JP5105406B2 - Electrode for reverse electrolysis - Google Patents

Electrode for reverse electrolysis Download PDF

Info

Publication number
JP5105406B2
JP5105406B2 JP2007047364A JP2007047364A JP5105406B2 JP 5105406 B2 JP5105406 B2 JP 5105406B2 JP 2007047364 A JP2007047364 A JP 2007047364A JP 2007047364 A JP2007047364 A JP 2007047364A JP 5105406 B2 JP5105406 B2 JP 5105406B2
Authority
JP
Japan
Prior art keywords
electrode
platinum
iridium oxide
water
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007047364A
Other languages
Japanese (ja)
Other versions
JP2008208434A (en
Inventor
正嗣 盛満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha
Original Assignee
Doshisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha filed Critical Doshisha
Priority to JP2007047364A priority Critical patent/JP5105406B2/en
Publication of JP2008208434A publication Critical patent/JP2008208434A/en
Application granted granted Critical
Publication of JP5105406B2 publication Critical patent/JP5105406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Chemically Coating (AREA)

Description

本発明は、導電性基体上に酸化イリジウムと白金の混合物からなる触媒層を形成した電極、特にその用途において極性を反転する逆電解に用いられる電極に関する。   The present invention relates to an electrode in which a catalyst layer made of a mixture of iridium oxide and platinum is formed on a conductive substrate, and more particularly to an electrode used for reverse electrolysis that reverses polarity in its use.

水道水や低濃度の食塩水、またはこれらにpH調整剤や乳酸カルシウムなどを添加した水溶液を用い、少なくとも2枚の電極間に直流電流もしくは周期的な極性反転を伴う矩形波などの電流を印加する電解処理によって、一般に電解水として知られている水溶液が得られる。電解水は、そのpHによって強酸性水、酸性電解水、微酸性電解水、強アルカリ性電解水のように分類され、またpHだけでなく電解水に含まれる成分・効能・用途などによってはアルカリイオン水、酸性イオン水、電解次亜水(電解次亜塩素酸ナトリウム水または電解次亜塩素酸水)のような区分もなされている。   Using tap water, low-concentration saline, or an aqueous solution with a pH adjuster or calcium lactate added to them, a direct current or a rectangular wave with periodic polarity inversion is applied between at least two electrodes. By the electrolytic treatment, an aqueous solution generally known as electrolyzed water is obtained. Electrolyzed water is classified as strongly acidic water, acidic electrolyzed water, slightly acidic electrolyzed water, or strongly alkaline electrolyzed water depending on its pH, and depending on the components, effects, and applications contained in the electrolyzed water, not only pH but also alkaline ions Classifications such as water, acidic ionized water, electrolytic hypochlorite (electrolytic sodium hypochlorite water or electrolytic hypochlorite water) are also made.

また、このような電解水の利用法として、特許文献1には、導入された空気を加湿する加湿器と、この加湿器に加湿用水を供給する水供給配管とを備えるとともに、この水供給配管は、水道水を電気分解して、次亜塩素酸を含む除菌用水を生成する少なくとも一対の電極を備え、加湿器は、空気の非導入時に、当該加湿器に除菌用水を一時的に保持する構成とする除菌装置が開示されており、装置において生成する次亜塩素酸を含む電解水によって、加湿エレメントおよび加湿器内での雑菌の繁殖や、それによる菌、臭い、カビ等が送風空気とともに吹き出されることを抑制するようになっている。   In addition, as a method of using such electrolyzed water, Patent Document 1 includes a humidifier that humidifies the introduced air and a water supply pipe that supplies humidification water to the humidifier. Comprises at least a pair of electrodes for electrolyzing tap water to produce sterilizing water containing hypochlorous acid, and the humidifier temporarily supplies the sterilizing water to the humidifier when air is not introduced. A sterilization apparatus configured to hold is disclosed, and electrolysis water containing hypochlorous acid generated in the apparatus causes propagation of miscellaneous bacteria in the humidification element and the humidifier, resulting in bacteria, odors, molds, etc. Blowing out with the blown air is suppressed.

このように電解水の性状・効能・用途などは様々であるが、いずれの場合にも電解水の製造には少なくとも2枚以上の電極を使用する。3枚以上の電極を使用する場合には、複数対の電極を直列または並列に接続したり、電源に接続された一対の電極の間に電源とは接続されていない電極を配置して、これをバイポーラ電極として使用する場合がある。さらに、陽極と陰極を隔膜で分離してそれぞれの電極付近で生じる電解水を別々に採取する場合、別々に採取した後で混合する場合、もしくはそのような隔膜を用いずに陽極付近と陰極付近のそれぞれで生成する電解水が混合され、その後に採取される場合もある。また、特許文献2に開示されているように、水道などの給水設備に接続され、流水状態で電解を行い、酸性水やアルカリ水などを製造する流水式の場合と、給水設備に接続しない簡易な低コスト構造で水を滞留状態で電解するバッチ式のような区別もある。このように電解水を製造する装置の構成は、目的とする電解水の性状や供給必要量などに応じて異なっている。   As described above, there are various properties, effects, applications, etc. of the electrolyzed water. In any case, at least two or more electrodes are used for producing electrolyzed water. When three or more electrodes are used, a plurality of pairs of electrodes are connected in series or in parallel, or an electrode not connected to the power source is arranged between a pair of electrodes connected to the power source. May be used as a bipolar electrode. In addition, when separating the anode and cathode with a diaphragm and collecting the electrolyzed water generated near each electrode separately, when collecting separately after mixing, or without using such a diaphragm, near the anode and the cathode In some cases, the electrolyzed water produced in each of these is mixed and then collected. In addition, as disclosed in Patent Document 2, it is connected to a water supply facility such as a water supply, electrolyzed in a flowing water state, and in the case of a flowing water type that produces acid water, alkaline water, or the like, and a simple connection that does not connect to the water supply facility. There is also a distinction such as a batch type in which water is electrolyzed in a residence state with a low-cost structure. Thus, the structure of the apparatus which manufactures electrolyzed water changes according to the property of the target electrolyzed water, supply required amount, etc.

しかし、電解水の製造に用いられる電極のほとんどは、チタン材を基体としてその上に陽極または陰極での電気化学反応に活性な触媒層を形成したもので、このような電極としては例えばチタン板上に白金を電気めっきしたものがある。その他にも、特許文献3には白金めっき電極とともに、白金イリジウム焼成電極やルテニウム系電極などが紹介されており、使用する水溶液の温度によって電極の消耗速度が異なることが知られている。   However, most of the electrodes used for the production of electrolyzed water have a titanium material as a base and a catalyst layer that is active for an electrochemical reaction at the anode or cathode is formed thereon. There is an electroplated platinum on top. In addition, Patent Document 3 introduces a platinum iridium fired electrode, a ruthenium-based electrode, and the like together with a platinum plating electrode, and it is known that the consumption rate of the electrode varies depending on the temperature of the aqueous solution used.

上記のようなチタン材と白金族金属から構成される電極が用いられる理由は、水溶液の電解において陽極の主反応である酸素発生と陰極の主反応である水素発生に対して、チタンおよび白金族金属がほとんど溶解しない不溶性の性質を有するためであり、特に飲用であるアルカリイオン水や食品・厨房などの除菌・洗浄に用いられる電解次亜水を製造する装置においては、電極材料が電解水に溶出することが大きな問題となるため、このような電極が多用されている。   The reason why an electrode composed of a titanium material and a platinum group metal as described above is used is that titanium and platinum groups are used for oxygen generation, which is a main reaction of an anode, and hydrogen generation, which is a main reaction of a cathode, in electrolysis of an aqueous solution. This is because the metal has an insoluble property that hardly dissolves. In particular, in an apparatus for producing alkaline ionized water used for drinking, or electrolytic hyponitrous acid used for sterilization and washing of foods and kitchens, the electrode material is electrolyzed water. Such elec- trode is often used because it is a big problem to elute in the lysate.

特に、触媒層に用いられる白金族金属の中でも、白金は不溶性だけでなく、酸素発生や水素発生の両方に対して良好な触媒活性を有している。酸素発生だけを取り上げれば、白金よりも酸化イリジウム(IrO)のほうがさらに触媒活性に優れており、電解水の製造において、使用する電極を常に陽極または陰極に固定する場合、すなわち極性反転を伴わないような場合には、陽極には酸化イリジウムまたは酸化イリジウムと酸化タンタルの混合物を触媒層として、陰極には白金を触媒層としてチタン板上に形成した電極が好適である。 In particular, among platinum group metals used in the catalyst layer, platinum is not only insoluble, but also has good catalytic activity for both oxygen generation and hydrogen generation. If only oxygen generation is taken up, iridium oxide (IrO 2 ) has better catalytic activity than platinum, and in the production of electrolyzed water, the electrode used is always fixed to the anode or cathode, that is, with polarity reversal. In such a case, an electrode formed on a titanium plate with iridium oxide or a mixture of iridium oxide and tantalum oxide as a catalyst layer for the anode and platinum as a catalyst layer for the cathode is suitable.

しかし、電解水の製造においては、周期的または間欠的な極性反転を伴う電解方法が多く用いられる。その理由は、電解される水溶液中に含まれるアルカリ土類金属、特にカルシウムイオンが、電解により陰極で水素発生してpHが上昇すると、電極上や電解装置が隔膜を有する場合には隔膜上に、炭酸塩や水酸化物などとして析出するためである。これによって、陰極上では通電がしにくくなり、かつ電解電圧を上昇させるため電極の交換が必要になることや、陰極近傍または隔膜における水流を閉塞・停滞させることによって、電解装置に対して余分なメンテナンスが必要になるといった望ましくない影響を与える。そこで、極性反転によってそれまで陰極であった電極を陽極として通電することにより、pHの低下を促し、電極上に析出した炭酸塩や水酸化物などを再溶解させる方法がとられている。特許文献4には、このような逆電解の際に、陰陽極水の吐水方向を逆転させ、常時所定の吐水管から陰陽極水を吐水する同時に、電解槽の給水用入口、処理水出口を入り換える機能を備えた電解水生成装置が開示されている。   However, in the production of electrolyzed water, an electrolysis method with periodic or intermittent polarity reversal is often used. The reason is that when alkaline earth metals, especially calcium ions, contained in the aqueous solution to be electrolyzed generate hydrogen at the cathode by electrolysis and the pH rises, the electrode or the electrolysis apparatus has a diaphragm on the diaphragm. This is because it precipitates as carbonates or hydroxides. This makes it difficult to energize on the cathode, and it is necessary to replace the electrode in order to increase the electrolysis voltage, and it obstructs the electrolysis apparatus by blocking or stagnating the water flow in the vicinity of the cathode or in the diaphragm. Undesirable effects that require maintenance. In view of this, a method is adopted in which, by reversing the polarity, an electrode that has been a cathode until then is energized as an anode to promote a decrease in pH and to re-dissolve carbonates and hydroxides deposited on the electrode. In Patent Document 4, during such reverse electrolysis, the discharge direction of negative anodized water is reversed and the negative anodized water is constantly discharged from a predetermined water discharge pipe. An electrolyzed water generating device having a function of replacing is disclosed.

すなわち、極性反転を伴う電解方法、いわゆる逆電解によって電解水を製造する場合には、使用する電極は陽極または陰極のいずれかに固定されるのではなく、極性反転によって陽極にも陰極にもなりえる。したがって、逆電解を伴う通電での電解水の製造においては、使用する電極は陽極反応の主となる酸素発生と、陰極反応の主となる水素発生のいずれに対しても触媒活性が高く、かつ不溶性であり、高い耐久性を有することが望まれる。
特開2007−10201号公報 特開2003−205288号公報 特開2006−15220号公報 特開2006−212607号公報
That is, in the case of producing electrolyzed water by an electrolysis method with polarity reversal, so-called reverse electrolysis, the electrode to be used is not fixed to either the anode or the cathode, but becomes both the anode and the cathode by polarity reversal. Yeah. Therefore, in the production of electrolyzed water with energization accompanied by reverse electrolysis, the electrode used has high catalytic activity for both oxygen generation, which is the main reaction of the anode reaction, and hydrogen generation, which is the main reaction of the cathode reaction, It is desired to be insoluble and have high durability.
JP 2007-10201 A JP 2003-205288 A JP 2006-15220 A JP 2006-212607 A

逆電解を伴う通電方法によって電解水を製造する場合、酸素発生・水素発生の両方に対して触媒性・不溶性・耐久性の面で優れることが望まれる。このような条件に比較的良い特性をする電極として、チタン基体上に熱分解法によって白金と酸化イリジウムの混合物からなる触媒層を形成した電極(以下、Pt−IrO/Ti電極)が知られている。この電極では、一般に、触媒層の主成分は白金であり、これに酸化イリジウムが混合されることで、酸素発生に対する触媒性を白金単独よりも高めることが意図されている。一方、酸化イリジウムは水素発生に対する触媒性は低いが、その混合比率を白金より小さくすることによって、白金単体に比べて水素発生に対する触媒性が大きく低下することを抑制する目的がある。 When electrolyzed water is produced by an energization method involving reverse electrolysis, it is desirable that the catalyst water, insolubility, and durability be excellent for both oxygen generation and hydrogen generation. As an electrode having relatively good characteristics under such conditions, an electrode (hereinafter referred to as a Pt—IrO 2 / Ti electrode) in which a catalyst layer made of a mixture of platinum and iridium oxide is formed on a titanium substrate by a thermal decomposition method is known. ing. In this electrode, generally, the main component of the catalyst layer is platinum, and by mixing iridium oxide with this, it is intended that the catalytic property for oxygen generation is higher than that of platinum alone. On the other hand, iridium oxide has a low catalytic property for hydrogen generation, but by reducing the mixing ratio thereof compared to platinum, there is an object of suppressing a significant decrease in catalytic property for hydrogen generation as compared with platinum alone.

しかしながら、本来酸化イリジウムが有する酸素発生への高い触媒性も、Pt−IrO/Ti電極では十分に発揮されず、結局は酸化イリジウムを混合したことによる効果よりも、主成分である白金の触媒性によって酸素発生電位が決まるという影響が大きかった。したがって、水の電解の理論電圧は1.23Vであるが、水素発生に比べて酸素発生に対する過電圧が大きいために、理論電圧に比べて実際の電解電圧は大きく、電解電圧を低くすることができないという課題があった。特に、電解水を小さな電極面積で効率よく製造するという要望を満たすために電流密度を大きくすると、酸素過電圧による電解電圧の上昇が著しく、印加する電流密度を大きくできない、または電極面積を小さくすることが困難であるといった課題があった。さらに、酸化イリジウム単体は白金単体に比べて、水素発生によって電極近傍のpHが低下した場合の消耗速度が大きいことから、逆電解を行うと酸化イリジウムが先に消耗して触媒層全体の劣化と電解される水溶液の触媒層中への浸透を促し、ひいては白金と酸化イリジウムの混合物である触媒層の剥離や脱落を生じるために、逆電解に対する耐久性を向上させる必要があるという課題があった。 However, the high catalytic property of oxygen generation inherent in iridium oxide is not sufficiently exhibited by the Pt—IrO 2 / Ti electrode, and eventually the platinum catalyst as the main component rather than the effect of mixing iridium oxide. The influence of the oxygen generation potential on the sex was great. Therefore, although the theoretical voltage for electrolysis of water is 1.23 V, since the overvoltage for oxygen generation is larger than that for hydrogen generation, the actual electrolysis voltage is larger than the theoretical voltage, and the electrolysis voltage cannot be lowered. There was a problem. In particular, if the current density is increased to meet the demand for efficient production of electrolyzed water with a small electrode area, the electrolysis voltage will increase significantly due to oxygen overvoltage, and the applied current density cannot be increased, or the electrode area must be reduced. There was a problem that it was difficult. Furthermore, iridium oxide alone has a higher consumption rate when the pH in the vicinity of the electrode is lowered due to hydrogen generation than platinum alone, so that when reverse electrolysis is performed, iridium oxide is consumed first and the entire catalyst layer is deteriorated. In order to promote the penetration of the aqueous solution to be electrolyzed into the catalyst layer and eventually cause the catalyst layer, which is a mixture of platinum and iridium oxide, to peel off or fall off, there is a problem that it is necessary to improve the durability against reverse electrolysis. .

上記の課題に対して、本発明は、水道水や低濃度の食塩水、またはこれらにpH調整剤や乳酸カルシウムなどを添加した水溶液を用いて電解水を製造することを目的とし、少なくとも2枚の電極を利用してその水溶液を電解し、かつ電極の極性を切り替えて使用する逆電解を行うための電極において、酸素発生に対する過電圧を低減し、電解電圧を低くすることが可能な逆電解用電極の提供を目的とし、かつ繰り返し行われる逆電解に対して正負いずれの極性に対しても耐久性に優れる逆電解用電極を提供することを目的とする。   In view of the above problems, the present invention aims to produce electrolyzed water using tap water, low-concentration saline, or an aqueous solution in which a pH adjuster, calcium lactate, or the like is added to at least two sheets. For reverse electrolysis that can reduce the overvoltage against oxygen generation and lower the electrolysis voltage in the electrode for performing electrolysis of the aqueous solution using the electrode of the electrode and performing reverse electrolysis by switching the polarity of the electrode An object of the present invention is to provide an electrode for reverse electrolysis that is excellent in durability for both positive and negative polarities with respect to reverse electrolysis that is repeatedly performed.

本発明者は、上記課題に対して、導電性基体と白金族金属などからなる触媒層で構成される逆電解用電極の開発を行い、触媒層の構成材料、製造方法、製造条件の検討とともに、得られた逆電解用電極の水溶液中における電気化学的特性の評価と、この逆電解用電極の周期的な極性反転を伴う連続電解試験における耐久性評価に対して、様々な研究を行った結果より得られた知見に基づいて本発明をなすに至った。   The present inventor has developed an electrode for reverse electrolysis composed of a conductive base and a catalyst layer made of a platinum group metal, etc., and studied the constituent material, manufacturing method, and manufacturing conditions of the catalyst layer. Various studies were conducted to evaluate the electrochemical properties of the obtained electrode for reverse electrolysis in an aqueous solution and to evaluate the durability of the electrode for reverse electrolysis in a continuous electrolysis test with periodic polarity reversal. Based on the knowledge obtained from the results, the present invention has been made.

すなわち、本発明は、酸化イリジウムと白金との混合物からなる触媒層を導電性基体上に形成した逆電解用電極であって、酸化イリジウムが非晶質である逆電解用電極である。ここで、導電性基体とは、チタン、タンタル、ジルコニウム、ニオブ等のバルブ金属やチタン−タンタル、チタン−ニオブ、チタン−パラジウム、チタン−タンタル−ニオブ等のバルブ金属を主体とする合金または導電性ダイヤモンド(例えば、ホウ素をドープしたダイヤモンド)が好適であり、特にチタンが好適である。その形状は板状、網状、棒状、多孔板状などの種々の形状を取りえる。また、上記の金属、合金、導電性ダイヤモンドを鉄、ニッケルなどのバルブ金属以外の金属または導電性セラミックス表面に被覆させたものでもよい。   That is, the present invention is a reverse electrolysis electrode in which a catalyst layer made of a mixture of iridium oxide and platinum is formed on a conductive substrate, and the iridium oxide is amorphous. Here, the conductive substrate is a valve metal such as titanium, tantalum, zirconium, or niobium, or an alloy or conductive material mainly composed of a valve metal such as titanium-tantalum, titanium-niobium, titanium-palladium, or titanium-tantalum-niobium. Diamond (for example, diamond doped with boron) is preferable, and titanium is particularly preferable. The shape can take various shapes such as a plate shape, a net shape, a rod shape, and a porous plate shape. Further, the above metal, alloy, or conductive diamond may be coated on the surface of a metal other than valve metal such as iron or nickel, or a conductive ceramic.

導電性基体上に白金と非晶質の酸化イリジウムとの混合物からなる触媒層を形成する方法には、例えば水またはブタノールなどの有機溶媒に、塩化イリジウム酸や塩化白金酸を溶解して白金イオンおよびイリジウムイオンを含む塗布液を調製し、これを導電性基体上に塗布した後、所定の温度で熱分解する、いわゆる熱分解法がある。このとき、白金イオンやイリジウムイオンの供給源となる化合物の溶解を促進させるために、水または有機溶媒に塩酸などの酸を添加してもよい。また、白金イオンやイリジウムイオンの供給源の化合物については、塩化イリジウム酸や塩化白金酸以外にも、例えば塩化イリジウムや塩化白金などを含むその他の化合物でもよく、さらにイリジウムイオンの供給源となる化合物中のイリジウムの酸化状態は4価だけでなく、3価であってもよい。   In order to form a catalyst layer made of a mixture of platinum and amorphous iridium oxide on a conductive substrate, for example, iridium acid chloride or chloroplatinic acid is dissolved in an organic solvent such as water or butanol to remove platinum ions. There is a so-called pyrolysis method in which a coating solution containing iridium ions and iridium ions is prepared, coated on a conductive substrate, and then thermally decomposed at a predetermined temperature. At this time, an acid such as hydrochloric acid may be added to water or an organic solvent in order to promote dissolution of a compound serving as a supply source of platinum ions and iridium ions. In addition to the iridium acid chloride and chloroplatinic acid, other compounds including iridium chloride and platinum chloride may be used as the source compound for the platinum ion and iridium ion, and the iridium ion supply source compound. The oxidation state of iridium therein may be not only tetravalent but also trivalent.

熱分解法では、非晶質の酸化イリジウムを得るために、塗布液に使用する溶媒に応じて熱分解時の温度を制御する必要がある。例えば、水を溶媒として塩化イリジウム酸と塩化白金酸を各金属イオンの供給源とした塗布液をチタン板上に塗布・熱分解する場合、熱分解温度が500℃ではチタン板上に形成される触媒層において、白金も酸化イリジウムも結晶質である。これを熱分解温度380℃として行うと、白金は結晶質であるが、酸化イリジウムは非晶質となる。もちろん、白金と非晶質の酸化イリジウムからなる混合物を触媒層として形成する条件はこれらに限定されるものではない。すなわち、熱分解法では、使用する塗布液を調製する際の溶媒の種類、溶媒への添加物の種類や添加量、塗布液中の白金イオンとイリジウムイオンの供給源となる化合物の種類などに応じて、白金と酸化イリジウムがそれぞれ形成される最低温度が異なり、かつ熱分解温度によって白金の結晶構造、酸化イリジウムの結晶構造がそれぞれ変化するが、非晶質から結晶質へと変化する温度は白金と酸化イリジウムで異なる。塗布液の組成などに依存するが、多くの場合、白金は比較的低い温度でも結晶質となり、酸化イリジウムは高い温度では結晶質で、上記の最低温度以上において温度が低くなると非晶質になりやすい。このような構造変化を生じる温度の違いを利用して、一定温度での熱分解によって結晶質の白金と非晶質の酸化イリジウムからなる触媒層を形成することができる。なお、得られる混合物層中で酸化イリジウムが非晶質であるかどうかについては、一般的に用いられるX線回折法によって、酸化イリジウムに対応する回折ピークが観察されないか、またはブロード化することによって知ることができる。   In the thermal decomposition method, in order to obtain amorphous iridium oxide, it is necessary to control the temperature at the time of thermal decomposition according to the solvent used in the coating solution. For example, when applying and thermally decomposing a coating solution on a titanium plate with water as a solvent and using iridium chloroacid and chloroplatinic acid as a source of each metal ion, it is formed on the titanium plate at a thermal decomposition temperature of 500 ° C. In the catalyst layer, both platinum and iridium oxide are crystalline. When this is carried out at a thermal decomposition temperature of 380 ° C., platinum is crystalline, but iridium oxide becomes amorphous. Of course, the conditions for forming a mixture of platinum and amorphous iridium oxide as a catalyst layer are not limited to these. In other words, in the pyrolysis method, the type of solvent used in preparing the coating solution to be used, the type and amount of additives added to the solvent, the type of compound serving as a source of platinum ions and iridium ions in the coating solution, etc. Accordingly, the minimum temperature at which platinum and iridium oxide are formed is different, and the crystal structure of platinum and the crystal structure of iridium oxide change depending on the thermal decomposition temperature, but the temperature at which the crystal changes from amorphous to crystalline is different. Different for platinum and iridium oxide. Depending on the composition of the coating solution, platinum is often crystalline even at relatively low temperatures, and iridium oxide is crystalline at high temperatures, and becomes amorphous when the temperature is lowered above the minimum temperature. Cheap. By utilizing the difference in temperature that causes such a structural change, a catalyst layer composed of crystalline platinum and amorphous iridium oxide can be formed by thermal decomposition at a constant temperature. Whether or not iridium oxide is amorphous in the obtained mixture layer is determined by the fact that a diffraction peak corresponding to iridium oxide is not observed or broadened by a commonly used X-ray diffraction method. I can know.

さらに、上記のような熱分解法以外にも、例えば一般的に知られたスパッタリング法やCVD法など各種の物理蒸着法、化学蒸着法を用いて、白金、酸化イリジウムをターゲットとするか、もしくは白金および酸化イリジウムの供給源となる化合物を蒸着装置内に導入して反応させる方法によって、白金と非晶質の酸化イリジウムからなる混合物を触媒層として導電性基体上に形成することも可能である。この場合、酸化イリジウムの結晶化を抑制する温度、成長速度、供給源などの選択が必要である。   Furthermore, in addition to the above thermal decomposition methods, for example, various physical vapor deposition methods such as generally known sputtering methods and CVD methods, chemical vapor deposition methods are used, and platinum or iridium oxide is targeted, or It is also possible to form a mixture of platinum and amorphous iridium oxide as a catalyst layer on a conductive substrate by introducing and reacting a compound serving as a supply source of platinum and iridium oxide into a vapor deposition apparatus. . In this case, it is necessary to select a temperature, a growth rate, a supply source, and the like that suppress crystallization of iridium oxide.

上記のような方法によって導電性基体上に白金と非晶質の酸化イリジウムの混合物からなる触媒層を形成した逆電解用電極では、触媒層における非晶質の酸化イリジウムが結晶質の酸化イリジウムに比較して、有効表面積および交換電流密度の点で酸素発生触媒能が高いことから、酸素発生過電圧を低減することができるという作用を有する。したがって、同じ量の触媒層が形成されている場合に、酸化イリジウムが結晶質である場合に比べて非晶質である場合には、同じ幾何学的な電極面積でも酸素発生がより促進されることになり、白金と酸化イリジウムの混合比や形成されている触媒層の重量または幾何学的面積が同じであっても、本発明の逆電解用電極を利用すれば、極性反転を行う電解での電解水の製造において極性に関わらず常に電解電圧を下げることが可能となる。   In the electrode for reverse electrolysis in which a catalyst layer made of a mixture of platinum and amorphous iridium oxide is formed on a conductive substrate by the above method, the amorphous iridium oxide in the catalyst layer is converted into crystalline iridium oxide. In comparison, since the oxygen generation catalytic ability is high in terms of the effective surface area and the exchange current density, the oxygen generation overvoltage can be reduced. Therefore, when the same amount of catalyst layer is formed, oxygen generation is further promoted even with the same geometric electrode area if the iridium oxide is amorphous compared to the crystalline case. Therefore, even if the mixing ratio of platinum and iridium oxide and the weight or geometric area of the formed catalyst layer are the same, if the reverse electrolysis electrode of the present invention is used, the polarity reversal can be performed. In the production of electrolyzed water, the electrolysis voltage can always be lowered regardless of the polarity.

なお、本発明の逆電解用電極において、触媒層中の白金と酸化イリジウムの混合比は、白金が50〜95モル%、特に80〜90モル%が好適である。白金が50モル%よりも少なくなると水素発生に対する過電圧が急激に大きくなる傾向があり、また95モル%よりも大きくなると酸化イリジウムによる酸素発生への触媒効果がほとんど現れなくなるので好ましくない。また、逆電解に対する耐久性の点も含めて考えれば、80〜90モル%が好適である。   In the reverse electrolysis electrode of the present invention, the mixing ratio of platinum and iridium oxide in the catalyst layer is preferably 50 to 95 mol%, particularly 80 to 90 mol%. If platinum is less than 50 mol%, the overvoltage for hydrogen generation tends to increase rapidly, and if it exceeds 95 mol%, the catalytic effect on oxygen generation by iridium oxide hardly appears. Further, considering the durability against reverse electrolysis, 80 to 90 mol% is preferable.

また、本発明は上記の触媒層と上記の導電性基体との間に導電性基体の腐食を抑制する中間層を形成したことを特徴とする逆電解用電極であり、さらにその中間層が白金である逆電解用電極である。ここで、耐食性の中間層とは、長時間の使用において触媒層を浸透した水溶液が導電性基体にまでに達し、導電性基体上で酸素発生が生じることによって導電性基体が酸化・腐食することを防止する機能を有するものである。このような導電性基体の酸化および腐食の防止によって、腐食生成物によるオーム損の増加、これに伴う電解電圧の上昇や、腐食生成物上や周辺部の触媒層の密着性低下、剥離、脱落などを防止するという作用を有する。中間層としては、白金の他、タンタルなどのバルブ金属およびその合金などが好適であり、特に白金は触媒層の成分であり、これを中間層とすれば触媒層との間で高い密着性が得られるという点から好適である。このような中間層の形成方法としては、前述の触媒層の形成と同様に、白金イオンのみを含む塗布液で熱分解する方法が利用できる他に、スパッタリング法、イオンプレーティング法、CVD法、電気めっき法などを用いることができる。   Further, the present invention is an electrode for reverse electrolysis characterized in that an intermediate layer that suppresses corrosion of the conductive substrate is formed between the catalyst layer and the conductive substrate, and the intermediate layer is made of platinum. This is an electrode for reverse electrolysis. Here, the corrosion-resistant intermediate layer means that the aqueous solution that has penetrated the catalyst layer reaches the conductive substrate when used for a long time, and the conductive substrate is oxidized and corroded by the generation of oxygen on the conductive substrate. It has the function to prevent. By preventing the oxidation and corrosion of the conductive substrate, the ohmic loss due to the corrosion product is increased, the electrolysis voltage is increased accordingly, the adhesion of the catalyst layer on and around the corrosion product is decreased, peeling and dropping off. It has the effect of preventing the above. As the intermediate layer, valve metals such as tantalum and alloys thereof are preferable as the intermediate layer. In particular, platinum is a component of the catalyst layer. If this is used as an intermediate layer, high adhesion to the catalyst layer is achieved. It is preferable in that it is obtained. As a method for forming such an intermediate layer, a method of thermally decomposing with a coating solution containing only platinum ions can be used in the same manner as the above-described formation of the catalyst layer. In addition, a sputtering method, an ion plating method, a CVD method, An electroplating method or the like can be used.

本発明によれば下記の効果を奏する。
1)水溶液を用い、かつ逆電解を必要とする電解水の製造において、極性反転に関わらず、電解電圧を下げることによって使用電力を低減することができるとともに、低過電圧での電解が可能となることで、電解水の特性を低出力で制御することができるという効果を有する。
2)また、使用電力を低減できることによって、電解コストを削減することが可能になるという効果を有する。
3)また、これらの効果を長時間持続することが可能となることで、電解水の安定性を向上させることができるとともに、電解装置のメンテナンスを低減することができるという効果を有する。
The present invention has the following effects.
1) In the production of electrolyzed water that uses an aqueous solution and requires reverse electrolysis, the power used can be reduced by lowering the electrolysis voltage regardless of the polarity reversal, and electrolysis at a low overvoltage becomes possible. As a result, the characteristics of the electrolyzed water can be controlled at a low output.
2) Moreover, it has the effect that it becomes possible to reduce electrolysis cost by being able to reduce electric power used.
3) Since these effects can be maintained for a long time, the stability of the electrolyzed water can be improved, and the maintenance of the electrolyzer can be reduced.

以下、本発明を実施例、比較例を用いてより詳しく説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, this invention is not limited to a following example.

白金と酸化イリジウムからなる混合物を触媒層としてチタン基板上に形成した電極(Pt−IrO/Ti電極)を作製した。塗布液の調製は、濃塩酸0.6mLを蒸留水9.4mLに加えた溶液に、塩化白金酸六水和物と塩化イリジウム酸六水和物がモル比85:15の割合で、かつ金属換算でPtとIrの合計濃度が70g/Lとなるように完全に溶解して行った。次に、チタン板をアセトンで超音波洗浄した後、シュウ酸二水和物を用いて調製した10wt%シュウ酸溶液中に90℃で60分間浸漬し、その後蒸留水で表面をよく洗浄してから風乾した。このように前処理したチタン基板に上記の塗布液を薄く均一に浸漬塗布した。その後、空気雰囲気下において、常温で10分間乾燥し、次に120℃の電気炉内で10分間保持し、さらに380℃の電気炉内で20分間保持して塗布液を熱分解した。以上の塗布から熱分解までの工程を5回繰り返して、Pt−IrO/Ti電極を作製した。 An electrode (Pt—IrO 2 / Ti electrode) formed on a titanium substrate using a mixture of platinum and iridium oxide as a catalyst layer was produced. The coating solution was prepared by adding 0.6 mL of concentrated hydrochloric acid to 9.4 mL of distilled water, adding chloroplatinic acid hexahydrate and chloroiridate hexahydrate in a molar ratio of 85:15, and metal. It was performed by completely dissolving so that the total concentration of Pt and Ir was 70 g / L in terms of conversion. Next, after ultrasonically washing the titanium plate with acetone, it was immersed in a 10 wt% oxalic acid solution prepared using oxalic acid dihydrate at 90 ° C. for 60 minutes, and then the surface was thoroughly washed with distilled water. Air dried. The coating solution was thinly and uniformly applied to the titanium substrate pretreated in this way. Thereafter, the coating solution was dried at room temperature for 10 minutes in an air atmosphere, then held in an electric furnace at 120 ° C. for 10 minutes, and further held in an electric furnace at 380 ° C. for 20 minutes to thermally decompose the coating solution. The above steps from application to thermal decomposition were repeated 5 times to produce a Pt—IrO 2 / Ti electrode.

実施例1における熱分解温度380℃を400℃に変えたことを除いて、他は同じ方法・条件によりPt−IrO/Ti電極を作製した。 A Pt—IrO 2 / Ti electrode was produced by the same method and conditions except that the thermal decomposition temperature in Example 1 was changed to 400 ° C.

(比較例1)
実施例1における熱分解温度380℃を450℃に変えたことを除いて、他は同じ方法・条件によりPt−IrO/Ti電極を作製した。
(Comparative Example 1)
A Pt—IrO 2 / Ti electrode was produced by the same method and conditions except that the thermal decomposition temperature in Example 1 was changed to 450 ° C.

(比較例2)
実施例1における熱分解温度380℃を500℃に変えたことを除いて、他は同じ方法・条件によりPt−IrO/Ti電極を作製した。
(Comparative Example 2)
A Pt—IrO 2 / Ti electrode was produced by the same method and conditions except that the thermal decomposition temperature in Example 1 was changed to 500 ° C.

上記の実施例1、実施例2、比較例1、比較例2で作製したPt−IrO/Ti電極の構造をX線回折法によって調べた。まず、比較例1および比較例2では、結晶質の白金と結晶質の酸化イリジウムのそれぞれに対応する明瞭な回折パターンが得られた。一方、実施例1および実施例2では、結晶質の白金であること示す回折パターンだけが得られ、酸化イリジウムに対応する回折線はまったく見られなかった。これらの結果から、実施例1および実施例2の触媒層は結晶質の白金と非晶質の酸化イリジウムの混合物であり、比較例1および比較例2の触媒層は結晶質の白金と結晶質の酸化イリジウムの混合物であることが判った。 The structure of the Pt—IrO 2 / Ti electrode prepared in Example 1, Example 2, Comparative Example 1, and Comparative Example 2 was examined by X-ray diffraction. First, in Comparative Examples 1 and 2, clear diffraction patterns corresponding to crystalline platinum and crystalline iridium oxide were obtained. On the other hand, in Example 1 and Example 2, only a diffraction pattern indicating crystalline platinum was obtained, and no diffraction line corresponding to iridium oxide was observed. From these results, the catalyst layers of Examples 1 and 2 are a mixture of crystalline platinum and amorphous iridium oxide, and the catalyst layers of Comparative Examples 1 and 2 are crystalline platinum and crystalline. It was found to be a mixture of iridium oxide.

次に、実施例1、実施例2、比較例1、比較例2で作製したPt−IrO/Ti電極の電気化学特性を、一般的な3電極式測定法で評価した。各電極はテフロン(登録商標)製のホルダーを用いて電極面積を1cm×1cmに規制した状態で使用した。このようにしたPt−IrO/Tiを作用極とし、対極にPt板、参照極にKCl飽和Ag/AgCl電極を用い、電解液には1mol/L NaSO溶液を使用した。ポテンショガルバノスタットを使用して、5mV/sの走査速度でサイクリックボルタメトリーを行って電気二重層容量を測定するとともに酸素発生に対する触媒性を評価した。
参照極に対して0.4V〜0.7Vの範囲でサイクリックボルタモグラムを測定し、その結果から幾何学形状に基づく電極面積当たりの電気二重層容量を決定した。図1に電気二重層容量を比較した結果を示した。図1から、比較例1および比較例2に対して、実施例1および実施例2では電気二重層容量が大きく、特に酸化イリジウムが結晶質から非晶質に変化する比較例1と実施例2において電気二重層容量の増加が大きいことが判る。電気化学測定で得られる電気二重層容量は電極反応が生じる実質的な電極表面積に対応しており、幾何学的な面積が同じでも電気二重層容量が大きいほど反応面積が大きい。図1の結果から、比較例1および比較例2に対して実施例1および実施例2では電極の反応面積が増加しており、特に実施例1は比較例2に対して4倍以上の反応面積の増加が見られた。
次に、各電極において、浸漬電位からアノード方向へのサイクリックボルタモグラムを測定し、それをまとめた結果を図2に示した。図2において1.1V以上で流れている電流は酸素発生によるものであるが、その電流は実施例1が最も低い電位から立ち上がっており、次に実施例2、比較例1、比較例2の順となった。また、同じ電位で比較すると、実施例1の電流が最も大きく、次に実施例2、比較例1、比較例2の順であるが、比較例1と比較例2に比べて実施例1と実施例2の電流は非常に大きく、明らかに実施例と比較例の間に酸素発生に対する触媒性の違いが見られた。さらに、同じ電流密度で比較すると、実施例1の電位は比較例2に比べて200mV以上も低く、すなわち酸素発生過電圧を大きく低減することが可能であることが判った。
Next, the electrochemical characteristics of the Pt—IrO 2 / Ti electrodes prepared in Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were evaluated by a general three-electrode measurement method. Each electrode was used in a state where the electrode area was regulated to 1 cm × 1 cm using a holder made of Teflon (registered trademark). Pt—IrO 2 / Ti thus formed was used as a working electrode, a Pt plate was used as a counter electrode, a KCl saturated Ag / AgCl electrode was used as a reference electrode, and a 1 mol / L Na 2 SO 4 solution was used as an electrolyte. Using a potentiogalvanostat, cyclic voltammetry was performed at a scanning speed of 5 mV / s to measure the electric double layer capacity and to evaluate the catalytic property against oxygen generation.
A cyclic voltammogram was measured in the range of 0.4 V to 0.7 V with respect to the reference electrode, and the electric double layer capacity per electrode area based on the geometry was determined from the result. FIG. 1 shows the result of comparing the electric double layer capacity. From FIG. 1, compared with Comparative Example 1 and Comparative Example 2, Example 1 and Example 2 have large electric double layer capacity, and in particular, Comparative Example 1 and Example 2 in which iridium oxide changes from crystalline to amorphous. It can be seen that the increase in electric double layer capacity is large. The electric double layer capacity obtained by the electrochemical measurement corresponds to a substantial electrode surface area in which the electrode reaction occurs. Even if the geometric area is the same, the larger the electric double layer capacity, the larger the reaction area. From the results of FIG. 1, the reaction area of the electrode in Example 1 and Example 2 is increased compared to Comparative Example 1 and Comparative Example 2, and in particular, Example 1 has a reaction four times or more that of Comparative Example 2. There was an increase in area.
Next, for each electrode, a cyclic voltammogram from the immersion potential to the anode direction was measured, and the results are summarized in FIG. In FIG. 2, the current flowing at 1.1 V or more is due to oxygen generation, but the current rises from the lowest potential in Example 1, and then in Example 2, Comparative Example 1, and Comparative Example 2. It became order. In addition, when compared at the same potential, the current of Example 1 was the largest, followed by Example 2, Comparative Example 1, and Comparative Example 2, but compared to Comparative Example 1 and Comparative Example 2, Example 1 and The current of Example 2 was very large, and clearly there was a difference in catalytic properties for oxygen generation between the Example and the Comparative Example. Further, when compared at the same current density, it was found that the potential of Example 1 was 200 mV or more lower than that of Comparative Example 2, that is, it was possible to greatly reduce the oxygen generation overvoltage.

チタン基板上に白金の中間層を形成した後に、この中間層上に白金と酸化イリジウムからなる混合物を触媒層として形成した電極(以下、Pt−IrO/Pt/Ti電極)を作製した。中間層を形成するための塗布液は、濃塩酸0.6mLを蒸留水9.4mLに加えた溶液に、塩化白金酸六水和物を金属換算で70g/Lとなるように完全に溶解して調製した。次に、実施例2と同じ前処理をしたチタン板上に中間層の塗布液を薄く均一に浸漬塗布した。その後、空気雰囲気下において、常温で10分間乾燥し、次に120℃の電気炉内で10分間保持し、さらに400℃の電気炉内で20分間保持して塗布液を熱分解した。以上の塗布から熱分解までの工程を2回繰り返した。次に、実施例2と同じ塗布液を用い、同じ方法・条件で塗布から熱分解までの工程を5回繰り返し、中間層の上にPt−IrO触媒層を形成した。 After forming an intermediate layer of platinum on the titanium substrate, an electrode (hereinafter referred to as a Pt—IrO 2 / Pt / Ti electrode) in which a mixture of platinum and iridium oxide was formed as a catalyst layer on the intermediate layer was produced. The coating solution for forming the intermediate layer was prepared by completely dissolving chloroplatinic acid hexahydrate at 70 g / L in terms of metal in a solution obtained by adding 0.6 mL of concentrated hydrochloric acid to 9.4 mL of distilled water. Prepared. Next, the coating solution for the intermediate layer was thinly and uniformly applied onto the titanium plate that had been subjected to the same pretreatment as in Example 2. Thereafter, the coating liquid was dried at room temperature for 10 minutes in an air atmosphere, then held in an electric furnace at 120 ° C. for 10 minutes, and further held in an electric furnace at 400 ° C. for 20 minutes to thermally decompose the coating solution. The above steps from application to thermal decomposition were repeated twice. Next, using the same coating solution as in Example 2, the steps from coating to thermal decomposition were repeated 5 times under the same method and conditions to form a Pt—IrO 2 catalyst layer on the intermediate layer.

実施例2で作製したPt−IrO/Tiおよび実施例3で作製したPt−IrO/Pt/Tiのそれぞれについて逆電解試験を行った。この試験では、2枚のPt−IrO/Ti電極または2枚のPt−IrO/Pt/Tiを1mol/L NaSO溶液に浸漬し、電解試験装置を用いて通電10分、逆通電10分を交互に繰り返す定電流パルス波を印加して2枚の電極間の電圧を測定した。なお、この試験に用いた電極もテフロン(登録商標)製のホルダーを用いて電極面積を1cm×1cmに規制し、電流密度は0.1A/cmとした。電解液の温度は30℃に調整した。いずれの電極においても電解を続けると電圧が急激に上昇する変化が見られ、これが電極の寿命であるとして評価した。その結果、実施例2の電極の寿命は350〜400時間であったのに対して、実施例3では550時間以上の電解が可能であった。すなわち、白金を中間層として導入することによって逆電解における電解時間が長くなることが判った。 A reverse electrolysis test was performed on each of Pt—IrO 2 / Ti produced in Example 2 and Pt—IrO 2 / Pt / Ti produced in Example 3. In this test, two Pt—IrO 2 / Ti electrodes or two Pt—IrO 2 / Pt / Ti were immersed in a 1 mol / L Na 2 SO 4 solution, and energized for 10 minutes using an electrolytic test apparatus. A voltage between two electrodes was measured by applying a constant-current pulse wave that alternately repeated energization for 10 minutes. In addition, the electrode used for this test was regulated to 1 cm × 1 cm using a Teflon (registered trademark) holder, and the current density was set to 0.1 A / cm 2 . The temperature of the electrolytic solution was adjusted to 30 ° C. In any electrode, when the electrolysis was continued, a change in which the voltage suddenly increased was observed, and this was evaluated as the lifetime of the electrode. As a result, the lifetime of the electrode of Example 2 was 350 to 400 hours, whereas in Example 3, electrolysis for 550 hours or more was possible. That is, it has been found that electrolysis time in reverse electrolysis is increased by introducing platinum as an intermediate layer.

本発明は、強酸性電解水、強アルカリ性電解水、微酸性電解水、電解次亜水、アルカリイオン水、酸性イオン水、可変酸性電解水、可変アルカリ性電解水、酸性電解水、アルカリ性電解水、酸素系電解水、強アルカリ性循環電解水などの電解水の製造に利用可能である。   The present invention includes strongly acidic electrolyzed water, strongly alkaline electrolyzed water, slightly acidic electrolyzed water, electrolytic hyponitrous water, alkaline ionic water, acidic ionic water, variable acidic electrolyzed water, variable alkaline electrolyzed water, acidic electrolyzed water, alkaline electrolyzed water, It can be used for the production of electrolyzed water such as oxygen-based electrolyzed water and strong alkaline circulating electrolyzed water.

実施例1、実施例2、比較例1、比較例2の電気二重層容量を示す。The electric double layer capacity of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 is shown. 実施例1、実施例2、比較例1、比較例2のサイクリックボルタモグラムを示す。The cyclic voltammograms of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 are shown.

Claims (4)

水道水もしくは低濃度の食塩水からなる水溶液を用い、少なくとも2枚の電極間に周期的な極性反転を伴う電流を印加して電解水を製造するための逆電解用電極であって、酸化イリジウムと白金との混合物からなる触媒層が導電性基体上に形成され、該酸化イリジウムが非晶質であることを特徴とする逆電解用電極。   An electrode for reverse electrolysis for producing electrolyzed water by applying an electric current with periodic polarity reversal between at least two electrodes using an aqueous solution comprising tap water or low-concentration saline, and comprising iridium oxide An electrode for reverse electrolysis, wherein a catalyst layer made of a mixture of platinum and platinum is formed on a conductive substrate, and the iridium oxide is amorphous. 該水溶液に、さらにpH調整剤又は乳酸カルシウムが添加されていることを特徴とする請求項1に記載の逆電解用電極The electrode for reverse electrolysis according to claim 1, wherein a pH adjusting agent or calcium lactate is further added to the aqueous solution. 該触媒層と該導電性基体との間に該導電性基体の腐食を抑制する中間層を形成したことを特徴とする請求項1または2に記載の逆電解用電極。   The electrode for reverse electrolysis according to claim 1 or 2, wherein an intermediate layer for suppressing corrosion of the conductive substrate is formed between the catalyst layer and the conductive substrate. 該中間層が白金であることを特徴とする請求項3に記載の逆電解用電極The electrode for reverse electrolysis according to claim 3, wherein the intermediate layer is platinum.
JP2007047364A 2007-02-27 2007-02-27 Electrode for reverse electrolysis Expired - Fee Related JP5105406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047364A JP5105406B2 (en) 2007-02-27 2007-02-27 Electrode for reverse electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047364A JP5105406B2 (en) 2007-02-27 2007-02-27 Electrode for reverse electrolysis

Publications (2)

Publication Number Publication Date
JP2008208434A JP2008208434A (en) 2008-09-11
JP5105406B2 true JP5105406B2 (en) 2012-12-26

Family

ID=39784987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047364A Expired - Fee Related JP5105406B2 (en) 2007-02-27 2007-02-27 Electrode for reverse electrolysis

Country Status (1)

Country Link
JP (1) JP5105406B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256431A (en) * 2010-06-09 2011-12-22 Ihi Corp Apparatus for producing perchlorate
ITMI20101100A1 (en) * 2010-06-17 2011-12-18 Industrie De Nora Spa SYSTEM FOR THE HYPOCLORITE ELECTROCHEMICAL GENERATION
JP2013230099A (en) * 2012-04-27 2013-11-14 Omega:Kk Replant failure inhibitor
KR102578931B1 (en) * 2017-03-06 2023-09-14 에보쿠아 워터 테크놀로지스 엘엘씨 Half-cell electrochemical composition for automatic cleaning of electrochlorination equipment
KR102305658B1 (en) * 2019-08-07 2021-09-29 서울대학교산학협력단 Electrode structures for electrochemical reaction, and systems including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8903322D0 (en) * 1989-02-14 1989-04-05 Ici Plc Electrolytic process
JP3357598B2 (en) * 1998-02-23 2002-12-16 ティーディーケイ株式会社 Ionized water generator and method for producing weakly alkaline ionized water and weakly acidic sterilized water
JPH11269688A (en) * 1998-03-23 1999-10-05 Tanaka Kikinzoku Kogyo Kk Electrolytic electrode
JP2004204328A (en) * 2002-12-26 2004-07-22 Takatoshi Nakajima Method of producing hypochlorous acid solution, and utilizing method thereof
JP3914162B2 (en) * 2003-02-07 2007-05-16 ダイソー株式会社 Oxygen generating electrode
JP4975271B2 (en) * 2005-05-18 2012-07-11 株式会社フルヤ金属 Electrolytic water treatment electrode

Also Published As

Publication number Publication date
JP2008208434A (en) 2008-09-11

Similar Documents

Publication Publication Date Title
EP2757179B1 (en) Chlorine-generating positive electrode
Lim et al. Influence of the Sb content in Ti/SnO2-Sb electrodes on the electrocatalytic behaviour for the degradation of organic matter
CN101525755B (en) Cathode for hydrogen generation
KR101769279B1 (en) Electrode for electrochlorination
JP5616633B2 (en) Anode for electrolysis
Shestakova et al. Novel Ti/Ta2O5-SnO2 electrodes for water electrolysis and electrocatalytic oxidation of organics
JP5522484B2 (en) Electrolytic plating anode and electrolytic plating method using the anode
JP5105406B2 (en) Electrode for reverse electrolysis
WO2021164702A1 (en) Electrode having polarity capable of being reversed and use thereof
JP2004238697A (en) Electrode for oxygen generation
JP4975271B2 (en) Electrolytic water treatment electrode
JP2007302927A (en) Electrode for oxygen generation
KR20140013326A (en) Metal oxide electrode for water electrolysis and manufacturing method thereof
US8075751B2 (en) Water chlorinator having dual functioning electrodes
KR100414015B1 (en) An electrolytic cell for producing Sodium Hypochloride
JPS6152385A (en) Electrode for electrolyzing diluted aqueous sodium chloride solution
JP6817080B2 (en) Electrode for electrolysis
KR20230125009A (en) Electrolyzer for electrochlorination process and self-cleaning electrochlorination system
JP3654204B2 (en) Oxygen generating anode
JP2020193371A (en) Ozone generating electrode
Han et al. Electro-chemical production of ozone using water electrolysis cell of solid polymer electrolyte (SPE)
JPH0238672B2 (en)
JPS6152384A (en) Electrode for electrolyzing seawater
JP3406403B2 (en) Electrode for strong acid water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120726

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees