JPS6152385A - Electrode for electrolyzing diluted aqueous sodium chloride solution - Google Patents

Electrode for electrolyzing diluted aqueous sodium chloride solution

Info

Publication number
JPS6152385A
JPS6152385A JP59171259A JP17125984A JPS6152385A JP S6152385 A JPS6152385 A JP S6152385A JP 59171259 A JP59171259 A JP 59171259A JP 17125984 A JP17125984 A JP 17125984A JP S6152385 A JPS6152385 A JP S6152385A
Authority
JP
Japan
Prior art keywords
electrode
coating layer
mol
oxide
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59171259A
Other languages
Japanese (ja)
Other versions
JPH0633489B2 (en
Inventor
Hiroyuki Nakada
中田 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59171259A priority Critical patent/JPH0633489B2/en
Publication of JPS6152385A publication Critical patent/JPS6152385A/en
Publication of JPH0633489B2 publication Critical patent/JPH0633489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the durability and current efficiency of the titled electrode having a coating layer of a catalyst contg. the oxides of Pt group metals on an electrically conductive substrate by using RuO2, IrO2, Pt and SnO2 mixed in a specified ratio as the constituents of the coating layer. CONSTITUTION:When a dil. aqueous NaCl soln. such as seawater is electrolyzed to manufacture hypochlorous acid for disinfection, bleaching or other use, an electrode having a coating layer of a catalyst is used. The electrode is obtd. by applying a mixture consisting of, by mole, 3-40% RuO2, 5-40% IrO2, 3- 50% Pt and 10-50% SnO2 to the cleaned surface of a substrate of an electrically conductive metal such as Ti, Zr or Nb and by carrying out baking. In the mixture, Sb may be substituted in the form of SbO3 for <=10% of Sn in SnO2. The resulting electrode has superior durability and current efficiency when a dil. aqueous NaCl soln. is electrolyzed to manufacture hypochlorous acid.

Description

【発明の詳細な説明】 産業上の利用分野 不発明は希薄塩水電解用電極に関し、さらに詳しくは、
希薄塩水を電解して、殺閑や漂白用などに用いられる次
亜塩素酸を生成させるのに好適に使用される、耐久性及
び電流効率の良好な電極に関するものである。
[Detailed Description of the Invention] The industrial application field of the invention relates to electrodes for dilute salt water electrolysis, and more specifically,
The present invention relates to an electrode with good durability and current efficiency, which is suitably used to electrolyze dilute salt water to produce hypochlorous acid used for killing, bleaching, etc.

海水を利用し、これを電解して次亜塩素酸を発生させ、
上水道−や下水道などの滅菌を行う方法はすでに知られ
ており、従来の塩素ガスを用いる滅菌方法は、逐次これ
に置き換えられつつある。ところで、この海水を用いる
電解方法(以下海水電解法という)は、海水が容易に入
手できる地域においては、十分(てその機能を発揮しう
るが、海水の利用が困難な地域では、海水の代りに食塩
水溶e、を用いる電解方法(以下海水電解法という)が
行われている。
Using seawater, it is electrolyzed to generate hypochlorous acid,
Methods for sterilizing water supplies, sewerage systems, etc. are already known, and conventional sterilization methods using chlorine gas are being gradually replaced by these methods. By the way, this electrolysis method using seawater (hereinafter referred to as seawater electrolysis method) can be fully functional in areas where seawater is easily available, but in areas where it is difficult to use seawater, it is recommended that seawater be used instead of seawater. An electrolysis method using a saline solution (hereinafter referred to as seawater electrolysis method) has been carried out.

このような電解においては、通常無隔膜電解装置を用い
て、その陽極に塩素を発生させ、この塩素と水酸イオン
との反応により次亜塩素酸イオンが生成する。このよう
にして得られた次亜塩素酸は、前記のような滅菌に用い
られたり、あるいは漂白用などに利用される。
In such electrolysis, a non-diaphragm electrolyzer is usually used to generate chlorine at its anode, and hypochlorite ions are generated by the reaction between the chlorine and hydroxide ions. The hypochlorous acid thus obtained is used for sterilization as described above, or for bleaching.

従来の技術 希薄塩水電解法の類似技術の1つとして食塩電解法がろ
ジ、この際の電極としてはRuO2型のものが知られて
いる。このRuOz型電極の代表的な例としては、(R
u−Ti)02固溶体の被覆層を弁金属基材上に形成し
たもの(特公昭46−21884号公報)や、5n02
50モル係以上の(Ru −Sn) 02固溶体の被覆
層を有する電極(特公昭50−11330号公報)など
が挙けられる。これらの電極は、食塩電解法に使用した
場合、その優れた耐久性は広く認められてお9、金属電
極の代表例として実用化されている。しかしながら、こ
れらの電極を希薄塩水電解法に用いた場合、次亜塩素酸
発生効率は比較的良好でらるが、耐食性が低いことから
、該電極は希薄塩水電解用として、とうてい実用に供し
えない。
BACKGROUND ART One of the similar technologies to the dilute salt water electrolysis method is the salt electrolysis method, and the electrode used in this method is of the RuO2 type. A typical example of this RuOz type electrode is (R
u-Ti)02 solid solution coating layer formed on a valve metal base material (Japanese Patent Publication No. 46-21884), 5n02
Examples include an electrode having a coating layer of (Ru-Sn) 02 solid solution having a molar ratio of 50 or more (Japanese Patent Publication No. 11330/1983). These electrodes are widely recognized for their excellent durability when used in the salt electrolysis method,9 and are put into practical use as representative examples of metal electrodes. However, when these electrodes are used in dilute salt water electrolysis, although the hypochlorous acid generation efficiency is relatively good, their corrosion resistance is low, so these electrodes cannot be used practically for dilute salt water electrolysis. do not have.

また、白金、二酸化ルテニウム、酸化パラジウム及び二
酸化チタンから成る被覆層を有する陽極(特公昭55−
35473号公報)、白金及び酸化パラジウムから成る
被覆層を有する陽極(%公昭55−8595号公報)な
どの酸1じパラジウム系陽極も提案されている。しかし
ながら、これらの酸化パラジウム系陽極は、次亜塩素酸
発生効率については高い値を示すものの、耐久性に問題
があり、特に低温時の耐久性は極端(に悪いという欠点
がある。
In addition, an anode having a coating layer consisting of platinum, ruthenium dioxide, palladium oxide, and titanium dioxide
35473) and an anode having a coating layer consisting of platinum and palladium oxide (% Publication No. 55-8595) have also been proposed. However, although these palladium oxide-based anodes exhibit a high value for hypochlorous acid generation efficiency, they have a problem in durability, particularly in that their durability at low temperatures is extremely poor.

さらに、海水電解用電極として、白金又は白金族金属の
合金を耐食性基体上にメッキした電極が知られているが
、このものは、比較的消耗速度が大きい上に、操業時の
電解電圧が高く、電流効率についても満足しうるもので
はない。
Furthermore, as electrodes for seawater electrolysis, electrodes in which platinum or platinum group metal alloys are plated on a corrosion-resistant substrate are known, but these have a relatively high wear rate and have a high electrolysis voltage during operation. , the current efficiency is also not satisfactory.

その他、白金と酸化イリジウムとから成る被覆層を有す
る希薄塩水電解用電極(特公昭55−50479号公報
)、白金、酸化イリジウム及び酸化ルテニウムから成る
被覆層を有する海水電解用電極(特開昭59−2598
8号公報)などの電極が提案されている。しかしながら
、前者の電極は5耐食性に関しては良好であるものの、
使用に伴い性能が劣化するという傾向を有する。ぼた、
後者の電極は、低温度海水電解における耐食性が十分で
ないという欠点を有している。
In addition, electrodes for dilute salt water electrolysis having a coating layer consisting of platinum and iridium oxide (Japanese Patent Publication No. 55-50479), electrodes for seawater electrolysis having a coating layer consisting of platinum, iridium oxide, and ruthenium oxide (Japanese Patent Publication No. 59/1986) -2598
No. 8) and other electrodes have been proposed. However, although the former electrode has good corrosion resistance,
Performance tends to deteriorate with use. Bota,
The latter electrode has the disadvantage of insufficient corrosion resistance in low-temperature seawater electrolysis.

発明が解決しようとする問題点 本発明の目的は、このような希薄塩水電解法における従
来の電極が有する欠点を克服し、低温度海水電解におい
ても、比較的低い陽極電位と高い電流効$を示し、かつ
耐久性や耐食性に優れた電極を提供することKろる〇 問題点を解決するための手段 不発明者らは鋭意研究を重ねた結果、導電性基材上に、
特定組成の酸化ルテニウム、酸化イリジウム、白金及び
酸化スズ又はスズが一部アンチモンで置換された酸化ス
ズから成る被覆層を設けた電極が、その目的に適合しう
ろことを見出し、この知見に基づいて本発明を完成する
に至った。
Problems to be Solved by the Invention The purpose of the present invention is to overcome the drawbacks of conventional electrodes in dilute salt water electrolysis, and to provide a relatively low anode potential and high current effect even in low-temperature seawater electrolysis. To provide an electrode with excellent durability and corrosion resistance.Means for solving the problemsThe inventors have conducted extensive research and have found that on a conductive base material,
Based on this finding, we have discovered that an electrode provided with a coating layer consisting of ruthenium oxide, iridium oxide, platinum, and tin oxide of a specific composition, or tin oxide in which tin is partially substituted with antimony, is suitable for this purpose. The present invention has now been completed.

すなわち、本発明は、導電性基材上に、白金族金属酸化
物触媒の被覆層を有する電解用電極において、該被覆層
が3〜40モル%の酸化ルテニウム、5〜40モル%の
酸化イリジウム、3〜50モル%の白金及び10〜50
0〜50モル%ズから成ること全特徴とする希薄塩水電
解用電極、並びに、前記組成を有する被覆層において、
該酸化スズが、スズに対して10モル係以下のアンチモ
ンで置換されていることを特徴とする希薄塩水電解用電
極を提供するものである。
That is, the present invention provides an electrode for electrolysis having a coating layer of a platinum group metal oxide catalyst on a conductive substrate, in which the coating layer contains 3 to 40 mol% of ruthenium oxide and 5 to 40 mol% of iridium oxide. , 3-50 mol% platinum and 10-50 mol%
In an electrode for dilute salt water electrolysis, which is characterized in that it consists of 0 to 50 mol%, and a coating layer having the above composition,
The present invention provides an electrode for dilute salt water electrolysis, characterized in that the tin oxide is substituted with antimony at a mole ratio of 10 or less relative to tin.

本発明の電極に用いられる導電性基材としては、例えば
チタン、タンタル、ジルコニウム、ニオブなどの弁金属
が挙げられるが、これらの中で特にチタンが好適である
。また、その形状などは用途に応じ適宜変更可能である
Examples of the conductive base material used in the electrode of the present invention include valve metals such as titanium, tantalum, zirconium, and niobium, and among these, titanium is particularly preferred. Moreover, its shape etc. can be changed as appropriate depending on the purpose.

不発明の電極においては、このような導電性基材上に、
酸化ルテニウム、酸化イリジウム、白金、及び酸化スズ
又はスズが一部アンテモンで置換された酸化スズから成
る被覆層が設けられている。
In the uninvented electrode, on such a conductive base material,
A coating layer consisting of ruthenium oxide, iridium oxide, platinum and tin oxide or tin oxide partially substituted with antemones is provided.

この被覆層中の酸化ルテニウムの含有量は3〜40モル
%の範囲におることが必要でろり、また酸化ルテニウム
は通常RuO2の形で含有されている。
The content of ruthenium oxide in this coating layer must be in the range of 3 to 40 mol%, and ruthenium oxide is usually contained in the form of RuO2.

酸化ルテニウムの含有量が3モル係未満では陽極電位が
上昇して、電流効率が低下し、一方40モル%を超える
と酸素過電圧が減少して、酸素発生量が上昇し、電流効
率が悪化し、かつ耐久性も悪くなる。
When the content of ruthenium oxide is less than 3 mol%, the anode potential increases and the current efficiency decreases, while when it exceeds 40 mol%, the oxygen overvoltage decreases, the amount of oxygen generated increases, and the current efficiency deteriorates. , and the durability also deteriorates.

また、該被覆層中の酸化イリジウムの含有量は5〜40
モル係の範囲にあることが必要であり、また酸化イリジ
ウムは通常工r02の形で含有されている。この酸化イ
リジウムの含有量が5モル%未満では低温時における耐
久性が極端に悪くなり、電流効率も低下し、一方40モ
ル%を超えると酸素過電圧が減少して、酸素発生量が上
昇し、電流効率が低下する。
Further, the content of iridium oxide in the coating layer is 5 to 40
It is necessary that the molar coefficient be within the range of molar ratio, and iridium oxide is usually contained in the form of hydrogen oxide. If the iridium oxide content is less than 5 mol%, the durability at low temperatures will be extremely poor and the current efficiency will also decrease, while if it exceeds 40 mol%, the oxygen overvoltage will decrease and the amount of oxygen generated will increase. Current efficiency decreases.

本発明においては、該被覆層中の白金の含有量は3〜5
0モル係の範囲にちることが必要である。
In the present invention, the platinum content in the coating layer is 3 to 5.
It is necessary to fall within the range of 0 molar coefficient.

この量が3モル係未満では陽極電位が上昇して、電流効
率が低下し、一方50モル%を超えると低温電w4にお
いて電流効率の低下幅が大きくなる。
When this amount is less than 3 mol%, the anode potential increases and the current efficiency decreases, while when it exceeds 50 mol%, the current efficiency decreases greatly in the low-temperature electrode w4.

さらに、該被覆層中の酸化スズの含有量は10〜50モ
ル係の範囲にあることが必−要であり、また酸化スズは
通常5n02の形で含有されている。
Further, the content of tin oxide in the coating layer must be in the range of 10 to 50 molar ratios, and tin oxide is usually contained in the form of 5n02.

この酸化スズは酸素過電圧のコントロール(i−容易に
し、かつ導電性基材に対する被覆層の密着強度を高める
効果がある。酸化スズの含有量が10モル%未満では前
記の効果が発揮されず、また被覆層の機械的強度が低下
し、一方50モル%を超えると陽極電位が上昇し、耐久
性及び電流効率か低下する。
This tin oxide has the effect of facilitating the control of oxygen overvoltage and increasing the adhesion strength of the coating layer to the conductive substrate. If the content of tin oxide is less than 10 mol%, the above effect will not be exhibited. In addition, the mechanical strength of the coating layer decreases, and on the other hand, if it exceeds 50 mol %, the anode potential increases and the durability and current efficiency decrease.

本発明においては、また導電性を高め、電流効率を向上
させるために、前記酸化スズは、必要に応じ、スズの1
0モル係以下、好1しくは5モル%、11下のアンチモ
ンで置換されてもよい。この場合、アンチモンは、通常
スズを置換して5b03の形でドーパントとして5n0
2中に含有される。アンチモンの置換量が10モル%を
超えると、アンチモン置換の効果が逆に減少し、むしろ
耐食性の劣化をもたらす。
In the present invention, in order to increase conductivity and improve current efficiency, the tin oxide may be added to a portion of tin, if necessary.
It may be substituted with up to 0 mole percent, preferably 5 mole percent, or less than 11 of antimony. In this case, antimony is used as a dopant in the form of 5n0, usually replacing tin.
Contained in 2. If the amount of antimony substitution exceeds 10 mol %, the effect of antimony substitution will be conversely reduced, rather resulting in deterioration of corrosion resistance.

なお、該被覆層中においては、通常酸化ルテニウムと酸
化イリジウムと酸化スズは固溶体全形成すると考えられ
ている。
It is generally believed that ruthenium oxide, iridium oxide, and tin oxide form a solid solution in the coating layer.

本発明における該被覆層の厚さは、通常0.5〜10μ
m 程度でろればよい。
The thickness of the coating layer in the present invention is usually 0.5 to 10 μm.
It should be around m.

次に、本発明の希薄塩水電解用電極の好適な製造方法の
1例(Cついて説明すると、まず、熱分解(でよって酸
化ルテニウムとなる16金物、例えば塩1こルテニウム
(RuCl3 3H20)などと、熱分解によって酸化
イリジウムとなる化合物、例えば塩化イリジウム酸(j
(2工rc16 ・6H20)などと、熱分解によって
白金となる化合物、例えばノ・ロゲン化白金酸、特に塩
化白金酸(H2Pt ct6−6H20)などと、熱分
’$ILCよって酸化スズとなる化合物、例えば塩1じ
第一スズなどのハロゲン1こ第一スズや、オクテン酸の
ようなカルボン酸、ホスポン酸、ホスホカルボン酸など
の第一スズ錯塩などと、さら(C必要に応じ、熱分解に
よって酸化アンチモンとなる塩、例えば塩化アンチモン
のようなハロゲン化アンチモンなどとを、所定の割合で
適当な溶媒4・こ溶解して塗布液を調製する。次いでこ
の塗布液を導電性基材上に塗布し、乾燥したのち、酸素
の存在下に450〜650℃の温度で焼成することによ
り、本発明の電極が得られる。また、これら成分のうち
1種又は2種以上を含む塗布[f:2種以上調製し、こ
れらを導電性基材上に多N塗布したのち、乾燥、焼成し
てもよい。
Next, an example of a preferred manufacturing method for the electrode for dilute salt water electrolysis of the present invention (to explain C), first, thermal decomposition (thus, a 16-metal material that becomes ruthenium oxide, such as salt 1 ruthenium (RuCl3 3H20)) , compounds that become iridium oxide by thermal decomposition, such as chloroiridic acid (j
(2-step rc16 6H20), etc., and compounds that become platinum by thermal decomposition, such as chloroplatinic acid, especially chloroplatinic acid (H2Pt ct6-6H20), and compounds that become tin oxide by thermal decomposition. , for example, a halogen such as 1 part stannous salt, a carboxylic acid such as octenoic acid, a stannous complex salt such as phosphonic acid, phosphocarboxylic acid, etc., and if necessary, thermal decomposition. A coating solution is prepared by dissolving a salt that becomes antimony oxide, such as antimony halide such as antimony chloride, in a predetermined ratio in an appropriate solvent.Then, this coating solution is applied onto a conductive substrate. The electrode of the present invention can be obtained by coating, drying, and baking at a temperature of 450 to 650°C in the presence of oxygen.Also, a coating containing one or more of these components [f: Two or more types may be prepared, and after coating these on a conductive substrate in a multi-N coating, drying and baking may be performed.

なお、酸化スズのドーパントとして三塩比アンチモンを
用いる場合、このものは焼成時に多量揮発損失するため
に、塗布液を調製する際、最終的にトープしたい量より
も数倍はど多く加えておく必要がある。
When using antimony trisalt as a dopant for tin oxide, a large amount of antimony is lost by volatilization during firing, so when preparing the coating solution, add several times more than the amount desired for the final tope. There is a need.

発明の効果 不発明の電極は、海水電解法や塩水電解法などの希薄塩
水の電解における陽極(て有効に用いられるO flわち、本発明の電極f:海水電解などの名簿塩水電
解に使用すると、摺電圧が低くて電流効率が高いという
特性を維持することかでき、また機械的消耗にも強く、
長期間の使用に劇える。その上、io℃以下の低温度海
水の電解に使用した場合でも、低温による電流効率の低
下幅は比較的小さく、また酸素発生反応に対する耐食性
にも優れている。
Effects of the Invention The inventive electrode is effectively used as an anode in dilute salt water electrolysis such as seawater electrolysis and salt water electrolysis. As a result, it is possible to maintain the characteristics of low sliding voltage and high current efficiency, and it is also resistant to mechanical wear and tear.
Great for long-term use. Furthermore, even when used for electrolysis of low-temperature seawater below io° C., the current efficiency decreases due to low temperatures is relatively small, and it also has excellent corrosion resistance against oxygen evolution reactions.

このように、本発明の電極は、希薄塩水電解用電極とし
て、実用上十分に満足しうるものである。
As described above, the electrode of the present invention is fully satisfactory in practical use as an electrode for dilute salt water electrolysis.

実施例 次に実施例Vこよって本発明をさらに詳細に説明する。Example Next, the present invention will be explained in further detail with reference to Example V.

実施例1 被覆層全形成させるための原料として、Ru Cl 3
3H20、H2工rCt66H20、H2ptcz6・
6H20及びCl6H!1o04snを用い、それぞれ
をブタノールに溶解して、金属換算濃度100f//、
の各原料液を調製した。さらにC16H5o04Snと
5bcz、 −4用い、sbがSnK対して5モル係に
なるように、これらをブタノールに溶解して、金属換算
m度100 ?/lの原料液を調製した。
Example 1 As a raw material for forming the entire coating layer, Ru Cl 3
3H20, H2 engineering rCt66H20, H2ptcz6・
6H20 and Cl6H! Using 1o04sn, each was dissolved in butanol to give a metal equivalent concentration of 100f//,
Each raw material solution was prepared. Furthermore, using C16H5o04Sn and 5bcz, -4, these were dissolved in butanol so that sb was 5 molar relative to SnK, and the metal equivalent m degree was 100? /l of raw material solution was prepared.

これらの各原料液をメスピペットで所定の量比Vcなる
ように採取して混合したのち、かき壕ぜて塗布液を調製
した。
Each of these raw material solutions was sampled with a measuring pipette at a predetermined ratio Vc, mixed, and stirred to prepare a coating solution.

別に、チタン板を熱シュウ酸水溶液で洗浄し、その表面
に前記塗布液をツブを用いて塗布し、乾燥したのち、電
気炉に入れて500℃で10分間焼成した。
Separately, a titanium plate was washed with a hot oxalic acid aqueous solution, the coating liquid was applied to the surface using a spatula, and after drying, the plate was placed in an electric furnace and fired at 500°C for 10 minutes.

この操作を10回繰り返し、チタン板上に別表に示すよ
うな被覆層が形成されて成る電極を製造した。なお、腰
衣における組成はけい光X線分析によって測定した。
This operation was repeated 10 times to produce an electrode in which a coating layer as shown in the attached table was formed on a titanium plate. The composition of the waist garment was measured by fluorescent X-ray analysis.

次いで、これらの電極を用いて海水電解試験全行い、腰
衣に、電流密度15 A / dm’ における陽極電
位を対水素電極基準で示す。
Next, all seawater electrolysis tests were performed using these electrodes, and the anode potential at a current density of 15 A/dm' was shown on the waistcoat with reference to the hydrogen electrode.

実施例2 実施例1で作製した電極を用い塩素発生効率を測′Aピ
した。
Example 2 Using the electrode prepared in Example 1, the chlorine generation efficiency was measured.

すなわち、海水電解の条件に近似させるため、3wt%
NaCt水溶i’ff1150m1.i電解液とし、5
US304円板(直径30朋)を陰極として、密閉した
電解槽の中で、電流密度20 A / dn?、電気量
100クーロンの条件下において電解したのち、電解液
をふた付三角フラスコに取り出し、その次亜塩来酸濃度
をチオ硫酸ナトリウム全周いてヨウ素滴定し、この結果
から塩素発生効率(係)全計算した。
That is, in order to approximate the conditions of seawater electrolysis, 3wt%
NaCt water soluble i'ff1150ml. i electrolyte, 5
Using a US304 disk (diameter 30 mm) as the cathode, the current density was 20 A/dn in a sealed electrolytic cell. After electrolysis under the condition of 100 coulombs of electricity, the electrolytic solution was taken out into an Erlenmeyer flask with a lid, and the concentration of hypochlorite was titrated with iodine over the entire area of sodium thiosulfate, and from this result, the chlorine generation efficiency was calculated. I did all the calculations.

この際、3 wt % NaC1水溶液の温度を変化さ
せ、該水溶液の温度と塩素発生効率との関係を求めた。
At this time, the temperature of the 3 wt % NaCl aqueous solution was varied, and the relationship between the temperature of the aqueous solution and the chlorine generation efficiency was determined.

その結果全添付図面に示す。The results are shown in all attached drawings.

図において、曲線aは実施例1で作製した試料/I61
、A3の不発明の電極、曲線すはA6、曲線Cは屋8、
曲線dは/I67及び曲線eは煮5の電極である。
In the figure, curve a is the sample prepared in Example 1/I61
, the uninvented electrode of A3, the curve S is A6, the curve C is 8,
The curve d is the /I67 electrode and the curve e is the 5 electrode.

実施例3 実施例1で作製した電極のうち、試料扁1、扁3、A5
〜&8の試料を用い、60℃、1MH2SO4水溶液を
、電流密度100A/cl−においてバッチ式で電解し
、電極が使用不能となるまでの使用時間(電極寿命と表
現する)を求めた。その結果を別表に示す。なお、電解
によって摺電圧が上昇し、8vに達した時点で電極は使
用不能でるると判断した。
Example 3 Among the electrodes produced in Example 1, sample flat 1, flat 3, and A5
Using the samples of ~&8, a 1M H2SO4 aqueous solution was electrolyzed in a batch manner at 60° C. at a current density of 100 A/cl-, and the usage time until the electrode became unusable (expressed as electrode life) was determined. The results are shown in the attached table. Note that the sliding voltage increased due to electrolysis, and when it reached 8 V, it was determined that the electrode could no longer be used.

実施例4 20モルチのRu02.20モル係の工r02.15モ
ル係のPt及び45モル係の5n02から成る被覆層を
有する本発明の電極、及び比較のために、20モル係の
Ftu02.20モル係の工r02及び60モル係のP
tから成る被覆層を有する電極を作製した。
Example 4 Electrode of the invention with a coating layer consisting of 20 mol of Ru02.20 mol of Ru02.15 mol of Pt and 45 mol of 5n02, and for comparison 20 mol of Ftu02.20. Mol-related work r02 and 60 mole-related P
An electrode having a coating layer made of T was fabricated.

これら2種の電極について、電位走査法により分極特性
の測定を行った。塩素過電圧の測定に肖っては、30℃
に保った3 0 wt%Na C1水溶液(pH1に調
整)中で、電流密度20 A/d−における値を求めた
。また、酸素過電圧については、30℃、I M H2
SO4水溶液中で、電流密度2A/dn?における値を
求めた。
The polarization characteristics of these two types of electrodes were measured by a potential scanning method. For measuring chlorine overvoltage, the temperature is 30°C.
The value at a current density of 20 A/d- was determined in a 30 wt% Na Cl aqueous solution (adjusted to pH 1) maintained at . In addition, regarding oxygen overvoltage, 30°C, I M H2
In SO4 aqueous solution, current density 2A/dn? The value of was calculated.

その結果、45モルチの5n02 ’に含む不発明の電
極は、酸素過電圧が450 mVであるのに対し、後者
は350 mVであった。また、塩素過電圧は両者とも
40mVであった。
As a result, the non-inventive electrode containing 45 molti of 5n02' had an oxygen overpotential of 450 mV, whereas the latter had an oxygen overvoltage of 350 mV. Further, the chlorine overvoltage was 40 mV in both cases.

次いで、20℃、1.5wt%NaO4水溶液’tt解
散として、塩素発生効率を求めた。その結果、前者は8
8チでらるのに対し、後者は84%であった。
Next, the chlorine generation efficiency was determined by dissolving the 1.5 wt% NaO4 aqueous solution at 20°C. As a result, the former is 8
The latter was 84%, while the latter was 84%.

これらの結果から、本発明の効果は明らかでらる。すな
わち、本発明の電極は、陽極電位及び電流効率などの特
性に優れ、また、酸素発生反応に対しても耐食性に優れ
ていることから、低温度海水電解用電極として用いても
、長期の連続使用が可能である。
From these results, the effects of the present invention are clear. In other words, the electrode of the present invention has excellent characteristics such as anode potential and current efficiency, and also has excellent corrosion resistance against oxygen evolution reactions, so it can be used continuously for a long period of time even when used as an electrode for low-temperature seawater electrolysis. Usable.

【図面の簡単な説明】[Brief explanation of the drawing]

図(は各種電極を用いた3重量係塩1じナトIJウム水
溶液の電解において、該水溶/?;!i、温度と電流効
率との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the aqueous solution/?;!i, temperature, and current efficiency in the electrolysis of a 3-weight salt solution using various electrodes.

Claims (1)

【特許請求の範囲】 1 導電性基材上に、白金族金属酸化物触媒の被覆層を
有する電解用電極において、該被覆層が3〜40モル%
の酸化ルテニウム、5〜40モル%の酸化イリジウム、
3〜50モル%の白金及び10〜50モル%の酸化スズ
から成ることを特徴とする希薄塩水電解用電極。 2 導電性基材上に、白金族金属酸化物触媒の被覆層を
有する電解用電極において、該被覆層が3〜40モル%
の酸化ルテニウム、5〜40モル%の酸化イリジウム、
3〜50モル%の白金及び10〜50モル%の酸化スズ
から成り、かつ該酸化スズが、スズに対して10モル%
以下のアンチモンで置換されていることを特徴とする希
薄塩水電解用電極。
[Scope of Claims] 1. An electrode for electrolysis having a coating layer of a platinum group metal oxide catalyst on a conductive base material, in which the coating layer has a content of 3 to 40 mol%.
of ruthenium oxide, 5 to 40 mol% iridium oxide,
An electrode for dilute salt water electrolysis characterized by comprising 3 to 50 mol% of platinum and 10 to 50 mol% of tin oxide. 2. An electrode for electrolysis having a coating layer of a platinum group metal oxide catalyst on a conductive base material, in which the coating layer has a content of 3 to 40 mol%.
of ruthenium oxide, 5 to 40 mol% iridium oxide,
It consists of 3 to 50 mol% of platinum and 10 to 50 mol% of tin oxide, and the tin oxide is 10 mol% of tin.
An electrode for dilute salt water electrolysis characterized by being substituted with the following antimony.
JP59171259A 1984-08-17 1984-08-17 Electrode for dilute salt water electrolysis Expired - Lifetime JPH0633489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171259A JPH0633489B2 (en) 1984-08-17 1984-08-17 Electrode for dilute salt water electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171259A JPH0633489B2 (en) 1984-08-17 1984-08-17 Electrode for dilute salt water electrolysis

Publications (2)

Publication Number Publication Date
JPS6152385A true JPS6152385A (en) 1986-03-15
JPH0633489B2 JPH0633489B2 (en) 1994-05-02

Family

ID=15920003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171259A Expired - Lifetime JPH0633489B2 (en) 1984-08-17 1984-08-17 Electrode for dilute salt water electrolysis

Country Status (1)

Country Link
JP (1) JPH0633489B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139461U (en) * 1987-03-06 1988-09-13
EP0707095A1 (en) * 1994-10-11 1996-04-17 SOLVAY (Société Anonyme) Electrode for electrochemical processes and use thereof
KR100383269B1 (en) * 2000-12-26 2003-05-12 주식회사 포스코 Pt complex Electrode for seawater electrolysis
JP2003293178A (en) * 2002-04-04 2003-10-15 Daiso Co Ltd Method for preparing chemical for water treatment
KR100414015B1 (en) * 2001-03-19 2004-01-07 (주)엔이텍 An electrolytic cell for producing Sodium Hypochloride
WO2004101852A3 (en) * 2003-05-07 2005-03-24 Eltech Systems Corp Smooth surface morphology anode coatings
JP2012188706A (en) * 2011-03-11 2012-10-04 Japan Carlit Co Ltd:The Electrode for electrolysis and method for manufacturing the same
CN105200452A (en) * 2015-11-02 2015-12-30 扬州大学 Preparation method of Ti-matrix insoluble anode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114335B2 (en) * 2015-05-20 2017-04-12 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and seawater electrolysis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011330A (en) * 1973-05-07 1975-02-05
JPS5328262A (en) * 1976-08-30 1978-03-16 Nippon Electric Co Method of examining capacitor
JPS5925988A (en) * 1982-08-04 1984-02-10 Japan Carlit Co Ltd:The Electrode for electrolyzing sea water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011330A (en) * 1973-05-07 1975-02-05
JPS5328262A (en) * 1976-08-30 1978-03-16 Nippon Electric Co Method of examining capacitor
JPS5925988A (en) * 1982-08-04 1984-02-10 Japan Carlit Co Ltd:The Electrode for electrolyzing sea water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139461U (en) * 1987-03-06 1988-09-13
JPH058432Y2 (en) * 1987-03-06 1993-03-03
EP0707095A1 (en) * 1994-10-11 1996-04-17 SOLVAY (Société Anonyme) Electrode for electrochemical processes and use thereof
KR100383269B1 (en) * 2000-12-26 2003-05-12 주식회사 포스코 Pt complex Electrode for seawater electrolysis
KR100414015B1 (en) * 2001-03-19 2004-01-07 (주)엔이텍 An electrolytic cell for producing Sodium Hypochloride
JP2003293178A (en) * 2002-04-04 2003-10-15 Daiso Co Ltd Method for preparing chemical for water treatment
WO2004101852A3 (en) * 2003-05-07 2005-03-24 Eltech Systems Corp Smooth surface morphology anode coatings
US7632535B2 (en) 2003-05-07 2009-12-15 De Nora Tech, Inc. Smooth surface morphology chlorate anode coating
US8142898B2 (en) 2003-05-07 2012-03-27 De Nora Tech, Inc. Smooth surface morphology chlorate anode coating
JP2012188706A (en) * 2011-03-11 2012-10-04 Japan Carlit Co Ltd:The Electrode for electrolysis and method for manufacturing the same
CN105200452A (en) * 2015-11-02 2015-12-30 扬州大学 Preparation method of Ti-matrix insoluble anode

Also Published As

Publication number Publication date
JPH0633489B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
KR890002258B1 (en) Electrode for electrolysis
US3948751A (en) Valve metal electrode with valve metal oxide semi-conductive face
US5098546A (en) Oxygen-generating electrode
US4070504A (en) Method of producing a valve metal electrode with valve metal oxide semi-conductor face and methods of manufacture and use
US4003817A (en) Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge in said coating
JP2006515389A5 (en)
JPH0225994B2 (en)
US4297195A (en) Electrode for use in electrolysis and process for production thereof
EP0129734B1 (en) Preparation and use of electrodes
US4318795A (en) Valve metal electrode with valve metal oxide semi-conductor face and methods of carrying out electrolysis reactions
HU199575B (en) Electrodes applicable by electrolise and process for their production
JPS6152385A (en) Electrode for electrolyzing diluted aqueous sodium chloride solution
US4584085A (en) Preparation and use of electrodes
JP3231556B2 (en) Method for electrolytic reduction of disulfide compound
US4572770A (en) Preparation and use of electrodes in the electrolysis of alkali halides
JP5105406B2 (en) Electrode for reverse electrolysis
US4072585A (en) Valve metal electrode with valve metal oxide semi-conductive coating having a chlorine discharge catalyst in said coating
JP2836840B2 (en) Electrode for chlorine generation and method for producing the same
HU199574B (en) Process for production of electrode suitable to electrolize of alkalchlorid watery solutions
JPH0238672B2 (en)
JPH0248634B2 (en)
JPS6152384A (en) Electrode for electrolyzing seawater
JPH0238671B2 (en)
KR820002054B1 (en) Electrolysis electrodes
KR830000815B1 (en) Electrolytic electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term