JP3673000B2 - Electrolyzer for electrolyzed water production - Google Patents

Electrolyzer for electrolyzed water production Download PDF

Info

Publication number
JP3673000B2
JP3673000B2 JP02329696A JP2329696A JP3673000B2 JP 3673000 B2 JP3673000 B2 JP 3673000B2 JP 02329696 A JP02329696 A JP 02329696A JP 2329696 A JP2329696 A JP 2329696A JP 3673000 B2 JP3673000 B2 JP 3673000B2
Authority
JP
Japan
Prior art keywords
chamber
anode
cathode
water
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02329696A
Other languages
Japanese (ja)
Other versions
JPH09195079A (en
Inventor
孝之 島宗
善則 錦
正志 田中
修平 脇田
高弘 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP02329696A priority Critical patent/JP3673000B2/en
Publication of JPH09195079A publication Critical patent/JPH09195079A/en
Application granted granted Critical
Publication of JP3673000B2 publication Critical patent/JP3673000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、長寿命を有しかつ高純度の電解水を製造できる電解水製造用電解槽に関し、より詳細には半導体デバイスや液晶パネル等の電子デバイスの洗浄に使用する高純度のアルカリ水及び酸性水を希塩水や純水を原料として製造するための電解水製造用電解槽に関する。
【0002】
【従来技術とその問題点】
半導体デバイスや液晶パネル等の電子部品の製造過程における洗浄には、従来から該用途のために特別に調製された有機溶剤や、硫酸、フッ酸、塩酸及び硝酸等の無機酸や、オゾン水及び過酸化水素等の酸化剤が使用されてきた。これらは今後も用途に応じて使用されるが、それぞれに応じた化学プロセスで製造された製品を特別に精製して得られたものであり、製造過程の触媒等から混入してくる金属成分の除去等を行なうための操作が煩雑で結果的に高価な製品となっている。又精製操作を丁寧に行なっても電子デバイスの高度化に伴う許容不純物量の低下に対しては必ずしも十分に対応できるものではなく、新たな代替手法が要請されている。
【0003】
更にこれらの薬品は危険な物が多いだけでなく、有機溶剤はオゾン層の破壊等の環境問題を引き起こす可能性があり、又他の無機酸や塩類ではその廃水処理に多くの手間とコストが掛かるという問題点がある。更にこれらの洗浄剤を使用して洗浄したデバイスは該洗浄剤除去のために多量の超純水を必要とするという欠点もある。
他の用途である医療や食品の分野でも同様に殺菌や洗浄にあたっては多量の洗浄剤が必要となるとともに該洗浄剤の除去のための水量が膨大になるという欠点がある。
これらの問題点を解決するために、イオン交換膜により陽極室と陰極室に区画された電解槽で、水、又あるいは塩酸、食塩又は塩化アンモニウム等の微量の電解質を添加した電解液を電解することにより、陽極側で酸化還元電位(ORP)の高い即ち酸化性の極めて高い弱酸性の酸性水を、又陰極側ではORPの低い即ち還元性の極めて高い弱塩基性のアルカリ水を得る方法が行なわれている。
【0004】
この電解における電極として一般に白金を被覆したチタン電極が使用されるが、該電極の消耗速度は1〜10μg/Ahであり、消耗した白金が電解液中に溶解すると標準的には1〜10ppb 程度の白金が電解液中に混入することになる。白金の代わりに酸化イリジウム等の白金族金属酸化物が使用されることがあるが、例えば100 ppm 程度の次亜塩素酸水溶液を製造する際の前記酸化イリジウムの消耗速度は白金の約10分の1であり大きく改良されるが、洗浄用としてはこの程度の混入でも問題であり、更に電極物質の混入量の低減が必要になる。
【0005】
本発明者らは、固体電解質としてイオン交換膜を使用しそれを電極に密着させることにより電極物質の消耗を約10分の1程度に減らすことに成功したが、やはり金属が電解液中に溶出することは避けられず、同様の問題点が生じている。
これを解決するために前述の酸性水の代わりにオゾン水の使用が提案されているが、オゾン水の製造には大きな設備が必要でコスト高になること、及び放電法でオゾンを製造するとオゾナイザーの電極物質のオゾン水中への混入を避けられないという問題点があり、根本的な解決とはなっていない。
【0006】
電極として非金属性物質を使用すれば金属の混入の問題はなくなり根本的な解決法となる。該非金属性物質として炭素があり、炭素電極は古くから電解用として使用されている。しかし通常の炭素は多孔性で比較的脆いため、電解の進行に伴って破壊したり溶解したりすることがある。又陽極として使用すると一部が酸化して炭酸ガスとなり消耗が早いという問題点もある。陰極として使用する場合は炭酸ガスとしての揮散はないものの生成する水素の気泡が陽極側で生成する酸素より小さく電極の破壊が進みやすくなるという問題点がある。
このように炭素電極を使用すると電解液中への金属成分の混入という問題は生じないものの、炭素の有する脆弱性が寿命の短縮化に繋がりやすく、特に大電流下ではその傾向が大きくなるため、満足できるORPを有する酸性水やアルカリ水が得られないという欠点がある。
【0007】
【発明の目的】
本発明は、前述の従来技術の問題点を解決するために成されたもので、特に炭素電極の有する金属成分の溶出がないという特性を生かしながら該炭素電極の脆弱性という欠点を解消し、比較的長寿命で、例えば酸性水やアルカリ水の製造に使用した場合に、満足できるORPを高効率で実現できる電解水製造用電解槽を提供することを目的とする。
【0008】
【問題点を解決するための手段】
本発明は、イオン交換膜により陽極を有する陽極室と陰極を有する陰極室に区画された電解水製造用電解槽において、前記陽極及び陰極の少なくとも一方の電極物質を、その表面がフッ素樹脂処理したグラファイトで、またはその表面が硼フッ酸中で電解処理されたグラッシーカーボンで構成したことを特徴とする電解槽であり、該電解槽は2室型としても3室型としても良い。
【0009】
以下本発明を詳細に説明する。
本発明の特徴は、電解水製造用電解槽の複数の電極の少なくとも1つの電極として、例えば酸性水製造用電解槽の陽極として、又はアルカリ水製造用電解槽の陰極として、金属成分の溶出のない炭素電極を使用することにより得られる酸性水及び/又はアルカリ水が金属成分で汚染されておらず、電子部品の洗浄用等としてそのまま使用できる程度の純度を有する電解水を供給でき、更に前記炭素電極を非多孔性とすることにより、従来の炭素電極における脆弱性を改良し、前述の高純度電解水を長期間に渡って供給できる電解水製造用電解槽を構成した点にある。
【0009】
白金電極を使用して低濃度の塩化物イオンを含有する電解液を電解すると次亜塩素酸の生成効率が高くなり、白金電極の代わりに酸化イリジウム電極を使用すると、通常の水電解による酸素及び水素発生反応となり、満足できるORPは得られない。しかもいずれの場合でも金属成分の溶出が起こる。
これに対し、炭素電極を使用すると陽極電位は僅かに高くなるが、純水の場合でも低濃度の電解質を添加した電解液の場合でも、容易に高ORPの酸性水が得られ、これは炭素電極を使用して電解を行なうことにより、高電位電解によるオゾン生成が生ずるからであると推測できる。
このように炭素電極は金属成分の溶出がないこと、及びORPが十分高い酸性水を製造できるという利点があるが、その一方前述の通り脆弱性という欠点があり、本発明では該炭素電極として非多孔性炭素電極を使用して該欠点を解消することを意図している。
【0010】
本発明では、非多孔性炭素電極として、その表面がフッ素樹脂処理したグラファイト又はその表面が硼フッ酸中で電解処理されたグラッシーカーボンを使用する。
グラファイトは通常は多孔性であるが、本発明の炭素電極として使用する場合はポロシティー(多孔度)ができるだけ低い材料を選択し、更に多孔部分を樹脂などで閉塞して脆弱性を改良することが望ましい。閉塞剤は特に限定されないが極めて強い酸化性雰囲気で使用される可能性があるため、フッ素樹脂を使用することが好ましく、特に撥水性に優れたポリテトラフルオロエチレン(PTFE)樹脂の使用が望ましい。
該閉塞剤を使用する多孔部分の閉塞は、例えばグラファイトマトリックスの表面にデュポン社のJ−30等のPTFE樹脂の水分散液を塗布し、室温で乾燥後、200 〜350 ℃で10〜30分間熱処理することにより達成できる。前記多孔部分の閉塞により破壊の起こりにくい非多孔性カーボンが生成する。
【0011】
グラッシーカーボンで代表される非晶質炭素は、グラファイトより導電性が劣るという欠点があるが、グラファイト(気孔率20〜30%)より開孔がはるかに少なく、換言するとポロシティーが低い(気孔率1〜5%)という特徴があり、グラファイト以上に安定に作用し、本発明の電極としてより有効に機能する。
該グラッシーカーボンは、その表面にフッ素や硼素を含浸してその特性を改質する。この改質処理の条件は特に限定されないが、例えば40重量%以上の硼フッ酸を電解浴とし、陽極として前記グラッシーカーボンを使用し、電流密度1〜10A/dm2 で1〜10時間程度電解することにより前記グラッシーカーボンの改質を行なえる。このように処理したグラッシーカーボンの電極電位はグラファイトのそれより1V程度高い。
【0012】
このような非多孔性炭素を電極物質とする電極を使用して電解を行なう。この炭素電極を好ましくは固体電解質として機能するイオン交換膜に密着させ通電を行なう。このような条件で電解を行なうと、前記炭素電極を陽極としその陽極反応が酸素発生反応である場合でも、1〜50A/dm2 といった高電流密度下でも電解を進行でき、その際の電極の消耗も5〜30μg/Ahという小さい値に維持できる。これは炭素電極が非多孔性であり脆弱度が改良されたこと、及び純水と比較してイオン交換膜の方がはるかに電気伝導度が高いため、電流分布が均一になり電極部分での電極部分での電流負荷が比較的小さくなるからであると推測できる。
前記炭素電極を陽極として使用する場合、消耗する炭素は液中に溶け出すのではなく大部分が酸素と化合し炭酸ガスとなって空気中に揮散し、陽極液中の固形分の増加や変色は観察されない。又当然金属成分の混入はない。
【0013】
前記グラッシーカーボン又はグラファイトを炭素電極として純水や低濃度の電解質を溶解した電解液を10A/dm2 以上の電流密度で電解すると、陽極室でORPが1000mV以上である酸性水が得られ、グラッシーカーボン電極とグラファイト電極を比較すると後者で得られる酸性水のORPの方が僅かに小さくなる。
なお純水に1000ppm 程度の塩化物イオンを塩化アンモニウムや塩酸の形で加えるといずれの場合もORPが容易に1100mVを越え、pHも容易に3を下回る極めて酸化性の高い酸性水が得られる。この場合の電極の消耗速度は塩化物イオンが存在しない場合とほぼ同等で10〜30μg/Ah程度である。
【0014】
又前記多孔性炭素電極を陰極として使用すると、陰極室で水素発生が生じてpH9〜11程度のアルカリ性でORPが400 mV以下であるアルカリ水が得られる。該炭素電極を陰極として電流密度10A/dm2 で1ヶ月間電解を継続しても電極の外観には全く変化が認められず、陰極液にも変色は生じない。
本発明では複数の電極を使用する電解水製造用電解槽の少なくとも1個の電極を前述した非多孔性炭素電極で構成するようにしている。従って例えば2室型電解槽の陽極のみを非多孔性炭素電極とし、陰極を金属電極として電解を行なうと、両極とも比較的長寿命を有し交換することなく長期間電解を継続できるが、得られる陽極液は金属成分の溶出のない電子デバイス等の洗浄用に適した高純度酸性水となるのに対し、得られる陰極液には金属が溶出し洗浄には適しないアルカリ水が得られる。従って当然、全ての電極を非多孔性炭素電極で構成することが最も望ましい。
【0017】
2室型電解槽で純水を電解して酸性水とアルカリ水を得る場合にはいずれの電解室に純水を供給しても良いが陽極室に純水を供給すると、陽極では
2H2 O → O2 + 4H+ + 4e 又は
3H2 O → O3 + 6H+ + 6e
の反応式に従って酸素やオゾンが生成し、
陰極では、
2H+ + 2e → H2 O + 2OH-
の反応式に従って水酸イオンが生成する。
又陰極に酸素を供給しながら電解を行なうと、陰極反応は、
2 + H2 O + 2e → OH- + HO2 -
となる。これに塩化物イオンを添加すると、前記陽極反応に加えて陽極で、
2Cl- → Cl2 + 2e
の反応も起こり、生成した塩素ガスが電解液中に溶解し、pHにも依るが、通常は水と反応して次亜塩素酸を生成する。
3室型電解槽の場合は純水又は塩溶液を中間室に供給し、陽極室で高純度の酸性水を、陰極室で高純度のアルカリ水が生成する。
【0018】
図1は本発明に係わる2室型電解槽の一例を示す概略縦断面図、図2は同じく3室型電解槽の一例を示す概略縦断面図である。
図1において、2室型電解槽1はイオン交換膜2により陽極室3と陰極室4とに区画され、前記イオン交換膜2の陽極室3側に非多孔性炭素陽極5が陰極室4側に非多孔性炭素陰極6がそれぞれ密着している。
陽極室3の底面及び上面には純水又は塩溶液の供給口7及び酸性水取出口8が、陰極室4の底面及び上面には純水供給口9及びアルカリ水取出口10がそれぞれ設置されている。なお11はイオン交換膜2と周縁部間のパッキングである。
【0019】
図2において、3室型電解槽21は、陽イオン交換膜22により陽極室23及び中間室24に、又陽イオン交換膜25により前記中間室24と陰極室26に区画されている。前記陰イオン交換膜22の陽極室23側には非多孔性炭素陽極27が、又前記陽イオン交換膜22の陰極室26側には非多孔性炭素陰極28がそれぞれ密着している。
陽極23の底面及び上面には純水供給口29及び酸性水取出口30が、中間室24の底面及び上面には塩化アンモニウム等の塩溶液供給口31及び塩溶液取出口32が、陰極室26の底面及び上面には純水供給口33及びアルカリ水取出口34がそれぞれ設置されている。なお35はイオン交換膜22、25と周縁部間のパッキングである。
【0020】
図1及び図2のいずれの電解槽1、21でも、純水又は塩溶液供給口7又は塩溶液供給口31から純水や塩化アンモニウム水溶液や硫酸等の塩溶液を供給しながら両炭素電極5、6及び27、28間に通電すると、陽極室で酸性水が陰極室でアルカリ水がそれぞれ金属成分を含有することなく生成する。各電極が非多孔性炭素電極で構成されているため、炭素電極固有の脆弱性が解消され、消耗を最小限に抑制しつつ長期間の連続運転が可能になる。
【0021】
【実施例】
次に本発明に係わる電解水製造用電解槽を使用する酸性水及びアルカリ水の製造の実施例を記載するが、該実施例は本発明を限定するものではない。
【0022】
【実施例1】
イオン交換膜としてデュポン社のナフィオン117 陽イオン交換膜を使用し、陽極として厚さ1mmのグラファイト製の穴明板(2mmφ×3mmピッチ)を使用し、陰極として炭素とフッ素樹脂を混練して焼き付けた導電性のシートを使用して図1に示す電解槽を構成した。前記穴明板は、原板をロータリーポンプで減圧した雰囲気に置き、PTFE懸濁液(デュポン社製J30)を滴下して塗布し、60℃で乾燥後、370 ℃で15分間焼き付けて非多孔性の炭素電極である穴明板とした。
前記陽極及び陰極は両側から集電体を兼ねた純チタン製のメッシュで押さえ付けた。この電解槽の陽極室に純水を満たし、前記チタン製メッシュを通して3000クーロン/リットルの割合で通電し電解を行なった。電流密度を5〜50A/dm2 の範囲で変えて電解を行なった結果を表1に示した。
【0023】
【表1】

Figure 0003673000
【0024】
【比較例1】
陽極として白金めっきチタンを使用したこと以外は実施例1と同一条件で電解を行なったところ、10A/dm2 を越える電流密度では白金の消耗が大きく、使用を継続できなかった。電流密度10A/dm2 での電解では、実施例1とほぼ同等のpH=3.2 、ORP=950 mVの酸性水が得られたが、該酸性水には約10ppt の白金が含有されていた。これは消耗速度が約10μgkA/hであり、消耗した白金が電解液中に溶出したことが判った。
【0025】
【実施例2】
2枚の陽イオン交換膜(デュポン社製ナフィオン115 )を使用して電解槽を陽極室−中間室−陰極室に区画した。厚さ1mmのグラッシーカーボンに3mmピッチで直径2mmの穴を千鳥状に開けた多孔板を準備し、陰極としては該多孔板をそのまま使用し、陽極としては該多孔板を予め40%の硼フッ酸中、40℃、1A/dm2 で10時間陽極酸化処理を行なったものを使用し、それぞれ陰極室内及び陽極室内に前記各陽イオン交換膜に密着圧3kg/cm2で密着するよう設置した。前記中間室にはデュポン社製のナフィオン粒子から成るイオン交換樹脂を充填した。
【0026】
陽極室及び陰極室には電導度18MΩcm以下のいわゆる超純水を満たし、電極投影面当たりの電流密度10A/dm2 で電解を行なった。温度は25℃とした。
陽極室ではpHが4.5 でORPが1150mV(vsAg/AgCl)である酸性水が、陰極室ではpHが9.4 でORPが−24mV(vsAg/AgCl)であるアルカリ水が得られた。陽極側で高いORPの酸性水が得られたのは、部分的なオゾン発生によるものであり、更に陰極側からの水素の透過が完全に阻止されているためであると考えられる。又陰極側では発生水素によるORPの十分な低下が生じたことが判った。両極室で得られた酸性水及びアルカリ水中の金属不純物はいずれも検出限界未満(ND)であり、電子デバイスの洗浄用として十分に使用できるレベルだった。
【0027】
【実施例3】
電解槽は実施例1と同じものを使用し、陽極としてはフッ素樹脂を含浸しながらPTFE樹脂を混練して作製した芯材であるPTFE繊維を実施例1の穴明板に塗布し、1kg/cm2の圧力を掛けながら370 ℃で15分間ホットプレスしたものを使用した。集電体は表面を600 ℃の酸化雰囲気中で熱処理し酸化物に変換した。塩化物イオンとして1000ppm になるように塩化アンモニウムを純水中に添加した水溶液を陽極室に供給しながら電流密度10A/dm2 で電解を行なった。
陽極室ではpHが3.2 でORPが1200mVである酸性水が、陰極室ではpHが9.5 でORPが330 mVであるアルカリ水が得られた。なお陽極の消耗速度は8μg/Ahに相当した。
【0030】
【発明の効果】
本発明は、イオン交換膜により陽極を有する陽極室と陰極を有する陰極室に区画された電解水製造用電解槽において、前記陽極及び陰極の少なくとも一方の電極物質をその表面がフッ素樹脂処理したグラファイト又はその表面が硼フッ酸中で電解処理されたグラッシーカーボンで構成したことを特徴とする電解槽である。
従来の電解水製造用電解槽と異なり、本発明では金属電極ではなく炭素電極を使用することにより電解により得られる電解水中への金属成分の混入を防止し、電子デバイス洗浄用としても使用可能な金属不純物を殆ど含まない酸性水やアルカリ水を製造することを可能にしている。
【0031】
更に炭素電極として従来の炭素電極の脆弱性を有しない非多孔性炭素電極を使用しているため、消耗速度が非常に遅く、実用的な長寿命を有するとともに炭素の崩壊による電解水の汚染も殆ど生ずることのない電解水製造用電解槽を提供できる。
非多孔性炭素としてはグラファイトやグラッシーカーボン等があり、前記グラファイトは比較的多孔性であるため、ポロシティー(多孔度)ができるだけ低い材料を選択し、更にその表面の多孔部分をフッ素樹脂などで閉塞して脆弱性を改良することが望ましい。
【0032】
グラッシーカーボンはグラファイトと比較してポロシティーがはるかに低く、非多孔性炭素電極用として好ましい材料であり、本発明では、その表面を硼フッ酸中で電解処理して導電性と耐食性を向上させた後に使用する。
本発明に係わる電解水製造用電解槽は2室型電解槽の他に3室型電解槽とすることも可能である。
【図面の簡単な説明】
【図1】本発明に係わる2室型の電解水製造用電解槽の一例を示す概略縦断面図。
【図2】本発明に係わる3室型の電解水製造用電解槽の一例を示す概略縦断面図。
【符号の説明】
1・・・2室型電解槽 2・・・イオン交換膜 3・・・陽極室 4・・・陰極室 5・・・非多孔性炭素陽極 6・・・非多孔性炭素陰極 7・・・純水又は塩溶液の供給口 8・・・酸性水取出口 9・・・純水供給口 10・・・アルカリ水取出口 11・・・パッキング[0001]
[Industrial application fields]
The present invention relates to an electrolytic cell for producing electrolytic water having a long life and capable of producing high-purity electrolytic water, and more specifically, high-purity alkaline water used for cleaning electronic devices such as semiconductor devices and liquid crystal panels, and the like. The present invention relates to an electrolyzer for producing electrolyzed water for producing acid water using dilute salt water or pure water as a raw material.
[0002]
[Prior art and its problems]
For cleaning in the manufacturing process of electronic components such as semiconductor devices and liquid crystal panels, conventionally used organic solvents specially prepared for the application, inorganic acids such as sulfuric acid, hydrofluoric acid, hydrochloric acid and nitric acid, ozone water and Oxidizing agents such as hydrogen peroxide have been used. These will continue to be used depending on the application, but they are obtained by specially refining the products manufactured by the chemical processes corresponding to each of them. The operation for performing the removal and the like is complicated, resulting in an expensive product. Further, even if the purification operation is performed carefully, the reduction in the allowable impurity amount accompanying the advancement of electronic devices is not always sufficient, and a new alternative method is required.
[0003]
Furthermore, these chemicals are not only dangerous, but organic solvents can cause environmental problems such as the destruction of the ozone layer, and other inorganic acids and salts require a lot of labor and cost for wastewater treatment. There is a problem of hanging. Furthermore, a device cleaned using these cleaning agents has a drawback that a large amount of ultrapure water is required to remove the cleaning agents.
Similarly, in the fields of medical and food, which are other uses, a large amount of cleaning agent is required for sterilization and cleaning, and the amount of water for removing the cleaning agent is enormous.
In order to solve these problems, electrolysis is performed in an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane and water or a small amount of electrolyte such as hydrochloric acid, sodium chloride or ammonium chloride is added. Thus, there is a method of obtaining weakly acidic water having a high oxidation-reduction potential (ORP) on the anode side, that is, highly oxidizable weakly acidic water, and on the cathode side, obtaining weakly basic alkaline water having a low ORP, that is, extremely high reducibility. It is done.
[0004]
In general, a titanium electrode coated with platinum is used as an electrode in this electrolysis. The consumption rate of the electrode is 1 to 10 μg / Ah. When the consumed platinum is dissolved in the electrolyte, it is typically about 1 to 10 ppb. Of platinum will be mixed in the electrolyte. Platinum group metal oxides such as iridium oxide may be used instead of platinum. For example, the consumption rate of the iridium oxide when producing a hypochlorous acid aqueous solution of about 100 ppm is about 10 minutes that of platinum. Although it is 1 and greatly improved, even this level of contamination is a problem for cleaning, and it is necessary to further reduce the amount of contamination of the electrode material.
[0005]
The inventors have succeeded in reducing the consumption of the electrode material to about 1/10 by using an ion exchange membrane as a solid electrolyte and adhering it to the electrode, but the metal is also dissolved in the electrolyte. This is unavoidable and causes similar problems.
In order to solve this, the use of ozone water has been proposed in place of the above-mentioned acidic water, but the production of ozone water requires a large facility and is expensive, and the ozone generator produces ozone by the discharge method. There is a problem that it is unavoidable to mix the electrode material into ozone water, and this is not a fundamental solution.
[0006]
If a non-metallic substance is used as an electrode, the problem of metal contamination is eliminated and this is a fundamental solution. Carbon is used as the nonmetallic substance, and carbon electrodes have been used for electrolysis for a long time. However, since normal carbon is porous and relatively brittle, it may be destroyed or dissolved as electrolysis progresses. In addition, when used as an anode, there is a problem in that a part thereof is oxidized to carbon dioxide gas and is consumed quickly. When used as a cathode, although there is no volatilization as carbon dioxide gas, there is a problem that the hydrogen bubbles produced are smaller than the oxygen produced on the anode side and the destruction of the electrode easily proceeds.
When using a carbon electrode in this way, the problem of mixing metal components into the electrolyte does not occur, but the fragility of carbon is likely to lead to a shortening of the life, especially when the current is large, so the tendency increases. There is a drawback that acidic water or alkaline water having satisfactory ORP cannot be obtained.
[0007]
OBJECT OF THE INVENTION
The present invention was made in order to solve the above-mentioned problems of the prior art, in particular, while eliminating the disadvantage of the weakness of the carbon electrode while taking advantage of the property that there is no elution of the metal component of the carbon electrode, An object of the present invention is to provide an electrolyzer for producing electrolyzed water that has a relatively long life and can realize satisfactory ORP with high efficiency when used for producing acid water or alkaline water, for example.
[0008]
[Means for solving problems]
The present invention provides an electrolytic cell for producing electrolyzed water partitioned into an anode chamber having an anode and a cathode chamber having a cathode by an ion exchange membrane, and at least one of the anode and cathode electrode materials is treated with a fluororesin on the surface. It is an electrolytic cell characterized in that it is made of graphite or glassy carbon whose surface is electrolytically treated in borofluoric acid. The electrolytic cell may be a two-chamber type or a three-chamber type.
[0009]
The present invention will be described in detail below.
The feature of the present invention is that the elution of metal components is performed as at least one electrode of a plurality of electrodes of an electrolytic cell for electrolytic water production, for example, as an anode of an electrolytic cell for acidic water production or as a cathode of an electrolytic cell for alkaline water production. Electrolyzed water and / or alkaline water obtained by using no carbon electrode is not contaminated with metal components, and electrolyzed water having such a purity that it can be used as it is for washing electronic components, etc. can be supplied, and By making the carbon electrode non-porous, the brittleness of the conventional carbon electrode is improved, and an electrolytic cell for producing electrolyzed water that can supply the above-described high-purity electrolyzed water over a long period of time is configured.
[0009]
Electrolysis of an electrolyte containing a low concentration of chloride ions using a platinum electrode increases the production efficiency of hypochlorous acid. When an iridium oxide electrode is used instead of a platinum electrode, oxygen and oxygen generated by ordinary water electrolysis are used. It becomes a hydrogen generation reaction, and a satisfactory ORP cannot be obtained. Moreover, elution of metal components occurs in any case.
On the other hand, when the carbon electrode is used, the anode potential is slightly increased. However, even in the case of pure water or in the case of an electrolytic solution to which a low-concentration electrolyte is added, high ORP acidic water can be easily obtained. It can be presumed that ozone is generated by high potential electrolysis when electrolysis is performed using electrodes.
As described above, the carbon electrode has advantages that there is no elution of metal components and that acidic water having a sufficiently high ORP can be produced. On the other hand, as described above, there is a drawback that it is brittle. It is intended to eliminate this drawback using a porous carbon electrode.
[0010]
In the present invention, as the non-porous carbon electrode, graphite whose surface is treated with fluororesin or glassy carbon whose surface is electrolytically treated in borofluoric acid is used.
Graphite is usually porous, but when it is used as the carbon electrode of the present invention, select a material with as low a porosity as possible and further block the porous portion with resin to improve brittleness. Is desirable. Although the occlusive agent is not particularly limited, it may be used in an extremely strong oxidizing atmosphere. Therefore, it is preferable to use a fluororesin, and it is particularly preferable to use a polytetrafluoroethylene (PTFE) resin excellent in water repellency.
For example, the porous portion using the plugging agent is blocked by applying an aqueous dispersion of PTFE resin such as DuPont J-30 on the surface of the graphite matrix, drying at room temperature, and then at 200 to 350 ° C. for 10 to 30 minutes. This can be achieved by heat treatment. Non-porous carbon that does not easily break is generated due to the clogging of the porous portion.
[0011]
Amorphous carbon typified by glassy carbon has the disadvantage of being inferior in conductivity to graphite, but has far fewer pores than graphite (porosity 20-30%), in other words, low porosity (porosity) is characterized in that 1-5%), stably acts on the above graphite, function more effectively as a collector electrode of the present invention.
The glassy carbon has the characteristic that inquire modified by impregnating a full Tsu-containing or boron on the surface of it. Although modifying process conditions this is not particularly limited, for example, 40% or more by weight of the boron hydrofluoric acid and electrolytic bath, using the glassy carbon as an anode at a current density of 1 to 10 A / dm 2 about 1 to 10 hours The glassy carbon can be modified by electrolysis. The electrode potential of the glassy carbon treated in this way is about 1 V higher than that of graphite.
[0012]
Electrolysis is performed using an electrode using such non-porous carbon as an electrode material. The carbon electrode is preferably brought into close contact with an ion exchange membrane functioning as a solid electrolyte for energization. When electrolysis is performed under such conditions, even when the carbon electrode is used as an anode and the anodic reaction is an oxygen generation reaction, electrolysis can proceed even under a high current density of 1 to 50 A / dm 2 . The consumption can also be maintained at a small value of 5 to 30 μg / Ah. This is because the carbon electrode is non-porous and has improved brittleness, and the ion exchange membrane has a much higher electrical conductivity than pure water. It can be assumed that the current load at the electrode portion is relatively small.
When the carbon electrode is used as an anode, the depleted carbon is not dissolved in the liquid, but is mostly combined with oxygen and volatilized in the air as carbon dioxide, increasing the solid content or discoloration in the anolyte. Is not observed. Naturally, there is no mixing of metal components.
[0013]
When electrolysis is performed at a current density of 10 A / dm 2 or more using the glassy carbon or graphite as a carbon electrode in which pure water or a low concentration electrolyte is dissolved, acidic water having an ORP of 1000 mV or more is obtained in the anode chamber. When the carbon electrode and the graphite electrode are compared, the acid water ORP obtained in the latter is slightly smaller.
In addition, when chloride ions of about 1000 ppm are added to pure water in the form of ammonium chloride or hydrochloric acid, in any case, highly oxidative acid water with ORP easily exceeding 1100 mV and pH easily lower than 3 can be obtained. In this case, the consumption rate of the electrode is about 10 to 30 μg / Ah, which is almost the same as the case where no chloride ion is present.
[0014]
When the porous carbon electrode is used as a cathode, hydrogen is generated in the cathode chamber, so that alkaline water having an alkaline pH of about 9 to 11 and an ORP of 400 mV or less is obtained. Even when electrolysis is continued for 1 month at a current density of 10 A / dm 2 using the carbon electrode as a cathode, no change is observed in the appearance of the electrode, and no discoloration occurs in the catholyte.
In the present invention, at least one electrode of an electrolytic cell for electrolyzed water production using a plurality of electrodes is constituted by the non-porous carbon electrode described above. Therefore, for example, when electrolysis is performed using only the anode of the two-chamber electrolytic cell as a non-porous carbon electrode and the cathode as a metal electrode, both electrodes have a relatively long life and can be electrolyzed for a long time without replacement. The resulting anolyte becomes high-purity acidic water suitable for washing electronic devices and the like that do not elute metal components, whereas the resulting catholyte yields alkaline water that is not suitable for washing because metal is eluted. Accordingly, it is of course most desirable that all the electrodes are composed of non-porous carbon electrodes.
[0017]
When acid water and alkaline water are obtained by electrolyzing pure water in a two-chamber electrolytic cell, pure water may be supplied to any electrolytic chamber, but when pure water is supplied to the anode chamber, 2H 2 O is supplied to the anode. → O 2 + 4H + + 4e or 3H 2 O → O 3 + 6H + + 6e
Oxygen and ozone are generated according to the reaction formula of
In the cathode,
2H + + 2e → H 2 O + 2OH
Hydroxide ions are generated according to the reaction formula:
When electrolysis is performed while supplying oxygen to the cathode, the cathode reaction is
O 2 + H 2 O + 2e → OH + HO 2
It becomes. When chloride ions are added to this, in addition to the anode reaction, at the anode,
2Cl → Cl 2 + 2e
The generated chlorine gas dissolves in the electrolytic solution and usually reacts with water to produce hypochlorous acid, depending on the pH.
In the case of a three-chamber electrolytic cell, pure water or a salt solution is supplied to the intermediate chamber, and high-purity acidic water is generated in the anode chamber and high-purity alkaline water is generated in the cathode chamber.
[0018]
FIG. 1 is a schematic longitudinal sectional view showing an example of a two-chamber electrolytic cell according to the present invention, and FIG. 2 is a schematic vertical sectional view showing an example of a three-chamber electrolytic cell.
In FIG. 1, a two-chamber electrolytic cell 1 is partitioned into an anode chamber 3 and a cathode chamber 4 by an ion exchange membrane 2, and a nonporous carbon anode 5 is on the cathode chamber 4 side on the anode chamber 3 side of the ion exchange membrane 2. The non-porous carbon cathode 6 is in close contact with each other.
A pure water or salt solution supply port 7 and an acidic water outlet 8 are installed on the bottom and top surfaces of the anode chamber 3, and a pure water supply port 9 and an alkaline water outlet 10 are installed on the bottom and top surfaces of the cathode chamber 4, respectively. ing. In addition, 11 is a packing between the ion exchange membrane 2 and a peripheral part.
[0019]
In FIG. 2, a three-chamber electrolytic cell 21 is divided into an anode chamber 23 and an intermediate chamber 24 by a cation exchange membrane 22, and an intermediate chamber 24 and a cathode chamber 26 by a cation exchange membrane 25. A nonporous carbon anode 27 is in close contact with the anion exchange membrane 22 on the anode chamber 23 side, and a nonporous carbon cathode 28 is in close contact with the cation exchange membrane 22 on the cathode chamber 26 side.
A pure water supply port 29 and an acidic water outlet 30 are provided on the bottom and top surfaces of the anode 23, and a salt solution supply port 31 and a salt solution outlet 32 such as ammonium chloride are provided on the bottom and top surfaces of the intermediate chamber 24. A pure water supply port 33 and an alkaline water outlet 34 are respectively installed on the bottom surface and the top surface. Reference numeral 35 denotes a packing between the ion exchange membranes 22 and 25 and the peripheral portion.
[0020]
1 and 2, both carbon electrodes 5 are supplied while supplying pure water, a salt solution supply port 31 or a salt solution such as an aqueous solution of ammonium chloride or sulfuric acid from the pure water or salt solution supply port 31. , 6, 27, and 28, acid water is generated in the anode chamber and alkaline water is generated in the cathode chamber without containing metal components. Since each electrode is composed of a non-porous carbon electrode, the vulnerability inherent in the carbon electrode is eliminated, and long-term continuous operation is possible while minimizing wear.
[0021]
【Example】
Next, although the Example of manufacture of the acidic water using the electrolytic cell for electrolyzed water manufacture concerning this invention and alkaline water is described, this Example does not limit this invention.
[0022]
[Example 1]
Nafion 117 cation exchange membrane from DuPont is used as the ion exchange membrane, a 1 mm thick graphite perforated plate (2 mmφ x 3 mm pitch) is used as the anode, and carbon and fluororesin are kneaded and baked as the cathode. The electrolytic cell shown in FIG. 1 was constructed using the conductive sheet. The perforated plate is placed in an atmosphere in which the original plate is depressurized with a rotary pump, and a PTFE suspension (DuPont J30) is dropped and applied, dried at 60 ° C, and baked at 370 ° C for 15 minutes to be nonporous A perforated plate which is a carbon electrode.
The anode and cathode were pressed from both sides with a pure titanium mesh that also serves as a current collector. The anode chamber of this electrolytic cell was filled with pure water, and electrolysis was performed by supplying electricity at a rate of 3000 coulomb / liter through the titanium mesh. Table 1 shows the results of electrolysis with the current density varied in the range of 5 to 50 A / dm 2 .
[0023]
[Table 1]
Figure 0003673000
[0024]
[Comparative Example 1]
When electrolysis was carried out under the same conditions as in Example 1 except that platinum-plated titanium was used as the anode, the consumption of platinum was large at a current density exceeding 10 A / dm 2 , and the use could not be continued. In electrolysis at a current density of 10 A / dm 2 , acidic water with pH = 3.2 and ORP = 950 mV, which is almost the same as in Example 1, was obtained, but the acidic water contained about 10 ppt of platinum. It was found that the consumption rate was about 10 μg kA / h, and the consumed platinum was eluted in the electrolyte.
[0025]
[Example 2]
The electrolytic cell was partitioned into an anode chamber, an intermediate chamber and a cathode chamber using two cation exchange membranes (Nafion 115 manufactured by DuPont). A perforated plate is prepared by staggering 2 mm diameter holes in a 1 mm thick glassy carbon. The perforated plate is used as a cathode, and the perforated plate is used as an anode in advance with 40% boron fluoride. Using an acid-anodized material at 40 ° C. and 1 A / dm 2 for 10 hours, it was placed in the cathode chamber and the anode chamber so as to be in close contact with each cation exchange membrane at an adhesion pressure of 3 kg / cm 2 . . The intermediate chamber was filled with an ion exchange resin composed of Nafion particles manufactured by DuPont.
[0026]
The anode chamber and the cathode chamber were filled with so-called ultrapure water having an electric conductivity of 18 MΩcm or less, and electrolysis was performed at a current density of 10 A / dm 2 per electrode projection surface. The temperature was 25 ° C.
In the anode chamber, acidic water having a pH of 4.5 and an ORP of 1150 mV (vsAg / AgCl) was obtained, and in the cathode chamber, alkaline water having a pH of 9.4 and an ORP of -24 mV (vsAg / AgCl) was obtained. The reason why high ORP acid water is obtained on the anode side is considered to be due to partial ozone generation, and further because hydrogen permeation from the cathode side is completely blocked. It was also found that the ORP was sufficiently lowered by the generated hydrogen on the cathode side. The metal impurities in the acidic water and alkaline water obtained in the bipolar chambers were both below the detection limit (ND), and were sufficiently usable for cleaning electronic devices.
[0027]
[Example 3]
The same electrolytic cell as in Example 1 was used, and the PTFE fiber, which was a core material prepared by kneading PTFE resin while impregnating fluororesin as the anode, was applied to the perforated plate of Example 1, and 1 kg / What was hot pressed at 370 ° C. for 15 minutes while applying a pressure of cm 2 was used. The current collector was heat-treated in an oxidizing atmosphere at 600 ° C. to convert it into an oxide. Electrolysis was carried out at a current density of 10 A / dm 2 while supplying an aqueous solution in which ammonium chloride was added to pure water so as to be 1000 ppm as chloride ions to the anode chamber.
Acidic water having a pH of 3.2 and an ORP of 1200 mV was obtained in the anode chamber, and alkaline water having a pH of 9.5 and an ORP of 330 mV was obtained in the cathode chamber. The consumption rate of the anode corresponded to 8 μg / Ah.
[0030]
【The invention's effect】
The present invention relates to an electrolytic cell for producing electrolyzed water divided into an anode chamber having an anode and a cathode chamber having a cathode by an ion exchange membrane, and at least one electrode material of the anode and the cathode has a surface treated with a fluorine resin. Alternatively , the electrolytic cell is characterized in that the surface thereof is composed of glassy carbon electrolytically treated in borofluoric acid .
Unlike conventional electrolyzers for electrolyzed water production, in the present invention, by using a carbon electrode instead of a metal electrode, mixing of metal components into electrolyzed water obtained by electrolysis can be prevented, and it can also be used for cleaning electronic devices. It makes it possible to produce acidic water or alkaline water that contains almost no metal impurities.
[0031]
Furthermore, the non-porous carbon electrode that does not have the weakness of the conventional carbon electrode is used as the carbon electrode, so the consumption rate is very slow, it has a practical long life and the contamination of the electrolyzed water due to the collapse of the carbon. An electrolyzer for producing electrolyzed water that hardly occurs can be provided.
Non-porous carbon includes graphite and glassy carbon. Since the graphite is relatively porous, a material having as low a porosity as possible is selected, and the porous portion of the surface is made of fluorine resin or the like. It is desirable to block and improve vulnerability.
[0032]
Glassy carbon has a much lower porosity as compared to graphite, non-porous preferred material der for the carbon electrode is, in the present invention, the surface electrolytic treatment in the boron hydrofluoric acid to conductivity and corrosion resistance of their to use after having improved.
The electrolyzer for producing electrolyzed water according to the present invention can be a three-chamber electrolyzer in addition to the two-chamber electrolyzer.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing an example of an electrolyzer for producing electrolyzed water of a two-chamber type according to the present invention.
FIG. 2 is a schematic longitudinal sectional view showing an example of a three-chamber electrolytic water production tank according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Two-chamber type electrolytic cell 2 ... Ion exchange membrane 3 ... Anode chamber 4 ... Cathode chamber 5 ... Non-porous carbon anode 6 ... Non-porous carbon cathode 7 ... Supply port for pure water or salt solution 8 ... Acidic water outlet 9 ... Pure water supply port 10 ... Alkaline water outlet 11 ... Packing

Claims (4)

イオン交換膜により陽極を有する陽極室と陰極を有する陰極室に区画された電解水製造用電解槽において、前記陽極及び陰極の少なくとも一方の電極物質を、その表面がフッ素樹脂処理したグラファイトで構成したことを特徴とする電解槽。In an electrolytic cell for electrolyzed water production divided into an anode chamber having an anode and a cathode chamber having a cathode by an ion exchange membrane, at least one electrode material of the anode and the cathode is composed of graphite whose surface is treated with a fluororesin . An electrolytic cell characterized by that. イオン交換膜により陽極を有する陽極室と陰極を有する陰極室に区画された電解水製造用電解槽において、前記陽極及び陰極の少なくとも一方の電極物質を、その表面が硼フッ酸中で電解処理されたグラッシーカーボンで構成したことを特徴とする電解槽。  In an electrolytic cell for electrolyzed water production divided into an anode chamber having an anode and a cathode chamber having a cathode by an ion exchange membrane, the surface of at least one of the anode and cathode materials is electrolytically treated in boron hydrofluoric acid. An electrolytic cell made of glassy carbon. 陰イオン交換膜により陽極を有する陽極室及び中間室に、陽イオン交換膜により前記中間室及び陰極を有する陰極室にそれぞれ区画された3室型電解水製造用電解槽において、前記陽極及び陰極の少なくとも一方の電極物質を、その表面がフッ素樹脂処理したグラファイトで構成したことを特徴とする電解槽。In a three-chamber electrolytic water production electrolytic cell partitioned into an anode chamber and an intermediate chamber having an anode by an anion exchange membrane, and a cathode chamber having an intermediate chamber and a cathode by a cation exchange membrane, respectively, the anode and the cathode An electrolytic cell characterized in that at least one electrode material is composed of graphite whose surface is treated with a fluororesin . 陰イオン交換膜により陽極を有する陽極室及び中間室に、陽イオン交換膜により前記中間室及び陰極を有する陰極室にそれぞれ区画された3室型電解水製造用電解槽において、前記陽極及び陰極の少なくとも一方の電極物質を、その表面が硼フッ酸中で電解処理されたグラッシーカーボンで構成したことを特徴とする電解槽。  In a three-chamber electrolyzed water producing cell divided into an anode chamber and an intermediate chamber having an anode by an anion exchange membrane and a cathode chamber having an intermediate chamber and a cathode by a cation exchange membrane, respectively, the anode and cathode An electrolytic cell characterized in that at least one electrode material is composed of glassy carbon whose surface is electrolytically treated in borofluoric acid.
JP02329696A 1996-01-17 1996-01-17 Electrolyzer for electrolyzed water production Expired - Fee Related JP3673000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02329696A JP3673000B2 (en) 1996-01-17 1996-01-17 Electrolyzer for electrolyzed water production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02329696A JP3673000B2 (en) 1996-01-17 1996-01-17 Electrolyzer for electrolyzed water production

Publications (2)

Publication Number Publication Date
JPH09195079A JPH09195079A (en) 1997-07-29
JP3673000B2 true JP3673000B2 (en) 2005-07-20

Family

ID=12106650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02329696A Expired - Fee Related JP3673000B2 (en) 1996-01-17 1996-01-17 Electrolyzer for electrolyzed water production

Country Status (1)

Country Link
JP (1) JP3673000B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245527B1 (en) * 2001-03-29 2002-11-06 Cs Clean Systems Ag Storage container for high purity liquid products with a device for cleaning the container fittings and conduits
JP4535822B2 (en) * 2004-09-28 2010-09-01 ペルメレック電極株式会社 Conductive diamond electrode and manufacturing method thereof
FR2880196B1 (en) * 2004-12-28 2007-03-09 Accumulateurs Fixes LIQUID CATHODE ELECTROCHEMICAL GENERATOR
KR20140027866A (en) * 2012-08-27 2014-03-07 임신교 Electrolytic bath for manufacturing acid water and the using method of the water

Also Published As

Publication number Publication date
JPH09195079A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP3716042B2 (en) Acid water production method and electrolytic cell
KR100712389B1 (en) The process and the apparatus for cleansing the electronic part using functional water
US6527940B1 (en) Production method of acid water and alkaline water
CN108411321B (en) Device and method for preparing ferrate by double-membrane three-chamber electrolytic cell
US5938916A (en) Electrolytic treatment of aqueous salt solutions
JP2001192874A (en) Method for preparing persulfuric acid-dissolving water
JPH08127887A (en) Electrolytic water producing device
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JP2002336856A (en) Electrolytic water making apparatus and method of making electrolytic water
JP4157615B2 (en) Method for producing insoluble metal electrode and electrolytic cell using the electrode
JP2007332441A (en) Method of manufacturing persulfuric acid and electrolytic cell for manufacture
JP4975271B2 (en) Electrolytic water treatment electrode
US6761815B2 (en) Process for the production of hydrogen peroxide solution
JP3673000B2 (en) Electrolyzer for electrolyzed water production
KR20070117523A (en) Electrolysis cell for ozone water and hypo-chlorite water generation by top water electrolysis and mixed oxidant electrode
JP3727579B2 (en) Hydrothermal electrolysis reactor and electrode
JPH11140679A (en) Electrolytic cell for production of hydrogen peroxide
JPH101794A (en) Electrolytic cell and electrolyzing method
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP3645636B2 (en) 3-chamber electrolytic cell
JPH1110160A (en) Method for treating water by electrolytic oxidation
JP3914032B2 (en) Electrodialysis electrode and electrodialysis method using the electrode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees