is described that the magnetic susceptibility and saturation magnetic flux density are obtained, and the common mode choke coil and the noise filter can be increased in frequency and size.
JP-A-8-115830 Japanese Patent Laid-Open No. 10-172841

コモンモードチョークコイルはインピーダンス値が仕様の対象となるが、その他に、経時変化によるインピーダンスの信頼性も重視される。信頼性試験の1つとして、高温貯蔵試験が行われる。これは、実装時に発する熱量を想定して、130℃の高温下に1000時間さらし、インピーダンスを測定するものである。この試験によるインピーダンスの経時変化はー20%程度が仕様として用いられることが多い。また、ナノ結晶軟磁性合金薄帯はナノ結晶化のための熱処理の際に脆くなるため、機械的特性を高めるために巻き磁心に樹脂が含浸される場合がある。この際、樹脂含浸するとナノ結晶合金薄帯が歪むため、巻き磁心のインピーダンスが上記の仕様を満足しない可能性があることが解った。   The impedance value of the common mode choke coil is a target of specification, but in addition, the reliability of impedance due to changes with time is also emphasized. As one of the reliability tests, a high temperature storage test is performed. This is to measure the impedance by exposing to a high temperature of 130 ° C. for 1000 hours assuming the amount of heat generated during mounting. In many cases, the change in impedance over time by this test is about -20% as a specification. In addition, since the nanocrystalline soft magnetic alloy ribbon becomes brittle during the heat treatment for nanocrystallization, the wound magnetic core may be impregnated with a resin in order to improve mechanical properties. At this time, it was found that the impedance of the wound magnetic core may not satisfy the above specifications because the nanocrystalline alloy ribbon is distorted when impregnated with resin.

したがって本発明の課題は、前記問題を解決し、樹脂含浸してもインピーダンスの落ち込みが無く、かつ高温貯蔵試験においてもインピーダンスの落ち込みが少ない熱処理を施すコモンモードチョークコイル用コアの製造方法および、それにより製造されたコモンモードチョークコイル用コア及びコイルを提供することにある。   Accordingly, an object of the present invention is to solve the above problems, a method for producing a core for a common mode choke coil which is subjected to a heat treatment that does not cause a drop in impedance even when impregnated with a resin, and has a low drop in impedance even in a high-temperature storage test, and It is to provide a core and a coil for a common mode choke coil manufactured by the above.

本発明者らが検討した結果、必要とされるインピーダンスの値、およびインピーダンスの経時変化による信頼性は、ナノ結晶化の熱処理工程において、熱処理雰囲気中の酸素濃度を所定範囲にすることで得られることが解った。
つまり、本発明は、一般式:(Fe 1−a 100−x−y−z−α−β−γ Cu Si M’ α M” β γ (原子%)(ただし、MはCo及び/又はNiであり、M’はNb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素、M”はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ばれた少なくとも1種の元素、XはC,Ge,P,Ga,Sb,In,As,Beからなる群から選ばれた少なくとも1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0≦a<0.1,0.1≦x≦3,14≦y≦20,5≦z≦7,2≦α≦5,0≦β≦10及び0≦γ≦10を満たす。)により表される組成を有するFe基ナノ結晶合金薄帯からなる巻き磁心に樹脂を含浸させたコモンモードチョークコイル用コアの製造方法であって、前記合金薄帯を巻いて巻き磁心とし、前記巻き磁心を酸素濃度が25ppm以上45ppm以下の雰囲気中、550℃以上600℃以下でナノ結晶化のための熱処理を施し、その後熱処理を行った巻き磁心に樹脂を含浸させることを特徴とするコモンモードチョークコイル用コアの製造方法である。
As a result of the study by the present inventors, the required impedance value and the reliability due to the change in impedance over time can be obtained by setting the oxygen concentration in the heat treatment atmosphere within a predetermined range in the heat treatment step of nanocrystallization. I understood that.
That is, the present invention has the general formula: (Fe 1-a M a ) 100-x-yz-α-β-γ Cu x Si y B z M ′ α M ″ β X γ (atomic%) , M is Co and / or Ni, M ′ is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, and M ″ is V, Cr, Mn, Al , White metal element, Sc, Y, rare earth element, at least one element selected from the group consisting of Au, Zn, Sn, Re, X is from C, Ge, P, Ga, Sb, In, As, Be A, x, y, z, α, β and γ are 0 ≦ a <0.1, 0.1 ≦ x ≦ 3, 14 ≦ y ≦ 20, respectively. , 5 ≦ z ≦ 7,2 ≦ α ≦ 5,0 ≦ β satisfy ≦ 10 and 0 ≦ γ ≦ 10.) the Fe-based nanocrystalline alloy having a composition represented A method of manufacturing a common mode choke core coil in winding core is impregnated with resin comprising strip, said the alloy ribbons wound with winding core, in said winding core oxygen concentration below 25ppm or 45ppm atmosphere, A method of manufacturing a core for a common mode choke coil, wherein a heat treatment for nanocrystallization is performed at a temperature of 550 ° C. or more and 600 ° C. or less , and a wound magnetic core subjected to the heat treatment is impregnated with a resin.

また、本発明は、一般式:(FeFurther, the present invention provides a general formula: (Fe 1−a1-a M a ) 100−x−y−z−α−β−γ100-xyz-α-β-γ CuCu x SiSi y B z M’M ’ αα M”M ” ββ X γγ (原子%)(ただし、MはCo及び/又はNiであり、M’はNb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素、M”はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ばれた少なくとも1種の元素、XはC,Ge,P,Ga,Sb,In,As,Beからなる群から選ばれた少なくとも1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0≦a<0.1,0.1≦x≦3,14≦y≦20,5≦z≦7,2≦α≦5,0≦β≦10及び0≦γ≦10を満たす。)により表される組成を有するFe基軟磁性合金薄帯を巻いて巻き磁心とし、前記巻き磁心を酸素濃度が25ppm以上45ppm以下の雰囲気中、550℃以上600℃以下でナノ結晶化のための熱処理を施し、その後熱処理を行った巻き磁心に樹脂を含浸させたコモンモードチョークコイル用コアであって、樹脂含浸前後の100kHzでのインピーダンス変化率が10%未満であることを特徴とするコモンモードチョークコイル用コアである。(Atom%) (where M is Co and / or Ni, M ′ is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, and M ″ is V , Cr, Mn, Al, white metal element, Sc, Y, rare earth element, at least one element selected from the group consisting of Au, Zn, Sn, Re, X is C, Ge, P, Ga, Sb, A, x, y, z, α, β, and γ are 0 ≦ a <0.1, 0.1 ≦ x ≦ 3, respectively, which are at least one element selected from the group consisting of In, As, and Be. 14 ≦ y ≦ 20, 5 ≦ z ≦ 7, 2 ≦ α ≦ 5, 0 ≦ β ≦ 10 and 0 ≦ γ ≦ 10). And the winding core is 550 ° C. or more and 600 ° C. or less in an atmosphere having an oxygen concentration of 25 ppm or more and 45 ppm or less. A core for a common mode choke coil in which a heat treatment for nanocrystallization is performed and then a heat-treated core is impregnated with resin, and the impedance change rate at 100 kHz before and after resin impregnation is less than 10%. Is a core for a common mode choke coil.

ナノ結晶化のための熱処理に前記の組成の非晶質合金薄帯を用いる場合、ナノ結晶化のための熱処理温度は550℃〜600℃の範囲で熱処理することが好ましい。さらには、580℃〜595℃の範囲で熱処理することが好ましい。この温度で熱処理することで磁歪が限りなくゼロに近いナノ結晶合金薄帯を得ることができ、巻き磁心に樹脂含浸を行ってもインピーダンスの低下がないものを得ることができる。   When the amorphous alloy ribbon having the above composition is used for the heat treatment for nanocrystallization, the heat treatment temperature for nanocrystallization is preferably 550 ° C to 600 ° C. Furthermore, it is preferable to heat-process in the range of 580 degreeC-595 degreeC. By performing heat treatment at this temperature, it is possible to obtain a nanocrystalline alloy ribbon having a magnetostriction that is almost zero, and it is possible to obtain a material that does not have a decrease in impedance even when the wound core is impregnated with resin.

上記の製法を用いて得られたナノ結晶合金薄帯からなる巻き磁心に樹脂を含浸させたコモンモードチョークコイル用コアは、130℃×800時間の高温貯蔵試験後の100kHzでのインピーダンスが初期値のインピーダンスに対して10%未満の変化率であることを特徴とする。
The core for a common mode choke coil obtained by impregnating a wound magnetic core made of a nanocrystalline alloy ribbon obtained by the above manufacturing method with an initial value has an impedance at 100 kHz after a high-temperature storage test of 130 ° C. × 800 hours. It is characterized by a change rate of less than 10% with respect to the impedance.

用いる樹脂として、エポキシ系、アクリル系などのものを適宜使用できる。また、これら樹脂を含浸させる際に用いる樹脂溶剤の容量は、樹脂の重量に対して5wt%〜40wt%程度とする。後述するが、この溶剤の容量が樹脂含浸させた後のコモンモードチョークコイル用コアのインピーダンスに作用する。樹脂溶剤の量が20wt%より多いと、低い周波数(1kHz以上50kHz未満)で測定した場合の樹脂含浸によるインピーダンスの低下を抑える効果がある。また、樹脂溶剤の量が20wt%以下だと、高い周波数(50kHz以上500kHz未満)で測定した場合の樹脂含浸によるインピーダンスの低下を抑える効果がある。   As the resin to be used, an epoxy resin or an acrylic resin can be used as appropriate. The capacity of the resin solvent used when impregnating these resins is about 5 wt% to 40 wt% with respect to the weight of the resin. As will be described later, the capacity of the solvent affects the impedance of the core for the common mode choke coil after being impregnated with the resin. When the amount of the resin solvent is more than 20 wt%, there is an effect of suppressing a decrease in impedance due to resin impregnation when measured at a low frequency (1 kHz or more and less than 50 kHz). Further, when the amount of the resin solvent is 20 wt% or less, there is an effect of suppressing a decrease in impedance due to resin impregnation when measured at a high frequency (50 kHz or more and less than 500 kHz).

上述のように、軟磁性合金薄帯を巻いて磁心とし、熱処理によって軟磁性合金薄帯をナノ結晶化させ、樹脂を含浸させたコモンモードチョークコイル用コアにおいて、インピーダンスの経時劣化がなく、信頼性が高いもの、およびその製造方法を提供することができた。   As described above, a core for a common mode choke coil in which a soft magnetic alloy ribbon is wound into a magnetic core, the soft magnetic alloy ribbon is nanocrystallized by heat treatment, and impregnated with resin, there is no deterioration of impedance over time and reliability. It was possible to provide a high-performance product and a method for producing the same.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

本発明に係る磁心に用いられるFe基軟磁性合金は、所定組成の非晶質合金を溶湯から急冷することにより得る工程と、これを加熱し微細な結晶粒を形成する熱処理工程とによって得られる。X線回折および透過電子顕微鏡による分析で、微細な結晶粒はSi等が固溶した体心立方格子構造のFeであることが解る。微細な結晶粒は、体心立方格子構造を有する最大寸法で測定した粒径の平均が200オングストローム以下で結晶粒が組織の少なくとも80%を占めるものである。合金組織のうち微細結晶粒以外の部分は主に非晶質である。なお微細結晶粒の割合が実質的に100%になっても本発明の磁心は十分に優れた磁気特性を示す。   The Fe-based soft magnetic alloy used in the magnetic core according to the present invention is obtained by a step of obtaining an amorphous alloy having a predetermined composition by quenching from a molten metal and a heat treatment step of heating the amorphous alloy to form fine crystal grains. . Analysis by X-ray diffraction and transmission electron microscope reveals that fine crystal grains are Fe of a body-centered cubic lattice structure in which Si or the like is dissolved. Fine crystal grains are those having an average grain size of 200 angstroms or less with the largest dimension having a body-centered cubic lattice structure and crystal grains occupying at least 80% of the structure. Portions other than fine crystal grains in the alloy structure are mainly amorphous. Note that the magnetic core of the present invention exhibits sufficiently excellent magnetic properties even when the proportion of fine crystal grains is substantially 100%.

前記本発明に用いられる合金において、Cuは0.1〜3原子%の範囲で含有される。0.1原子%より少ないとCuの添加によるコア損失低下、透磁率上昇の効果がほとんどなく、一方、3原子%より多いとコア損失が未添加のものよりかえって大きくなることがあり、透磁率も劣化する。本発明において特に好ましいCuの含有量xは0.5〜2原子%であり、この範囲ではコア損失が特に小さい。Cuのコア損失低下、透磁率上昇作用の原因は明かではないが次のように考えられる。CuとFeの相互作用パラメータは正であり、固溶度が低く、分離する傾向があるため非晶質状態の合金を加熱するとFe原子同志またはCu原子同志が寄り集まりクラスターを形成するため組成ゆらぎが生じる。このため部分的に結晶化しやすい領域が多数でき、そこを核とした微細な結晶粒が生成される。この結晶はFeを主成分とするものであり、FeとCuの固溶度はほとんどないため結晶化によりCuは微細結晶粒の周囲にはき出され、結晶粒周辺のCu濃度が高くなる。このため結晶粒は成長しにくいと考えられる。   In the alloy used in the present invention, Cu is contained in the range of 0.1 to 3 atomic%. If it is less than 0.1 atomic%, there is almost no effect of decreasing core loss and increasing magnetic permeability due to the addition of Cu. On the other hand, if it exceeds 3 atomic%, the core loss may be larger than that without adding, and the magnetic permeability is also deteriorated. To do. Particularly preferable Cu content x in the present invention is 0.5 to 2 atomic%, and the core loss is particularly small in this range. The cause of the Cu core loss reduction and permeability increase is not clear, but is thought to be as follows. Since the interaction parameters of Cu and Fe are positive, the solid solubility is low, and there is a tendency to separate, when an amorphous alloy is heated, Fe atoms or Cu atoms come together to form a cluster, resulting in composition fluctuations. Occurs. For this reason, a large number of regions that are easily crystallized are formed, and fine crystal grains having the cores are generated. This crystal is mainly composed of Fe, and there is almost no solid solubility of Fe and Cu, so that Cu is expelled around fine crystal grains by crystallization, and the Cu concentration around the crystal grains becomes high. For this reason, it is considered that the crystal grains are difficult to grow.

以上のようにCu添加により結晶核が多数できることと結晶粒が成長しにくいため結晶粒微細化が起こると考えられるが、この作用はNb,Ta,W,Mo,Zr,Hf,Ti等の存在により特に著しくなると考えられる。Nb,Ta,W,Mo,Zr,Hf,Ti等が存在しない場合は結晶粒はあまり微細化されない。Nb,Ta,Zr,Hf,Moは特に効果が大きいが、これらの元素の中でNbを添加した場合特に結晶粒が細くなりやすく、軟磁気特性も優れたものが得られる。またFeを主成分とする微細結晶相が生ずるためFe基非晶質合金に比べ磁歪が小さくなり、内部応力−歪による磁気異方性が小さくなることも軟磁気特性が改善される理由と考えられる。   As described above, it is thought that crystal grain refinement occurs due to the large number of crystal nuclei formed by Cu addition and the difficulty of growing crystal grains, but this action is due to the presence of Nb, Ta, W, Mo, Zr, Hf, Ti, etc. This is considered to be particularly remarkable. In the absence of Nb, Ta, W, Mo, Zr, Hf, Ti, etc., the crystal grains are not very refined. Nb, Ta, Zr, Hf, and Mo are particularly effective. However, when Nb is added among these elements, the crystal grains are particularly likely to be thin, and excellent soft magnetic properties can be obtained. In addition, since a fine crystalline phase mainly composed of Fe is generated, magnetostriction is smaller than that of Fe-based amorphous alloys, and magnetic anisotropy due to internal stress-strain is also reduced. It is done.

本発明の磁心に係るFe基軟磁性合金として、樹脂の含浸によるインピーダンスの低下を防ぐために、特に組成式:FebalCu1Nb3B5Si17.5で表される合金の様に、磁歪が負のもの、或いは磁歪が0又はほとんど0のものが好ましい。 As an Fe-based soft magnetic alloy related to the magnetic core of the present invention, in order to prevent a decrease in impedance due to resin impregnation, magnetostriction is negative, particularly like an alloy represented by the composition formula: Fe bal Cu 1 Nb 3 B 5 Si 17.5. And those having a magnetostriction of 0 or almost zero are preferred.

V,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,Sn,Re等の元素は耐食性改善、磁気特性改善、磁歪調整の効果を有するものである。その含有量はせいぜい10原子%以下である。含有量が10原子%を超えると著しい飽和磁束密度の低下を招くためであり、特に好ましい含有量は8原子%以下である。これらの中でRu,Rh,Pd,Os,Ir,Pt,Au,Cr,Vから選ばれる少なくとも1種の元素を添加した合金からなる場合は特に耐食性、耐摩耗性に優れた磁心となる。   Elements such as V, Cr, Mn, Al, white metal elements, Sc, Y, rare earth elements, Au, Zn, Sn, and Re have effects of improving corrosion resistance, improving magnetic properties, and adjusting magnetostriction. Its content is at most 10 atomic% or less. This is because when the content exceeds 10 atomic%, the saturation magnetic flux density is significantly lowered, and the particularly preferable content is 8 atomic% or less. Among these, a magnetic core having particularly excellent corrosion resistance and wear resistance is obtained when it is made of an alloy to which at least one element selected from Ru, Rh, Pd, Os, Ir, Pt, Au, Cr, and V is added.

本発明において、C,Ge,P,Ga,Sb,In,Be,Asからなる群から選ばれた少なくとも1種の元素を10原子%以下含むこともできる。これら元素は非晶質化に有効な元素であり、Si,Bと共に添加することにより合金の非晶質化を助けるとともに、磁歪やキュリー温度調整に効果がある。   In the present invention, at least one element selected from the group consisting of C, Ge, P, Ga, Sb, In, Be, and As may be contained in an amount of 10 atomic% or less. These elements are effective elements for amorphization, and adding them together with Si and B helps to amorphize the alloy and is effective in adjusting magnetostriction and Curie temperature.

Si及びBは、本発明に係る合金の結晶粒微細化に特に有用な元素である。本発明に係るFe基軟磁性合金は、好ましくは、一旦Si,Bの添加効果により非晶質合金とした後で熱処理により微細結晶粒を形成させることにより得られる。Si及びBの含有量が多すぎると、合金の飽和磁束密度の著しい減少がある。   Si and B are particularly useful elements for grain refinement of the alloy according to the present invention. The Fe-based soft magnetic alloy according to the present invention is preferably obtained by once forming an amorphous alloy by the effect of addition of Si and B and then forming fine crystal grains by heat treatment. If the Si and B contents are too high, there is a significant decrease in the saturation flux density of the alloy.

発明において、M'はCuとの複合添加により析出する結晶粒を微細化する作用を有するものであり、Nb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素である。Nb等は合金の結晶化温度を上昇させる作用を有するが、クラスターを形成し結晶化温度を低下させる作用を有するCuとの相互作用により析出する結晶粒が微細化するものと考えられる。また、磁歪を小さくするため、他添加元素との関係からM'の含有量αは2〜5原子%である。   In the present invention, M ′ has an effect of refining crystal grains precipitated by complex addition with Cu, and is at least one selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo. Elements. Nb and the like have the effect of increasing the crystallization temperature of the alloy, but it is considered that the crystal grains precipitated by the interaction with Cu having the function of forming clusters and lowering the crystallization temperature are refined. Further, in order to reduce magnetostriction, the content α of M ′ is 2 to 5 atomic% from the relationship with other additive elements.

残部は不純物を除いて実質的にFeが主体であるが、Feの一部は成分M(Co及び/又はNi)により置換することもできる。Mの含容量aは0≦a<0.5であるが、好ましくは、0≦a≦0.3である。aが0.3を超えると、コア損失が増加する場合があるためである。   The balance is substantially composed mainly of Fe except for impurities, but a part of Fe may be replaced by the component M (Co and / or Ni). The content a of M is 0 ≦ a <0.5, but preferably 0 ≦ a ≦ 0.3. This is because core loss may increase when a exceeds 0.3.

M"の添加により、耐食性の改善、磁気特性の改善、又は磁歪調整効果が得られる。M"が10原子%を超えると飽和磁束密度低下が著しい。   Addition of M "can improve corrosion resistance, magnetic properties, or magnetostriction adjustment effect. When M" exceeds 10 atomic%, the saturation magnetic flux density is significantly reduced.

次に本発明の磁心の製造方法について説明する。まず上記所定の組成の溶湯から、片ロール法、双ロール法等の公知の液体急冷法によりリボン状の非晶質合金を形成する。通常、片ロール法等により製造される非晶質合金リボンの板厚は3〜100μm程度であるが、板厚が25μm以下のものが高周波において使用される磁心用薄帯として特に適している。この非晶質合金は結晶相を含んでいてもよいが、後の熱処理により微細な結晶粒を均一に生成するためには非晶質であるのが望ましい。この薄帯を占積率が70%〜90%になるように巻きつけて磁心する。   Next, the manufacturing method of the magnetic core of this invention is demonstrated. First, a ribbon-like amorphous alloy is formed from a molten metal having a predetermined composition by a known liquid quenching method such as a single roll method or a twin roll method. Usually, the plate thickness of the amorphous alloy ribbon produced by the single roll method or the like is about 3 to 100 μm, but a plate thickness of 25 μm or less is particularly suitable as a thin ribbon for a magnetic core used at a high frequency. This amorphous alloy may contain a crystalline phase, but is desirably amorphous in order to uniformly produce fine crystal grains by a subsequent heat treatment. The thin ribbon is wound around so that the space factor becomes 70% to 90% and magnetically cored.

熱処理は所定の形状に加工した非晶質合金リボンを酸素濃度が20〜100ppmの水素、窒素、Ar等の不活性ガス雰囲気中で一定時間保持し行う。酸素濃度が20ppm未満だと、前記組成の薄帯表面に酸化膜が形成されず、樹脂の含浸による磁歪の影響を受けてインピーダンスが低下したり、高温化で長時間使用される間に表面の酸化が進み安定したインピーダンス特性が得られず経年劣化を起こす。前記組成のナノ結晶合金薄帯が持つインピーダンスは、要求されているコモンモードチョークコイル用コアのインピーダンス値よりも高い特性を持っている。そのため、薄帯表面の酸化によりインピーダンスが若干低下するものの、要求される仕様は満足するものであり、かつ、表面を酸化させておく事で経時変化が極めて少なく信頼性の高いコモンモードチョークコイル用コアが得られる。逆に酸素濃度が100ppmを超えると、インピーダンスが低下しすぎて、要求される仕様を満足しなくなる。さらに好ましい熱処理炉中の酸素濃度は22〜50ppmであり、さらに好ましい酸素濃度は25〜45ppmである。   The heat treatment is performed by holding the amorphous alloy ribbon processed into a predetermined shape for a certain period of time in an inert gas atmosphere of hydrogen, nitrogen, Ar or the like having an oxygen concentration of 20 to 100 ppm. When the oxygen concentration is less than 20 ppm, an oxide film is not formed on the surface of the ribbon having the above composition, and the impedance decreases due to the influence of magnetostriction due to resin impregnation, Oxidation progresses, and stable impedance characteristics cannot be obtained, resulting in deterioration over time. The impedance of the nanocrystalline alloy ribbon having the above composition is higher than the required impedance value of the core for a common mode choke coil. Therefore, although the impedance is slightly reduced due to the oxidation of the ribbon surface, the required specifications are satisfied, and since the surface is oxidized, the change over time is extremely small and the reliability is high for common mode choke coils. A core is obtained. On the other hand, when the oxygen concentration exceeds 100 ppm, the impedance is too low to satisfy the required specifications. A more preferable oxygen concentration in the heat treatment furnace is 22 to 50 ppm, and a more preferable oxygen concentration is 25 to 45 ppm.

前記組成をロール冷却した軟磁性合金薄帯のナノ結晶化のための熱処理保持温度は、550℃〜600℃が望ましい。550℃より低い、もしくは600℃より高いと磁歪が大きくなるため好ましくない。保持時間は5分〜24時間程度が望ましい。また熱処理時間については、5分未満では加工した合金全体を均一な温度とすることが困難であり磁気特性がばらつきやすく、24時間より長いと生産性が悪くなるだけでなく結晶粒の過剰な成長や不均一な形態の結晶粒の生成により磁気特性の低下が起こりやすい。好ましい熱処理条件は、実用性及び均一な温度コントロール等を考慮して、585℃〜595℃で5分〜6時間である。   The heat treatment holding temperature for nanocrystallization of the soft magnetic alloy ribbon obtained by roll cooling the composition is preferably 550 ° C to 600 ° C. When the temperature is lower than 550 ° C. or higher than 600 ° C., magnetostriction is increased, which is not preferable. The holding time is preferably about 5 minutes to 24 hours. As for heat treatment time, it is difficult to bring the entire processed alloy to a uniform temperature if the heat treatment time is less than 5 minutes, and magnetic characteristics are likely to vary, and if it is longer than 24 hours, not only productivity will deteriorate but also excessive growth of crystal grains will occur. In addition, the generation of crystal grains having a non-uniform shape tends to cause a decrease in magnetic properties. Preferable heat treatment conditions are 585 ° C. to 595 ° C. for 5 minutes to 6 hours in consideration of practicality and uniform temperature control.

熱処理を直流あるいは交流等の磁場中で行うこともできる。更には磁場中熱処理により本磁心に用いられている合金に磁気異方性を生じさせ特性向上をはかることができる。磁場は熱処理の間中印加してもよいが全期間印加する必要はなく、合金のキュリー温度Tcより低い温度のときで十分な効果が得られる。また、熱処理は1段ではなく多段の熱処理や複数回の熱処理を行なうこともできる。   The heat treatment can also be performed in a magnetic field such as direct current or alternating current. Furthermore, magnetic anisotropy can be produced in the alloy used in the magnetic core by heat treatment in a magnetic field to improve the characteristics. The magnetic field may be applied during the heat treatment, but it is not necessary to apply it for the entire period, and a sufficient effect can be obtained at a temperature lower than the Curie temperature Tc of the alloy. Further, the heat treatment is not limited to one step, and a multi-step heat treatment or a plurality of heat treatments can be performed.

(実施例1)
単ロ−ルによる液体急冷法により、組成がFe74Cu1Nb3Si17B5、厚さtが22μm、幅25mmの非晶質軟磁性合金薄帯を製作後、同非晶質軟磁性合金薄帯をスリットして幅20mmの薄帯を得た。この幅20mmの非晶質軟磁性合金薄帯を用い、巻磁心の見かけの断面積Aと実効断面積Aeの比であるAe/Aで表される占積率Kを75%として外径37.17mm、内径28.1mmの巻き磁心を製作した。
Example 1
An amorphous soft magnetic alloy ribbon having a composition of Fe74Cu1Nb3Si17B5, a thickness t of 22 μm, and a width of 25 mm is manufactured by liquid quenching using a single roll, and then the amorphous soft magnetic alloy ribbon is slit to a width of 20 mm. The ribbon was obtained. Using an amorphous soft magnetic alloy ribbon having a width of 20 mm, the outer diameter 37 is obtained by setting the space factor K expressed by Ae / A, which is the ratio of the apparent sectional area A and the effective sectional area Ae of the wound core, to 75%. A wound magnetic core having a diameter of .17 mm and an inner diameter of 28.1 mm was produced.

この巻き磁心を、窒素雰囲気炉に入れ、炉内の酸素濃度を5,10,15,25,35,50ppmと変え、それぞれの条件でナノ結晶化の熱処理を行った。保持温度は585℃とし、保持時間を1時間とした。その後48時間放置して冷却し、得られた試料の周波数10kHzおよび100kHzでのインピーダンスを測定した。測定においては、測定器にAgilent社製の4194Aを用いて行った。測定条件はAve16とした。結果を図1に示す。また、この巻き磁心に、製品名EOCN-102S(日本化薬社製)、製品名EPIKURE171(ジャパンエポキシレジン社製)のエポキシ樹脂及び硬化剤をアセトンで30wt%になるよう混合した溶液を含浸させた。樹脂の含浸は、含浸液に1分間浸漬させ、取り出した後、1分間大気中に放置し、150℃に保持した乾燥炉に15分投入し、樹脂を硬化させた。この樹脂を含浸させた状態で、上記と同様にインピーダンスを測定した。図1で得られた樹脂含浸前の巻き磁心のインピーダンスと、樹脂を含浸させた後のインピーダンスとの変化率を調べた。結果を図2に示す。   This wound magnetic core was put into a nitrogen atmosphere furnace, and the oxygen concentration in the furnace was changed to 5, 10, 15, 25, 35, 50 ppm, and nanocrystallization heat treatment was performed under each condition. The holding temperature was 585 ° C. and the holding time was 1 hour. Thereafter, it was left to cool for 48 hours, and the impedance of the obtained sample at frequencies of 10 kHz and 100 kHz was measured. The measurement was performed using Agilent 4194A as a measuring instrument. The measurement conditions were Ave16. The results are shown in FIG. In addition, this wound magnetic core is impregnated with a solution in which an epoxy resin of a product name EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.) and an epoxy resin of a product name EPIKURE171 (manufactured by Japan Epoxy Resin Co., Ltd.) and a curing agent are mixed to 30 wt% with acetone. It was. For the impregnation of the resin, the resin was immersed in the impregnating solution for 1 minute, taken out, left in the atmosphere for 1 minute, and placed in a drying furnace maintained at 150 ° C. for 15 minutes to cure the resin. With the resin impregnated, impedance was measured in the same manner as described above. The rate of change between the impedance of the wound magnetic core before impregnation with the resin obtained in FIG. 1 and the impedance after impregnation with the resin was examined. The results are shown in FIG.

図1から、樹脂を含浸させたことによる巻き磁心への磁歪残留の影響を見ると、10kHz、100kHzの両周波数域で特性変化が起きている。インピーダンス周波数特性は10kHzでは変化が小さく、100kHzで変化が大きい。このことからインピーダンスの変化要因は磁歪残留が一律に影響しているものでは無い事が推測できる。また、図には記載していないが、酸素濃度を100ppmを超えた雰囲気中で同様に熱処理を行うと、インピーダンスの低下が顕著となり、磁気特性が仕様に対して不足することが解った。
図2から、酸素濃度による特性のばらつき依存性を見ると、10kHzではさほど影響は受けていないが、100kHzでは15ppm以下の酸素濃度で熱処理したものは、特性のばらつきが大きく、かつ変化率が大きいことが解る。
As can be seen from FIG. 1, when the influence of residual magnetostriction on the wound magnetic core due to impregnation with resin is observed, characteristic changes occur in both frequency ranges of 10 kHz and 100 kHz. The impedance frequency characteristic has a small change at 10 kHz and a large change at 100 kHz. From this, it can be inferred that the impedance change factor is not the one in which the magnetostriction residual is uniformly affected. Although not shown in the figure, it was found that when heat treatment was similarly performed in an atmosphere in which the oxygen concentration exceeded 100 ppm, the impedance was significantly reduced and the magnetic characteristics were insufficient with respect to the specifications.
As seen from FIG. 2, the variation in characteristics depending on the oxygen concentration is not significantly affected at 10 kHz, but the heat treatment at an oxygen concentration of 15 ppm or less at 100 kHz has a large variation in characteristics and a large change rate. I understand that.

(実施例2)
本発明にて作製したコモンモードチョークコイル用コアに巻線を施し、高温貯蔵試験を行い、経時変化による信頼性を確認した。実施例1と同様に巻き磁心を製造し、この巻き磁心をガラスフリット15%のPBT樹脂ケースに挿入し、バイスにて固定、作業者による手動巻きの条件で巻線を施して、巻線による応力付加を促した状態で、ナノ結晶化のための熱処理を施してコモンモードトークコイルとした。熱処理炉の酸素濃度は5ppmと35ppmとした。高温貯蔵試験においては、高温槽(130℃大気雰囲気)中に放置し、24、100、250、500、800、1000時間経過した時のコモンモードトークコイルのインピーダンスを測定した。測定は高温槽から取り出して48時間かけて室温まで冷却した後に行った。
(Example 2)
The core for the common mode choke coil manufactured according to the present invention was wound and subjected to a high temperature storage test to confirm the reliability due to the change with time. A wound magnetic core is manufactured in the same manner as in Example 1, this wound magnetic core is inserted into a 15% glass frit PBT resin case, fixed with a vise, and wound under the conditions of manual winding by an operator. With the stress applied, heat treatment for nanocrystallization was performed to obtain a common mode talk coil. The oxygen concentration in the heat treatment furnace was 5 ppm and 35 ppm. In the high-temperature storage test, the impedance of the common mode talk coil was measured after 24, 100, 250, 500, 800, and 1000 hours when left in a high-temperature bath (130 ° C. air atmosphere). The measurement was performed after taking out from the high temperature bath and cooling to room temperature over 48 hours.

図3は熱処理炉中の酸素濃度が5ppm、35ppmとしてナノ結晶化を行ったコモンモードトークコイル用コアに巻き線を施し、高温貯蔵試験を行い、10kHzで測定した時の結果である。また、図4は同様にして高温貯蔵試験を行い、100kHzで測定した時の結果である。
10kHzで使用した場合、インピーダンスの低下はさほど影響がないが、100kHzで用いた場合には、ナノ結晶化の熱処理を、酸素濃度が5ppm、35ppmで行った場合で顕著な違いが見られる。酸素濃度35ppmでナノ結晶化の熱処理を行ったものは、高温貯蔵試験によって長時間過酷な環境に置かれてもインピーダンスの経時変化が少なく、信頼性が高いコモンモードトークコイル用コア及びコイルが得られることが解った。
FIG. 3 shows the results when winding was performed on a core for a common mode talk coil that had been nanocrystallized in an oxygen concentration of 5 ppm and 35 ppm in a heat treatment furnace, a high-temperature storage test was performed, and measurement was performed at 10 kHz. FIG. 4 shows the results when a high-temperature storage test was conducted in the same manner and measured at 100 kHz.
When used at 10 kHz, the decrease in impedance has no significant effect, but when used at 100 kHz, a significant difference is observed when the heat treatment for nanocrystallization is performed at oxygen concentrations of 5 ppm and 35 ppm. Nanocrystal crystallization heat treatment at an oxygen concentration of 35 ppm results in a highly reliable common mode talk coil core and coil with little change in impedance over time even when placed in a harsh environment for a long time in a high temperature storage test. I understood that

(実施例3)
含浸する際の樹脂の粘性による影響を見るため、溶剤をエポキシ樹脂の重量に対して10wt%用いた場合と30wt%用いた場合の両方を比較して、実施例2と同様に高温貯蔵試験を行った。
高温貯蔵試験前に測定したコモンモードトークコイルのインピーダンスとの変化率を測定した。熱処理炉中の酸素濃度は35ppmとしてナノ結晶化を行い、10kHzと100kHzでのインピーダンスを調べた。結果を図5に示す。
溶剤をエポキシ樹脂の重量に対して10wt%用いた場合には100kHzでの変化率が小さくなり、逆に溶剤を30wt%用いた場合には10kHzでの変化率が小さくなることが解った。
(Example 3)
In order to see the effect of the viscosity of the resin when impregnated, the high temperature storage test was conducted in the same manner as in Example 2 by comparing both the case where the solvent was used at 10 wt% and the case where 30 wt% was used with respect to the weight of the epoxy resin. went.
The rate of change from the impedance of the common mode talk coil measured before the high temperature storage test was measured. Nanocrystallization was performed with the oxygen concentration in the heat treatment furnace being 35 ppm, and the impedances at 10 kHz and 100 kHz were examined. The results are shown in FIG.
It was found that when the solvent was used at 10 wt% with respect to the weight of the epoxy resin, the rate of change at 100 kHz was small, and conversely, when the solvent was used at 30 wt%, the rate of change at 10 kHz was small.

(比較例)
実施例1と同様にして巻き磁心を作製し、熱処理炉中の酸素濃度を5ppmとしてナノ結晶化を行った。この巻き磁心を実施例2と同様に高温貯蔵試験を行い、100kHzでのインピーダンスを調べた。結果を図6に示す。
高温貯蔵試験250時間後のインピーダンスで変化率が10%以下になるものが表れ、800時間後では半分以上が変化率10%以下になることが解った。
(Comparative example)
A wound magnetic core was prepared in the same manner as in Example 1, and nanocrystallization was performed with an oxygen concentration in the heat treatment furnace of 5 ppm. This wound magnetic core was subjected to a high-temperature storage test in the same manner as in Example 2 to examine the impedance at 100 kHz. The results are shown in FIG.
It was found that a change rate of 10% or less appeared in the impedance after 250 hours of high-temperature storage test, and after 800 hours, more than half became a change rate of 10% or less.

酸素濃度による巻き磁心のインピーダンスの影響を測定した図である。It is the figure which measured the influence of the impedance of the winding magnetic core by oxygen concentration. 巻き磁心に樹脂を含浸する前後のインピーダンスの変化率を測定した図である。It is the figure which measured the rate of change of the impedance before and behind impregnating a winding magnetic core with resin. 高温貯蔵試験によるインピーダンスの影響を測定した図である。It is the figure which measured the influence of the impedance by a high temperature storage test. 高温貯蔵試験によるインピーダンスの影響を測定した図である。It is the figure which measured the influence of the impedance by a high temperature storage test. 高温貯蔵試験によるインピーダンスの変化率を測定した図である。It is the figure which measured the change rate of the impedance by a high temperature storage test. 高温貯蔵試験によるインピーダンスの変化率を測定した図である。It is the figure which measured the change rate of the impedance by a high temperature storage test. コモンモードチョークコイルが用いられた回路図の一例であるIt is an example of a circuit diagram in which a common mode choke coil is used

符号の説明Explanation of symbols

31,32:入力端子、33,35:コンデンサ、34:コモンモードチョークコイル、36,37:電源ラインとアース間のコンデンサ、38:電源ライン間抵抗、39,40出力端子
31, 32: Input terminal, 33, 35: Capacitor, 34: Common mode choke coil, 36, 37: Capacitor between power line and ground, 38: Resistance between power line, 39, 40 output terminal

Claims (4)

一般式:(Fe 1−a 100−x−y−z−α−β−γ Cu Si M’ α M” β γ (原子%)(ただし、MはCo及び/又はNiであり、M’はNb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素、M”はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ばれた少なくとも1種の元素、XはC,Ge,P,Ga,Sb,In,As,Beからなる群から選ばれた少なくとも1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0≦a<0.1,0.1≦x≦3,14≦y≦20,5≦z≦7,2≦α≦5,0≦β≦10及び0≦γ≦10を満たす。)により表される組成を有するFe基ナノ結晶合金薄帯からなる巻き磁心に樹脂を含浸させたコモンモードチョークコイル用コアの製造方法であって、前記合金薄帯を巻いて巻き磁心とし、前記巻き磁心を酸素濃度が25ppm以上45ppm以下の雰囲気中、550℃以上600℃以下でナノ結晶化のための熱処理を施し、その後熱処理を行った巻き磁心に樹脂を含浸させることを特徴とするコモンモードチョークコイル用コアの製造方法。 General formula: (Fe 1-a M a ) 100-xyz-α-β-γ Cu x Si y B z M ′ α M ″ β X γ (atomic%) (where M is Co and / or Or M ′ is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, M ″ is V, Cr, Mn, Al, a white metal element, Sc , Y, rare earth elements, at least one element selected from the group consisting of Au, Zn, Sn, Re, X is selected from the group consisting of C, Ge, P, Ga, Sb, In, As, and Be A, x, y, z, α, β, and γ are 0 ≦ a <0.1, 0.1 ≦ x ≦ 3, 14 ≦ y ≦ 20, and 5 ≦ z ≦ 7, respectively. , 2 ≦ α ≦ 5,0 ≦ β ≦ 10 and 0 ≦ gamma satisfy ≦ 10.) wound magnetic of Fe-based nano-crystalline alloy ribbon having a composition represented by A method of manufacturing a core for the common mode choke coil impregnated with resin, wherein the alloy ribbons wound with winding core, in said winding core oxygen concentration 25ppm or 45ppm or less of the atmosphere, 600 ° C. 550 ° C. or higher A method for producing a core for a common mode choke coil, comprising: performing heat treatment for nanocrystallization, and impregnating a resin into a wound magnetic core subjected to the heat treatment. 一般式:(FeGeneral formula: (Fe 1−a1-a M a ) 100−x−y−z−α−β−γ100-xyz-α-β-γ CuCu x SiSi y B z M’M ’ αα M”M ” ββ X γγ (原子%)(ただし、MはCo及び/又はNiであり、M’はNb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素、M”はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ばれた少なくとも1種の元素、XはC,Ge,P,Ga,Sb,In,As,Beからなる群から選ばれた少なくとも1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0≦a<0.1,0.1≦x≦3,14≦y≦20,5≦z≦7,2≦α≦5,0≦β≦10及び0≦γ≦10を満たす。)により表される組成を有するFe基軟磁性合金薄帯を巻いて巻き磁心とし、前記巻き磁心を酸素濃度が25ppm以上45ppm以下の雰囲気中、550℃以上600℃以下でナノ結晶化のための熱処理を施し、その後熱処理を行った巻き磁心に樹脂を含浸させたコモンモードチョークコイル用コアであって、樹脂含浸前後の100kHzでのインピーダンス変化率が10%未満であることを特徴とするコモンモードチョークコイル用コア。(Atom%) (where M is Co and / or Ni, M ′ is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, and M ″ is V , Cr, Mn, Al, white metal element, Sc, Y, rare earth element, at least one element selected from the group consisting of Au, Zn, Sn, Re, X is C, Ge, P, Ga, Sb, A, x, y, z, α, β, and γ are 0 ≦ a <0.1, 0.1 ≦ x ≦ 3, respectively, which are at least one element selected from the group consisting of In, As, and Be. 14 ≦ y ≦ 20, 5 ≦ z ≦ 7, 2 ≦ α ≦ 5, 0 ≦ β ≦ 10 and 0 ≦ γ ≦ 10). And the winding core is 550 ° C. or more and 600 ° C. or less in an atmosphere having an oxygen concentration of 25 ppm or more and 45 ppm or less. A core for a common mode choke coil in which a heat treatment for nanocrystallization is performed and then a heat-treated core is impregnated with resin, and the impedance change rate at 100 kHz before and after resin impregnation is less than 10%. Core for common mode choke coils.
一般式:(Fe 1−a 100−x−y−z−α−β−γ Cu Si M’ α M” β γ (原子%)(ただし、MはCo及び/又はNiであり、M’はNb,W,Ta,Zr,Hf,Ti及びMoからなる群から選ばれた少なくとも1種の元素、M”はV,Cr,Mn,Al,白金属元素,Sc,Y,希土類元素,Au,Zn,Sn,Reからなる群から選ばれた少なくとも1種の元素、XはC,Ge,P,Ga,Sb,In,As,Beからなる群から選ばれた少なくとも1種の元素であり、a,x,y,z,α,β及びγはそれぞれ0≦a<0.1,0.1≦x≦3,14≦y≦20,5≦z≦7,2≦α≦5,0≦β≦10及び0≦γ≦10を満たす。)により表される組成を有するFe基軟磁性合金薄帯を巻いて巻き磁心とし、前記巻き磁心を酸素濃度が25ppm以上45ppm以下の雰囲気中、550℃以上600℃以下でナノ結晶化のための熱処理を施し、その後熱処理を行った巻き磁心に樹脂を含浸させたコモンモードチョークコイル用コアであって、130℃×800時間の高温貯蔵試験後の100kHzでのインピーダンスが初期値のインピーダンスに対して10%未満の変化率であることを特徴とするコモンモードチョークコイル用コア。 General formula: (Fe 1-a M a ) 100-xyz-α-β-γ Cu x Si y B z M ′ α M ″ β X γ (atomic%) (where M is Co and / or Or M ′ is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti and Mo, M ″ is V, Cr, Mn, Al, a white metal element, Sc , Y, rare earth elements, at least one element selected from the group consisting of Au, Zn, Sn, Re, X is selected from the group consisting of C, Ge, P, Ga, Sb, In, As, and Be A, x, y, z, α, β, and γ are 0 ≦ a <0.1, 0.1 ≦ x ≦ 3, 14 ≦ y ≦ 20, and 5 ≦ z ≦ 7, respectively. , 2 ≦ α ≦ 5, 0 ≦ β ≦ 10, and 0 ≦ γ ≦ 10)). And, in the winding core oxygen concentration 25ppm or 45ppm or less of the atmosphere, subjected to a heat treatment for nanocrystallized at 550 ° C. or higher 600 ° C. or less, common mode choke was then heat-treated resin-impregnated wound magnetic core was a core coils, common mode choke core coil, wherein the impedance at 100kHz after the high temperature storage test 1 30 ° C. × 800 hours is the rate of change of less than 10% with respect to the impedance of the initial value . 前記樹脂はエポキシ系の樹脂であることを特徴とする請求項2または3に記載のコモンモードチョークコイル用コア。4. The core for a common mode choke coil according to claim 2, wherein the resin is an epoxy resin.
JP2005287379A 2005-09-30 2005-09-30 Core for common mode choke coil and manufacturing method thereof Active JP4688029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005287379A JP4688029B2 (en) 2005-09-30 2005-09-30 Core for common mode choke coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005287379A JP4688029B2 (en) 2005-09-30 2005-09-30 Core for common mode choke coil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007103404A JP2007103404A (en) 2007-04-19
JP4688029B2 true JP4688029B2 (en) 2011-05-25

Family

ID=38030101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005287379A Active JP4688029B2 (en) 2005-09-30 2005-09-30 Core for common mode choke coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4688029B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786841B2 (en) * 2015-04-02 2020-11-18 日立金属株式会社 Magnetic core and its manufacturing method, and in-vehicle parts
WO2018062310A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238520A (en) * 1988-07-27 1990-02-07 Nippon Ferrite Ltd Manufacture of fe-base soft-magnetic alloy and magnetic core
JPH07258728A (en) * 1994-02-04 1995-10-09 Mitsui Petrochem Ind Ltd Production of iron-base fine crystal soft magnetic alloy
JPH0917623A (en) * 1995-06-30 1997-01-17 Hitachi Metals Ltd Nano crystal alloy magnetic core and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238520A (en) * 1988-07-27 1990-02-07 Nippon Ferrite Ltd Manufacture of fe-base soft-magnetic alloy and magnetic core
JPH07258728A (en) * 1994-02-04 1995-10-09 Mitsui Petrochem Ind Ltd Production of iron-base fine crystal soft magnetic alloy
JPH0917623A (en) * 1995-06-30 1997-01-17 Hitachi Metals Ltd Nano crystal alloy magnetic core and its manufacture

Also Published As

Publication number Publication date
JP2007103404A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP7028290B2 (en) Manufacturing method of nanocrystal alloy magnetic core
JP5316920B2 (en) Soft magnetic alloys, alloy ribbons with an amorphous phase as the main phase, and magnetic components
JP6046357B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP2008231463A (en) Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP2013060665A (en) Soft magnetic alloy, and magnetic component manufactured using the same
JPWO2008133302A1 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
WO2022019335A1 (en) Fe-based nanocrystal soft magnetic alloy and magnetic component
JP2008231534A5 (en)
JP3231149B2 (en) Noise filter
JP4688029B2 (en) Core for common mode choke coil and manufacturing method thereof
US11651879B2 (en) Fe-based soft magnetic alloy and method for manufacturing the same
JP2006291234A (en) Microcrystalline alloy ribbon
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JPH0867911A (en) Method for heat-treating nano-crystalline magnetic alloy
JP4217038B2 (en) Soft magnetic alloy
JPH08153614A (en) Magnetic core
JPWO2020162480A1 (en) Manufacturing method of wound core, alloy core and wound core
JPH0927412A (en) Cut core and manufacture thereof
JP2007211301A (en) Microcrystal alloy thin strip and magnetic core
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0280533A (en) High permeability fine crystalline alloy and its manufacture
JP4445195B2 (en) Amorphous alloy ribbon and magnetic core using it
JP2005187917A (en) Soft magnetic alloy, and magnetic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4688029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350