JP4157615B2 - Method for producing insoluble metal electrode and electrolytic cell using the electrode - Google Patents

Method for producing insoluble metal electrode and electrolytic cell using the electrode Download PDF

Info

Publication number
JP4157615B2
JP4157615B2 JP09077498A JP9077498A JP4157615B2 JP 4157615 B2 JP4157615 B2 JP 4157615B2 JP 09077498 A JP09077498 A JP 09077498A JP 9077498 A JP9077498 A JP 9077498A JP 4157615 B2 JP4157615 B2 JP 4157615B2
Authority
JP
Japan
Prior art keywords
electrode
diamond
chamber
valve metal
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09077498A
Other languages
Japanese (ja)
Other versions
JPH11269685A (en
Inventor
孝之 島宗
修平 脇田
善則 錦
昌盛 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP09077498A priority Critical patent/JP4157615B2/en
Publication of JPH11269685A publication Critical patent/JPH11269685A/en
Application granted granted Critical
Publication of JP4157615B2 publication Critical patent/JP4157615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、導電性のダイアモンド構造を有する電極物質を有する不溶性金属電極の製造方法及び該電極を使用する電解槽に関し、より詳細には比較的簡単にかつ小型の装置により製造できる不溶性金属電極の製造方法及び該電極を使用する電解槽に関する。
【0002】
【従来技術とその問題点】
水、あるいは電解質を溶解した電解液を電解して有用な各種物質を製造する試みは従来から広く行なわれている。これらの電解法の開発により従来の製品の製造過程が大きく変化しているものがある。
例えば半導体デバイスや液晶パネルの製造過程の洗浄には従来は有機溶剤やフッ酸、硫酸、塩酸、硝酸などの無機酸、及びオゾン水や過酸化水素水などの酸化剤が多く使用されていた。しかしこれらの薬剤は使用に際して危険であるだけでなく、有機溶剤はオゾン層破壊などの環境問題を誘起する可能性があること、又他の無機酸や塩類ではその廃水処理に多くの手間とコストが掛かるなどの問題があった。更にこれらの薬剤によって洗浄処理を行なったデバイスや液晶パネルではこれらの薬剤を除去するために多量のいわゆる超純水を使用しなければならないという問題点を有していた。
【0003】
更に前記デバイスやパネルの他にも、医療や食品工業などでは殺菌や洗浄にあたって多量の洗剤を使用するとともに、やはり多量の水でそれらを洗い流さなければならず、その水使用量が膨大になるという問題点があった。
これらの問題点を解決するために、最近は隔膜で陽極室と陰極室に区画した電解槽で水又は微量の塩酸や食塩、塩化アンモニウムなどの塩を添加した水を電解することにより、陽極室から酸化還元電位(ORP)の高い即ち酸化性が極めて強くかつ僅かに酸性を有する水溶液を、又陰極室からORPの低い即ち還元性が極めて強くかつ僅かに塩基性を有する水溶液をそれぞれ生成し、これらを前記デバイス等の洗浄に使用することが行なわれている。
【0004】
この電解用の電極として金属電極を使用すると電極物質が徐々に電解液中に溶出して電解液を汚染するため(例えば白金被覆チタン電極の場合、その消耗速度は1〜10μg/AH程度であり、電解液中で使用すると標準的には1〜10ppb 程度の白金が溶解して混入する) 前述のデバイスや液晶の洗浄用としては使用できなくなる。
金属混入を避けるためには、電極として非金属型にすれば良く、非金属として使用可能な物質として炭素がある。
炭素電極は通常多孔質であるため電解の進行とともに破壊や溶解が起こり易く、又陽極として使用すると一部が酸化して炭酸ガスとなり消耗が速いという問題点がある。又陰極として使用する場合でも炭酸ガスとしての揮発はないものの、生成する水素の気泡が陽極側酸素より小さく電極の破壊が進み易いという問題点がある。この破壊の進行を防止するために大きな電流を流すことができず、必然的に大きなORPが得られないという問題点がある。
【0005】
近年導電性を付与したダイアモンドが開発されている。ダイアモンドは熱伝導性、光学的透過性、高温かつ酸化に対する耐久性に優れており、特にドーピングにより電気伝導性の制御も可能であることから、半導体デバイス、エネルギー変換素子として有望とされている。
本発明者らは、炭素に代わる電極物質としてダイアモンドを検討し、導電性を付与したダイアモンドを電極物質とする電極を提案した。ダイアモンドは通常導電性をし有しないため、基体にダイアモンドを付着する際又はその前後に導電性を付与するための不純物である硼素、リン又はグラファイト等を添加(ドープ)する。このドープは化学蒸着(CVD)法で行われることが多く、該CVD法により得られる半導性ダイアモンドはその導電性、化学的安定性から電解用電極として有効であると考えられ、実用化に向けて多くの検討がなされている。
【0006】
ダイアモンドは電解用電極としては極めて大きい酸素発生過電圧を有するため大きな酸化性が期待でき陽極酸化用としての可能性が指摘されている。しかしながら現在までのダイアモンドを電極物質とする電極の製造は主として前記CVD法で行われ、該CVD法では基体温度が800 ℃と極めて高くなりその応用に制限があること、又基体上に薄膜ダイアモンドを形成するためには、通常減圧下で水素ガス雰囲気で行う必要があり、設備が大型化して高価になり、仮に設備を設置しても連続的に所望の電極を製造することが困難であり、生産性にも問題が残り、特に大型の電極基体を使用する際に設備の大型化が問題になり更に基体表面に均一に電極物質層を被覆することが困難になる。そのためダイアモンドの電極としての優秀な性能にもかかわらず、実際の応用は付加価値の極めて高い分野に限られるという問題点がある。
【0007】
一方電極としてのダイアモンドは、上記のように水溶液中で極めて高い酸素過電圧を有するので、陽極酸化用として又は無機及び有機合成用として大きな可能性を有しており、更に電極並びにそれを使用する電解プロセスの応用範囲は極めて広くなると考えられる。しかもダイアモンドは前述した従来から使用されている炭素電極と構成成分が本質的に同一で、しかも炭素電極の主体であるグラファイト電極に比較してその化学結合は三次元的共有結合であるためより安定で、炭素電極より遙かに安定した長期間の寿命を有すると考えられる。従って炭素電極で問題とする炭素自身の酸化による消耗も殆ど問題にならない。又たとえ消耗が起こっても炭酸ガスとして放出されるため電解液の汚染が生ずることはない。
このようにダイアモンドは、極めて高い電流密度でも安定した電解が進行し比較的小型の電極でも電流を大きく取れるので電解用電極として有用な物質であると期待されながら前述した通り製造条件が厳しいために殆ど実用化されることがなく、実験室的にその特性の測定が試みられる程度であった。
【0008】
【発明の目的】
本発明は、前述の従来技術の問題点を解消し、比較的簡単にかつ小型の製造装置で製造できる導電性ダイアモンドを電極物質として含有する不溶性金属電極の製造方法及び該電極を使用する電解槽を提供することを目的とする。
【0009】
【問題点を解決するための手段】
本発明方法は、導電性を有するダイアモンドの微粉末を弁金属塩を含む液中に懸濁した塗布液を、弁金属基体表面に塗布し熱分解により該基体表面に前記ダイアモンド微粉末と弁金属酸化物を電極物質層として被覆することを特徴とする不溶性金属電極の製造方法であり、該方法によると容易に導電性ダイアモンドを電極物質とする自由な大きさと形状を有する電極が得られる。又該電極を2室法又は3室法の電解槽に設置して電解を行うと高効率でオゾン等の所望生成物が得られる。
【0010】
以下本発明を詳細に説明する。
従来のダイアモンドを電極物質とする電極は、基体であるチタン板やシリコン板上にダイアモンドをCVD法により成長させることにより製造していた。なおこの際にダイアモンドに導電性を与えるため雰囲気ガス中に例えば硼酸を加えてダイアモンドに硼素をドープしている。この場合CVD法では基体となる板の結晶方向に対応してダイアモンドの方位もある程度規制されることが知られ、これによって成長するダイアモンドが安定化するとされている。しかしながら本発明者らの検討によると、CVD法ではその条件によりダイアモンドの成長の方向性がほぼ決定されること、又成長速度を速くするとダイアモンドの結晶子が小さくなり、時としてはX線的に非晶質に近づくことが判ったが、これらの条件差による電極特性への影響は見られなかった。つまりCVD法で製造した導電性ダイアモンドも他の方法で製造した導電性ダイアモンドも、換言するとダイアモンドが多結晶であっても非晶質であっても、電極特性の面では殆ど差がなく電極としてほぼ同等の特性を示し電解時も安定で、電気伝導性が若干異なる程度である。従って原料となるダイアモンドの製造はCVD法による必要はなく、市販の粉末ダイアモンドで十分であり、導電性を与えるための硼素等の不純物の添加法も限定されない。
【0011】
本発明はこの知見によりなされたもので、従来の電極製造に使用されている熱分解法を導電性ダイアモンドを電極物質として含む不溶性金属電極の製造に応用しようとするものである。
本発明に係わる製造方法では、原料として粉末又は粒状等の微細粒子(微粉末)から成るダイアモンド(粒径は特に限定されないが0.1 〜100 μm程度が好ましく化学的安定性からは粒径は小さい方が良い)を使用する。なお本発明で使用するダイアモンドは、ダイアモンド自身に限定されるものでなく、ダイアモンドと同じ又は類似する結晶構造を有する炭化珪素や炭化チタンも導電性のダイアモンド構造の電極物質として使用できる。
【0012】
このダイアモンドは電極基体への被覆前に導電性を与えておく。この導電性付与は、硼素、リン、グラファイト、無定形酸化珪素等の不純物を添加することにより行う。この添加はダイアモンドが導電性になれば、どのような方法により行っても良いが、例えばダイアモンド粉末と不純物そのものやその溶液又は熱分解して不純物となる物質やその溶液を加熱混合したり、CVD法でダイアモンド粉末に不純物を担持しても良い。前者の加熱混合で硼素を添加するには、ダイアモンド粉末を硼酸とともに400 〜800 ℃で硼酸の揮散を抑制しながら加熱すれば良い。後者のCVD法は電極基体へのダイアモンドの被覆ではないため、比較的小型の装置で簡便に行うことができる。ダイアモンドに対する不純物量は導電性に大きく関与し、導電性が十分に得られれば特に限定されないが、通常は100 〜10000 ppm が望ましい。
【0013】
電極基体はチタン、タンタル、ニオブ、ジルコニウム等の弁金属や弁金属合金等の弁金属を主成分とする材料を使用する。これらの弁金属材料を使用するのは、後述の通り電極物質であるダイアモンドと混合される弁金属やその酸化物との親和力を高めるためである。電極基体はCVD法の場合には蒸着の可否を決定する重要な要件となるのに対し、本発明では単に弁金属であれば形状や大きさに制限はない。該基体は後述する導電性ダイアモンドを含む電極物質層との密着性を向上させるため及び実質電流密度を低下させるために、表面粗化を行うことが好ましく、高電流密度条件で使用する場合には#20程度のアルミナグリッド等を使用して表面を大きく粗し、腐食条件下の比較的低電流密度下で使用する場合には#60〜120 程度の細かいアルミナグリッドで表面粗化を行ない被覆の付着性を向上させることが望ましい。
【0014】
この電極基体に前述の導電性ダイアモンドを被覆するには、まず前記導電性ダイアモンド粉末を弁金属塩の溶液に懸濁する。この弁金属も前記基体と同様にチタン、タンタル、ニオブ、ジルコニウム等から選択する。なお弁金属として1種類のみを使用しても良いが、2種類以上を使用して2種類以上の弁金属酸化物とすると更に導電性が高まり良好な安定化を達成できる。又弁金属塩は塩化物が最も望ましいが硝酸塩や有機金属塩例えばブチルチタネートやブチルタンタレートも使用できる。前記懸濁液を前記電極基体に塗布しかつ加熱焼成を行って前記弁金属塩を弁金属酸化物へ変換しかつ該弁金属酸化物を導電性ダイアモンド粉末とともに前記電極基体表面へ担持して電極物質層とする。導電性ダイアモンド粉末を懸濁させる溶液として弁金属塩の溶液を使用する理由は、熱分解により生成する弁金属酸化物が極めて耐食性に優れるとともに導電性を有するので電気を流すことができ、更に弁金属酸化物のみでは電極物質としての働きが極めて希薄であり、電極としての機能を殆ど有しないという特徴があるからであり、前記導電性ダイアモンドを弁金属酸化物とともに担持することにより導電性ダイアモンドの特性が十分に生かされる。又前記弁金属酸化物は前述した電極基体である弁金属との親和力を高めて電極物質の電極基体からの剥離を防止するため使用する。
【0015】
熱分解の温度はダイアモンドが800 ℃までは安定であることを考慮してその温度以下で適宜に決定すれば良い。又加熱分解−焼成の工程を複数回行って所望量のダイアモンド及び弁金属酸化物を担持するようにしても良い。
最も好ましい弁金属酸化物の例はチタンとタンタルの混合酸化物であり、該混合酸化物は塩化チタンと塩化タンタルの混合塩酸溶液をチタン基体上に塗布し450 〜650 ℃で熱分解を行い、前記基体上に結晶性の良くないルチル型の酸化物層として形成できる。ダイアモンドが共存しない場合の前記酸化物層の電気抵抗は0.1 〜0.001 Ωcm程度であり、ダイアモンドに通電することが可能になる。
【0016】
CVD法ではダイアモンドと硼素等の不純物の基体への担持を同一のタイミングで行う必要があるため、ダイアモンドの電極基体への担持(電極物質層の形成)と不純物の添加(導電性の付与)をそれぞれの最適条件で行うことができず、電極性能を最大限に引き出すことができなかった。これに対し本発明では不純物の添加を電極物質層の形成とは別に行えるため(同時に行うことも可能)、最大性能の電極を製造できる。
このように製造された導電性ダイアモンドと弁金属酸化物を含む電極物質層を表面に被覆した不溶性金属電極は、酸素過電圧が高く、水電解による酸素やオゾン発生、更に有機物の電解酸化用等の陽極として幅広く利用でき、陰極としての使用も可能である。
このような電極を電解槽内に組み入れる際には、イオン交換膜を使用して該電解槽を陽極室及び陰極室の2室、又は陽極室、中間室及び陰極室の3室に区画した前記陽極室及び前記陰極室の少なくとも一方に設置する。前記イオン交換膜はフッ素樹脂系及び炭化水素樹脂系のいずれを使用しても良いが、耐食性の面からは前者が好ましい。該イオン交換膜は、陽極及び陰極で生成する各イオンが対極で消費されることを防止するとともに、液の電導度が低い場合に電解を速やかに進行させる機能を有する。
【0017】
前記電極をガス電極として2室型電解槽で使用する場合は、イオン交換膜と陰極との間に陰極室を、又陽極とイオン交換膜の間に陽極室を設けるようにしても良いが、液電導度が低い場合には槽電圧の上昇を招き槽構造も複雑になり、更に各極での気液分離が必要となるため、電極をイオン交換膜に接合する構造を採用することが最も望ましい。この場合陽極室は実質的にガス室となり一方陰極室は気液混合状態となる。電解槽の材料は、使用する電解液や生成するガス等に応じて異なるが、耐久性及び安定性の観点から、ガラスライニング材料、カーボン、高耐食性の中間層、ステンレス及びPTFE樹脂等の使用が望ましい。
電極とイオン交換膜を密着させることが望ましい場合は、前もってそれらを機械的に結合しておくか、あるいは電解時に圧力を与えておけば良い。この際の圧力は0.1 〜30kgf/cm2 が好ましい。
【0018】
電解条件は、使用する電解液等により変化するが、温度を5〜40℃、電流密度を1〜500 A/dm2 とすることが好ましい。
陽極室に塩素を添加して水電解を行なうと、陽極室に次亜塩素酸を生成し該次亜塩素酸により液性が酸性となり酸性水が生成する。一方陰極室では通常の水電解により弱アルカリ性水が生成する。この電解において陽極物質として前述した導電性ダイアモンド構造の電極物質を使用すると、長期間電解を継続しても電極物質が溶出することがなく、従って得られる酸性水中に金属混入がなく極めて高純度な酸性水が得られ、この酸性水は半導体デバイスの洗浄用水等として最適である。
又陽極室に純水を供給し電解を行なうと、下式に従ってオゾンが生成する。
3H2 0 → O3 + 6H+ + 6e
【0019】
このオゾン生成の場合にも陽極物質として前記導電性ダイアモンド構造の電極物質を使用すると、生成するオゾンに電極物質が混入することがなく、非常に高純度のオゾンガスやオゾン水を得ることができる。
更に工業電解では、フッ素、臭素及び沃素のような腐食性の成分を含む電解液の電解が必要になることがある。このような腐食性成分の含む電解液の電解に従来のDSEを使用すると短期間の電解であればさほど支障は生じないが、長期間の電解になると前記DSEの消耗が起こり安定な電解を継続できなくなる。これに対し、本発明の電解用電極では、導電性ダイアモンド構造の電極物質を使用するため、腐食性成分を有する電解液中の耐久性がDSEと比較して遙かに大きく、長期間の安定した電解操作を可能にする。
【0020】
次に添付図面に基づいて本発明に係わる不溶性基体電極及び該電極を使用する電解槽を例示する。
図1は本発明により製造した不溶性金属電極を使用する2室型電解槽の一例を示す概略縦断面図、図2は同じく3室型電解槽の一例を示す概略縦断面図、図3は他の2室型電解槽の一例を示す概略縦断面図である。
図1において、2室型電解槽1はイオン交換膜2により陽極室3と陰極室4とに区画され、前記イオン交換膜2の陽極室3側に導電性ダイアモンド構造の電極物質から成る陽極5が、陰極室4側に例えば金属メッシュから成る多孔性陰極6がそれぞれ密着している。
陽極室3の底面及び上面には純水又は塩溶液の供給口7及び酸性水取出口8が、陰極室4の底面及び上面には純水供給口9及びアルカリ水取出口10がそれぞれ設置されている。なお11はイオン交換膜2と周縁部間のパッキングである。
【0021】
図2において、3室型電解槽21は、陽イオン交換膜22により陽極室23及び中間室24に、又陽イオン交換膜25により前記中間室24と陰極室26に区画されている。前記陽イオン交換膜22の陽極室23側には導電性ダイアモンド構造の電極物質から成る陽極27が、又前記陽イオン交換膜25の陰極室26側には多孔性陰極28がそれぞれ密着している。
陽極室23の底面及び上面には純水供給口29及び酸性水取出口30が、中間室24の底面及び上面には塩化アンモニウム等の塩溶液供給口31及び塩溶液取出口32が、陰極室26の底面及び上面には純水供給口33及びアルカリ水取出口34がそれぞれ設置されている。なお35はイオン交換膜22、25と周縁部間のパッキングである。
【0022】
図3において、2室型電解槽41は小径の連結部42に設置されたイオン交換膜43により陽極室44と陰極室45とに区画され、前記陽極室44中には前記イオン交換膜43から離間して導電性ダイアモンド構造の電極物質から成る陽極46が吊支され、陰極室45側にも同様に例えば金属メッシュから成る多孔性陰極47がイオン交換膜から離間して吊支されている。陽極室44及び陰極室45のそれぞれの上面には生成ガス取出口48、49が設置されている。
【0023】
図1及び図2のいずれの電解槽1、21でも、純水又は塩溶液供給口7又は塩溶液供給口31から純水や塩化アンモニウム水溶液や硫酸等の塩溶液を供給しながら両電極5、6及び27、28間に通電すると、陽極室で酸性水が陰極室でアルカリ水が、少なくとも陽極室では前記ダイアモンドの溶出がないため金属成分を含有することなく生成する。
又図3の電解槽41では、陽極室44及び陰極室45内に電解液を満たし、両電極46、47間に通電することにより、所定の生成ガスが発生する。この場合にも少なくとも両電極の一方が導電性ダイアモンド構造の電極物質を有し該ダイアモンドの溶出がないため不純物を含有しない電解液やガスが得られる。
【0024】
【実施例】
次に本発明に係わる不溶性金属電極及び該電極を使用する電解槽の実施例を記載するが、該実施例は本発明を限定するものではない。
【0025】
【実施例1】
粒径1〜5μmの工業用合成ダイアモンドを酸化硼素粉末と混合し、600 ℃の窒素雰囲気中で10時間加熱し、放冷後取り出して水洗し、メンブランフィルターで濾過しフィルター上にダイアモンド粉末を得た。このダイアモンド粉末の硼素含有量を蛍光X線で測定したところ、ダイアモンド中に硼素が5000〜7000ppm 含まれていることが判った。
純チタン板の表面をグリットブラストにより十分荒らしてから塩酸中で水洗してブラスト粉を完全に取り除いた。この純チタン板を更に空気雰囲気中のマッフル炉に入れて650 ℃で3時間加熱酸化し、その後炉中で放冷して表面の酸化物が剥離しないようにしてから炉から取り出し電極基体とした。
【0026】
塩化チタンと塩化タンタルの混合塩酸溶液(チタンとタンタルの重量比は85:15)を作製し、前記ダイアモンド粉末を懸濁した。この懸濁液を前記電極基体表面に塗布し乾燥後、530 ℃に保たれたマッフル炉に入れて10分間加熱焼成した。この塗布−焼成を10回繰り返してダイアモンドを10g/m2担持した電極板を作製した。
この電極板を陽極とし、又ニッケルメッシュを陰極とし、陽イオン交換膜(デュポン社製のナフィオン117 )で陽極室と陰極室に区画された電解槽の陽極室に150 g/リットルの硫酸水溶液を満たし、両極間に通電して電解を行った。電流密度は100 A/dm2 であった。電解による発生ガスからオゾン臭が生じ、オゾン発生の電流効率を沃素滴定で測定したところ、0.5 〜1%であった。
この電流効率は通常オゾン発生に使用される酸化鉛電極の約1/3 の電流効率であるが、白金電極の電流効率よりは遙かに高かった。
【0027】
【実施例2】
粒径0.2 〜2μmのダイアモンド粉末に、800 ℃の温度で熱CVD法により硼素を含有するダイアモンド層を蒸着させて約10000 ppm の硼素を含有するダイアモンド粉末を作製した。
このダイアモンド粉末を、実施例1と同一条件で塩化チタンと塩化タンタルの混合塩酸溶液を使用して純チタン板上に被覆して電極板を作製した。更にこの電極板を陽極として使用し実施例1と同一条件で電解を行ったところ、電流密度100 A/dm2 で2000時間から2500時間の寿命があり、実用電極として十分使用できることが判った。
【0028】
【実施例3】
電極基体として純チタン板から作製したエクスパンドメッシュを使用したこと以外は実施例1と同様にして電極板を準備した。固体電極質としてデュポン社製ナフィオン117 陽イオン交換膜を用い、この陽イオン交換膜に前記電極板を陽極として密着させ、陰極としては導電性カーボンシートを陽極の反対側に密着させて電解槽を組み立てた。この電解槽の陽極室に超純水を供給しながら電流密度30A/dm2 で電解を行った。これにより陽極室から酸化還元電位が1200mVの酸性水が得られた。
【0029】
【発明の効果】
本発明は、導電性を有するダイアモンドの微粉末を弁金属塩を含む液中に懸濁した塗布液を、弁金属基体表面に塗布し熱分解により該基体表面に前記ダイアモンド微粉末と弁金属酸化物を電極物質層として被覆することを特徴とする不溶性金属電極の製造方法である。
水電解や腐食性成分を含有する電解液の電解に導電性ダイアモンド構造の電極物質を有する電極を使用すると、該ダイアモンドの耐久性により電極の消耗つまり電極物質の溶出が殆どなくなって安定した電解操作を長期間継続することが可能になり、更に該電極物質の溶出がなくなることから、電解操作により得られる陽極液、陰極液及び生成ガス中に前記電極物質の溶出に起因する不純物の混入がなくなり、高純度の電解液又は生成ガスが得られる。
【0030】
本発明により製造した不溶性金属電極を使用して製造する電解液特に陽極液は、特に半導体デバイス等の不純物含有量レベルを極度に低く維持することが要求される洗浄用水として要求される各種要件を備え、該洗浄用水として効率良く使用できる。該洗浄水等は大量に生産することが必要になることが多く、従来のCVD法により電極基体に導電性ダイアモンドを担持する方法では、大型の電極を製造することが困難であったため要請に応えられなかった。しかしながら本発明方法は電極基体に導電性ダイアモンドを含む懸濁液を塗布し熱分解により前記ダイアモンドを電極基体に担持する手法であるため、任意形状及び任意の大きさの電極基体に容易にかつ均一に導電性ダイアモンドを含む電極物質層を電極基体上に被覆形成して大型の電極を比較的小型の装置で製造でき、更に大幅なコストダウンも達成できる。
【0031】
しかも本発明では電極基体の材質と前記電極物質層の材質が弁金属という共通成分を有するため、電極物質層が電極基体に強力に密着し長期間の使用に耐えられる。
本発明方法では、CVD法による厳しい条件と異なり本発明では条件制約が殆どなくなり、原料であるダイアモンドの製造や硼素等の不純物ドープの時期等を殆ど任意に行えるようになった。更に原料のダイアモンドと電極の製造を別個に行えるため、それぞれの製造を別個の最適条件下で実施できる。
本発明方法により製造した電極は2室法又は3室法電解槽の陽極又は陰極として使用できる。この電解槽は酸性水やアルカリ性水の製造用に好適に使用され、該電解槽に使用される陽極及び陰極の少なくとも一方が前述した導電性ダイアモンド構造の電極物質を有しているため、安定した電解操作を長期間継続できかつ電極物質の溶出に起因する不純物の混入がない電解液や生成ガスを得ることができる。
【図面の簡単な説明】
【図1】本発明により製造した不溶性金属電極を使用する2室型電解槽の一例を示す概略縦断面図。
【図2】同じく3室型電解槽の一例を示す概略縦断面図。
【図3】2室型電解槽の他の例を示す概略縦断面図。
【符号の説明】
1・・・電解槽 2・・・イオン交換膜 3・・・陽極室 4・・・陰極室
5・・・陽極 6・・・陰極 21・・・電解槽 22・・・イオン交換膜 23・・・陽極室 24・・・中間室 25・・・イオン交換膜 26・・・陰極室 27・・・陽極 28・・・陰極 41・・・電解槽 43・・・イオン交換膜 44・・・陽極室
45・・・陰極室 46・・・陽極 47・・・陰極
[0001]
[Industrial application fields]
The present invention relates to a method for producing an insoluble metal electrode having an electrode material having a conductive diamond structure and an electrolytic cell using the electrode, and more particularly, an insoluble metal electrode that can be produced relatively easily and with a small apparatus. The present invention relates to a manufacturing method and an electrolytic cell using the electrode.
[0002]
[Prior art and its problems]
Attempts to produce various useful substances by electrolyzing water or an electrolytic solution in which an electrolyte is dissolved have been widely performed. The development of these electrolysis methods has greatly changed the manufacturing process of conventional products.
For example, in the process of cleaning semiconductor devices and liquid crystal panels, conventionally, organic solvents, inorganic acids such as hydrofluoric acid, sulfuric acid, hydrochloric acid, and nitric acid, and oxidizing agents such as ozone water and hydrogen peroxide water have been used. However, these chemicals are not only dangerous to use, but organic solvents can cause environmental problems such as ozone depletion, and other inorganic acids and salts require a lot of labor and cost to treat the wastewater. There was a problem such as hanging. Furthermore, devices and liquid crystal panels that have been cleaned with these chemicals have had the problem that a large amount of so-called ultrapure water must be used to remove these chemicals.
[0003]
In addition to the above devices and panels, medical and food industries use a large amount of detergent for sterilization and cleaning, and they must also be washed away with a large amount of water, which increases the amount of water used. There was a problem.
In order to solve these problems, recently, an anode chamber was prepared by electrolyzing water or water to which a small amount of salt such as hydrochloric acid, sodium chloride or ammonium chloride was added in an electrolytic cell partitioned into an anode chamber and a cathode chamber by a diaphragm. To produce an aqueous solution having a high oxidation-reduction potential (ORP), that is, an extremely strong oxidizing property and slightly acidic, and an aqueous solution having a low ORP, ie, an extremely strong reducing property and slightly basic, from the cathode chamber, These are used for cleaning the devices and the like.
[0004]
When a metal electrode is used as an electrode for this electrolysis, the electrode material gradually elutes into the electrolyte and contaminates the electrolyte (for example, in the case of a platinum-coated titanium electrode, the consumption rate is about 1 to 10 μg / AH). When used in an electrolytic solution, typically about 1 to 10 ppb of platinum is dissolved and mixed.) It cannot be used for cleaning the aforementioned devices or liquid crystals.
In order to avoid metal contamination, a non-metal type electrode may be used, and carbon can be used as a non-metal material.
Since the carbon electrode is usually porous, it is easily broken or dissolved with the progress of electrolysis, and when used as an anode, there is a problem that a part thereof is oxidized to carbon dioxide gas and is quickly consumed. Further, even when used as a cathode, although there is no volatilization as carbon dioxide gas, there is a problem that the generated hydrogen bubbles are smaller than the oxygen on the anode side and the destruction of the electrode easily proceeds. In order to prevent the progress of this destruction, a large current cannot be passed, and a large ORP cannot be obtained.
[0005]
In recent years, a diamond having conductivity has been developed. Diamond is promising as a semiconductor device and an energy conversion element because it has excellent thermal conductivity, optical transparency, high temperature and durability against oxidation, and electric conductivity can be controlled by doping in particular.
The present inventors have studied diamond as an electrode material instead of carbon, and have proposed an electrode using diamond imparted with conductivity as an electrode material. Since diamond usually has no electrical conductivity, boron, phosphorus, graphite, or the like, which is an impurity for imparting electrical conductivity, is added (dope) before or after the diamond is adhered to the substrate. This dope is often performed by a chemical vapor deposition (CVD) method, and the semiconductive diamond obtained by the CVD method is considered effective as an electrode for electrolysis because of its conductivity and chemical stability. Many studies have been made.
[0006]
Since diamond has an extremely large oxygen generation overvoltage as an electrode for electrolysis, it can be expected to be highly oxidizable and has been pointed out as a potential for anodic oxidation. However, the production of electrodes using diamond as an electrode material to date is mainly carried out by the CVD method. In the CVD method, the substrate temperature is extremely high at 800 ° C. and its application is limited, and a thin film diamond is formed on the substrate. In order to form, it is usually necessary to perform in a hydrogen gas atmosphere under reduced pressure, the equipment becomes large and expensive, and even if the equipment is installed, it is difficult to continuously produce a desired electrode, Problems remain in productivity, particularly when a large electrode substrate is used, increasing the size of equipment, and it becomes difficult to uniformly coat the electrode material layer on the substrate surface. Therefore, in spite of excellent performance as a diamond electrode, there is a problem that the actual application is limited to a field with extremely high added value.
[0007]
On the other hand, diamond as an electrode has a very high oxygen overvoltage in an aqueous solution as described above, and thus has great potential for anodization or for inorganic and organic synthesis. The range of application of the process is considered to be extremely wide. In addition, diamond is more stable because it has essentially the same components as the previously used carbon electrode, and its chemical bond is a three-dimensional covalent bond compared to the graphite electrode, which is the main component of the carbon electrode. Thus, it is considered to have a long life that is much more stable than the carbon electrode. Therefore, the consumption due to oxidation of the carbon itself, which is a problem with the carbon electrode, hardly becomes a problem. Even if the exhaustion occurs, it is released as carbon dioxide gas, so that the electrolyte is not contaminated.
As described above, diamond is expected to be a useful material as an electrode for electrolysis because stable electrolysis proceeds even at a very high current density and a large current can be obtained even with a relatively small electrode. There was almost no practical use, and the measurement of the characteristics was attempted in the laboratory.
[0008]
OBJECT OF THE INVENTION
The present invention eliminates the above-mentioned problems of the prior art, and a method for producing an insoluble metal electrode containing as an electrode material a conductive diamond that can be produced in a relatively simple and small production apparatus, and an electrolytic cell using the electrode The purpose is to provide.
[0009]
[Means for solving problems]
In the method of the present invention, a coating liquid obtained by suspending a conductive diamond fine powder in a liquid containing a valve metal salt is applied to the surface of the valve metal base, and the diamond fine powder and the valve metal are formed on the base by thermal decomposition. A method for producing an insoluble metal electrode characterized in that an oxide is coated as an electrode material layer. According to this method, an electrode having a free size and shape using a conductive diamond as an electrode material can be easily obtained. If the electrode is placed in a two-chamber or three-chamber electrolytic cell and electrolysis is performed, a desired product such as ozone can be obtained with high efficiency.
[0010]
The present invention will be described in detail below.
Conventional electrodes using diamond as an electrode material have been manufactured by growing diamond on a titanium plate or silicon plate, which is a substrate, by a CVD method. At this time, in order to impart conductivity to the diamond, boron is added to the diamond by adding, for example, boric acid to the atmospheric gas. In this case, it is known that the orientation of diamond is regulated to some extent in accordance with the crystal direction of the base plate in the CVD method, and it is said that the diamond that grows thereby is stabilized. However, according to the study by the present inventors, in the CVD method, the direction of diamond growth is almost determined by the conditions, and when the growth rate is increased, the crystallites of the diamond become smaller, sometimes as X-rays. Although it was found that the film was close to amorphous, there was no effect on the electrode characteristics due to these condition differences. In other words, the conductive diamond manufactured by the CVD method and the conductive diamond manufactured by other methods, in other words, whether the diamond is polycrystalline or amorphous, there is almost no difference in terms of electrode characteristics, so that it can be used as an electrode. It exhibits almost the same characteristics, is stable during electrolysis, and has a slightly different electrical conductivity. Therefore, it is not necessary to manufacture diamond as a raw material by the CVD method, and commercially available powder diamond is sufficient, and the method of adding impurities such as boron for imparting conductivity is not limited.
[0011]
The present invention has been made based on this finding, and intends to apply the thermal decomposition method used in conventional electrode manufacturing to the production of insoluble metal electrodes containing conductive diamond as an electrode material.
In the production method according to the present invention, diamond made of fine particles (fine powder) such as powder or granules is used as a raw material (the particle size is not particularly limited, but is preferably about 0.1 to 100 μm, and the smaller particle size from the viewpoint of chemical stability. Is good). The diamond used in the present invention is not limited to diamond itself, and silicon carbide and titanium carbide having the same or similar crystal structure as diamond can also be used as an electrode material having a conductive diamond structure.
[0012]
This diamond is given conductivity before coating on the electrode substrate. This conductivity is imparted by adding impurities such as boron, phosphorus, graphite, and amorphous silicon oxide. This addition may be performed by any method as long as the diamond becomes conductive. For example, the diamond powder and the impurity itself or a solution thereof, or a substance that is thermally decomposed to become an impurity or the solution is mixed by heating, or CVD. Impurities may be supported on the diamond powder by the method. In order to add boron by the former heating and mixing, the diamond powder may be heated together with boric acid at 400 to 800 ° C. while suppressing volatilization of boric acid. Since the latter CVD method does not cover the electrode substrate with diamond, it can be easily performed with a relatively small apparatus. The amount of impurities with respect to diamond is greatly related to conductivity, and is not particularly limited as long as the conductivity is sufficiently obtained, but it is usually preferably 100 to 10,000 ppm.
[0013]
The electrode substrate is made of a material mainly composed of a valve metal such as titanium, tantalum, niobium or zirconium, or a valve metal such as a valve metal alloy. The reason for using these valve metal materials is to increase the affinity of the valve metal mixed with diamond as an electrode material and its oxide as described later. In the case of the CVD method, the electrode substrate is an important requirement for determining whether or not vapor deposition is possible, but in the present invention, the shape and size are not limited as long as it is a valve metal. The substrate is preferably subjected to surface roughening in order to improve adhesion with an electrode material layer containing conductive diamond, which will be described later, and to reduce the substantial current density. Use # 20 alumina grid to roughen the surface, and when using under relatively low current density under corrosive conditions, roughen the surface with # 60 ~ 120 fine alumina grid. It is desirable to improve adhesion.
[0014]
In order to coat the electrode substrate with the conductive diamond, first, the conductive diamond powder is suspended in a solution of a valve metal salt. This valve metal is also selected from titanium, tantalum, niobium, zirconium and the like as in the case of the substrate. Note that only one type of valve metal may be used, but if two or more types are used to form two or more types of valve metal oxides, the conductivity is further increased and good stabilization can be achieved. The valve metal salt is most preferably chloride, but nitrates and organic metal salts such as butyl titanate and butyl tantalite can also be used. The suspension is applied to the electrode substrate and heated and fired to convert the valve metal salt into a valve metal oxide, and the valve metal oxide is supported on the surface of the electrode substrate together with a conductive diamond powder. The material layer. The reason for using the valve metal salt solution as a solution for suspending the conductive diamond powder is that the valve metal oxide produced by thermal decomposition is extremely excellent in corrosion resistance and has conductivity, so that electricity can flow. This is because the function as an electrode material is extremely dilute with only a metal oxide, and it has a feature that it hardly has a function as an electrode. By supporting the conductive diamond together with the valve metal oxide, the conductive diamond The characteristics are fully utilized. The valve metal oxide is used to increase the affinity with the valve metal that is the electrode base described above to prevent the electrode material from peeling from the electrode base.
[0015]
The pyrolysis temperature may be appropriately determined below that temperature, considering that diamond is stable up to 800 ° C. Further, a desired amount of diamond and valve metal oxide may be supported by performing the pyrolysis-firing step a plurality of times.
The most preferable example of the valve metal oxide is a mixed oxide of titanium and tantalum, and the mixed oxide is coated with a mixed hydrochloric acid solution of titanium chloride and tantalum chloride on a titanium substrate and thermally decomposed at 450 to 650 ° C., A rutile oxide layer having poor crystallinity can be formed on the substrate. When the diamond does not coexist, the electric resistance of the oxide layer is about 0.1 to 0.001 Ωcm, and it is possible to energize the diamond.
[0016]
In the CVD method, it is necessary to carry impurities such as diamond and boron on the substrate at the same timing. Therefore, diamond is supported on the electrode substrate (formation of electrode material layer) and impurities are added (conductivity is given). It was not possible to carry out under each optimum condition, and the electrode performance could not be maximized. On the other hand, in the present invention, since the addition of impurities can be performed separately from the formation of the electrode material layer (it can be performed at the same time), the electrode with the maximum performance can be manufactured.
The insoluble metal electrode coated on the surface with the electrode material layer containing conductive diamond and valve metal oxide thus produced has a high oxygen overvoltage, generates oxygen and ozone by water electrolysis, and further for electrolytic oxidation of organic matter. It can be widely used as an anode and can also be used as a cathode.
When incorporating such an electrode in an electrolytic cell, the electrolytic cell is divided into two chambers, an anode chamber and a cathode chamber, or an anode chamber, an intermediate chamber, and a cathode chamber, using an ion exchange membrane. It is installed in at least one of the anode chamber and the cathode chamber. The ion exchange membrane may be either a fluororesin or a hydrocarbon resin, but the former is preferred from the viewpoint of corrosion resistance. The ion exchange membrane has a function of preventing each ion generated at the anode and the cathode from being consumed at the counter electrode and promptly allowing electrolysis to proceed when the conductivity of the liquid is low.
[0017]
When the electrode is used as a gas electrode in a two-chamber electrolytic cell, a cathode chamber may be provided between the ion exchange membrane and the cathode, and an anode chamber may be provided between the anode and the ion exchange membrane. When the liquid conductivity is low, the cell voltage rises and the cell structure becomes complicated, and gas-liquid separation at each electrode is required. Therefore, it is best to employ a structure in which the electrode is bonded to the ion exchange membrane. desirable. In this case, the anode chamber is substantially a gas chamber, while the cathode chamber is in a gas-liquid mixed state. The material of the electrolytic cell varies depending on the electrolytic solution used and the gas to be generated, but from the viewpoint of durability and stability, the use of glass lining material, carbon, high corrosion resistance intermediate layer, stainless steel, PTFE resin, etc. desirable.
If it is desirable to bring the electrode and the ion exchange membrane into close contact, they may be mechanically coupled in advance or pressure may be applied during electrolysis. The pressure at this time is 0.1-30kgf / cm 2 Is preferred.
[0018]
The electrolysis conditions vary depending on the electrolyte used, but the temperature is 5 to 40 ° C. and the current density is 1 to 500 A / dm. 2 It is preferable that
When chlorine is added to the anode chamber and water electrolysis is performed, hypochlorous acid is generated in the anode chamber, and the liquidity becomes acidic and acidic water is generated by the hypochlorous acid. On the other hand, weak alkaline water is generated by ordinary water electrolysis in the cathode chamber. In the electrolysis, when the electrode material having the conductive diamond structure described above is used as the anode material, the electrode material does not elute even if the electrolysis is continued for a long period of time. Acidic water is obtained, and this acidic water is optimal as cleaning water for semiconductor devices.
When pure water is supplied to the anode chamber and electrolysis is performed, ozone is generated according to the following formula.
3H 2 0 → O Three + 6H + + 6e
[0019]
Also in the case of ozone generation, when the electrode material having the conductive diamond structure is used as the anode material, the electrode material is not mixed into the generated ozone, and very high purity ozone gas or ozone water can be obtained.
Further, in industrial electrolysis, electrolysis of an electrolytic solution containing a corrosive component such as fluorine, bromine and iodine may be required. If conventional DSE is used for electrolysis of an electrolytic solution containing such a corrosive component, there will be no problem if the electrolysis is performed for a short period of time. become unable. In contrast, since the electrode for electrolysis of the present invention uses an electrode material having a conductive diamond structure, durability in an electrolytic solution having a corrosive component is much greater than that of DSE, and long-term stability is achieved. Enables the electrolysis operation.
[0020]
Next, an insoluble substrate electrode according to the present invention and an electrolytic cell using the electrode will be illustrated based on the attached drawings.
1 is a schematic longitudinal sectional view showing an example of a two-chamber electrolytic cell using an insoluble metal electrode manufactured according to the present invention, FIG. 2 is a schematic longitudinal sectional view showing an example of a three-chamber electrolytic cell, and FIG. It is a schematic longitudinal cross-sectional view which shows an example of this 2 chamber type electrolytic cell.
In FIG. 1, a two-chamber electrolytic cell 1 is partitioned into an anode chamber 3 and a cathode chamber 4 by an ion exchange membrane 2, and an anode 5 made of an electrode material having a conductive diamond structure on the anode chamber 3 side of the ion exchange membrane 2. However, a porous cathode 6 made of, for example, a metal mesh is in close contact with the cathode chamber 4 side.
A pure water or salt solution supply port 7 and an acidic water outlet 8 are installed on the bottom and top surfaces of the anode chamber 3, and a pure water supply port 9 and an alkaline water outlet 10 are installed on the bottom and top surfaces of the cathode chamber 4, respectively. ing. In addition, 11 is a packing between the ion exchange membrane 2 and a peripheral part.
[0021]
In FIG. 2, a three-chamber electrolytic cell 21 is divided into an anode chamber 23 and an intermediate chamber 24 by a cation exchange membrane 22, and an intermediate chamber 24 and a cathode chamber 26 by a cation exchange membrane 25. An anode 27 made of an electrode material having a conductive diamond structure is in close contact with the anode chamber 23 side of the cation exchange membrane 22, and a porous cathode 28 is in close contact with the cathode chamber 26 side of the cation exchange membrane 25. .
A pure water supply port 29 and an acidic water outlet 30 are provided on the bottom and top surfaces of the anode chamber 23, and a salt solution supply port 31 and a salt solution outlet 32 such as ammonium chloride are provided on the bottom and top surfaces of the intermediate chamber 24, respectively. A pure water supply port 33 and an alkaline water outlet 34 are installed on the bottom and top surfaces of 26, respectively. Reference numeral 35 denotes a packing between the ion exchange membranes 22 and 25 and the peripheral portion.
[0022]
In FIG. 3, a two-chamber electrolytic cell 41 is divided into an anode chamber 44 and a cathode chamber 45 by an ion exchange membrane 43 installed in a small-diameter connecting portion 42, and the anode chamber 44 contains the ion exchange membrane 43. An anode 46 made of an electrode material having a conductive diamond structure is suspended and separated, and a porous cathode 47 made of, for example, a metal mesh is also suspended from the ion exchange membrane on the cathode chamber 45 side as well. Product gas outlets 48 and 49 are provided on the upper surfaces of the anode chamber 44 and the cathode chamber 45, respectively.
[0023]
1 and 2, both electrodes 5, while supplying pure water, a salt solution supply port 31 or a salt solution such as an aqueous solution of ammonium chloride or sulfuric acid from pure water or a salt solution supply port 31. When energized between 6 and 27, 28, acid water is generated in the anode chamber and alkaline water is generated in the cathode chamber, and at least in the anode chamber, the diamond is not eluted, so that it is generated without containing a metal component.
3, the anode chamber 44 and the cathode chamber 45 are filled with the electrolytic solution and energized between the electrodes 46 and 47, whereby a predetermined generated gas is generated. Also in this case, since at least one of the electrodes has an electrode material having a conductive diamond structure and the diamond does not elute, an electrolyte or gas containing no impurities can be obtained.
[0024]
【Example】
Next, although the Example of the insoluble metal electrode concerning this invention and the electrolytic cell which uses this electrode is described, this Example does not limit this invention.
[0025]
[Example 1]
Industrial synthetic diamond with a particle size of 1-5 μm is mixed with boron oxide powder, heated in a nitrogen atmosphere at 600 ° C. for 10 hours, allowed to cool, taken out, washed with water, filtered through a membrane filter to obtain diamond powder on the filter. It was. When the boron content of the diamond powder was measured by fluorescent X-rays, it was found that the diamond contained 5000 to 7000 ppm of boron.
The surface of the pure titanium plate was sufficiently roughened by grit blasting and then washed with hydrochloric acid to completely remove the blasting powder. This pure titanium plate is further placed in a muffle furnace in an air atmosphere, heated and oxidized at 650 ° C. for 3 hours, and then allowed to cool in the furnace so that the oxide on the surface does not peel off. .
[0026]
A mixed hydrochloric acid solution of titanium chloride and tantalum chloride (weight ratio of titanium and tantalum was 85:15) was prepared, and the diamond powder was suspended. This suspension was applied to the surface of the electrode substrate, dried, and then placed in a muffle furnace maintained at 530 ° C. and baked for 10 minutes. This coating-firing is repeated 10 times to obtain 10 g / m of diamond. 2 A supported electrode plate was prepared.
This electrode plate is used as an anode, nickel mesh is used as a cathode, and a 150 g / liter sulfuric acid aqueous solution is added to the anode chamber of the electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane (Nafion 117 manufactured by DuPont). It filled and electrolyzed by supplying with electricity between both electrodes. Current density is 100 A / dm 2 Met. Ozone odor was generated from the gas generated by electrolysis, and the current efficiency of ozone generation was measured by iodine titration to be 0.5 to 1%.
This current efficiency is about 1/3 that of the lead oxide electrode normally used for ozone generation, but much higher than that of the platinum electrode.
[0027]
[Example 2]
A diamond powder containing boron of about 10,000 ppm was prepared by depositing a diamond layer containing boron by a thermal CVD method at a temperature of 800 ° C. on diamond powder having a particle size of 0.2 to 2 μm.
This diamond powder was coated on a pure titanium plate using a mixed hydrochloric acid solution of titanium chloride and tantalum chloride under the same conditions as in Example 1 to produce an electrode plate. Furthermore, when this electrode plate was used as an anode and electrolysis was performed under the same conditions as in Example 1, a current density of 100 A / dm was obtained. 2 It has been found that it has a lifetime of 2000 hours to 2500 hours and can be used as a practical electrode.
[0028]
[Example 3]
An electrode plate was prepared in the same manner as in Example 1 except that an expanded mesh produced from a pure titanium plate was used as the electrode substrate. Using Nafion 117 cation exchange membrane manufactured by DuPont as the solid electrode quality, the electrode plate is closely attached to the cation exchange membrane as an anode, and a conductive carbon sheet is closely attached to the opposite side of the anode as a cathode. Assembled. Current density 30A / dm while supplying ultrapure water to the anode chamber of this electrolytic cell 2 The electrolysis was performed. As a result, acidic water having a redox potential of 1200 mV was obtained from the anode chamber.
[0029]
【The invention's effect】
In the present invention, a coating liquid obtained by suspending a fine powder of conductive diamond in a liquid containing a valve metal salt is applied to the surface of a valve metal base, and the diamond fine powder and the valve metal oxidation are formed on the base by thermal decomposition. A method for producing an insoluble metal electrode, characterized in that an object is coated as an electrode material layer.
When an electrode having an electrode material with a conductive diamond structure is used for water electrolysis or electrolysis of an electrolytic solution containing a corrosive component, the durability of the diamond eliminates electrode wear-out, that is, the electrode material is almost not eluted, and stable electrolysis operation. Can be continued for a long period of time, and further, the elution of the electrode material is eliminated, so that the anolyte, the catholyte and the product gas obtained by the electrolysis operation are not mixed with impurities due to the elution of the electrode material. A highly pure electrolyte or product gas is obtained.
[0030]
The electrolytic solution produced using the insoluble metal electrode produced according to the present invention, particularly the anolyte, satisfies various requirements required for cleaning water that is particularly required to keep the impurity content level of semiconductor devices and the like extremely low. And can be used efficiently as the cleaning water. In many cases, it is necessary to produce a large amount of the washing water, etc., and it has been difficult to produce a large electrode by the method of supporting conductive diamond on the electrode substrate by the conventional CVD method. I couldn't. However, since the method of the present invention is a method in which a suspension containing conductive diamond is applied to the electrode substrate and the diamond is supported on the electrode substrate by thermal decomposition, it can be easily and uniformly applied to an electrode substrate of any shape and size. In addition, a large electrode can be manufactured with a relatively small device by coating an electrode material layer containing conductive diamond on the electrode substrate, and a significant cost reduction can be achieved.
[0031]
In addition, in the present invention, since the material of the electrode base and the material of the electrode material layer have a common component called a valve metal, the electrode material layer adheres strongly to the electrode substrate and can withstand long-term use.
In the method of the present invention, unlike the strict conditions by the CVD method, the present invention has almost no condition restrictions, and the production of diamond as a raw material and the timing of doping impurities such as boron can be performed almost arbitrarily. Furthermore, since the raw diamond and electrode can be produced separately, each production can be carried out under different optimum conditions.
The electrode produced by the method of the present invention can be used as the anode or cathode of a two-chamber or three-chamber electrolytic cell. This electrolytic cell is preferably used for the production of acidic water and alkaline water, and since at least one of the anode and the cathode used in the electrolytic cell has the electrode material having the conductive diamond structure described above, it is stable. Electrolysis can be continued for a long period of time, and an electrolytic solution and a generated gas free from impurities due to elution of the electrode material can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing an example of a two-chamber electrolytic cell using an insoluble metal electrode manufactured according to the present invention.
FIG. 2 is a schematic longitudinal sectional view showing an example of a three-chamber electrolytic cell.
FIG. 3 is a schematic longitudinal sectional view showing another example of a two-chamber electrolytic cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell 2 ... Ion exchange membrane 3 ... Anode chamber 4 ... Cathode chamber
5 ... Anode 6 ... Cathode 21 ... Electrolysis cell 22 ... Ion exchange membrane 23 ... Anode chamber 24 ... Intermediate chamber 25 ... Ion exchange membrane 26 ... Cathode chamber 27 ..Anode 28 ... Cathode 41 ... Electrolytic cell 43 ... Ion exchange membrane 44 ... Anode chamber
45 ... Cathode chamber 46 ... Anode 47 ... Cathode

Claims (5)

導電性を有するダイアモンドの微粉末を弁金属塩を含む液中に懸濁した塗布液を、弁金属基体表面に塗布し熱分解により該基体表面に前記ダイアモンド微粉末と弁金属酸化物を電極物質層として被覆することを特徴とする不溶性金属電極の製造方法。A coating liquid obtained by suspending a conductive diamond fine powder in a liquid containing a valve metal salt is applied to the surface of the valve metal base, and the diamond fine powder and the valve metal oxide are applied to the surface of the base by pyrolysis. A method for producing an insoluble metal electrode, comprising coating as a layer. 硼素、リン、グラファイト及び無定形酸化珪素から選択される不純物を添加してダイアモンドに導電性を付与するようにした請求項1に記載の方法。The method of claim 1, wherein an impurity selected from boron, phosphorus, graphite and amorphous silicon oxide is added to impart conductivity to the diamond. 不純物が硼素でありダイアモンド微粉末を酸化硼素中で加熱処理して硼素をダイアモンド中に拡散して導電性ダイアモンドとした請求項1に記載の方法。The method according to claim 1, wherein the impurity is boron, and the fine diamond powder is heat-treated in boron oxide to diffuse the boron into the diamond to form conductive diamond. 導電性を有するダイアモンドを熱化学蒸着法により製造した請求項1に記載の方法。The method according to claim 1, wherein the conductive diamond is produced by a thermal chemical vapor deposition method. イオン交換膜で区画された陽極室及び陰極室の2室、又は陽極室、中間室及び陰極室の3室を有する電解槽において、前記陽極室に収容される陽極及び前記陰極室に収容される陰極の少なくとも一方が、弁金属から成る電極基体、及び該電極基体表面に導電性を有するダイアモンドの微粉末を弁金属塩を含む液中に懸濁した塗布液を塗布し熱分解により該基体表面に前記ダイアモンド微粉末と弁基体酸化物を電極物質層として被覆した電極であることを特徴とする電解槽。In an electrolytic cell having two chambers, an anode chamber and a cathode chamber, which are partitioned by an ion exchange membrane, or three chambers, an anode chamber, an intermediate chamber, and a cathode chamber, the anode is accommodated in the anode chamber and the cathode chamber. An electrode substrate in which at least one of the cathodes is made of a valve metal, and a coating solution in which fine powder of conductive diamond is suspended in a solution containing a valve metal salt is applied to the surface of the electrode substrate, and the surface of the substrate is subjected to thermal decomposition. And an electrode coated with the diamond fine powder and the valve base oxide as an electrode material layer.
JP09077498A 1998-03-18 1998-03-18 Method for producing insoluble metal electrode and electrolytic cell using the electrode Expired - Fee Related JP4157615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09077498A JP4157615B2 (en) 1998-03-18 1998-03-18 Method for producing insoluble metal electrode and electrolytic cell using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09077498A JP4157615B2 (en) 1998-03-18 1998-03-18 Method for producing insoluble metal electrode and electrolytic cell using the electrode

Publications (2)

Publication Number Publication Date
JPH11269685A JPH11269685A (en) 1999-10-05
JP4157615B2 true JP4157615B2 (en) 2008-10-01

Family

ID=14007961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09077498A Expired - Fee Related JP4157615B2 (en) 1998-03-18 1998-03-18 Method for producing insoluble metal electrode and electrolytic cell using the electrode

Country Status (1)

Country Link
JP (1) JP4157615B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8591856B2 (en) * 1998-05-15 2013-11-26 SCIO Diamond Technology Corporation Single crystal diamond electrochemical electrode
US6582513B1 (en) 1998-05-15 2003-06-24 Apollo Diamond, Inc. System and method for producing synthetic diamond
DE19948184C2 (en) * 1999-10-06 2001-08-09 Fraunhofer Ges Forschung Electrochemical production of peroxodisulfuric acid using diamond coated electrodes
DE10019683A1 (en) * 2000-04-20 2001-10-25 Degussa Process for the preparation of alkali metal and ammonium peroxodisulfate
KR100439946B1 (en) * 2001-12-24 2004-07-12 박수길 Electrochemical Ozone Generator using Boron-doped Conducting diamond electrode
JP4581998B2 (en) * 2003-05-26 2010-11-17 住友電気工業株式会社 Diamond-coated electrode and manufacturing method thereof
EP1489200A1 (en) * 2003-06-19 2004-12-22 Akzo Nobel N.V. Electrode
JP2005054264A (en) * 2003-08-07 2005-03-03 Ebara Corp Method of depositing film on diamond electrode
DE102004025669A1 (en) * 2004-05-21 2005-12-15 Diaccon Gmbh Functional CVD diamond layers on large area substrates
JP4535822B2 (en) 2004-09-28 2010-09-01 ペルメレック電極株式会社 Conductive diamond electrode and manufacturing method thereof
JP3893397B2 (en) 2005-03-14 2007-03-14 ペルメレック電極株式会社 Anode for electrolysis and method for electrolytic synthesis of fluorine-containing material using the anode for electrolysis
TWI439571B (en) 2007-01-15 2014-06-01 Shibaura Mechatronics Corp Sulfuric acid electrolysis device, electrolysis method and substrate processing device
JP2008266718A (en) * 2007-04-19 2008-11-06 Kobe Steel Ltd Ozone water generating apparatus
JP2010018849A (en) 2008-07-10 2010-01-28 Permelec Electrode Ltd Method of electrolytically synthesizing nitrogen trifluoride
JP5359466B2 (en) * 2009-03-31 2013-12-04 ダイキン工業株式会社 Oxidative precipitation method of iodine
JP5324501B2 (en) 2010-03-09 2013-10-23 国立大学法人信州大学 Electrochemical electrode and method for producing the same
WO2013069711A1 (en) 2011-11-09 2013-05-16 Shinshu University Electrode for electrochemistry and manufacturing method for the same
DE102016202202B4 (en) * 2016-02-12 2017-12-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for expanding graphite into graphene

Also Published As

Publication number Publication date
JPH11269685A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP4157615B2 (en) Method for producing insoluble metal electrode and electrolytic cell using the electrode
US5900127A (en) Electrode for electrolysis and electrolytic cell using the electrode
EP0949205B1 (en) Use of an anode having an electroconductive diamond structure for producing acidic water containing dissolved hydrogen peroxide
JPH09268395A (en) Electrode for electrolysis and electrolytic cell using this electrode
JP2001192874A (en) Method for preparing persulfuric acid-dissolving water
JP4535822B2 (en) Conductive diamond electrode and manufacturing method thereof
JP4808551B2 (en) Method for producing persulfuric acid
KR20060100219A (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
US4316782A (en) Electrolytic process for the production of ozone
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
US7001494B2 (en) Electrolytic cell and electrodes for use in electrochemical processes
KR101286426B1 (en) Sulfuric acid electrolysis process
Arihara et al. Application of freestanding perforated diamond electrodes for efficient ozone-water production
JP2007197740A (en) Electrolytic cell for synthesizing perchloric acid compound and electrolytic synthesis method
CN101624708B (en) Method of electrolytically synthesizing nitrogen trifluoride
JPH10137763A (en) Electrolytic ionic water forming device and semiconductor producing device
KR20140013326A (en) Metal oxide electrode for water electrolysis and manufacturing method thereof
JP5105406B2 (en) Electrode for reverse electrolysis
US20150167183A1 (en) Undivided electrolytic cell and use thereof
JPS6022069B2 (en) sintered anode
US3689383A (en) Method of coating an electrode
JP3673000B2 (en) Electrolyzer for electrolyzed water production
JP2006322056A (en) Electrode for electrolysis and manufacturing method therefor
JP3724096B2 (en) Oxygen generating electrode and manufacturing method thereof
JP2004099914A (en) Method for producing peroxodisulfate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees