JPH09268395A - Electrode for electrolysis and electrolytic cell using this electrode - Google Patents

Electrode for electrolysis and electrolytic cell using this electrode

Info

Publication number
JPH09268395A
JPH09268395A JP8106379A JP10637996A JPH09268395A JP H09268395 A JPH09268395 A JP H09268395A JP 8106379 A JP8106379 A JP 8106379A JP 10637996 A JP10637996 A JP 10637996A JP H09268395 A JPH09268395 A JP H09268395A
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
anode
chamber
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8106379A
Other languages
Japanese (ja)
Inventor
Masamori Iida
昌盛 飯田
Yoshinori Nishiki
善則 錦
Takayuki Shimamune
孝之 島宗
Setsuo Ogata
節郎 尾形
Masashi Tanaka
正志 田中
Shuhei Wakita
修平 脇田
Takashi Takahashi
俊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP8106379A priority Critical patent/JPH09268395A/en
Priority to KR1019970011525A priority patent/KR100504412B1/en
Priority to US08/825,866 priority patent/US5900127A/en
Publication of JPH09268395A publication Critical patent/JPH09268395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for electrolysis capable of forming a high- purity electrolyte and electrolytic gas without contg. impurities and sustaining a stable electrolytic operation for a long period of time and an electrolytic cell using this electrode. SOLUTION: This electrolytic cell is constituted by installing an anode 5 consisting of an electrode base body and an electrode material of a conductive diamond structure clad on the surface of this electrode base body into an anode chamber 3. This anode contains the electrode material of the conductive diamond structure. The electrode material has high durability and does not dissolve in the electrolyte and, therefore, the electrode has a long life and forms the high-purity electrolyte and electrolytic gas suitable for washing, etc., of semiconductor devices.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、長寿命で生成する電解
液やガスに不純物を殆ど含まないようにすることができ
る電解用電極及び該電極を使用する電解槽に関し、より
詳細には導電性ダイアモンド構造を有する電極物質を使
用する電解用電極、及び該電極を使用するオゾン生成、
酸性水及びアルカリ性水生成、あるいは腐食性の電解質
や電解液を使用する電解等に使用する電解槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electrolysis and an electrolytic cell using the electrode, in which an electrolyte or gas produced with a long life can contain almost no impurities. For electrolysis using an electrode material having a conductive diamond structure, and ozone generation using the electrode,
The present invention relates to an electrolytic cell used for generating acidic water and alkaline water, or for electrolysis using a corrosive electrolyte or electrolytic solution.

【0002】[0002]

【従来技術とその問題点】水、あるいは電解質を溶解し
た電解液を電解して有用な各種物質を製造する試みは従
来から広く行なわれている。これらの電解法の開発によ
り従来の製品の製造過程が大きく変化しているものがあ
る。例えば半導体デバイスや液晶パネルの製造過程の洗
浄には従来は有機溶剤やフッ酸、硫酸、塩酸、硝酸など
の無機酸、及びオゾン水や過酸化水素水などの酸化剤が
多く使用されていた。しかしこれらの薬剤は使用に際し
て危険であるだけでなく、有機溶剤はオゾン層破壊など
の環境問題を誘起する可能性があること、又他の無機酸
や塩類ではその廃水処理に多くの手間とコストが掛かる
などの問題があった。更にこれらの薬剤によって洗浄処
理を行なったデバイスや液晶パネルではこれらの薬剤を
除去するために多量のいわゆる超純水を使用しなければ
ならないという問題点を有していた。
2. Description of the Related Art Conventionally, attempts to produce useful various substances by electrolyzing water or an electrolytic solution in which an electrolyte is dissolved have been widely made. Due to the development of these electrolysis methods, the manufacturing process of conventional products has changed significantly. For example, organic solvents, inorganic acids such as hydrofluoric acid, sulfuric acid, hydrochloric acid and nitric acid, and oxidizing agents such as ozone water and hydrogen peroxide water have been often used for cleaning semiconductor devices and liquid crystal panels during the manufacturing process. However, these chemicals are not only dangerous when used, but organic solvents may induce environmental problems such as ozone depletion, and other inorganic acids and salts require much labor and cost for wastewater treatment. There was a problem such as hanging. Further, in devices and liquid crystal panels that have been washed with these chemicals, a large amount of so-called ultrapure water must be used to remove these chemicals.

【0003】更に前記デバイスやパネルの他にも、医療
や食品工業などでは殺菌や洗浄にあたって多量の洗剤を
使用するとともに、やはり多量の水でそれらを洗い流さ
なければならず、その水使用量が膨大になるという問題
点があった。これらの問題点を解決するために、最近は
隔膜で陽極室と陰極室に区画した電解槽で水又は微量の
塩酸や食塩、塩化アンモニウムなどの塩を添加した水を
電解することにより、陽極室から酸化還元電位(OR
P)の高い即ち酸化性が極めて強くかつ僅かに酸性を有
する水溶液を、又陰極室からORPの低い即ち還元性が
極めて強くかつ僅かに塩基性を有する水溶液をそれぞれ
生成し、これらを前記デバイス等の洗浄に使用すること
が行なわれている。
In addition to the devices and panels described above, in the medical and food industries, a large amount of detergent must be used for sterilization and cleaning, and they must also be washed off with a large amount of water. There was a problem that became. In order to solve these problems, recently, by electrolyzing water or water containing a trace amount of hydrochloric acid, salt, or a salt such as ammonium chloride in an electrolytic cell partitioned by a diaphragm into an anode chamber and a cathode chamber, From the redox potential (OR
An aqueous solution having a high P), that is, an extremely strong oxidizing property and a slight acidity, and an aqueous solution having a low ORP, that is, a highly reducing property and a slightly basic property, are produced from the cathode chamber. It is used for cleaning of.

【0004】電解液に僅かな食塩を添加して電解を行な
うと強い殺菌作用を有する酸性水が得られ、この酸性水
の殺菌作用が食品製造や医療の現場で利用されている。
この酸性水のORPは高く、この高ORPは液中の塩素
イオンが次亜塩素酸に変換されているためであると指摘
され、該次亜塩素酸は有機塩化物の生成を誘起する恐れ
があり、その可能性は非常に低いものであるが、二次公
害の可能性が皆無ではなかった。前記酸性水を半導体デ
バイスや液晶パネルの洗浄に使用する場合も同様の可能
性がある。このような電解では通常白金を被覆したチタ
ン電極が使用され、その消耗速度は1〜10μg/AH程
度であり、電解液中で使用すると標準的には1〜10ppb
程度の白金が溶解し混入することになる。100 ppm 程度
の次亜塩素酸水溶液を調製する際に酸化イリジウムなど
の酸化物電極も使用されるが、これも白金の1/10程度の
消耗がある。
When a slight amount of salt is added to the electrolytic solution to carry out electrolysis, acidic water having a strong bactericidal action is obtained, and the bactericidal action of the acidic water is used in the field of food production and medical treatment.
The ORP of this acidic water is high, and it is pointed out that this high ORP is because chlorine ions in the liquid are converted into hypochlorous acid, and the hypochlorous acid may induce the formation of organic chloride. Yes, and the possibility is very low, but the possibility of secondary pollution was not complete. There is a similar possibility when the acidic water is used for cleaning semiconductor devices and liquid crystal panels. In such electrolysis, a platinum-coated titanium electrode is usually used, and its consumption rate is about 1 to 10 μg / AH. When used in an electrolyte, it is typically 1 to 10 ppb.
Some platinum will be dissolved and mixed in. An oxide electrode such as iridium oxide is also used when preparing a hypochlorous acid aqueous solution of about 100 ppm, but this also consumes about 1/10 of platinum.

【0005】この溶解金属量は食品や医療用では問題と
ならないが、半導体洗浄では十分に高くこの除去が大き
な問題になる。本発明者らは、固体電解質としてイオン
交換膜を使用し、該膜に電極を密着して電解することに
より電極物質の消耗を約1/10程度に減らすことに成功し
たが、それでも液中に溶解すると導電性となる金属の溶
出が僅かにしてもあること自体が問題である。これらの
問題点を回避するためにオゾン水の使用が検討されてい
る。オゾンは強力な酸化剤として前述した半導体デバイ
スや液晶パネル洗浄用の水処理、医療や食品工業等の各
分野で広く使用されている。このオゾンは高濃度で製造
できる電解法で主として製造され、電極の材質や電解条
件等の開発により効率良くオゾンが製造されている(S.
Stuckiら、[Journal of Electrochemical Soc., Vol.13
2, No2, p3382 〜 (1985)]、米国特許明細書第4,541,98
9 号、特公平2−44908号)。しかしこの電解オゾン製
造でも金属電極を使用すると電解の進行に従って金属が
溶出し、又炭素電極では消耗が激しく長期間の運転に不
向きであるという前述と同様の欠点がある。
This amount of dissolved metal does not pose a problem in food and medical use, but is sufficiently high in semiconductor cleaning, and its removal becomes a serious problem. The present inventors have succeeded in reducing the consumption of the electrode material to about 1/10 by using an ion exchange membrane as the solid electrolyte and adhering the electrode to the membrane for electrolysis, but still in the liquid. The problem itself is that the metal that becomes conductive when dissolved is slightly eluted. The use of ozone water is being considered to avoid these problems. Ozone is widely used as a strong oxidant in various fields such as the above-mentioned water treatment for cleaning semiconductor devices and liquid crystal panels, medical treatment and food industry. This ozone is mainly produced by an electrolysis method that can be produced at a high concentration, and ozone is produced efficiently by developing the material of the electrodes and the electrolysis conditions (S.
Stucki et al., [Journal of Electrochemical Soc., Vol.13
2, No2, p3382- (1985)], U.S. Pat.No. 4,541,98.
No. 9, Japanese Patent Publication No. 2-44908). However, even in this electrolytic ozone production, when a metal electrode is used, the metal is eluted as the electrolysis progresses, and the carbon electrode has the same drawbacks as described above that it is not suitable for long-term operation because of heavy consumption.

【0006】金属混入を避けるためには、電極として非
金属型にすれば良く、非金属として使用可能な物質とし
て炭素がある。炭素電極は通常多孔質であるため電解の
進行とともに破壊や溶解が起こり易く、又陽極として使
用すると一部が酸化して炭酸ガスとなり消耗が速いとい
う問題点がある。又陰極として使用する場合でも炭酸ガ
スとしての揮発はないものの、生成する水素の気泡が陽
極側酸素より小さく電極の破壊が進み易いという問題点
がある。この破壊の進行を防止するために大きな電流を
流すことができず、必然的に大きなORPが得られない
という問題点がある。
In order to avoid mixing of metal, the electrode may be made of a non-metal type, and carbon can be used as the non-metal. Since the carbon electrode is usually porous, it tends to be broken or dissolved as the electrolysis progresses, and when it is used as an anode, a part of it is oxidized into carbon dioxide gas, which causes rapid consumption. Even when it is used as a cathode, although it does not volatilize as carbon dioxide gas, there is a problem that bubbles of hydrogen generated are smaller than oxygen on the anode side and the destruction of the electrode easily proceeds. There is a problem that a large current cannot be passed in order to prevent the progress of the breakdown, and thus a large ORP cannot be obtained.

【0007】これまで述べてきた電解による酸性水やア
ルカリ性水の製造、更に電解によるオゾン製造の際の電
極以外にも、食塩電解等の腐食性雰囲気で使用される電
極がある。これらの電極、特に陽極はチタンを主とする
いわゆる弁金属表面に酸化ルテニウム等の白金族金属酸
化物を含む電極物質を被覆した商品名DSE又はDSA
の実用化から金属電極の時代に入った。このDSEは当
初食塩電解用として実用化され現在では世界的にも殆ど
の食塩電解用電極が前記DSEに置換されている。又酸
素発生を伴う高速工業めっきなどの分野でも、前記DS
Eは、安定でかつ変形しないため極間距離を小さくして
使用できかつ過電圧が小さいという際立ったエネルギー
特性から、更に環境汚染の原因となる可能性が殆どない
ことから、従来の鉛電極に替わって広く使用されてい
る。これらの用途以外にもCOD除去による廃水処理、
電解酸化による有機又は無機化合物の合成等にも前記D
SEが使用されている。
In addition to the electrodes used for the production of acidic water or alkaline water by electrolysis and the production of ozone by electrolysis described above, there are electrodes used in a corrosive atmosphere such as salt electrolysis. These electrodes, especially the anode, are so-called valve metal surfaces mainly composed of titanium, and the product name is DSE or DSA in which an electrode material containing a platinum group metal oxide such as ruthenium oxide is coated on the surface of the valve metal.
Entering the age of metal electrodes from the practical application of. This DSE was first put into practical use for electrolysis of salt, and now most of the electrodes for electrolysis of salt are replaced with the DSE in the world. In the field of high-speed industrial plating, which involves oxygen generation, the DS
Since E is stable and does not deform, it can be used with a small distance between the electrodes and has a small overvoltage, and it has little possibility of causing environmental pollution. Widely used. In addition to these uses, wastewater treatment by COD removal,
The above D also applies to the synthesis of organic or inorganic compounds by electrolytic oxidation.
SE is used.

【0008】これらの用途において前記DSEはその特
性から顕著な電解効率の向上を達成できるが、逆にその
特性に起因する欠点も生じている。即ちDSEは耐食性
の弁金属基体を使用しているが、該弁金属基体は多くの
電解液に対して腐食を起こさず安定に機能するが、一部
の物質に対しては必ずしも十分な安定性を示さないこと
がある。前記DSEは通常熱分解法により製造され、基
体表面に分解し付着する電極物質により完全には前記基
体表面が被覆されないことが多く、電解液が電極物質を
通して基体金属に接触し反応を起こすことがあり、基体
の溶出を十分に抑制できないことになる。例えばメチル
アルコールやエチルアルコール等の有機化合物を満たし
た電解浴中に前記DSEを陽極として設置し電場を掛け
ると、基体金属であるチタンが腐食してしまい、電極物
質が剥離するという現象が生じ、又フッ素や臭素等のハ
ロゲンを含む場合には陽分極を起こしていわゆるピッテ
ィングコロージョンや活性溶解を起こして電極寿命が極
めて短くなることが知られている。
In these applications, the DSE can achieve a remarkable improvement in electrolysis efficiency due to its characteristics, but on the contrary, it also has drawbacks due to its characteristics. That is, the DSE uses a corrosion-resistant valve metal base, and the valve metal base does not corrode many electrolytes and functions stably, but is sufficiently stable for some substances. May not be indicated. The DSE is usually produced by a thermal decomposition method, and often the electrode surface that is decomposed and adheres to the surface of the substrate does not completely cover the surface of the substrate, so that the electrolytic solution may contact the metal of the substrate through the electrode substance to cause a reaction. Therefore, the elution of the substrate cannot be suppressed sufficiently. For example, when the DSE is installed as an anode in an electrolytic bath filled with an organic compound such as methyl alcohol or ethyl alcohol and an electric field is applied, titanium as a base metal is corroded, and a phenomenon in which an electrode substance is separated occurs, It is also known that when halogens such as fluorine and bromine are included, anodic polarization is caused to cause so-called pitting corrosion and active dissolution, resulting in extremely shortened electrode life.

【0009】この対策として同じ弁金属でもチタンより
耐食性の高いニオブやタンタルを基体金属として使用す
ることが一部で実施されている。しかしこれらの金属は
極めて高価であり、加工も施しにくく、更に表面が極め
て酸化されやすく、しかも表面酸化物が金属から剥離し
やすいため、熱分解によって電極物質を表面に形成して
製造されるDSEでは、その処理条件が大きく制限さ
れ、現状ではその使用範囲が極めて限定されている。D
SEは省エネルギー化の点で優れ、塩素発生の過電圧が
殆どゼロで、酸素発生の過電圧が500 mV以下である。こ
れは裏を返すと、塩素及び酸素は発生しやすいが、電解
電圧が低い分、特定の物質に対する電解酸化や電解によ
る分解反応に対する反応性が弱いことになる。実際DS
Eを陽極酸化に実用化している例は殆どない。
As a countermeasure against this, it has been partially practiced to use niobium or tantalum, which has a higher corrosion resistance than titanium, as the base metal even with the same valve metal. However, these metals are extremely expensive, difficult to process, the surface is very easily oxidized, and the surface oxide is easily separated from the metal. Therefore, DSE produced by forming an electrode substance on the surface by thermal decomposition is manufactured. However, the processing conditions are greatly limited, and the range of use is extremely limited under the present circumstances. D
SE is excellent in terms of energy saving, the overvoltage of chlorine generation is almost zero, and the overvoltage of oxygen generation is 500 mV or less. When turned upside down, chlorine and oxygen are likely to be generated, but the low electrolysis voltage means that reactivity with respect to electrolytic oxidation or decomposition reaction due to electrolysis with respect to a specific substance is weak. Actual DS
There are few examples in which E is practically used for anodization.

【0010】この対策として白金めっき電極が一部使用
されているが、極めて高価であること、寿命が必ずしも
十分でないこと等の問題点がある。この他に条件によっ
ては消耗が殆どなく酸化力に優れた酸化鉛電極も使用さ
れているが、電解液中で常に陽分極しておく必要があり
メンテナンスに問題があること、及びハロゲンイオンを
含む溶液中では必ずしも良好な耐久性を示さないという
欠点がある。更に特に有機化合物の分解用の高過電圧電
極として酸化スズ電極があり、該電極は酸素発生過電圧
が極めて高いため、水溶液中での有機化合物の陽極酸化
による分解が可能であり、特にベンゼン核の分解に適し
ていると報告されている。しかし酸化スズ自体の電気伝
導度が比較的小さく大きな電流密度が取れないこと、焼
結法で製造するため芯材となる金属をセットしにくいと
いった問題点を有している。
A part of the platinum-plated electrode is used as a countermeasure for this, but there are problems that it is extremely expensive and its life is not always sufficient. In addition to this, lead oxide electrodes, which have almost no wear and are excellent in oxidizing power, are also used depending on the conditions, but it is necessary to always be positively polarized in the electrolytic solution, and there is a problem in maintenance. It has the drawback that it does not always exhibit good durability in solution. Furthermore, there is a tin oxide electrode as a high overvoltage electrode for decomposing an organic compound, and since the electrode has an extremely high oxygen generation overvoltage, it is possible to decompose an organic compound by anodic oxidation in an aqueous solution, and particularly the decomposition of a benzene nucleus. It is reported to be suitable for. However, tin oxide itself has problems that the electrical conductivity is relatively small and a large current density cannot be obtained, and that it is difficult to set a metal as a core material because it is manufactured by a sintering method.

【0011】近年導電性を付与したダイアモンドが開発
されている。ダイアモンドは熱伝導性、光学的透過性、
高温かつ酸化に対する耐久性に優れており、特にドーピ
ングにより電気伝導性の制御も可能であることから、半
導体デバイス、エネルギー変換素子として有望とされて
いる。しかしながら電解用電極としての報告は殆どな
い。Swain らは、ダイアモンドの酸性電解液中での安定
性を報告し[Journal ofElectrochemical Soc., Vol.14
1, 3382 〜 (1994)]、他のカーボン材料に比較して遙か
に優れていることを示唆している。藤島らも、5.5 eV
ものバンドギャップの大きさに注目して還元反応用電極
への応用について報告している[Journal of Electroana
lytical Chem., Vol.396, 233 〜 (1995) 、及び電気化
学、第60巻、第7号、659 〜(1992)] 。又ダイアモンド
の表面抵抗が湿度によって変化することを利用した湿度
センサーの報告もある〔電気論、第114 巻、第5号、41
3 〜、平成6年〕。しかしながら電流密度の高い場合で
酸素発生や塩素発生が起こり得る高い電位領域での工業
的な利用の報告は未だされていない。
In recent years, diamond having conductivity has been developed. Diamond has thermal conductivity, optical transparency,
It is highly promising as a semiconductor device and an energy conversion element because it has excellent durability against high temperatures and oxidation, and in particular, its electrical conductivity can be controlled by doping. However, there is almost no report as an electrode for electrolysis. Swain et al. Reported the stability of diamond in acidic electrolyte [Journal of Electrochemical Soc., Vol.
1, 3382- (1994)], suggesting that it is far superior to other carbon materials. Fujishima et al., 5.5 eV
This paper reports on the application to the electrode for reduction reaction, focusing on the size of the band gap [Journal of Electroana
Lytical Chem., Vol. 396, 233- (1995), and Electrochemistry, Vol. 60, No. 7, 659- (1992)]. There is also a report on a humidity sensor that utilizes the surface resistance of diamond changing with humidity [Electrical Theory, Vol. 114, No. 5, 41].
3 ~, 1994]. However, there has not been reported any industrial use in a high potential region where oxygen generation or chlorine generation can occur when the current density is high.

【0012】[0012]

【発明の目的】本発明は、前述の従来技術の問題点を解
消し、電解液中への電極物質の溶出がなく、しかも耐久
性に優れた、各種電解に使用可能な電解用電極及び電極
を使用する電解槽を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, does not elute the electrode substance into the electrolytic solution, and has excellent durability, and an electrode for electrolysis and an electrode for various electrolysis. It aims at providing the electrolytic cell which uses.

【0013】[0013]

【問題点を解決するための手段】本発明の電解用電極
は、電極基体、及び該電極基体表面に被覆した導電性ダ
イアモンド構造の電極物質とを含んで成ることを特徴と
する電解用電極であり、前記電極基体を弁金属製とし、
該電極基体と前記導電性ダイアモンド構造の電極物質間
に中間層を形成しても良い。又本発明の電解槽は、イオ
ン交換膜で区画された陽極室及び陰極室の2室を有し又
は陽極室、中間室及び陰極室の3室を有する電解槽にお
いて、前記陽極室に収容される陽極及び前記陰極室に収
容される陰極の少なくとも一方が、電極基体、及び該電
極基体表面に被覆した導電性ダイアモンド構造の電極物
質とを含んで成る電極であることを特徴とする電解槽で
あり、該電極を、弁金属から成る電極基体、該電極基体
表面に被覆した弁金属の炭化物及び/又は炭化珪素を含
む中間層、及び該中間層表面に被覆した導電性ダイヤモ
ンド構造の電極物質で置換しても良い。
The electrode for electrolysis according to the present invention is an electrode for electrolysis comprising an electrode substrate and an electrode material having a conductive diamond structure coated on the surface of the electrode substrate. Yes, the electrode substrate is made of valve metal,
An intermediate layer may be formed between the electrode substrate and the electrode material having the conductive diamond structure. The electrolytic cell of the present invention has two chambers, an anode chamber and a cathode chamber, which are partitioned by an ion exchange membrane, or an electrolytic cell having three chambers, an anode chamber, an intermediate chamber and a cathode chamber, which are accommodated in the anode chamber. At least one of the anode accommodated in the cathode chamber and the cathode housed in the cathode chamber is an electrode comprising an electrode substrate and an electrode material having a conductive diamond structure coated on the surface of the electrode substrate. An electrode base made of a valve metal, an intermediate layer containing carbide and / or silicon carbide of a valve metal coated on the surface of the electrode base, and an electrode material having a conductive diamond structure coated on the surface of the intermediate layer. You may replace it.

【0014】以下本発明を詳細に説明する。本発明に係
わる電解用電極及び該電極を使用する電解槽は、各種電
解用として広く使用でき、特に生成する電解液(酸性水
やアルカリ性水、あるいはオゾン水)や生成ガス中への
不純物の混入を極度に嫌う半導体デバイスや液晶パネル
の洗浄用として、及び従来の電極を使用して電解を行な
うと該電極が比較的短時間で消耗し電解を継続できなく
なる腐食性の電解液を使用する電解用として好適に使用
できる。本発明では導電性ダイアモンド構造の電極物質
を使用する。該導電性ダイアモンド構造の電極物質とし
ては、硼素、リン、グラファイト等の不純物をドープし
て導電性としたダイアモンドや、ダイアモンドと例えば
無定形酸化硼素等との複合物質(DLN、diamondo nan
o composite)、及び炭化珪素などがある。なおグラファ
イトの添加はグラファイトを単独で添加する必要はな
く、例えば後述のCVD法でダイアモンドを得る場合
に、雰囲気ガスである水素の量を加減したり、温度を僅
かに変えること等により僅かな量のグラファイトをダイ
アモンド中に共存させることができる。
Hereinafter, the present invention will be described in detail. The electrode for electrolysis according to the present invention and the electrolytic cell using the electrode can be widely used for various electrolysis, and particularly, the mixing of impurities into the electrolytic solution (acidic water, alkaline water, or ozone water) or the generated gas. Electrolysis using a corrosive electrolyte solution for cleaning semiconductor devices and liquid crystal panels that are extremely disliked, and when electrolysis is performed using conventional electrodes, the electrodes are consumed in a relatively short time and cannot continue electrolysis. It can be preferably used as an application. In the present invention, an electrode material having a conductive diamond structure is used. Examples of the electrode material having the conductive diamond structure include diamond made conductive by doping impurities such as boron, phosphorus and graphite, or a composite material of diamond and amorphous boron oxide (DLN, diamond nano
o composite) and silicon carbide. Note that it is not necessary to add graphite alone to add graphite. For example, when diamond is obtained by the CVD method described later, the amount of hydrogen as an atmospheric gas is adjusted, and the temperature is slightly changed. Graphite can coexist in diamond.

【0015】この電極物質は従来と同様に電極基体上に
被覆して電極を構成する。該電極物質は0.01〜1μmの
粒径を有する微粒子であることが望ましく、前記基体へ
の被覆厚は基体への電解液の浸入を阻止する目的から約
0.1 〜50μmとすることが好ましく、1〜10μmである
ことが特に好ましい。該電極物質としてダイアモンドを
使用する場合は、導電性を必要とするため粉砕した天然
ダイアモンドではほとんど使用できず、又非常に高価で
あるため、有機化合物を還元して得られる合成ダイアモ
ンドを使用することが望ましい。この合成ダイアモンド
は、炭素源であるメチルアルコール、エチルアルコール
及びアセトン等の有機化合物を水素ガス等の還元雰囲気
で加熱分解する熱CVD(化学蒸着)により合成でき、
他の方法例えば物理蒸着(PVD)やプラズマCVD等
により合成しても良いが、製膜速度が格段に速いCVD
を使用することが望ましい。前記加熱は通常前記有機化
合物の蒸気を加熱したフィラメントに接触させることに
より行ない、装置の容量や処理速度等にも依るが、前記
フィラメントの温度は1800〜2400℃とすることが望まし
く、このときの基体温度は750 〜950 ℃に達する。水素
に対する有機化合物ガス濃度は0.1 〜10容量%、全ガス
流量は10〜1000ミリリットル/分、そして圧力は大気圧
とすることが望ましい。
This electrode material is coated on the electrode substrate in the same manner as in the prior art to form an electrode. The electrode material is preferably fine particles having a particle size of 0.01 to 1 μm, and the coating thickness on the substrate is about 1 to prevent the infiltration of the electrolytic solution into the substrate.
The thickness is preferably 0.1 to 50 μm, and particularly preferably 1 to 10 μm. When diamond is used as the electrode material, it is almost impossible to use ground natural diamond because it needs conductivity, and since it is very expensive, use synthetic diamond obtained by reducing an organic compound. Is desirable. This synthetic diamond can be synthesized by thermal CVD (chemical vapor deposition) in which an organic compound such as methyl alcohol, ethyl alcohol, or acetone, which is a carbon source, is decomposed by heating in a reducing atmosphere such as hydrogen gas.
Other methods such as physical vapor deposition (PVD) or plasma CVD may be used, but CVD with a significantly high film formation rate is possible.
It is desirable to use The heating is usually carried out by bringing the vapor of the organic compound into contact with a heated filament, and the filament temperature is preferably 1800 to 2400 ° C., although it depends on the capacity and processing speed of the apparatus. The substrate temperature reaches 750-950 ° C. It is desirable that the concentration of the organic compound gas with respect to hydrogen is 0.1 to 10% by volume, the total gas flow rate is 10 to 1000 ml / min, and the pressure is atmospheric pressure.

【0016】電極物質としての合成ダイアモンドは基体
上に被覆して使用されるため、前記還元操作により生成
する合成ダイアモンドは、単離することなく電極基体表
面に直接付着させることが望ましい。ダイアモンド単独
では導電性がないため、通常は原料である前記有機化合
物に不純物を混入させ、前記有機化合物とともに前記基
体上に付着させることにより、導電性の良好なダイアモ
ンドとする。前記不純物としては炭素と原子価の異なる
元素から成る単体やそれを含む化合物、例えば粉末硼酸
(酸化硼素)や五酸化二リン等を使用できる。この他に
ジボラン(B26 )やホスフィン(PH3 )も前記不
純物として使用可能であるが、毒性が高いため、前記粉
末硼酸及び五酸化二リンを使用することが望ましい。該
不純物の含有率は好ましくは1〜10000 ppm 、より好ま
しくは100 〜1000ppm である。抵抗率は100 〜0.1 Ωcm
の範囲で制御可能である。
Since synthetic diamond as an electrode material is used by coating it on a substrate, it is desirable that the synthetic diamond produced by the reduction operation be directly attached to the surface of the electrode substrate without isolation. Since diamond alone does not have conductivity, impurities are usually mixed in the organic compound as a raw material and adhered to the substrate together with the organic compound to obtain a diamond having good conductivity. As the impurities, it is possible to use a simple substance composed of an element having a different valence from carbon or a compound containing the same, such as powdered boric acid (boron oxide) or phosphorus pentoxide. In addition to this, diborane (B 2 H 6 ) and phosphine (PH 3 ) can be used as the impurities, but it is preferable to use the powdered boric acid and diphosphorus pentoxide because they have high toxicity. The content of the impurities is preferably 1 to 10000 ppm, more preferably 100 to 1000 ppm. Resistivity is 100 to 0.1 Ωcm
It can be controlled within the range.

【0017】ダイアモンド以外でダイアモンド構造を有
する炭化珪素や炭化チタンもダイアモンドと同様にCV
DやPVDを利用して基体上に付着させることができる
が、該付着には、導電性粒子として付着できかつ高温に
曝すことによって電気伝導度が更に高くなるプラズマ溶
射法を利用することが望ましい。プラズマ溶射法を使用
する場合には、基体金属を完全に覆うためにCDV法よ
り厚い被覆を形成する必要があり、炭化チタンの場合そ
の厚さは10〜20μmが適当であるが、勿論この範囲以外
でも良い。なお炭化珪素は安価かつ導電性が高く、更に
ハロゲン含有浴中での電解に有効であるという利点を有
し、その被覆厚は50〜200 μm程度とすることが望まし
い。
Silicon carbide and titanium carbide having a diamond structure other than diamond are also CVs like diamond.
It can be deposited on the substrate by using D or PVD. For the deposition, it is desirable to use a plasma spraying method which can be deposited as conductive particles and whose electric conductivity is further increased by exposing to high temperature. . When the plasma spraying method is used, it is necessary to form a thicker coating than that of the CDV method in order to completely cover the base metal, and in the case of titanium carbide, the thickness is 10 to 20 μm. It may be other than. Silicon carbide has the advantages that it is inexpensive, has high conductivity, and is effective for electrolysis in a halogen-containing bath, and its coating thickness is preferably about 50 to 200 μm.

【0018】前記基体は集電体を兼ねていても良く、そ
の材質としてはチタン、ニオブ、タンタル、珪素、カー
ボン、ニッケルタングステンカーバイド等とし、これら
を金網、粉末焼結体、金属繊維焼結体等に加工して使用
する。腐食性成分を含有する電解液の電解を行なう際に
は、純水の電解を行なう場合と異なりミクロ的に見れば
僅か宛ではあるが電極物質の溶出が起こる。この場合の
基体の安定性を考慮すると腐食性成分の電解の場合に
は、前記基体として耐腐食性の強いニオブやタンタルを
使用することが望ましい。該基体表面に直接又は中間層
を通して導電性ダイアモンド構造の電極物質を被覆する
が、前記中間層や導電性ダイアモンド構造の電極物質と
前記基体との密着性を向上させるため及び実質電流密度
を低下させるために、基体表面の粗化を行なうことが好
ましく、高電流密度条件で使用する場合には#20程度の
アルミナグリッド等を使用して表面を大きく粗し、腐食
条件下の比較的低電流密度下で使用する場合には#60〜
120 程度の細かいアルミナサンドで表面粗化を行ない被
覆の付着性を向上させることが望ましい。
The substrate may also serve as a current collector, and its material is titanium, niobium, tantalum, silicon, carbon, nickel tungsten carbide, etc., and these are wire mesh, powder sintered body, metal fiber sintered body. Etc. are used after processing. When electrolyzing an electrolytic solution containing a corrosive component, unlike in the case of electrolyzing pure water, the electrode substance is eluted although it is slightly addressed from a microscopic point of view. Considering the stability of the substrate in this case, in the case of electrolysis of corrosive components, it is desirable to use niobium or tantalum having strong corrosion resistance as the substrate. The surface of the substrate is coated with an electrode material having a conductive diamond structure directly or through an intermediate layer, but in order to improve the adhesion between the electrode material having the intermediate layer or the conductive diamond structure and the substrate and to reduce the substantial current density. For this reason, it is preferable to roughen the surface of the substrate.When using it under high current density conditions, use a # 20 alumina grid to roughen the surface to a relatively low current density under corrosive conditions. When used under # 60 ~
It is desirable to improve the adhesion of the coating by roughening the surface with a fine alumina sand of about 120.

【0019】前記中間層は、基体と導電性ダイアモンド
構造の電極物質をより強固に結合するためのもので、該
中間層は基体金属及び導電性ダイアモンド構造の電極物
質の両者に対する親和性を有していることが望ましく、
その厚さは1〜10μm程度とする。例えば基体金属がチ
タンである場合には中間層として炭化チタンを用いると
基体金属のチタンと中間層の炭化チタンが親和性を示
し、更に前記炭化チタンとダイアモンドが炭素という共
通元素を有するため、更に前記炭化チタンがダイアモン
ド構造を有するため、中間層と導電性ダイアモンド構造
の電極物質間の親和性が更に向上し、強固な結合力と優
れた耐久性を与える。なお炭化チタンの導電性を向上さ
せるために、炭化チタン粉末を予め硼酸水溶液に浸漬し
表面に硼酸の皮膜を作製してからプラズマ溶射を行なう
こともでき、溶射中の高温によって一部の硼素が炭化チ
タン構造内に取り込まれて導電性が向上する。
The intermediate layer is for more firmly bonding the substrate and the electrode material having the conductive diamond structure, and the intermediate layer has an affinity for both the substrate metal and the electrode material having the conductive diamond structure. Is desirable,
Its thickness is about 1 to 10 μm. For example, when the base metal is titanium, if titanium carbide is used as the intermediate layer, the titanium of the base metal and the titanium carbide of the intermediate layer show affinity, and since the titanium carbide and diamond have a common element of carbon, Since the titanium carbide has a diamond structure, the affinity between the intermediate layer and the electrode material having a conductive diamond structure is further improved, giving a strong bonding force and excellent durability. In order to improve the conductivity of titanium carbide, it is also possible to immerse the titanium carbide powder in a boric acid aqueous solution in advance to form a coating film of boric acid on the surface and then perform plasma spraying. It is incorporated into the titanium carbide structure to improve conductivity.

【0020】このように製造される電極は、高い電極電
位と優れた耐久性を有し、陽極及び陰極のいずれとして
使用することも可能であるが、例えば洗浄液は陽極室で
生成する酸性水であることが望ましいため、特に陽極と
して使用することが好ましい。この電極を陽極として使
用する場合には対極である陰極として酸素還元極を使用
すると通常の陰極反応により生ずる水素の発生を抑制
し、従って発生水素の陽極室側への拡散がなくなる。こ
のような電極を電解槽内に組み入れる際には、イオン交
換膜を使用して該電解槽を陽極室及び陰極室の2室、又
は陽極室、中間室及び陰極室の3室に区画した前記陽極
室及び前記陰極室の少なくとも一方に設置する。前記イ
オン交換膜はフッ素樹脂系及び炭化水素樹脂系のいずれ
を使用しても良いが、耐食性の面からは前者が好まし
い。該イオン交換膜は、陽極及び陰極で生成する各イオ
ンが対極で消費されることを防止するとともに、液の電
導度が低い場合に電解を速やかに進行させる機能を有す
る。
The electrode thus produced has a high electrode potential and excellent durability and can be used as either an anode or a cathode. For example, the cleaning liquid is acidic water produced in the anode chamber. Since it is desirable to be present, it is particularly preferable to use it as an anode. When this electrode is used as an anode, if an oxygen reduction electrode is used as the counter cathode, the generation of hydrogen generated by a normal cathode reaction is suppressed, and therefore the generated hydrogen does not diffuse to the anode chamber side. When incorporating such an electrode into an electrolytic cell, an ion exchange membrane is used to divide the electrolytic cell into two chambers, an anode chamber and a cathode chamber, or three chambers, an anode chamber, an intermediate chamber and a cathode chamber. It is installed in at least one of the anode chamber and the cathode chamber. The ion exchange membrane may use either a fluororesin type or a hydrocarbon resin type, but the former is preferable from the viewpoint of corrosion resistance. The ion exchange membrane has a function of preventing each ion generated at the anode and the cathode from being consumed at the counter electrode, and has a function of promptly promoting electrolysis when the conductivity of the liquid is low.

【0021】前記電極をガス電極として2室型電解槽で
使用する場合は、イオン交換膜と陰極との間に陰極室
を、又陽極とイオン交換膜の間に陽極室を設けるように
しても良いが、液電導度が低い場合には槽電圧の上昇を
招き槽構造も複雑になり、更に各極での気液分離が必要
となるため、電極をイオン交換膜に接合する構造を採用
することが最も望ましい。この場合陽極室は実質的にガ
ス室となり一方陰極室は気液混合状態となる。電解槽の
材料は、使用する電解液や生成するガス等に応じて異な
るが、耐久性及び安定性の観点から、ガラスライニング
材料、カーボン、高耐食性の中間層、ステンレス及びP
TFE樹脂等の使用が望ましい。電極とイオン交換膜を
密着させることが望ましい場合は、前もってそれらを機
械的に結合しておくか、あるいは電解時に圧力を与えて
おけば良い。この際の圧力は0.1 〜30kgf/cm2 が好まし
い。
When the electrode is used as a gas electrode in a two-chamber electrolytic cell, a cathode chamber may be provided between the ion exchange membrane and the cathode, and an anode chamber may be provided between the anode and the ion exchange membrane. Good, but when the liquid conductivity is low, the cell voltage rises, the cell structure becomes complicated, and gas-liquid separation at each electrode is required. Therefore, the structure in which the electrode is bonded to the ion exchange membrane is adopted. Is most desirable. In this case, the anode chamber is substantially a gas chamber, while the cathode chamber is in a gas-liquid mixed state. The material of the electrolytic cell varies depending on the electrolytic solution used, the gas to be produced, etc., but from the viewpoint of durability and stability, the glass lining material, carbon, a high corrosion resistant intermediate layer, stainless steel and P
It is preferable to use TFE resin or the like. When it is desirable to bring the electrode and the ion exchange membrane into close contact with each other, they may be mechanically coupled in advance, or pressure may be applied during electrolysis. The pressure at this time is preferably 0.1 to 30 kgf / cm 2 .

【0022】電解条件は、使用する電解液等により変化
するが、温度を5〜40℃、電流密度を1〜500 A/dm2
することが好ましい。本発明に係わる電解用電極及び該
電極を使用する電解槽は前述の通り、酸性水及びアルカ
リ性水の製造、オゾン水の製造あるいは腐食性電解液の
電解等を含む幅広い用途に適用できる。陽極室に塩素を
添加して水電解を行なうと、陽極室に次亜塩素酸を生成
し該次亜塩素酸により液性が酸性となり酸性水が生成す
る。一方陰極室では通常の水電解により弱アルカリ性水
が生成する。この電解において陽極物質として前述した
導電性ダイアモンド構造の電極物質を使用すると、長期
間電解を継続しても電極物質が溶出することがなく、従
って得られる酸性水中に金属混入がなく極めて高純度な
酸性水が得られ、この酸性水は半導体デバイスの洗浄用
水等として最適である。
The electrolysis conditions vary depending on the electrolytic solution used, but it is preferable that the temperature is 5 to 40 ° C. and the current density is 1 to 500 A / dm 2 . The electrode for electrolysis according to the present invention and the electrolytic cell using the electrode can be applied to a wide range of applications including production of acidic water and alkaline water, production of ozone water, electrolysis of corrosive electrolytic solution, and the like, as described above. When water is electrolyzed by adding chlorine to the anode chamber, hypochlorous acid is generated in the anode chamber, and the hypochlorous acid makes the liquid acidic and acidic water is generated. On the other hand, in the cathode chamber, weak alkaline water is generated by ordinary water electrolysis. When the above-mentioned conductive diamond structure electrode material is used as the anode material in this electrolysis, the electrode material does not elute even if electrolysis is continued for a long period of time, and therefore the obtained acidic water has no metal contamination and is of extremely high purity. Acidic water is obtained, and this acidic water is optimal as water for cleaning semiconductor devices.

【0023】又陽極室に純水を供給し電解を行なうと、
式に従ってオゾンが生成する。 3H2 0 → O3 + 6H+ + 6e このオゾン生成の場合にも陽極物質として前記導電性ダ
イアモンド構造の電極物質を使用すると、生成するオゾ
ンに電極物質が混入することがなく、非常に高純度のオ
ゾンガスやオゾン水を得ることができる。更に工業電解
では、フッ素、臭素及び沃素のような腐食性の成分を含
む電解液の電解が必要になることがある。このような腐
食性成分の含む電解液の電解に従来のDSEを使用する
と短期間の電解であればさほど支障は生じないが、長期
間の電解になると前記DSEの消耗が起こり安定な電解
を継続できなくなる。これに対し、本発明の電解用電極
では、導電性ダイアモンド構造の電極物質を使用するた
め、腐食性成分を有する電解液中の耐久性がDSEと比
較して遙かに大きく、長期間の安定した電解操作を可能
にする。
When pure water is supplied to the anode chamber for electrolysis,
Ozone is produced according to the formula. 3H 2 0 → O 3 + 6H + + 6e When the electrode material having the conductive diamond structure is used as the anode material also in the case of ozone generation, the electrode material does not mix with ozone to be produced, and the purity is very high. Ozone gas and ozone water can be obtained. Further, industrial electrolysis may require electrolysis of an electrolytic solution containing corrosive components such as fluorine, bromine and iodine. If a conventional DSE is used for electrolysis of an electrolytic solution containing such a corrosive component, it will not cause much trouble if it is a short-term electrolysis, but if it is a long-term electrolysis, the DSE is consumed and stable electrolysis is continued. become unable. On the other hand, in the electrode for electrolysis of the present invention, since the electrode material having the conductive diamond structure is used, the durability in the electrolytic solution having the corrosive component is much larger than that of DSE, and the long-term stability is stable. It enables the electrolysis operation.

【0024】次に添付図面に基づいて本発明に係わる電
解用電極及び該電極を使用する電解槽を例示する。図1
は本発明に係わる2室型電解槽の一例を示す概略縦断面
図、図2は同じく3室型電解槽の一例を示す概略縦断面
図、図3は他の2室型電解槽の一例を示す概略縦断面図
である。図1において、2室型電解槽1はイオン交換膜
2により陽極室3と陰極室4とに区画され、前記イオン
交換膜2の陽極室3側に導電性ダイアモンド構造の電極
物質から成る陽極5が、陰極室4側に例えば金属メッシ
ュから成る多孔性陰極6がそれぞれ密着している。陽極
室3の底面及び上面には純水又は塩溶液の供給口7及び
酸性水取出口8が、陰極室4の底面及び上面には純水供
給口9及びアルカリ水取出口10がそれぞれ設置されてい
る。なお11はイオン交換膜2と周縁部間のパッキングで
ある。
Next, an electrode for electrolysis according to the present invention and an electrolytic cell using the electrode will be illustrated with reference to the accompanying drawings. FIG.
Is a schematic vertical sectional view showing an example of a two-chamber electrolytic cell according to the present invention, FIG. 2 is a schematic vertical sectional view showing an example of a three-chamber electrolytic cell, and FIG. 3 is an example of another two-chamber electrolytic cell. It is a schematic longitudinal cross-sectional view shown. In FIG. 1, a two-chamber type electrolytic cell 1 is divided into an anode chamber 3 and a cathode chamber 4 by an ion exchange membrane 2, and an anode 5 made of an electrode material having a conductive diamond structure is disposed on the side of the anode chamber 3 of the ion exchange membrane 2. However, the porous cathode 6 made of, for example, a metal mesh is in close contact with the cathode chamber 4 side. A pure water or salt solution supply port 7 and an acidic water outlet 8 are provided on the bottom and top of the anode chamber 3, and a pure water supply port 9 and an alkaline water outlet 10 are provided on the bottom and top of the cathode chamber 4. ing. Note that 11 is a packing between the ion exchange membrane 2 and the peripheral portion.

【0025】図2において、3室型電解槽21は、陽イオ
ン交換膜22により陽極室23及び中間室24に、又陽イオン
交換膜25により前記中間室24と陰極室26に区画されてい
る。前記陽イオン交換膜22の陽極室23側には導電性ダイ
アモンド構造の電極物質から成る陽極27が、又前記陽イ
オン交換膜25の陰極室26側には多孔性陰極28がそれぞれ
密着している。陽極室23の底面及び上面には純水供給口
29及び酸性水取出口30が、中間室24の底面及び上面には
塩化アンモニウム等の塩溶液供給口31及び塩溶液取出口
32が、陰極室26の底面及び上面には純水供給口33及びア
ルカリ水取出口34がそれぞれ設置されている。なお35は
イオン交換膜22、25と周縁部間のパッキングである。
In FIG. 2, the three-chamber electrolytic cell 21 is divided into an anode chamber 23 and an intermediate chamber 24 by a cation exchange membrane 22 and a intermediate chamber 24 and a cathode chamber 26 by a cation exchange membrane 25. . An anode 27 made of an electrode material having a conductive diamond structure is adhered to the anode chamber 23 side of the cation exchange membrane 22, and a porous cathode 28 is adhered to the cathode chamber 26 side of the cation exchange membrane 25. . Pure water supply ports are provided on the bottom surface and the top surface of the anode chamber 23.
29 and an acidic water outlet 30, a salt solution supply port 31 such as ammonium chloride and a salt solution outlet on the bottom surface and the upper surface of the intermediate chamber 24.
On the bottom surface and the upper surface of the cathode chamber 26, a pure water supply port 33 and an alkaline water outlet 34 are installed, respectively. Reference numeral 35 is a packing between the ion exchange membranes 22 and 25 and the peripheral portion.

【0026】図3において、2室型電解槽41は小径の連
結部42に設置されたイオン交換膜43により陽極室44と陰
極室45とに区画され、前記陽極室44中には前記イオン交
換膜43から離間して導電性ダイアモンド構造の電極物質
から成る陽極46が吊支され、陰極室45側にも同様に例え
ば金属メッシュから成る多孔性陰極47がイオン交換膜か
ら離間して吊支されている。陽極室44及び陰極室45のそ
れぞれの上面には生成ガス取出口48、49が設置されてい
る。
In FIG. 3, a two-chamber type electrolytic cell 41 is divided into an anode chamber 44 and a cathode chamber 45 by an ion exchange membrane 43 installed in a small-diameter connecting portion 42, and the ion exchange is performed in the anode chamber 44. An anode 46 made of an electrode material having a conductive diamond structure is suspended from the membrane 43, and a porous cathode 47 made of, for example, a metal mesh is also suspended from the ion exchange membrane on the cathode chamber 45 side. ing. Formed gas outlets 48, 49 are provided on the upper surfaces of the anode chamber 44 and the cathode chamber 45, respectively.

【0027】図1及び図2のいずれの電解槽1、21で
も、純水又は塩溶液供給口7又は塩溶液供給口31から純
水や塩化アンモニウム水溶液や硫酸等の塩溶液を供給し
ながら両電極5、6及び27、28間に通電すると、陽極室
で酸性水が陰極室でアルカリ水が、少なくとも陽極室で
は前記ダイアモンドの溶出がないため金属成分を含有す
ることなく生成する。又図3の電解槽41では、陽極室44
及び陰極室45内に電解液を満たし、両電極46、47間に通
電することにより、所定の生成ガスが発生する。この場
合にも少なくとも両電極の一方が導電性ダイアモンド構
造の電極物質を有し該ダイアモンドの溶出がないため不
純物を含有しない電解液やガスが得られる。
In both of the electrolytic cells 1 and 21 shown in FIGS. 1 and 2, pure water or a salt solution supply port 7 or a salt solution supply port 31 is used to supply pure water or a salt solution such as an ammonium chloride aqueous solution or sulfuric acid. When electricity is applied between the electrodes 5, 6 and 27, 28, acidic water is produced in the anode chamber, alkaline water is produced in the cathode chamber, and at least in the anode chamber, there is no elution of the diamond, so that it is produced without containing a metal component. In addition, in the electrolytic cell 41 of FIG.
By filling the inside of the cathode chamber 45 with the electrolytic solution and energizing the electrodes 46 and 47, a predetermined product gas is generated. Also in this case, since at least one of the electrodes has an electrode material having a conductive diamond structure and the diamond is not eluted, an electrolytic solution or gas containing no impurities can be obtained.

【0028】[0028]

【実施例】次に本発明に係わる電解用電極及び該電極を
使用する電解槽の実施例を記載するが、該実施例は本発
明を限定するものではない。
EXAMPLES Next, examples of the electrode for electrolysis according to the present invention and the electrolytic cell using the electrode will be described, but the examples do not limit the present invention.

【0029】[0029]

【実施例1】2mm厚の多孔性グラファイト板(基体)
に、原料であるエチルアルコールを使用し、図4に示し
た熱CVD法による導電性ダイアモンド構造の作製装置
51を使用して厚さ10μmのダイアモンド層の薄膜を形成
した(電極面積1cm2 )。つまりチャンバー内の圧力を
一定に保ちながら、導電性を付与するための不純物であ
る微量の粉末硼酸(酸化硼素)を溶解させた反応原料ガ
スであるエチルアルコールの蒸気及び、雰囲気を還元性
に保ち以下のプロセスでダイアモンドのみを選択的に形
成させるための水素ガスをそれぞれ反応原料ガス原料導
入口52及び水素ガス導入口53から導入した。導入された
蒸気は加熱したタングステンフィラメント54により分解
され、該フィラメント54直下(間隔3cm)の基体ホルダ
ー55上のモリブデンカバー56上に配置された前記基体57
上に前記エチルアルコールの分解生成物であるダイアモ
ンドが堆積した。なお熱電対58により基体の温度を700
〜750 ℃に維持した。
Example 1 2 mm thick porous graphite plate (base)
And a device for producing a conductive diamond structure by the thermal CVD method shown in FIG. 4 using ethyl alcohol as a raw material.
51 was used to form a diamond layer thin film having a thickness of 10 μm (electrode area: 1 cm 2 ). In other words, while keeping the pressure in the chamber constant, the vapor of ethyl alcohol, which is the reaction material gas in which a trace amount of powdered boric acid (boron oxide), which is an impurity for imparting conductivity, is dissolved, and the atmosphere is kept reducing. Hydrogen gas for selectively forming only diamond was introduced through the reaction raw material gas raw material introduction port 52 and the hydrogen gas introduction port 53 by the following processes. The introduced steam is decomposed by the heated tungsten filament 54, and the substrate 57 is placed on the molybdenum cover 56 on the substrate holder 55 directly below the filament 54 (interval 3 cm).
Diamond, which is a decomposition product of the ethyl alcohol, was deposited on the surface. In addition, the temperature of the substrate is 700
Maintained at ~ 750 ° C.

【0030】該ダイアモンド層を電子顕微鏡及びラマン
分光分析により評価した。該ダイアモンド層の表面は多
結晶質であったが、不純物添加による形態の変化は観察
されなかった。電子線回折により算出した格子面間隔は
JCPDSカードのダイアモンドの報告値とほぼ一致し
た。ラマン分光分析では、ダイアモンドのシャープなピ
ークが1332cm-1付近に、又非晶質のものが1550cm-1付近
に認められたが、後者のピーク強度は極微量であった。
以上の分析により形成された薄膜が多結晶質ダイアモン
ドがあることが確認された。
The diamond layer was evaluated by electron microscopy and Raman spectroscopy. The surface of the diamond layer was polycrystalline, but no change in morphology due to the addition of impurities was observed. The lattice spacing calculated by electron diffraction was almost the same as the value reported by JCPDS card Diamond. In Raman spectroscopic analysis, a sharp peak of diamond around 1332 cm -1, although those Matahi amorphous was observed near 1550 cm -1, the latter peak intensity was minimal.
It was confirmed by the above analysis that the thin film formed had polycrystalline diamond.

【0031】陽イオン交換膜ナフィオン117 (デュポン
社製)の片面に、このように作製したダイアモンドが付
着した多孔性カーボン板を陽極として密着させ、陽イオ
ン交換膜ナフィオン350 (デュポン社製)の片面に、酸
化ルテニウム触媒を担持させたニッケル製の多孔性陰極
を密着させ、両陽イオン交換膜を陽極及び陰極が外側を
向くようにして膜間距離が3mmとなるように電解槽内に
設置し、両陽イオン交換膜間に形成される中間室にナフ
ィオン樹脂粒子(NR50)を充填し、更に両陽イオン交
換膜を外側から締め付け、図2に示すような電解槽を構
成した。陽極室に純水を1cc/分で、中間室には純水を
10cc/分で、陰極室には純水を3cc/分で供給しなが
ら、温度20℃、電流1Aで電解を行なったところ、槽電
圧は9.5 Vであり、陽極室出口からオゾン濃度0.5 mg/
リットルで、ORPが1000mVである酸性水が得られた。
The cation-exchange membrane Nafion 117 (manufactured by DuPont) was adhered to one side of the porous carbon plate with the diamond thus prepared as an anode, and one side of the cation-exchange membrane Nafion 350 (manufactured by DuPont). Then, a nickel porous cathode supporting a ruthenium oxide catalyst was adhered, and both cation exchange membranes were placed in the electrolytic cell so that the distance between the membranes was 3 mm with the anode and the cathode facing outward. The intermediate chamber formed between both cation exchange membranes was filled with Nafion resin particles (NR50), and both cation exchange membranes were clamped from the outside to form an electrolytic cell as shown in FIG. Pure water at 1 cc / min in the anode chamber and pure water in the intermediate chamber
Electrolysis was performed at a temperature of 20 ° C. and a current of 1 A while supplying pure water to the cathode chamber at 10 cc / min and 3 cc / min. The cell voltage was 9.5 V, and the ozone concentration was 0.5 mg / min from the anode chamber outlet.
In liters, acidic water with an ORP of 1000 mV was obtained.

【0032】[0032]

【実施例2】電極面積1cm2 で1mm厚のチタンメッシュ
から成る多孔性金属板に熱CVDにより10μm厚の硼素
を含むダイアモンド層を形成して陽極とした。陰極とし
ては、同様にダイアモンド層を形成したグラファイト製
の多孔性電極を使用した。陽極と陽イオン交換膜ナフィ
オン117 とが互いに密着するように全体を締め付けて、
図1の電解槽を構成した。陽極室には30g/リットルの
塩酸水溶液を毎分10ccで供給し、陰極室には純水を毎分
3ccで供給しながら、温度20℃、電流1Aで電解を行な
ったところ、槽電圧は8.5 Vであり、陽極室出口から有
効塩素濃度0.5mg/リットルで、pHが2.5 で、ORP
が1200mVである酸性水が得られた。
Example 2 A diamond layer containing boron having a thickness of 10 μm was formed by thermal CVD on a porous metal plate composed of a titanium mesh having an electrode area of 1 cm 2 and a thickness of 1 mm to form an anode. As the cathode, a graphite porous electrode similarly formed with a diamond layer was used. Tighten the whole so that the anode and the cation exchange membrane Nafion 117 are in close contact with each other,
The electrolytic cell of FIG. 1 was constructed. Electrolysis was performed at a temperature of 20 ° C. and a current of 1 A while supplying 30 g / liter of hydrochloric acid aqueous solution at 10 cc / min to the anode chamber and deionized water at 3 cc / min to the cathode chamber. V, the effective chlorine concentration from the anode chamber outlet is 0.5 mg / liter, the pH is 2.5, and the ORP
An acidic water of 1200 mV was obtained.

【0033】[0033]

【実施例3】実施例2と同じ電解槽を使用し、陽極室に
は30g/リットルの塩酸水溶液を毎分10ccで供給し、陰
極室には酸素ボンベからの酸素ガスを毎分50ミリリット
ルで供給しながら、温度20℃、電流1Aで電解を行なっ
たところ、槽電圧は8.5 Vであり、陽極室出口から有効
塩素濃度0.5 mg/リットルで、pHが2.5 で、ORPが
1200mVである酸性水が得られた。一方陰極室出口からは
1g/リットルの過酸化水素を含むアルカリ性水が電流
効率5%で得られた。
Example 3 The same electrolytic cell as in Example 2 was used, 30 g / liter of hydrochloric acid aqueous solution was supplied to the anode chamber at 10 cc / min, and oxygen gas from an oxygen cylinder was supplied to the cathode chamber at 50 ml / min. When electrolysis was performed at a temperature of 20 ° C and a current of 1 A while supplying, the cell voltage was 8.5 V, the effective chlorine concentration from the anode chamber outlet was 0.5 mg / liter, the pH was 2.5, and the ORP was
An acidic water of 1200 mV was obtained. On the other hand, alkaline water containing 1 g / liter of hydrogen peroxide was obtained at a current efficiency of 5% from the outlet of the cathode chamber.

【0034】[0034]

【実施例4】実施例1の陽極及び陰極を使用して実施例
2に示した図1の電解槽を構成した。陽極室には純水を
毎分1ccで供給しながら、温度20℃、電流1Aで電解を
行なったところ、槽電圧は8.5 Vであり、陽極室出口か
ら5重量%のオゾンガスが得られた。
Example 4 The electrolytic cell of FIG. 1 shown in Example 2 was constructed using the anode and cathode of Example 1. When pure water was supplied to the anode chamber at a rate of 1 cc per minute, electrolysis was performed at a temperature of 20 ° C. and a current of 1 A. The cell voltage was 8.5 V, and 5% by weight of ozone gas was obtained from the outlet of the anode chamber.

【0035】[0035]

【実施例5】陰極として白金触媒を担持したカーボンペ
ーパー製多孔性電極を使用したこと以外は実施例4と同
一の電解槽を構成した。陽極室には純水を毎分1ccで供
給し、陰極室には酸素ボンベからの酸素ガスを毎分50ミ
リリットルで供給しながら、温度20℃、電流1Aで電解
を行なったところ、槽電圧は7.5 Vであり、陽極室出口
から5重量%のオゾンガスが得られた。
Example 5 The same electrolytic cell as in Example 4 was constructed except that a carbon paper porous electrode supporting a platinum catalyst was used as the cathode. Pure water was supplied to the anode chamber at 1 cc / min, and oxygen gas from the oxygen cylinder was supplied to the cathode chamber at 50 ml / min, and electrolysis was performed at a temperature of 20 ° C. and a current of 1 A. It was 7.5 V, and 5% by weight of ozone gas was obtained from the outlet of the anode chamber.

【0036】[0036]

【実施例6】電極面積1cm2 、厚さ1mmのチタン板の表
面に実施例1と同様にして厚さ10μmのダイアモンド層
を被覆した陽極を作製した。陰極としては同一電極面積
及び厚さの白金板を使用した。両電極を、図3に示した
1Mの硫酸100 ミリリットルを満たしたパイレックス製
のH型電解槽内に設置し、温度5℃、電流1Aで電解を
行なったところ、槽電圧は10.5V、陽極電位は5V(vs
硫酸第一水銀参照電極)であり、陽極室出口から8重量
%のオゾンガスが得られた。
Example 6 An anode was prepared by coating the surface of a titanium plate having an electrode area of 1 cm 2 and a thickness of 1 mm with a diamond layer having a thickness of 10 μm in the same manner as in Example 1. A platinum plate having the same electrode area and thickness was used as the cathode. Both electrodes were placed in a P-Rex H-type electrolytic cell filled with 100 ml of 1 M sulfuric acid shown in FIG. 3, and electrolysis was performed at a temperature of 5 ° C. and a current of 1 A. The cell voltage was 10.5 V and the anode potential was Is 5V (vs
(Mercuric sulfate reference electrode), and 8% by weight of ozone gas was obtained from the outlet of the anode chamber.

【0037】[0037]

【実施例7】材質をテフロン(登録商標)製としたこと
以外は実施例6と同一構成の電解槽を使用し、該電解槽
内に1Mの硫酸100 ミリリットル及び0.01Mのフッ化水
素酸を満たし、温度5℃、電流1Aで電解を行なったと
ころ、槽電圧は11V、陽極電位は約6V(vs硫酸第一水
銀参照電極)であり、陽極室出口から12重量%のオゾン
ガスが得られた。
[Embodiment 7] An electrolytic cell having the same structure as in Example 6 was used except that the material was made of Teflon (registered trademark), and 100 ml of 1M sulfuric acid and 0.01M hydrofluoric acid were placed in the electrolytic cell. When filled and electrolyzed at a temperature of 5 ° C. and a current of 1 A, the cell voltage was 11 V, the anode potential was about 6 V (vs mercuric sulfate reference electrode), and 12 wt% ozone gas was obtained from the anode chamber outlet. .

【0038】[0038]

【実施例8】チタンを基体としその表面を#20のアルミ
ナグリッドを使用して圧力5kg/cm2にてブラスト掛けを
行なった。表面粗度はJISRa=10.2μmであった。
更に20重量%の塩酸中、90℃で15分間エッチングを行な
った。このように準備したチタン基体表面に、雰囲気ガ
スとしてアルゴンに水素を添加したガスを使用し圧力を
10-3torrとしたこと以外は実施例1と同一の熱CVD法
により硼素をドープしたダイアモンド層を被覆した。60
分間の操作により約1000ppm の硼素を含有する厚さ約50
μmのダイアモンド層が被覆され、これを陽極とした。
Example 8 Titanium was used as a substrate, and its surface was blasted using a # 20 alumina grid at a pressure of 5 kg / cm 2 . The surface roughness was JIS Ra = 10.2 μm.
Further, etching was performed in 20% by weight hydrochloric acid at 90 ° C. for 15 minutes. On the surface of the titanium substrate prepared in this way, a gas in which hydrogen is added to argon is used as an atmosphere gas and the pressure is adjusted.
A boron-doped diamond layer was coated by the same thermal CVD method as in Example 1 except that it was set at 10 −3 torr. 60
A thickness of about 50 ppm containing about 1000 ppm boron by operating for about 50 minutes.
A μm diamond layer was coated and served as the anode.

【0039】図3の電解槽を使用し、前記陽極及び白金
板から成る陰極を該電解槽内に設置しかつ該電解槽内に
200 g/リットルの硫酸を満たし電解を行なった。温度
60℃における酸素発生電位は2.44VvsNHEであり、酸
化イリジウム系のDSEより約800 mV高かった。この電
極の連続電解による消耗を評価するため、電流密度200
A/dm2 で500 時間の電解を行なった。消耗量は蛍光X線
では正確に測定できなかったため、重量法で行ない、そ
の結果測定精度内では消耗が見られず極めて安定がある
ことが判った。
Using the electrolysis cell of FIG. 3, the anode and the cathode composed of a platinum plate are placed in the electrolysis cell and placed in the electrolysis cell.
It was filled with 200 g / l of sulfuric acid and electrolyzed. temperature
The oxygen generation potential at 60 ° C was 2.44 V vs NHE, which was about 800 mV higher than that of iridium oxide-based DSE. To evaluate the consumption of this electrode due to continuous electrolysis, a current density of 200
Electrolysis was carried out at A / dm 2 for 500 hours. Since the consumed amount could not be measured accurately by fluorescent X-ray, the amount was consumed by the gravimetric method, and as a result, it was found that the consumed amount was not observed within the measurement accuracy and was extremely stable.

【0040】[0040]

【実施例9】基体金属としてニオブの多孔板を使用し該
多孔板を4%のフッ化水素酸を使用して室温で15分間エ
ッチングを行なったこと以外は実施例8と同様にして、
前記基体表面に熱CVD法でダイアモンド層を被覆して
陽極とした。被覆厚は約10μmであった。この陽極を2
枚の陽イオン交換膜で区画された3室型電解槽の陽極室
内に前記陽イオン交換膜の1枚に密着させて設置した。
陰極室側には陰極であるカーボンペーパーを前記他の陽
イオン交換膜に密着させて設置した。陽極室には純水を
満たし、中間室には沃素液を満たした。両極間に電場を
掛けたところ、陽極室からは酸素ガスが、又陰極室から
は沃化水素液が得られた。電流密度5A/dm2 で1000時間
電解を継続したが電極には全く変化がなかった。
Example 9 The same procedure as in Example 8 was carried out except that a niobium perforated plate was used as the base metal, and the perforated plate was etched with 4% hydrofluoric acid at room temperature for 15 minutes.
A diamond layer was coated on the surface of the substrate by a thermal CVD method to form an anode. The coating thickness was about 10 μm. 2 this anode
One of the cation exchange membranes was placed in close contact with the other in the anode chamber of a three-chamber type electrolytic cell partitioned by one cation exchange membrane.
On the cathode chamber side, carbon paper as a cathode was placed in close contact with the other cation exchange membrane. The anode chamber was filled with pure water, and the intermediate chamber was filled with iodine solution. When an electric field was applied between both electrodes, oxygen gas was obtained from the anode chamber and hydrogen iodide solution was obtained from the cathode chamber. Electrolysis was continued for 1000 hours at a current density of 5 A / dm 2 , but there was no change in the electrodes.

【0041】[0041]

【比較例1】陽極として、チタン基体上に酸化ルテニウ
ムを被覆した通常のDSEを使用したこと以外は実施例
9と同一条件で電解を継続したところ、電解開始から約
3時間で電極の腐食が始まり、5時間後には使用不能に
なった。これは陽イオン交換膜を透過した沃素がチタン
を腐食したものと考えられる。
[Comparative Example 1] When electrolysis was continued under the same conditions as in Example 9 except that a normal DSE obtained by coating ruthenium oxide on a titanium substrate was used as an anode, corrosion of the electrode was observed in about 3 hours from the start of electrolysis. It started and became unusable after 5 hours. It is considered that this is because iodine that has permeated the cation exchange membrane corroded titanium.

【0042】[0042]

【実施例10】基体金属としてチタンを使用し、その表面
を#18のアルミナグリッドを使用して圧力5kg/cm2にて
ブラスト掛けを行なった。該基体を25%の硫酸中で3時
間酸洗した。乾燥後、この基体表面に平均粒径40μmで
導電率が1Ωcmである炭化珪素粉末を溶射厚が50μmと
なるようにプラズマ溶射し陽極とした。この陽極及び白
金板である陰極を使用して、200 g/リットルの食塩水
中で電解を行なった。陽極電位(塩素発生電位)は、30
A/dm2 で1.44VvsNHEであり、酸化イリジウム系のD
SEより約800 mV高かった。しかし発生塩素中の酸素濃
度はpH3で0.2 %以下であり、反応の選択性は極めて
優れていたことが判った。加速電解試験として200 A/dm
2 で500 時間の電解を行なったが、消耗は殆ど観察され
なかった。
Example 10 Titanium was used as the base metal, and the surface thereof was blasted using a # 18 alumina grid at a pressure of 5 kg / cm 2 . The substrate was pickled in 25% sulfuric acid for 3 hours. After drying, a silicon carbide powder having an average particle size of 40 μm and an electric conductivity of 1 Ωcm was plasma-sprayed on the surface of the substrate so as to have a sprayed thickness of 50 μm to obtain an anode. Using this anode and the cathode which is a platinum plate, electrolysis was carried out in 200 g / liter of saline solution. Anode potential (chlorine generation potential) is 30
1.44 V vs NHE at A / dm 2 , and iridium oxide-based D
It was about 800 mV higher than SE. However, it was found that the oxygen concentration in the generated chlorine was 0.2% or less at pH 3, and the selectivity of the reaction was extremely excellent. 200 A / dm for accelerated electrolysis test
After 2 hours of electrolysis for 500 hours, almost no consumption was observed.

【0043】[0043]

【実施例11】実施例8と同じチタン基体表面に、平均粒
径約40μmの炭化チタン粉末をプラズマ溶射し厚さ約30
μmの中間層を形成した。この中間層の表面に実施例8
と同一条件で厚さ約30μmのダイアモンド層を被覆し陽
極とした。この陽極及び白金板である陰極を使用して、
3%の臭素酸水溶液中、温度60℃、電流密度100 A/dm2
で500 時間電解を行なった。電解後に電極の消耗が見ら
れず又チタンの腐食もなかった。
Example 11 The same titanium substrate surface as in Example 8 was plasma sprayed with titanium carbide powder having an average particle size of about 40 μm to a thickness of about 30.
A μm intermediate layer was formed. Example 8 was applied to the surface of this intermediate layer.
Under the same conditions as above, a diamond layer having a thickness of about 30 μm was coated to form an anode. Using this anode and the cathode, which is a platinum plate,
Temperature of 60 ℃, current density 100 A / dm 2 in 3% aqueous bromic acid solution
Electrolysis was carried out at 500 ° C. After the electrolysis, the electrode was not consumed and titanium was not corroded.

【0044】[0044]

【比較例2】陽極として、チタン基体上に酸化ルテニウ
ムを被覆した通常のDSEを使用したこと以外は実施例
11と同一条件で電解を行なったところ、電流密度が5A/
dm2以下では極めて安定であったが、20A/dm2 以上の高
電流密度ではチタンの破壊が起こり、3〜5時間で通電
できなくなった。
[Comparative Example 2] Example except that a normal DSE obtained by coating ruthenium oxide on a titanium substrate was used as an anode.
When electrolysis was performed under the same conditions as in 11, the current density was 5 A /
It was extremely stable at dm 2 or less, but at high current densities of 20 A / dm 2 or more, titanium was destroyed and current could not be energized in 3 to 5 hours.

【0045】[0045]

【発明の効果】本発明は、第1に、電極基体、及び該電
極基体表面に被覆した導電性ダイアモンド構造の電極物
質とを含んで成ることを特徴とする電解用電極である。
水電解や腐食性成分を含有する電解液の電解に導電性ダ
イアモンド構造の電極物質を有する電極を使用すると、
該ダイアモンドの耐久性により電極の消耗つまり電極物
質の溶出が殆どなくなって安定した電解操作を長期間継
続することが可能になり、更に該電極物質の溶出がなく
なることから、電解操作により得られる陽極液、陰極液
及び生成ガス中に前記電極物質の溶出に起因する不純物
の混入がなくなり、高純度の電解液又は生成ガスが得ら
れる。
The present invention is, firstly, an electrolysis electrode comprising an electrode substrate and an electrode material having a conductive diamond structure coated on the surface of the electrode substrate.
When using an electrode having a conductive diamond structure electrode material for the electrolysis of an electrolytic solution containing water electrolysis or corrosive components,
Due to the durability of the diamond, the consumption of the electrode, that is, the elution of the electrode substance is almost eliminated, and the stable electrolysis operation can be continued for a long time. Further, since the elution of the electrode substance is eliminated, the anode obtained by the electrolysis operation can be obtained. Impurities resulting from the elution of the electrode substance are not mixed in the liquid, the catholyte and the generated gas, and a high-purity electrolytic solution or generated gas can be obtained.

【0046】本発明に係わる電極を使用して製造する電
解液特に陽極液は、特に半導体デバイス等の不純物含有
量レベルを極度に低く維持することが要求される洗浄用
水として要求される各種要件を備え、該洗浄用水として
効率良く使用できる。更に水電解により陽極室で生成す
るオゾンガス又はオゾン水も半導体デバイスの洗浄を始
めとする各種工業における洗浄用水あるいは殺菌用等と
して使用されているが、このオゾンガス等の場合も当然
に不純物混入量が最小であることが期待されている。本
発明に係わる電解用電極を使用して製造されるオゾンガ
ス又はオゾン水もこの要件を備え、洗浄用水あるいは殺
菌用等として広く使用することが期待される。
The electrolytic solution produced by using the electrode according to the present invention, particularly the anolyte, has various requirements required as washing water which is required to keep the impurity content level of semiconductor devices and the like extremely low. It is provided and can be efficiently used as the cleaning water. Further, ozone gas or ozone water generated in the anode chamber by water electrolysis is also used as cleaning water or sterilization in various industries including cleaning of semiconductor devices. Expected to be minimal. Ozone gas or ozone water produced using the electrode for electrolysis according to the present invention also satisfies this requirement, and is expected to be widely used as cleaning water or sterilization.

【0047】本発明の電極物質は導電性ダイアモンド構
造の電極物質であり、その典型としてダイアモンドがあ
る。しかしダイアモンドは通常は導電性でないため、基
体にダイアモンドを付着する際又はその前後に導電性を
付与するための不純物である硼素、リン及びグラファイ
ト等を添加する。該グラファイトは単独で添加する必要
はなく、CVD法でダイアモンドを得る場合に、雰囲気
ガスである水素の量を加減したり、温度を僅かに変える
こと等により僅かな量のグラファイトをダイアモンド中
に共存させることができる。又導電性ダイアモンド構造
の電極物質は前述の不純物をダイアモンド中に混入させ
ること以外に、ダイアモンドと導電性物質である無定形
酸化珪素の複合物質により構成することもできる。
The electrode material of the present invention is an electrode material having a conductive diamond structure, of which diamond is typical. However, since diamond is not normally conductive, impurities such as boron, phosphorus and graphite for imparting conductivity are added before or after the diamond is attached to the substrate. It is not necessary to add the graphite alone, and when obtaining diamond by the CVD method, a slight amount of graphite coexists in the diamond by adjusting the amount of hydrogen as an atmospheric gas or slightly changing the temperature. Can be made. Further, the electrode material having a conductive diamond structure may be composed of a composite material of diamond and amorphous silicon oxide which is a conductive material, in addition to mixing the above-mentioned impurities into the diamond.

【0048】又導電性ダイアモンド構造の電極物質は、
ダイアモンド自身に限定されるものでなく、ダイアモン
ドと同じ又は類似する結晶構造を有する炭化珪素や炭化
チタンも導電性ダイアモンド構造の電極物質として使用
できる。電極基体の材質は特に限定されず、チタン、ニ
オブ及びタンタル等の弁金属を使用できるが、特に腐食
性成分を有する電解液の電解などの場合には安価なチタ
ンよりも高価ではあるが、耐食性に優れたニオブ及びタ
ンタル等を使用することが望ましい。本発明は第2に、
弁金属から成る電極基体、該電極基体表面に被覆した弁
金属の炭化物及び/又は炭化珪素を含む中間層、及び該
中間層表面に被覆した導電性ダイヤモンド構造の電極物
質とを含んで成ることを特徴とする電解用電極である。
この中間層を有する電解用電極は、電解液が腐食性で長
期間の電解により前記電極物質が徐々に消耗する場合に
有利であり、前記中間層により電解液が前記基体に接触
して該基体を溶出させることを防止する。
The electrode material having a conductive diamond structure is
The material is not limited to diamond itself, and silicon carbide or titanium carbide having the same or similar crystal structure as diamond can also be used as the electrode material of the conductive diamond structure. The material of the electrode substrate is not particularly limited, and valve metals such as titanium, niobium, and tantalum can be used, but in the case of electrolysis of an electrolytic solution having a corrosive component, it is more expensive than inexpensive titanium, but corrosion resistance It is desirable to use niobium, tantalum, etc., which have excellent properties. The present invention is secondly
An electrode base made of a valve metal; an intermediate layer containing carbide and / or silicon carbide of a valve metal coated on the surface of the electrode base; and an electrode material having a conductive diamond structure coated on the surface of the intermediate layer. It is a featured electrode for electrolysis.
The electrode for electrolysis having this intermediate layer is advantageous when the electrolytic solution is corrosive and the electrode material is gradually consumed by electrolysis for a long period of time, and the electrolytic solution comes into contact with the substrate by the intermediate layer and To prevent elution.

【0049】本発明は第3に、イオン交換膜で区画され
た陽極室及び陰極室の2室を有する電解槽において、前
記陽極室に収容される陽極及び前記陰極室に収容される
陰極の少なくとも一方が、電極基体、及び該電極基体表
面に被覆した導電性ダイアモンド構造の電極物質とを含
んで成る電極であることを特徴とする電解槽である。こ
の電解槽は酸性水やアルカリ性水の製造用に好適に使用
され、該電解槽に使用される陽極及び陰極の少なくとも
一方が前述した導電性ダイアモンド構造の電極物質を有
しているため、安定した電解操作を長期間継続できかつ
電極物質の溶出に起因する不純物の混入がない電解液や
生成ガスを得ることができる。
Thirdly, the present invention is, in an electrolytic cell having two chambers, an anode chamber and a cathode chamber, which are partitioned by an ion exchange membrane, and at least an anode housed in the anode chamber and a cathode housed in the cathode chamber. One is an electrolyzer, which is an electrode including an electrode substrate and an electrode material having a conductive diamond structure coated on the surface of the electrode substrate. This electrolytic cell is preferably used for the production of acidic water or alkaline water, and at least one of the anode and the cathode used in the electrolytic cell has the above-mentioned conductive diamond structure electrode substance, so that it is stable. It is possible to continue the electrolysis operation for a long period of time and obtain an electrolytic solution or generated gas in which impurities resulting from elution of the electrode substance are not mixed.

【0050】又本発明の電極は、陽極室、中間室及び陰
極室を有する電解槽に組み入れて3室型電解槽を構成し
ても良い。又前述した中間層を有する電極を陽極及び/
又は陰極として組み入れて電解槽を構成することもで
き、該電解槽は特に腐食性成分を含有する電解液の電解
用として有効である。
The electrode of the present invention may be incorporated into an electrolytic cell having an anode chamber, an intermediate chamber and a cathode chamber to form a three-chamber type electrolytic cell. Further, the electrode having the above-mentioned intermediate layer is used as an anode and / or
Alternatively, it may be incorporated as a cathode to form an electrolytic cell, which is particularly effective for electrolysis of an electrolytic solution containing a corrosive component.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる2室型電解槽の一例を示す概略
縦断面図。
FIG. 1 is a schematic vertical sectional view showing an example of a two-chamber type electrolytic cell according to the present invention.

【図2】同じく3室型電解槽の一例を示す概略縦断面
図。
FIG. 2 is a schematic vertical sectional view showing an example of a three-chamber type electrolytic cell.

【図3】2室型電解槽の他の例を示す概略縦断面図。FIG. 3 is a schematic vertical sectional view showing another example of a two-chamber type electrolytic cell.

【図4】実施例で使用した導電性ダイアモンド構造の作
製装置の概略図。
FIG. 4 is a schematic view of an apparatus for producing a conductive diamond structure used in the examples.

【符号の説明】[Explanation of symbols]

1・・・電解槽 2・・・イオン交換膜 3・・・陽極
室 4・・・陰極室 5・・・陽極 6・・・陰極 21・・・電解槽 22・・
・イオン交換膜 23・・・陽極室 24・・・中間室 25
・・・イオン交換膜 26・・・陰極室 27・・・陽極
28・・・陰極 41・・・電解槽 43・・・イオン交換膜
44・・・陽極室 45・・・陰極室 46・・・陽極 47・・・陰極
1 ... Electrolyzer 2 ... Ion exchange membrane 3 ... Anode chamber 4 ... Cathode chamber 5 ... Anode 6 ... Cathode 21 ... Electrolyte chamber 22 ...
・ Ion exchange membrane 23 ・ ・ ・ Anode chamber 24 ・ ・ ・ Intermediate chamber 25
... Ion exchange membrane 26 ... Cathode chamber 27 ... Anode
28 ・ ・ ・ Cathode 41 ・ ・ ・ Electrolyzer 43 ・ ・ ・ Ion exchange membrane
44 ・ ・ ・ Anode chamber 45 ・ ・ ・ Cathode chamber 46 ・ ・ ・ Anode 47 ・ ・ ・ Cathode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 正志 神奈川県藤沢市石川1145番地B−105 (72)発明者 脇田 修平 神奈川県藤沢市辻堂元町5−9−8 (72)発明者 高橋 俊 神奈川県藤沢市石川1145番地B−103 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masashi Tanaka 1145 Ishikawa, Fujisawa City, Kanagawa B-105 (72) Inventor Shuhei Wakita 5-9-8 Tsujido Motomachi, Fujisawa City, Kanagawa Prefecture (72) Toshi Takahashi, Kanagawa 1145 Ishikawa, Fujisawa, Japan B-103

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 電極基体、及び該電極基体表面に被覆し
た導電性ダイアモンド構造の電極物質とを含んで成るこ
とを特徴とする電解用電極。
1. An electrode for electrolysis, comprising an electrode substrate and an electrode material having a conductive diamond structure coated on the surface of the electrode substrate.
【請求項2】 導電性ダイアモンド構造の電極物質が硼
素、リン及び/又はグラファイトを含有するダイアモン
ドである請求項1に記載の電解用電極。
2. The electrode for electrolysis according to claim 1, wherein the electrode material having a conductive diamond structure is a diamond containing boron, phosphorus and / or graphite.
【請求項3】 導電性ダイアモンド構造の電極物質がダ
イアモンドと導電性物質の複合物質である請求項1に記
載の電解用電極。
3. The electrode for electrolysis according to claim 1, wherein the electrode material having a conductive diamond structure is a composite material of diamond and a conductive material.
【請求項4】 導電性物質が無定形酸化珪素である請求
項3に記載の電解用電極。
4. The electrode for electrolysis according to claim 3, wherein the conductive substance is amorphous silicon oxide.
【請求項5】 導電性ダイアモンド構造の電極物質が炭
化珪素及び/又は炭化チタンである請求項1に記載の電
解用電極。
5. The electrode for electrolysis according to claim 1, wherein the electrode material having a conductive diamond structure is silicon carbide and / or titanium carbide.
【請求項6】 電極基体が、カーボンあるいは、チタ
ン、ニオブ及びタンタルから選択される弁金属である請
求項1に記載の電解用電極。
6. The electrode for electrolysis according to claim 1, wherein the electrode substrate is carbon or a valve metal selected from titanium, niobium and tantalum.
【請求項7】 弁金属から成る電極基体、該電極基体表
面に被覆した弁金属の炭化物及び/又は炭化珪素を含む
中間層、及び該中間層表面に被覆した導電性ダイヤモン
ド構造の電極物質とを含んで成ることを特徴とする電解
用電極。
7. An electrode base made of a valve metal, an intermediate layer containing a carbide and / or silicon carbide of a valve metal coated on the surface of the electrode base, and an electrode material having a conductive diamond structure coated on the surface of the intermediate layer. An electrode for electrolysis, comprising:
【請求項8】 イオン交換膜で区画された陽極室及び陰
極室の2室を有する電解槽において、前記陽極室に収容
される陽極及び前記陰極室に収容される陰極の少なくと
も一方が、電極基体、及び該電極基体表面に被覆した導
電性ダイアモンド構造の電極物質とを含んで成る電極で
あることを特徴とする電解槽。
8. In an electrolytic cell having two chambers, an anode chamber and a cathode chamber, which are partitioned by an ion exchange membrane, at least one of the anode accommodated in the anode chamber and the cathode accommodated in the cathode chamber is an electrode substrate. And an electrode material having a conductive diamond structure coated on the surface of the electrode substrate.
【請求項9】 酸性水及び/又はアルカリ性水の製造用
に使用される請求項8に記載の電解槽。
9. The electrolytic cell according to claim 8, which is used for producing acidic water and / or alkaline water.
【請求項10】 イオン交換膜で区画された陽極室、中間
室及び陰極室の3室を有する電解槽において、前記陽極
室に収容される陽極及び前記陰極室に収容される陰極の
少なくとも一方が、電極基体、及び該電極基体表面に被
覆した導電性ダイアモンド構造の電極物質とを含んで成
る電極であることを特徴とする電解槽。
10. An electrolytic cell having three compartments, an anode compartment, an intermediate compartment and a cathode compartment, which are partitioned by an ion exchange membrane, wherein at least one of the anode contained in the anode compartment and the cathode contained in the cathode compartment is An electrolytic cell comprising: an electrode base; and an electrode material having a conductive diamond structure coated on the surface of the electrode base.
【請求項11】 イオン交換膜で区画された陽極室及び陰
極室の2室を有する電解槽において、前記陽極室に収容
される陽極及び前記陰極室に収容される陰極の少なくと
も一方が、弁金属から成る電極基体、該電極基体表面に
被覆した弁金属の炭化物及び/又は炭化珪素を含む中間
層、及び該中間層表面に被覆した導電性ダイヤモンド構
造の電極物質とを含んで成ることを特徴とする電解槽。
11. In an electrolytic cell having two chambers, an anode chamber and a cathode chamber, which are partitioned by an ion exchange membrane, at least one of an anode housed in the anode chamber and a cathode housed in the cathode chamber is a valve metal. And an intermediate layer containing carbide and / or silicon carbide of a valve metal coated on the surface of the electrode substrate, and an electrode material having a conductive diamond structure coated on the surface of the intermediate layer. Electrolyzer to do.
【請求項12】 腐食性の電解質及び/又は電解液を使用
する電解用に使用される請求項11に記載の電解槽。
12. The electrolytic cell according to claim 11, which is used for electrolysis using a corrosive electrolyte and / or electrolytic solution.
JP8106379A 1996-04-02 1996-04-02 Electrode for electrolysis and electrolytic cell using this electrode Pending JPH09268395A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8106379A JPH09268395A (en) 1996-04-02 1996-04-02 Electrode for electrolysis and electrolytic cell using this electrode
KR1019970011525A KR100504412B1 (en) 1996-04-02 1997-03-31 Electrolytes and electrolytic baths using the electrodes
US08/825,866 US5900127A (en) 1996-04-02 1997-04-02 Electrode for electrolysis and electrolytic cell using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8106379A JPH09268395A (en) 1996-04-02 1996-04-02 Electrode for electrolysis and electrolytic cell using this electrode

Publications (1)

Publication Number Publication Date
JPH09268395A true JPH09268395A (en) 1997-10-14

Family

ID=14432088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8106379A Pending JPH09268395A (en) 1996-04-02 1996-04-02 Electrode for electrolysis and electrolytic cell using this electrode

Country Status (1)

Country Link
JP (1) JPH09268395A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949205A1 (en) * 1998-03-18 1999-10-13 Permelec Electrode Ltd. Process for producing acidic water containing dissolved hydrogen peroxide and electrolytic cell therefor
JP2001295060A (en) * 2000-04-12 2001-10-26 Media Kenkyusho:Kk Surface reforming method for aluminum substrate
JP2002361282A (en) * 2001-06-08 2002-12-17 Permelec Electrode Ltd Method and apparatus for treating organic waste water
WO2004104272A1 (en) * 2003-05-26 2004-12-02 Sumitomo Electric Industries, Ltd. Diamond-coated electrode and method for producing same
WO2005044738A1 (en) * 2003-11-11 2005-05-19 Honda Motor Co., Ltd. Electrolysis vessel and apparatus for generating electrolyzed water
WO2005106079A1 (en) 2004-04-28 2005-11-10 Central Japan Railway Company Electrode, ozone generator and ozone generating method
JP2007039742A (en) * 2005-08-03 2007-02-15 Permelec Electrode Ltd Electrode for electrolysis and its producing method
WO2007017976A1 (en) 2005-08-10 2007-02-15 Central Japan Railway Company Method for producing ozone water and apparatus for producing ozone water
CN1303254C (en) * 2004-04-16 2007-03-07 清华大学 Electrobath for treating sewerage
JP2007084892A (en) * 2005-09-26 2007-04-05 Sumitomo Electric Ind Ltd Diamond-coated substrate, filter and electrode
JP2008001932A (en) * 2006-06-21 2008-01-10 Sumitomo Electric Ind Ltd Electrode for electrolysis
JP2008063607A (en) * 2006-09-06 2008-03-21 Sumitomo Electric Ind Ltd Diamond-covered substrate, electrode and method for electrochemical treatment, and manufacturing method of diamond-covered substrate
JP2008127583A (en) * 2006-11-16 2008-06-05 Permelec Electrode Ltd Membrane-electrode assembly, electrolytic unit using the same, electrolytic water jetting device and sterilization method
CN100396620C (en) * 2003-11-11 2008-06-25 本田技研工业株式会社 Electrolysis vessel and apparatus for generating electrolyzed water
JP2008212334A (en) * 2007-03-02 2008-09-18 Masaaki Arai Air cleaning apparatus
JP2008255437A (en) * 2007-04-06 2008-10-23 Kobe Steel Ltd Conductive diamond coated net-like electrode, method of manufacturing the same and ozone water generator provided with the same
JP2008255495A (en) * 2004-04-28 2008-10-23 Central Japan Railway Co Ozone generator, and ozone production method
JP2008539836A (en) * 2005-05-03 2008-11-20 フアン ホルン、 Method and apparatus for purifying, sterilizing and disinfecting tableware and other kitchen utensils
KR100903941B1 (en) * 2005-03-14 2009-06-25 페르메렉덴꾜꾸가부시끼가이샤 Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
EP2078701A1 (en) 2007-11-15 2009-07-15 Permelec Electrode Ltd. Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
JP2010024550A (en) * 2008-07-17 2010-02-04 Hoffmann & Co Elektrokohle Ag Electrode for electrolysis
US7887679B2 (en) 2005-06-16 2011-02-15 Permelec Electrode Ltd. Method of sterilization and electrolytic water ejecting apparatus
US7951274B2 (en) 2005-11-24 2011-05-31 Sumitomo Electric Hardmetal Corp. Diamond electrode, method for producing same, and electrolytic cell
US7964068B2 (en) 2006-09-20 2011-06-21 Permelec Electrode Ltd. Membrane-electrode assembly, electrolytic unit using the same, electrolytic water ejecting apparatus, and method of sterilization
JP2011136333A (en) * 2010-12-13 2011-07-14 Masaaki Arai Toilet seat with local cleaning function, floor washer, cooling tower, air washing system, wastewater treatment system, contact lens washer, shower device, dialyzer, medical instrument washing apparatus, affusion and sprinkling system for agricultural use, bactericidal mask, dish washer, washing/sterilizing device for meat or the like, washing system, defecation device deodorization system, food sterilizing/cleaning system, and bathroom/pool bactericidal system
KR20110118590A (en) 2010-04-23 2011-10-31 페르메렉덴꾜꾸가부시끼가이샤 Method for disinfecting ectoparasites of farmed fish
JP4856337B2 (en) * 1999-10-06 2012-01-18 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for electrochemical production of peroxodisulfuric acid using an electrode coated with diamond
JP2012101185A (en) * 2010-11-10 2012-05-31 Kobe Steel Ltd Method for electrolyzing aqueous solution
JP2014095110A (en) * 2012-11-08 2014-05-22 Kobe Steel Ltd Diamond electrode and manufacturing method thereof, and ozone generator using the diamond electrode
KR20150034277A (en) * 2012-07-20 2015-04-02 헬스 서포트 센터 주식회사 Desktop Hydrogen Gas Generation Device
KR20190018967A (en) 2017-08-16 2019-02-26 주식회사 엘지화학 Method for activating reduction electrode
JP2022507794A (en) * 2018-11-21 2022-01-18 ウォーターディアム グループ エルエルシー Treatment of skin diseases with electrolyzed water
JP7322315B1 (en) * 2023-03-31 2023-08-07 住友化学株式会社 diamond electrode
JP7348422B1 (en) * 2023-03-23 2023-09-20 住友化学株式会社 Diamond electrode and diamond electrode manufacturing method

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949205A1 (en) * 1998-03-18 1999-10-13 Permelec Electrode Ltd. Process for producing acidic water containing dissolved hydrogen peroxide and electrolytic cell therefor
JP4856337B2 (en) * 1999-10-06 2012-01-18 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method for electrochemical production of peroxodisulfuric acid using an electrode coated with diamond
JP2001295060A (en) * 2000-04-12 2001-10-26 Media Kenkyusho:Kk Surface reforming method for aluminum substrate
JP2002361282A (en) * 2001-06-08 2002-12-17 Permelec Electrode Ltd Method and apparatus for treating organic waste water
WO2004104272A1 (en) * 2003-05-26 2004-12-02 Sumitomo Electric Industries, Ltd. Diamond-coated electrode and method for producing same
US7314540B2 (en) 2003-05-26 2008-01-01 Sumitomo Electric Industries, Ltd. Diamond-coated electrode and method for producing same
CN100396620C (en) * 2003-11-11 2008-06-25 本田技研工业株式会社 Electrolysis vessel and apparatus for generating electrolyzed water
WO2005044738A1 (en) * 2003-11-11 2005-05-19 Honda Motor Co., Ltd. Electrolysis vessel and apparatus for generating electrolyzed water
CN1303254C (en) * 2004-04-16 2007-03-07 清华大学 Electrobath for treating sewerage
JP4644272B2 (en) * 2004-04-28 2011-03-02 東海旅客鉄道株式会社 Ozone generator and ozone generation method
WO2005106079A1 (en) 2004-04-28 2005-11-10 Central Japan Railway Company Electrode, ozone generator and ozone generating method
US8734626B2 (en) 2004-04-28 2014-05-27 Central Japan Railway Company Electrode, ozone generator, and ozone production method
JP2008255495A (en) * 2004-04-28 2008-10-23 Central Japan Railway Co Ozone generator, and ozone production method
KR100903941B1 (en) * 2005-03-14 2009-06-25 페르메렉덴꾜꾸가부시끼가이샤 Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
JP2008539836A (en) * 2005-05-03 2008-11-20 フアン ホルン、 Method and apparatus for purifying, sterilizing and disinfecting tableware and other kitchen utensils
US7887679B2 (en) 2005-06-16 2011-02-15 Permelec Electrode Ltd. Method of sterilization and electrolytic water ejecting apparatus
JP2007039742A (en) * 2005-08-03 2007-02-15 Permelec Electrode Ltd Electrode for electrolysis and its producing method
JP4500745B2 (en) * 2005-08-03 2010-07-14 ペルメレック電極株式会社 Method for producing electrode for electrolysis
US8431006B2 (en) 2005-08-10 2013-04-30 Central Japan Railway Company Method and apparatus for producing ozone-water
WO2007017976A1 (en) 2005-08-10 2007-02-15 Central Japan Railway Company Method for producing ozone water and apparatus for producing ozone water
JP2007044630A (en) * 2005-08-10 2007-02-22 Central Japan Railway Co Method and apparatus for generating ozone water
JP2007084892A (en) * 2005-09-26 2007-04-05 Sumitomo Electric Ind Ltd Diamond-coated substrate, filter and electrode
US7951274B2 (en) 2005-11-24 2011-05-31 Sumitomo Electric Hardmetal Corp. Diamond electrode, method for producing same, and electrolytic cell
JP2008001932A (en) * 2006-06-21 2008-01-10 Sumitomo Electric Ind Ltd Electrode for electrolysis
JP2008063607A (en) * 2006-09-06 2008-03-21 Sumitomo Electric Ind Ltd Diamond-covered substrate, electrode and method for electrochemical treatment, and manufacturing method of diamond-covered substrate
US7964068B2 (en) 2006-09-20 2011-06-21 Permelec Electrode Ltd. Membrane-electrode assembly, electrolytic unit using the same, electrolytic water ejecting apparatus, and method of sterilization
JP2008127583A (en) * 2006-11-16 2008-06-05 Permelec Electrode Ltd Membrane-electrode assembly, electrolytic unit using the same, electrolytic water jetting device and sterilization method
JP2008212334A (en) * 2007-03-02 2008-09-18 Masaaki Arai Air cleaning apparatus
JP2008255437A (en) * 2007-04-06 2008-10-23 Kobe Steel Ltd Conductive diamond coated net-like electrode, method of manufacturing the same and ozone water generator provided with the same
EP2078701A1 (en) 2007-11-15 2009-07-15 Permelec Electrode Ltd. Membrane-electrode assembly, electrolytic cell employing the same, electrolytic-water sprayer, and method of sterilization
JP2010024550A (en) * 2008-07-17 2010-02-04 Hoffmann & Co Elektrokohle Ag Electrode for electrolysis
JP2011229405A (en) * 2010-04-23 2011-11-17 Permelec Electrode Ltd Method for exterminating ectoparasite which is parasitic on cultured fish
CN102246712A (en) * 2010-04-23 2011-11-23 培尔梅烈克电极股份有限公司 Method of expelling ectoparasites parasitic on breeding fish
KR20110118590A (en) 2010-04-23 2011-10-31 페르메렉덴꾜꾸가부시끼가이샤 Method for disinfecting ectoparasites of farmed fish
JP2012101185A (en) * 2010-11-10 2012-05-31 Kobe Steel Ltd Method for electrolyzing aqueous solution
JP2011136333A (en) * 2010-12-13 2011-07-14 Masaaki Arai Toilet seat with local cleaning function, floor washer, cooling tower, air washing system, wastewater treatment system, contact lens washer, shower device, dialyzer, medical instrument washing apparatus, affusion and sprinkling system for agricultural use, bactericidal mask, dish washer, washing/sterilizing device for meat or the like, washing system, defecation device deodorization system, food sterilizing/cleaning system, and bathroom/pool bactericidal system
KR20150034277A (en) * 2012-07-20 2015-04-02 헬스 서포트 센터 주식회사 Desktop Hydrogen Gas Generation Device
JP2014095110A (en) * 2012-11-08 2014-05-22 Kobe Steel Ltd Diamond electrode and manufacturing method thereof, and ozone generator using the diamond electrode
KR20190018967A (en) 2017-08-16 2019-02-26 주식회사 엘지화학 Method for activating reduction electrode
JP2022507794A (en) * 2018-11-21 2022-01-18 ウォーターディアム グループ エルエルシー Treatment of skin diseases with electrolyzed water
JP7348422B1 (en) * 2023-03-23 2023-09-20 住友化学株式会社 Diamond electrode and diamond electrode manufacturing method
JP7322315B1 (en) * 2023-03-31 2023-08-07 住友化学株式会社 diamond electrode

Similar Documents

Publication Publication Date Title
KR100504412B1 (en) Electrolytes and electrolytic baths using the electrodes
JPH09268395A (en) Electrode for electrolysis and electrolytic cell using this electrode
EP0949205B1 (en) Use of an anode having an electroconductive diamond structure for producing acidic water containing dissolved hydrogen peroxide
JP4116726B2 (en) Electrochemical treatment method and apparatus
US7285194B2 (en) Conductive diamond electrode and process for producing the same
JP2001192874A (en) Method for preparing persulfuric acid-dissolving water
KR100447692B1 (en) Electrolytes for Acid and Alkaline Water Production
US20020153262A1 (en) Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide
JP2000254650A (en) Water treatment and water treatment device
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JPH11333458A (en) Apparatus for producing electrolytic water
JP4157615B2 (en) Method for producing insoluble metal electrode and electrolytic cell using the electrode
KR101286426B1 (en) Sulfuric acid electrolysis process
JP2007332441A (en) Method of manufacturing persulfuric acid and electrolytic cell for manufacture
Ghalwa et al. Generation of sodium hypochlorite (NaOCl) from sodium chloride solution using C/PbO 2 and Pb/PbO 2 electrodes
US20030188764A1 (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
US3347761A (en) Electropurification of salt solutions
JP2002275671A (en) Method for producing hydrogen peroxide aqueous solution
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JPH101794A (en) Electrolytic cell and electrolyzing method
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP2004099914A (en) Method for producing peroxodisulfate
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JP3673000B2 (en) Electrolyzer for electrolyzed water production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071126