JPH09195079A - Electrolytic cell for producing electrolyzed water - Google Patents
Electrolytic cell for producing electrolyzed waterInfo
- Publication number
- JPH09195079A JPH09195079A JP8023296A JP2329696A JPH09195079A JP H09195079 A JPH09195079 A JP H09195079A JP 8023296 A JP8023296 A JP 8023296A JP 2329696 A JP2329696 A JP 2329696A JP H09195079 A JPH09195079 A JP H09195079A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- anode
- cathode
- electrolytic cell
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、長寿命を有しかつ高純
度の電解水を製造できる電解水製造用電解槽に関し、よ
り詳細には半導体デバイスや液晶パネル等の電子デバイ
スの洗浄に使用する高純度のアルカリ水及び酸性水を希
塩水や純水を原料として製造するための電解水製造用電
解槽に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell for producing electrolyzed water having a long life and capable of producing highly pure electrolyzed water, and more specifically, used for cleaning electronic devices such as semiconductor devices and liquid crystal panels. The present invention relates to an electrolytic cell for producing electrolyzed water for producing high-purity alkaline water and acidic water using diluted salt water or pure water as a raw material.
【0002】[0002]
【従来技術とその問題点】半導体デバイスや液晶パネル
等の電子部品の製造過程における洗浄には、従来から該
用途のために特別に調製された有機溶剤や、硫酸、フッ
酸、塩酸及び硝酸等の無機酸や、オゾン水及び過酸化水
素等の酸化剤が使用されてきた。これらは今後も用途に
応じて使用されるが、それぞれに応じた化学プロセスで
製造された製品を特別に精製して得られたものであり、
製造過程の触媒等から混入してくる金属成分の除去等を
行なうための操作が煩雑で結果的に高価な製品となって
いる。又精製操作を丁寧に行なっても電子デバイスの高
度化に伴う許容不純物量の低下に対しては必ずしも十分
に対応できるものではなく、新たな代替手法が要請され
ている。2. Description of the Related Art For cleaning in the manufacturing process of electronic parts such as semiconductor devices and liquid crystal panels, organic solvents, sulfuric acid, hydrofluoric acid, hydrochloric acid, nitric acid, etc. which have been specially prepared for the above-mentioned uses have been used. Inorganic acids and oxidants such as ozone water and hydrogen peroxide have been used. These will continue to be used depending on the application, but they were obtained by specially refining the products manufactured by the respective chemical processes.
The operation for removing the metal components mixed in from the catalyst in the manufacturing process is complicated, resulting in an expensive product. Further, even if the refining operation is carefully performed, it is not always possible to sufficiently cope with the decrease in the allowable amount of impurities due to the sophistication of electronic devices, and a new alternative method is required.
【0003】更にこれらの薬品は危険な物が多いだけで
なく、有機溶剤はオゾン層の破壊等の環境問題を引き起
こす可能性があり、又他の無機酸や塩類ではその廃水処
理に多くの手間とコストが掛かるという問題点がある。
更にこれらの洗浄剤を使用して洗浄したデバイスは該洗
浄剤除去のために多量の超純水を必要とするという欠点
もある。他の用途である医療や食品の分野でも同様に殺
菌や洗浄にあたっては多量の洗浄剤が必要となるととも
に該洗浄剤の除去のための水量が膨大になるという欠点
がある。これらの問題点を解決するために、イオン交換
膜により陽極室と陰極室に区画された電解槽で、水、又
あるいは塩酸、食塩又は塩化アンモニウム等の微量の電
解質を添加した電解液を電解することにより、陽極側で
酸化還元電位(ORP)の高い即ち酸化性の極めて高い
弱酸性の酸性水を、又陰極側ではORPの低い即ち還元
性の極めて高い弱塩基性のアルカリ水を得る方法が行な
われている。Further, these chemicals are not only dangerous, but organic solvents may cause environmental problems such as destruction of the ozone layer, and other inorganic acids and salts require much time and labor for wastewater treatment. There is a problem that it costs money.
Further, a device cleaned using these cleaning agents has a drawback that a large amount of ultrapure water is required to remove the cleaning agents. Similarly, in the fields of medical treatment and food, which are other uses, a large amount of cleaning agent is required for sterilization and cleaning, and a large amount of water is required for removing the cleaning agent. In order to solve these problems, an electrolytic cell divided into an anode chamber and a cathode chamber by an ion exchange membrane is used to electrolyze water or an electrolytic solution to which a trace amount of an electrolyte such as hydrochloric acid, salt or ammonium chloride is added. Thus, a method of obtaining weakly acidic acidic water having a high redox potential (ORP), that is, extremely high oxidizing property on the anode side, and weakly basic alkaline water having a low ORP, that is, extremely reducing property, on the cathode side is provided. Has been done.
【0004】この電解における電極として一般に白金を
被覆したチタン電極が使用されるが、該電極の消耗速度
は1〜10μg/Ahであり、消耗した白金が電解液中に
溶解すると標準的には1〜10ppb 程度の白金が電解液中
に混入することになる。白金の代わりに酸化イリジウム
等の白金族金属酸化物が使用されることがあるが、例え
ば100 ppm 程度の次亜塩素酸水溶液を製造する際の前記
酸化イリジウムの消耗速度は白金の約10分の1であり大
きく改良されるが、洗浄用としてはこの程度の混入でも
問題であり、更に電極物質の混入量の低減が必要にな
る。A titanium electrode coated with platinum is generally used as an electrode in this electrolysis, and the consumption rate of the electrode is 1 to 10 μg / Ah, and when the consumed platinum is dissolved in the electrolytic solution, it is normally 1 About 10 ppb of platinum will be mixed in the electrolyte. Platinum group metal oxides such as iridium oxide may be used instead of platinum.For example, the consumption rate of iridium oxide when producing an aqueous solution of hypochlorous acid of about 100 ppm is about 10 minutes of that of platinum. Although it is 1, it is greatly improved, but this amount of mixing is also a problem for cleaning, and it is necessary to further reduce the mixing amount of the electrode substance.
【0005】本発明者らは、固体電解質としてイオン交
換膜を使用しそれを電極に密着させることにより電極物
質の消耗を約10分の1程度に減らすことに成功したが、
やはり金属が電解液中に溶出することは避けられず、同
様の問題点が生じている。これを解決するために前述の
酸性水の代わりにオゾン水の使用が提案されているが、
オゾン水の製造には大きな設備が必要でコスト高になる
こと、及び放電法でオゾンを製造するとオゾナイザーの
電極物質のオゾン水中への混入を避けられないという問
題点があり、根本的な解決とはなっていない。The present inventors have succeeded in reducing the consumption of the electrode material to about 1/10 by using an ion exchange membrane as a solid electrolyte and adhering it to the electrode.
After all, elution of metal into the electrolyte is unavoidable, and the same problem occurs. In order to solve this, use of ozone water instead of the aforementioned acidic water has been proposed,
There is a problem that the production of ozone water requires a large facility and becomes costly, and that the production of ozone by the discharge method inevitably mixes the electrode material of the ozonizer with ozone water. It's not.
【0006】電極として非金属性物質を使用すれば金属
の混入の問題はなくなり根本的な解決法となる。該非金
属性物質として炭素があり、炭素電極は古くから電解用
として使用されている。しかし通常の炭素は多孔性で比
較的脆いため、電解の進行に伴って破壊したり溶解した
りすることがある。又陽極として使用すると一部が酸化
して炭酸ガスとなり消耗が早いという問題点もある。陰
極として使用する場合は炭酸ガスとしての揮散はないも
のの生成する水素の気泡が陽極側で生成する酸素より小
さく電極の破壊が進みやすくなるという問題点がある。
このように炭素電極を使用すると電解液中への金属成分
の混入という問題は生じないものの、炭素の有する脆弱
性が寿命の短縮化に繋がりやすく、特に大電流下ではそ
の傾向が大きくなるため、満足できるORPを有する酸
性水やアルカリ水が得られないという欠点がある。The use of non-metallic materials for the electrodes eliminates the problem of metal contamination and provides a fundamental solution. There is carbon as the non-metallic substance, and the carbon electrode has been used for electrolysis for a long time. However, since ordinary carbon is porous and relatively brittle, it may be destroyed or dissolved as the electrolysis proceeds. Further, when it is used as an anode, there is a problem that a part of it is oxidized into carbon dioxide gas and consumed quickly. When it is used as a cathode, there is a problem in that although bubbles of carbon dioxide do not evaporate, the bubbles of hydrogen produced are smaller than the oxygen produced on the anode side and the destruction of the electrode is likely to proceed.
Although the problem of mixing metal components into the electrolyte does not occur when using a carbon electrode in this way, the brittleness of carbon easily leads to shortening of the service life, and in particular under high current, the tendency becomes large, There is a drawback that acidic water or alkaline water having a satisfactory ORP cannot be obtained.
【0007】[0007]
【発明の目的】本発明は、前述の従来技術の問題点を解
決するために成されたもので、特に炭素電極の有する金
属成分の溶出がないという特性を生かしながら該炭素電
極の脆弱性という欠点を解消し、比較的長寿命で、例え
ば酸性水やアルカリ水の製造に使用した場合に、満足で
きるORPを高効率で実現できる電解水製造用電解槽を
提供することを目的とする。DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. In particular, the carbon electrode is fragile while the metal component of the carbon electrode is not eluted. An object of the present invention is to provide an electrolytic cell for electrolyzed water production which solves the drawbacks and has a relatively long life and can realize a satisfactory ORP with high efficiency when used for production of, for example, acidic water or alkaline water.
【0008】[0008]
【問題点を解決するための手段】本発明は、イオン交換
膜により陽極を有する陽極室と陰極を有する陰極室に区
画された電解水製造用電解槽において、前記陽極及び陰
極の少なくとも一方の電極物質を非多孔性炭素で構成し
たことを特徴とする電解槽であり、該電解槽は2室型と
しても3室型としても良い。The present invention relates to an electrolytic cell for producing electrolyzed water, which is divided into an anode chamber having an anode and a cathode chamber having a cathode by an ion exchange membrane, and at least one electrode of the anode and the cathode. The electrolytic cell is characterized in that the substance is made of non-porous carbon, and the electrolytic cell may be of a two-chamber type or a three-chamber type.
【0009】以下本発明を詳細に説明する。本発明の特
徴は、電解水製造用電解槽の複数の電極の少なくとも1
つの電極として、例えば酸性水製造用電解槽の陽極とし
て、又はアルカリ水製造用電解槽の陰極として、金属成
分の溶出のない炭素電極を使用することにより得られる
酸性水及び/又はアルカリ水が金属成分で汚染されてお
らず、電子部品の洗浄用等としてそのまま使用できる程
度の純度を有する電解水を供給でき、更に前記炭素電極
を非多孔性とすることにより、従来の炭素電極における
脆弱性を改良し、前述の高純度電解水を長期間に渡って
供給できる電解水製造用電解槽を構成した点にある。Hereinafter, the present invention will be described in detail. The feature of the present invention is that at least one of a plurality of electrodes of an electrolytic cell for producing electrolyzed water is used.
Acidic water and / or alkaline water obtained by using a carbon electrode without elution of metal components as one electrode, for example, as an anode of an electrolytic cell for producing acidic water or as a cathode of an electrolytic cell for producing alkaline water is a metal. It is possible to supply electrolyzed water that is not contaminated with components and has a purity that can be used as it is for cleaning electronic parts, etc., and by making the carbon electrode non-porous, the fragility of conventional carbon electrodes can be reduced. The point is that an improved electrolytic cell for producing electrolyzed water that can supply the above-mentioned high-purity electrolyzed water over a long period of time is configured.
【0009】白金電極を使用して低濃度の塩化物イオン
を含有する電解液を電解すると次亜塩素酸の生成効率が
高くなり、白金電極の代わりに酸化イリジウム電極を使
用すると、通常の水電解による酸素及び水素発生反応と
なり、満足できるORPは得られない。しかもいずれの
場合でも金属成分の溶出が起こる。これに対し、炭素電
極を使用すると陽極電位は僅かに高くなるが、純水の場
合でも低濃度の電解質を添加した電解液の場合でも、容
易に高ORPの酸性水が得られ、これは炭素電極を使用
して電解を行なうことにより、高電位電解によるオゾン
生成が生ずるからであると推測できる。このように炭素
電極は金属成分の溶出がないこと、及びORPが十分高
い酸性水を製造できるという利点があるが、その一方前
述の通り脆弱性という欠点があり、本発明では該炭素電
極として非多孔性炭素電極を使用して該欠点を解消する
ことを意図している。When a platinum electrode is used to electrolyze an electrolytic solution containing a low concentration of chloride ions, the efficiency of hypochlorous acid production is increased. When an iridium oxide electrode is used instead of the platinum electrode, normal water electrolysis is performed. Satisfactory ORP cannot be obtained because oxygen and hydrogen are generated by the reaction. Moreover, in any case, elution of the metal component occurs. On the other hand, when a carbon electrode is used, the anode potential becomes slightly higher, but acidic water having a high ORP can be easily obtained in both pure water and an electrolytic solution to which a low concentration electrolyte is added. It can be inferred that ozone is generated by high-potential electrolysis by performing electrolysis using electrodes. As described above, the carbon electrode has an advantage that no metal component is eluted and that acidic water having a sufficiently high ORP can be produced, but on the other hand, it has the drawback of being brittle as described above. It is intended to overcome this drawback by using a porous carbon electrode.
【0010】非多孔性炭素電極としてはグラファイトや
非晶質炭素例えばグラッシーカーボンがある。グラファ
イトは通常は多孔性であるが、本発明の炭素電極として
使用する場合はポロシティー(多孔度)ができるだけ低
い材料を選択し、更に多孔部分を樹脂などで閉塞して脆
弱性を改良することが望ましい。閉塞剤は特に限定され
ないが極めて強い酸化性雰囲気で使用される可能性があ
るため、フッ素樹脂を使用することが好ましく、特に撥
水性に優れたポリテトラフルオロエチレン(PTFE)
樹脂の使用が望ましい。該閉塞剤を使用する多孔部分の
閉塞は、例えばグラファイトマトリックスの表面にデュ
ポン社のJ−30等のPTFE樹脂の水分散液を塗布し、
室温で乾燥後、200 〜350 ℃で10〜30分間熱処理するこ
とにより達成できる。前記多孔部分の閉塞により破壊の
起こりにくい非多孔性カーボンが生成する。Non-porous carbon electrodes include graphite and amorphous carbon such as glassy carbon. Graphite is usually porous, but when it is used as the carbon electrode of the present invention, a material having a porosity as low as possible should be selected, and the porous portion should be blocked with a resin or the like to improve the brittleness. Is desirable. Although the blocking agent is not particularly limited, it is preferable to use a fluororesin because it may be used in an extremely strong oxidizing atmosphere, and particularly polytetrafluoroethylene (PTFE) having excellent water repellency.
Use of resin is desirable. Closure of the porous portion using the occluding agent is performed, for example, by coating an aqueous dispersion of a PTFE resin such as J-30 manufactured by DuPont on the surface of a graphite matrix,
This can be achieved by drying at room temperature and then heat-treating at 200 to 350 ° C for 10 to 30 minutes. Due to the blockage of the porous portion, non-porous carbon that is less likely to be destroyed is generated.
【0011】グラッシーカーボンで代表される非晶質炭
素は、グラファイトより導電性が劣るという欠点がある
が、グラファイト(気孔率20〜30%)より開孔がはるか
に少なく、換言するとポロシティーが低い(気孔率1〜
5%)という特徴があり、グラファイト以上に安定に作
用し、本発明の炭素電極としてより有効に機能する。該
グラッシーカーボンはこのまま使用することも可能であ
るが、その表面に例えばフッ素や硼素を含浸してその特
性を改質することができる。この改質処理の条件は特に
限定されないが、例えば40重量%以上の硼フッ酸を電解
浴とし、陽極として前記グラッシーカーボンを使用し、
電流密度1〜10A/dm2 で1〜10時間程度電解することに
より前記グラッシーカーボンの改質を行なえる。このよ
うに処理したグラッシーカーボンの電極電位はグラファ
イトのそれより1V程度高い。Amorphous carbon typified by glassy carbon has the drawback of being inferior in conductivity to graphite, but has far fewer open pores than graphite (porosity 20 to 30%), in other words, low porosity. (Porosity 1 to
5%), which acts more stably than graphite and functions more effectively as the carbon electrode of the present invention. The glassy carbon can be used as it is, but its properties can be modified by impregnating its surface with, for example, fluorine or boron. The conditions of this modification treatment are not particularly limited, but for example, 40 wt% or more of borofluoric acid is used as an electrolytic bath, and the above glassy carbon is used as an anode.
The glassy carbon can be modified by electrolysis at a current density of 1 to 10 A / dm 2 for about 1 to 10 hours. The electrode potential of the glassy carbon treated in this way is about 1 V higher than that of graphite.
【0012】このような非多孔性炭素を電極物質とする
電極を使用して電解を行なう。この炭素電極を好ましく
は固体電解質として機能するイオン交換膜に密着させ通
電を行なう。このような条件で電解を行なうと、前記炭
素電極を陽極としその陽極反応が酸素発生反応である場
合でも、1〜50A/dm2 といった高電流密度下でも電解を
進行でき、その際の電極の消耗も5〜30μg/Ahとい
う小さい値に維持できる。これは炭素電極が非多孔性で
あり脆弱度が改良されたこと、及び純水と比較してイオ
ン交換膜の方がはるかに電気伝導度が高いため、電流分
布が均一になり電極部分での電極部分での電流負荷が比
較的小さくなるからであると推測できる。前記炭素電極
を陽極として使用する場合、消耗する炭素は液中に溶け
出すのではなく大部分が酸素と化合し炭酸ガスとなって
空気中に揮散し、陽極液中の固形分の増加や変色は観察
されない。又当然金属成分の混入はない。Electrolysis is performed using an electrode having such non-porous carbon as an electrode material. The carbon electrode is preferably brought into close contact with an ion exchange membrane functioning as a solid electrolyte to conduct electricity. When electrolysis is performed under such conditions, even when the carbon electrode is used as an anode and the anodic reaction is an oxygen generation reaction, the electrolysis can proceed even under a high current density of 1 to 50 A / dm 2 , and the electrode The consumption can be maintained at a small value of 5 to 30 μg / Ah. This is because the carbon electrode is non-porous and its fragility is improved, and because the ion exchange membrane has much higher electrical conductivity than pure water, the current distribution becomes uniform and the It can be presumed that this is because the current load at the electrode portion is relatively small. When the carbon electrode is used as an anode, the exhausted carbon is not dissolved in the liquid, but most of it is combined with oxygen to become carbon dioxide gas and volatilize into the air, increasing the amount of solids in the anolyte or causing discoloration. Is not observed. Also, of course, no metal component is mixed.
【0013】前記グラッシーカーボン又はグラファイト
を炭素電極として純水や低濃度の電解質を溶解した電解
液を10A/dm2 以上の電流密度で電解すると、陽極室でO
RPが1000mV以上である酸性水が得られ、グラッシー
カーボン電極とグラファイト電極を比較すると後者で得
られる酸性水のORPの方が僅かに小さくなる。なお純
水に1000ppm 程度の塩化物イオンを塩化アンモニウムや
塩酸の形で加えるといずれの場合もORPが容易に1100
mVを越え、pHも容易に3を下回る極めて酸化性の高
い酸性水が得られる。この場合の電極の消耗速度は塩化
物イオンが存在しない場合とほぼ同等で10〜30μg/A
h程度である。When the glassy carbon or graphite is used as a carbon electrode and pure water or an electrolyte solution in which a low-concentration electrolyte is dissolved is electrolyzed at a current density of 10 A / dm 2 or more, O is generated in the anode chamber.
Acidic water having an RP of 1000 mV or more is obtained, and comparing the glassy carbon electrode and the graphite electrode, the ORP of the acidic water obtained by the latter is slightly smaller. It should be noted that if 1000 ppm of chloride ions are added to pure water in the form of ammonium chloride or hydrochloric acid, ORP can be easily performed at 1100
It is possible to obtain acidic water having an extremely high oxidizing property, which exceeds mV and easily has a pH of less than 3. The consumption rate of the electrode in this case is about 10 to 30 μg / A, which is almost the same as that in the absence of chloride
h.
【0014】又前記多孔性炭素電極を陰極として使用す
ると、陰極室で水素発生が生じてpH9〜11程度のアル
カリ性でORPが400 mV以下であるアルカリ水が得ら
れる。該炭素電極を陰極として電流密度10A/dm2 で1ヶ
月間電解を継続しても電極の外観には全く変化が認めら
れず、陰極液にも変色は生じない。本発明では複数の電
極を使用する電解水製造用電解槽の少なくとも1個の電
極を前述した非多孔性炭素電極で構成するようにしてい
る。従って例えば2室型電解槽の陽極のみを非多孔性炭
素電極とし、陰極を金属電極として電解を行なうと、両
極とも比較的長寿命を有し交換することなく長期間電解
を継続できるが、得られる陽極液は金属成分の溶出のな
い電子デバイス等の洗浄用に適した高純度酸性水となる
のに対し、得られる陰極液には金属が溶出し洗浄には適
しないアルカリ水が得られる。従って当然、全ての電極
を非多孔性炭素電極で構成することが最も望ましい。When the porous carbon electrode is used as a cathode, hydrogen is generated in the cathode chamber to obtain alkaline water having a pH of about 9 to 11 and an ORP of 400 mV or less. Even when electrolysis is continued for 1 month at a current density of 10 A / dm 2 using the carbon electrode as a cathode, no change is observed in the appearance of the electrode and no color change occurs in the catholyte. In the present invention, at least one electrode of the electrolytic cell for producing electrolyzed water using a plurality of electrodes is composed of the above-mentioned non-porous carbon electrode. Therefore, for example, if electrolysis is performed using only the anode of a two-chamber electrolysis cell as a non-porous carbon electrode and the cathode as a metal electrode, both electrodes have a relatively long life and can be electrolyzed for a long time without replacement. The obtained anolyte is high-purity acidic water suitable for cleaning electronic devices and the like without elution of metal components, whereas the resulting catholyte contains alkali water that is not suitable for cleaning because metal is eluted. Therefore, of course, it is most desirable to construct all electrodes with non-porous carbon electrodes.
【0015】前述した通り本発明の電解水製造用電解槽
は3室型電解槽とすることもでき、この場合には従来の
3室型電解槽と同様に陽極室と陰極室にのみそれぞれ陽
極と陰極を設置するようにすることも可能であるが、中
間室にも1対の陽極及び陰極をそれぞれ陰極室の陰極と
陽イオン交換膜を介してまた陽極室の陽極と陰イオン交
換膜を介して対向するように設置しても良い。この中間
室電極への通電は、両電極を電気的に接続して、陽極室
の陽極→中間室の陰極→中間室の陽極→陰極室の陰極の
順に行なっても良く、又2個の電源を使用して陽極室の
陽極と中間室の陰極、及び中間室の陽極と陰極室の陰極
間に別個に通電しても良い。As described above, the electrolytic cell for producing electrolyzed water of the present invention may be a three-chamber type electrolytic cell. In this case, like the conventional three-chamber type electrolytic cell, only the anode chamber and the cathode chamber are respectively provided with an anode. It is also possible to install a cathode and a cathode, but a pair of anode and cathode are also installed in the intermediate chamber through the cathode and the cation exchange membrane of the cathode chamber and the anode and the anion exchange membrane of the anode chamber, respectively. You may install so that it may face via. This intermediate chamber electrode may be energized by electrically connecting both electrodes to the anode chamber anode → intermediate chamber cathode → intermediate chamber anode → cathode chamber cathode, or two power sources. May be used to separately energize between the anode in the anode chamber and the cathode in the intermediate chamber, and between the anode in the intermediate chamber and the cathode in the cathode chamber.
【0016】前者の通電における両電極の接続は集電体
を介して電解槽外で接続しても、液中に多孔性の導電体
例えば高耐食性の多孔性チタンや多孔性カーボンを位置
させて両電極を中間室内で接続しても良く、これにより
中間室内の電位勾配がなくなり中間室内のイオンの移行
が完全に自由に行なえるようになる。更に中間室の幅を
大きくとっても抵抗を無視でき、両極で発生する酸素ガ
スと水素ガスの混合による爆発の危険がある場合には好
都合となる。なお該爆発の危険がない場合には中間室の
幅は小さくすることが望ましく、発生する水素と酸素が
減極し合い、無駄なガス発生が抑制される。爆発の危険
が若干ありかつ幅を狭く設定する場合には、中間室へ供
給される塩溶液の流速を上げて発生するガスを速やかに
電解槽外へ取り出せば良い。又後者の通電では、両電源
による通電量を別個に最適値に設定でき、酸性水をアル
カリ水より多量に必要とする場合には陽極室の陽極と中
間室の陰極間の通電量を大きくし、アルカリ水を多量に
必要とする場合には中間室の陽極と陰極室の陰極間の通
電量を大きくし、不要な通電及びそれに伴う無駄なエネ
ルギー消費を回避できる。この通電の場合にも中間室の
幅は小さくすることが望ましく、発生する水素と酸素が
減極し合うため、ガス発生量は陽極室側と陰極室側の供
給電流量の差と減極が十分に行なわれないことに起因す
る水素又は酸素の発生のみである。In the former case, the connection of both electrodes during energization is performed by arranging a porous conductor such as highly corrosion-resistant porous titanium or porous carbon in the liquid even if the electrodes are connected outside the electrolytic cell via a current collector. Both electrodes may be connected in the intermediate chamber, which eliminates the potential gradient in the intermediate chamber and allows the ions in the intermediate chamber to move completely freely. Further, the resistance can be ignored even if the width of the intermediate chamber is made large, which is convenient when there is a risk of explosion due to the mixture of oxygen gas and hydrogen gas generated at both electrodes. If there is no danger of explosion, it is desirable to reduce the width of the intermediate chamber, and the generated hydrogen and oxygen are depolarized with each other, so that useless gas generation is suppressed. When there is a slight risk of explosion and the width is set to be narrow, the flow rate of the salt solution supplied to the intermediate chamber may be increased to promptly take out the generated gas from the electrolytic cell. Also, in the latter energization, the energization amount by both power sources can be separately set to the optimum value, and if the acidic water is required in a larger amount than the alkaline water, the energization amount between the anode in the anode chamber and the cathode in the intermediate chamber can be increased. When a large amount of alkaline water is required, the amount of electricity supplied between the anode in the intermediate chamber and the cathode in the cathode chamber can be increased to avoid unnecessary electricity supply and unnecessary energy consumption. Even in the case of this energization, it is desirable to make the width of the intermediate chamber small, and the generated hydrogen and oxygen are depolarized with each other.Therefore, the gas generation amount depends on the difference in the supply current amount between the anode chamber side and the cathode chamber side and the depolarization. Only the generation of hydrogen or oxygen due to insufficient performance.
【0017】2室型電解槽で純水を電解して酸性水とア
ルカリ水を得る場合にはいずれの電解室に純水を供給し
ても良いが陽極室に純水を供給すると、陽極では 2H2 O → O2 + 4H+ + 4e 又は 3H2 O → O3 + 6H+ + 6e の反応式に従って酸素やオゾンが生成し、陰極では、 2H+ + 2e → H2 O + 2OH- の反応式に従って水酸イオンが生成する。又陰極に酸素
を供給しながら電解を行なうと、陰極反応は、 O2 + H2 O + 2e → OH- + HO2 - となる。これに塩化物イオンを添加すると、前記陽極反
応に加えて陽極で、 2Cl- → Cl2 + 2e の反応も起こり、生成した塩素ガスが電解液中に溶解
し、pHにも依るが、通常は水と反応して次亜塩素酸を
生成する。3室型電解槽の場合は純水又は塩溶液を中間
室に供給し、陽極室で高純度の酸性水を、陰極室で高純
度のアルカリ水が生成する。When pure water is electrolyzed in a two-chamber electrolysis cell to obtain acidic water and alkaline water, pure water may be supplied to either electrolytic chamber. 2H 2 O → O 2 + 4H + + 4e or 3H 2 O → O 3 + 6H + + 6e of the reaction oxygen or ozone is generated according to formula, in the cathode, 2H + + 2e → H 2 O + 2OH - reaction Hydroxide ions are generated according to the formula. When electrolysis is performed while supplying oxygen to the cathode, the cathode reaction becomes O 2 + H 2 O + 2e → OH − + HO 2 − . When chloride ions are added to this, in addition to the above-mentioned anodic reaction, a reaction of 2Cl − → Cl 2 + 2e also occurs at the anode, the generated chlorine gas is dissolved in the electrolytic solution, and depending on the pH, it is usually Reacts with water to produce hypochlorous acid. In the case of a three-chamber electrolytic cell, pure water or salt solution is supplied to the intermediate chamber, high-purity acidic water is produced in the anode chamber, and high-purity alkaline water is produced in the cathode chamber.
【0018】図1は本発明に係わる2室型電解槽の一例
を示す概略縦断面図、図2は同じく3室型電解槽の一例
を示す概略縦断面図である。図1において、2室型電解
槽1はイオン交換膜2により陽極室3と陰極室4とに区
画され、前記イオン交換膜2の陽極室3側に非多孔性炭
素陽極5が陰極室4側に非多孔性炭素陰極6がそれぞれ
密着している。陽極室3の底面及び上面には純水又は塩
溶液の供給口7及び酸性水取出口8が、陰極室4の底面
及び上面には純水供給口9及びアルカリ水取出口10がそ
れぞれ設置されている。なお11はイオン交換膜2と周縁
部間のパッキングである。FIG. 1 is a schematic vertical sectional view showing an example of a two-chamber type electrolytic cell according to the present invention, and FIG. 2 is a schematic vertical sectional view showing an example of a three-chamber electrolytic cell. In FIG. 1, a two-chamber electrolytic cell 1 is divided into an anode chamber 3 and a cathode chamber 4 by an ion exchange membrane 2, and a non-porous carbon anode 5 is provided on the anode chamber 3 side of the ion exchange membrane 2 and a cathode chamber 4 side. The non-porous carbon cathodes 6 are in close contact with each other. A pure water or salt solution supply port 7 and an acidic water outlet 8 are provided on the bottom and top of the anode chamber 3, and a pure water supply port 9 and an alkaline water outlet 10 are provided on the bottom and top of the cathode chamber 4. ing. Note that 11 is a packing between the ion exchange membrane 2 and the peripheral portion.
【0019】図2において、3室型電解槽21は、陽イオ
ン交換膜22により陽極室23及び中間室24に、又陽イオン
交換膜25により前記中間室24と陰極室26に区画されてい
る。前記陰イオン交換膜22の陽極室23側には非多孔性炭
素陽極27が、又前記陽イオン交換膜22の陰極室26側には
非多孔性炭素陰極28がそれぞれ密着している。陽極23の
底面及び上面には純水供給口29及び酸性水取出口30が、
中間室24の底面及び上面には塩化アンモニウム等の塩溶
液供給口31及び塩溶液取出口32が、陰極室26の底面及び
上面には純水供給口33及びアルカリ水取出口34がそれぞ
れ設置されている。なお35はイオン交換膜22、25と周縁
部間のパッキングである。In FIG. 2, the three-chamber electrolytic cell 21 is divided into an anode chamber 23 and an intermediate chamber 24 by a cation exchange membrane 22, and a intermediate chamber 24 and a cathode chamber 26 by a cation exchange membrane 25. . A non-porous carbon anode 27 is in contact with the anion exchange membrane 22 side of the anode chamber 23, and a non-porous carbon cathode 28 is in contact with the cation exchange membrane 22 side of the cathode chamber 26. A pure water supply port 29 and an acidic water outlet 30 are provided on the bottom surface and the top surface of the anode 23.
A salt solution supply port 31 and a salt solution outlet 32 such as ammonium chloride are installed on the bottom surface and the top surface of the intermediate chamber 24, and a pure water supply port 33 and an alkaline water outlet port 34 are installed on the bottom surface and the top surface of the cathode chamber 26, respectively. ing. Reference numeral 35 is a packing between the ion exchange membranes 22 and 25 and the peripheral portion.
【0020】図1及び図2のいずれの電解槽1、21で
も、純水又は塩溶液供給口7又は塩溶液供給口31から純
水や塩化アンモニウム水溶液や硫酸等の塩溶液を供給し
ながら両炭素電極5、6及び27、28間に通電すると、陽
極室で酸性水が陰極室でアルカリ水がそれぞれ金属成分
を含有することなく生成する。各電極が非多孔性炭素電
極で構成されているため、炭素電極固有の脆弱性が解消
され、消耗を最小限に抑制しつつ長期間の連続運転が可
能になる。In both of the electrolytic cells 1 and 21 shown in FIGS. 1 and 2, pure water or a salt solution supply port 7 or a salt solution supply port 31 is used to supply pure water or a salt solution such as an ammonium chloride aqueous solution or sulfuric acid. When electricity is applied between the carbon electrodes 5, 6 and 27, 28, acidic water is produced in the anode chamber and alkaline water is produced in the cathode chamber without containing metal components. Since each electrode is composed of a non-porous carbon electrode, the fragility peculiar to the carbon electrode is eliminated, and long-term continuous operation is possible while minimizing wear.
【0021】[0021]
【実施例】次に本発明に係わる電解水製造用電解槽を使
用する酸性水及びアルカリ水の製造の実施例を記載する
が、該実施例は本発明を限定するものではない。EXAMPLES Next, examples of producing acidic water and alkaline water using the electrolytic cell for producing electrolyzed water according to the present invention will be described, but the examples do not limit the present invention.
【0022】[0022]
【実施例1】イオン交換膜としてデュポン社のナフィオ
ン117 陽イオン交換膜を使用し、陽極として厚さ1mmの
グラファイト製の穴明板(2mmφ×3mmピッチ)を使用
し、陰極として炭素とフッ素樹脂を混練して焼き付けた
導電性のシートを使用して図1に示す電解槽を構成し
た。前記穴明板は、原板をロータリーポンプで減圧した
雰囲気に置き、PTFE懸濁液(デュポン社製J30)を
滴下して塗布し、60℃で乾燥後、370 ℃で15分間焼き付
けて非多孔性の炭素電極である穴明板とした。前記陽極
及び陰極は両側から集電体を兼ねた純チタン製のメッシ
ュで押さえ付けた。この電解槽の陽極室に純水を満た
し、前記チタン製メッシュを通して3000クーロン/リッ
トルの割合で通電し電解を行なった。電流密度を5〜50
A/dm2 の範囲で変えて電解を行なった結果を表1に示し
た。Example 1 A Nafion 117 cation exchange membrane manufactured by DuPont was used as an ion exchange membrane, a graphite perforated plate (2 mmφ × 3 mm pitch) having a thickness of 1 mm was used as an anode, and carbon and fluororesin were used as a cathode. The electrolysis cell shown in FIG. 1 was constructed using a conductive sheet obtained by kneading and baking. The perforated plate is placed in a reduced pressure atmosphere with a rotary pump, a PTFE suspension (J30 manufactured by DuPont) is applied dropwise, dried at 60 ° C, and baked at 370 ° C for 15 minutes to make it non-porous. It was a perforated plate which was a carbon electrode. The anode and cathode were pressed from both sides with a mesh made of pure titanium which also served as a current collector. The anode chamber of this electrolytic cell was filled with pure water, and electricity was passed through the titanium mesh at a rate of 3000 coulomb / liter for electrolysis. Current density 5 to 50
Table 1 shows the results of electrolysis performed by changing the range of A / dm 2 .
【0023】[0023]
【表1】 [Table 1]
【0024】[0024]
【比較例1】陽極として白金めっきチタンを使用したこ
と以外は実施例1と同一条件で電解を行なったところ、
10A/dm2 を越える電流密度では白金の消耗が大きく、使
用を継続できなかった。電流密度10A/dm2 での電解で
は、実施例1とほぼ同等のpH=3.2 、ORP=950 mV
の酸性水が得られたが、該酸性水には約10ppt の白金が
含有されていた。これは消耗速度が約10μgkA/hで
あり、消耗した白金が電解液中に溶出したことが判っ
た。Comparative Example 1 When electrolysis was performed under the same conditions as in Example 1 except that platinum-plated titanium was used as the anode,
At current densities exceeding 10 A / dm 2 , platinum was consumed so much that it could not be used. In electrolysis at a current density of 10 A / dm 2 , pH = 3.2 and ORP = 950 mV, which are almost the same as in Example 1.
Of acidic water was obtained, which contained about 10 ppt platinum. The consumption rate was about 10 μg kA / h, and it was found that the consumed platinum was eluted in the electrolytic solution.
【0025】[0025]
【実施例2】2枚の陽イオン交換膜(デュポン社製ナフ
ィオン115 )を使用して電解槽を陽極室−中間室−陰極
室に区画した。厚さ1mmのグラッシーカーボンに3mmピ
ッチで直径2mmの穴を千鳥状に開けた多孔板を準備し、
陰極としては該多孔板をそのまま使用し、陽極としては
該多孔板を予め40%の硼フッ酸中、40℃、1A/dm2 で10
時間陽極酸化処理を行なったものを使用し、それぞれ陰
極室内及び陽極室内に前記各陽イオン交換膜に密着圧3
kg/cm2で密着するよう設置した。前記中間室にはデュポ
ン社製のナフィオン粒子から成るイオン交換樹脂を充填
した。Example 2 An electrolytic cell was divided into an anode chamber, an intermediate chamber and a cathode chamber by using two cation exchange membranes (Nafion 115 manufactured by DuPont). Prepare a perforated plate in which 1mm thick glassy carbon is perforated in 3mm pitch with 2mm diameter holes in a staggered pattern.
The porous plate was used as the cathode as it was, and the porous plate was used as the anode in advance in 40% borofluoric acid at 40 ° C. and 1 A / dm 2 .
The one that has been subjected to the anodizing treatment for a long time is used.
It was installed so that it adhered closely at kg / cm 2 . The intermediate chamber was filled with an ion exchange resin composed of Nafion particles manufactured by DuPont.
【0026】陽極室及び陰極室には電導度18MΩcm以下
のいわゆる超純水を満たし、電極投影面当たりの電流密
度10A/dm2 で電解を行なった。温度は25℃とした。陽極
室ではpHが4.5 でORPが1150mV(vsAg/AgCl)である
酸性水が、陰極室ではpHが9.4 でORPが−24mV(vs
Ag/AgCl)であるアルカリ水が得られた。陽極側で高いO
RPの酸性水が得られたのは、部分的なオゾン発生によ
るものであり、更に陰極側からの水素の透過が完全に阻
止されているためであると考えられる。又陰極側では発
生水素によるORPの十分な低下が生じたことが判っ
た。両極室で得られた酸性水及びアルカリ水中の金属不
純物はいずれも検出限界未満(ND)であり、電子デバ
イスの洗浄用として十分に使用できるレベルだった。The anode chamber and the cathode chamber were filled with so-called ultrapure water having an electric conductivity of 18 MΩcm or less, and electrolysis was performed at a current density of 10 A / dm 2 per electrode projection surface. The temperature was 25 ° C. Acid water with pH 4.5 and ORP of 1150 mV (vsAg / AgCl) in the anode chamber, and pH 9.4 and ORP of -24 mV (vsAg / AgCl) in the cathode chamber.
Alkaline water which is Ag / AgCl) was obtained. High O on the anode side
It is considered that the reason why the acidic water of RP was obtained is due to the partial generation of ozone, and the permeation of hydrogen from the cathode side was completely blocked. On the cathode side, it was found that the generated hydrogen caused a sufficient decrease in ORP. The metallic impurities in the acidic water and the alkaline water obtained in the bipolar chambers were both below the detection limit (ND), which was a level that could be sufficiently used for cleaning electronic devices.
【0027】[0027]
【実施例3】電解槽は実施例1と同じものを使用し、陽
極としてはフッ素樹脂を含浸しながらPTFE樹脂を混
練して作製した芯材であるPTFE繊維を実施例1の穴
明板に塗布し、1kg/cm2の圧力を掛けながら370 ℃で15
分間ホットプレスしたものを使用した。集電体は表面を
600 ℃の酸化雰囲気中で熱処理し酸化物に変換した。塩
化物イオンとして1000ppm になるように塩化アンモニウ
ムを純水中に添加した水溶液を陽極室に供給しながら電
流密度10A/dm2 で電解を行なった。陽極室ではpHが3.
2 でORPが1200mVである酸性水が、陰極室ではpHが
9.5 でORPが330 mVであるアルカリ水が得られた。な
お陽極の消耗速度は8μg/Ahに相当した。[Example 3] The same electrolytic cell as in Example 1 was used, and PTFE fiber as a core material prepared by kneading PTFE resin while impregnating fluororesin as an anode was used as the perforated plate of Example 1. Apply and apply pressure of 1 kg / cm 2 at 370 ℃ for 15
What was hot pressed for a minute was used. Current collector on the surface
It was converted to an oxide by heat treatment in an oxidizing atmosphere at 600 ° C. Electrolysis was performed at a current density of 10 A / dm 2 while supplying an aqueous solution in which ammonium chloride was added to pure water so that the concentration of chloride ions was 1000 ppm, to the anode chamber. The pH in the anode chamber is 3.
2 acid water with ORP of 1200 mV has a pH in the cathode chamber
At 9.5 alkaline water was obtained with an ORP of 330 mV. The consumption rate of the anode was equivalent to 8 μg / Ah.
【0028】[0028]
【実施例4】陽極として、前処理を行なわなかったこと
以外は実施例3の穴明き板と同じグラファイト電極を使
用し実施例3と同じ電解条件で電解を行なった。陰極室
では実施例3と同じpHが9.5 でORPが330 mVである
アルカリ水が得られたが、陽極室ではpHが3.3 でOR
Pが850 mVである酸性水が得られた。実施例3と比較し
てORPで低下しているのはオゾン発生がないからであ
ると推測された。陽極の消耗速度は実施例3の約10倍の
95μg/Ahであり、部分的なグラファイトの崩壊があ
るためか得られた電解水に僅かに黄色の着色が見られ
た。[Example 4] As the anode, the same graphite electrode as that of the perforated plate of Example 3 was used except that no pretreatment was performed, and electrolysis was performed under the same electrolysis conditions as in Example 3. In the cathode chamber, the same alkaline water as in Example 3 having a pH of 9.5 and an ORP of 330 mV was obtained.
Acidic water with a P of 850 mV was obtained. It was speculated that the decrease in ORP compared with Example 3 was due to no ozone generation. The consumption rate of the anode was about 10 times that of Example 3.
It was 95 μg / Ah, and a slight yellow coloration was observed in the resulting electrolyzed water probably because of partial graphite collapse.
【0029】[0029]
【実施例5】陰極として多孔質グラファイトを使用した
こと以外は実施例1と同一構成から成る電解槽を作製し
た。電流密度を10A/dm2 とし、前記陰極にPSA方式に
より空気から濃縮した濃度95%の酸素ガスを供給しなが
ら通電した。これにより陽極室ではpHが3.5 でORP
が950 mVである酸性水が、陰極室では濃度20ppm の過酸
化水素水が得られた。なお前記酸性水及び過酸化水素水
とも金属分の混入は検出限界未満であり、電子デバイス
の洗浄用として十分に使用できるレベルだった。Example 5 An electrolytic cell having the same structure as in Example 1 was prepared except that porous graphite was used as the cathode. The current density was set to 10 A / dm 2, and electricity was supplied to the cathode while supplying oxygen gas having a concentration of 95% concentrated from the air by the PSA method. As a result, the pH of the anode chamber is 3.5 and the ORP
Of 950 mV of acidic water and hydrogen peroxide of 20 ppm concentration was obtained in the cathode chamber. The metal content of both the acidic water and the hydrogen peroxide solution was below the detection limit, which was a level that could be sufficiently used for cleaning electronic devices.
【0030】[0030]
【発明の効果】本発明は、イオン交換膜により陽極を有
する陽極室と陰極を有する陰極室に区画された電解水製
造用電解槽において、前記陽極及び陰極の少なくとも一
方の電極物質を非多孔性炭素で構成したことを特徴とす
る電解槽である。従来の電解水製造用電解槽と異なり、
本発明では金属電極ではなく炭素電極を使用することに
より電解により得られる電解水中への金属成分の混入を
防止し、電子デバイス洗浄用としても使用可能な金属不
純物を殆ど含まない酸性水やアルカリ水を製造すること
を可能にしている。INDUSTRIAL APPLICABILITY The present invention provides an electrolytic cell for producing electrolyzed water which is divided into an anode chamber having an anode and a cathode chamber having a cathode by an ion exchange membrane, and at least one of the anode and the cathode is made non-porous. It is an electrolytic cell characterized by being composed of carbon. Unlike conventional electrolyzers for electrolyzed water production,
In the present invention, by using a carbon electrode instead of a metal electrode, it is possible to prevent mixing of metal components into electrolyzed water obtained by electrolysis, and acidic water or alkaline water containing almost no metal impurities that can also be used for cleaning electronic devices. It is possible to manufacture.
【0031】更に炭素電極として従来の炭素電極の脆弱
性を有しない非多孔性炭素電極を使用しているため、消
耗速度が非常に遅く、実用的な長寿命を有するとともに
炭素の崩壊による電解水の汚染も殆ど生ずることのない
電解水製造用電解槽を提供できる。非多孔性炭素として
はグラファイトやグラッシーカーボン等があり、前記グ
ラファイトは比較的多孔性であるため、ポロシティー
(多孔度)ができるだけ低い材料を選択し、更にその表
面の多孔部分をフッ素樹脂などで閉塞して脆弱性を改良
することが望ましい。Further, since the non-porous carbon electrode which does not have the brittleness of the conventional carbon electrode is used as the carbon electrode, the consumption rate is very slow, the practical long life is provided, and the electrolyzed water due to the carbon collapse is used. It is possible to provide an electrolytic cell for producing electrolyzed water in which the above-mentioned contamination hardly occurs. Examples of non-porous carbon include graphite and glassy carbon. Since graphite is relatively porous, a material having a porosity as low as possible is selected, and the porous portion of the surface is made of fluororesin or the like. It is desirable to block and improve vulnerability.
【0032】グラッシーカーボンはグラファイトと比較
してポロシティーがはるかに低く、非多孔性炭素電極用
として好ましい材料である。例えばその表面を硼フッ酸
中で電解処理して導電性と耐食性を向上させた後に使用
すると、更に望ましい非多孔性炭素電極となる。本発明
に係わる電解水製造用電解槽は2室型電解槽の他に3室
型電解槽とすることも可能である。Glassy carbon has a much lower porosity than graphite and is a preferred material for non-porous carbon electrodes. For example, when the surface is used after being electrolytically treated in borofluoric acid to improve conductivity and corrosion resistance, a more desirable non-porous carbon electrode is obtained. The electrolytic cell for producing electrolyzed water according to the present invention may be a three-chamber type electrolytic cell in addition to the two-chamber type electrolytic cell.
【図1】本発明に係わる2室型の電解水製造用電解槽の
一例を示す概略縦断面図。FIG. 1 is a schematic vertical sectional view showing an example of a two-chamber type electrolytic cell for producing electrolyzed water according to the present invention.
【図2】本発明に係わる3室型の電解水製造用電解槽の
一例を示す概略縦断面図。FIG. 2 is a schematic vertical sectional view showing an example of a three-chamber type electrolytic cell for producing electrolyzed water according to the present invention.
1・・・2室型電解槽 2・・・イオン交換膜 3・・
・陽極室 4・・・陰極室 5・・・非多孔性炭素陽極
6・・・非多孔性炭素陰極 7・・・純水又は塩溶液
の供給口 8・・・酸性水取出口 9・・・純水供給口
10・・・アルカリ水取出口 11・・・パッキング1 ... Two-chamber type electrolytic cell 2 ... Ion exchange membrane 3 ...
・ Anode chamber 4 ・ ・ ・ Cathode chamber 5 ・ ・ ・ Non-porous carbon anode 6 ・ ・ ・ Non-porous carbon cathode 7 ・ ・ ・ Pure water or salt solution supply port 8 ・ ・ ・ Acid water outlet 9 ・・ Pure water supply port
10 ・ ・ ・ Alkaline water outlet 11 ・ ・ ・ Packing
Claims (6)
と陰極を有する陰極室に区画された電解水製造用電解槽
において、前記陽極及び陰極の少なくとも一方の電極物
質を非多孔性炭素で構成したことを特徴とする電解槽。1. In an electrolytic cell for producing electrolyzed water, which is divided into an anode chamber having an anode and a cathode chamber having a cathode by an ion exchange membrane, at least one of the anode and the cathode is made of non-porous carbon. An electrolytic cell characterized in that
理したグラファイトである請求項1に記載の電解槽。2. The electrolytic cell according to claim 1, wherein the non-porous carbon is graphite whose surface is treated with a fluororesin.
る請求項1に記載の電解槽。3. The electrolytic cell according to claim 1, wherein the non-porous carbon is glassy carbon.
酸中で電解処理されたものである請求項3に記載の電解
槽。4. The electrolytic cell according to claim 3, wherein the surface of the glassy carbon is electrolyzed in borofluoric acid.
室及び中間室に、陽イオン交換膜により前記中間室及び
陰極を有する陰極室にそれぞれ区画された3室型電解水
製造用電解槽において、前記陽極及び陰極の少なくとも
一方の電極物質を非多孔性炭素孔で構成したことを特徴
とする電解槽。5. A three-chamber electrolyzed electrolytic cell for producing electrolyzed water, which is divided into an anode chamber having an anode and an intermediate chamber by an anion exchange membrane and a cathode chamber having a cathode by a cation exchange membrane, respectively. An electrolytic cell characterized in that at least one electrode material of the anode and the cathode is composed of non-porous carbon pores.
に、陽イオン交換膜により前記中間室及び陰極室にそれ
ぞれ区画され、前記陰イオン交換膜の陽極室面に陽極室
用陽極を、該陰イオン交換膜の中間室面に中間室用陰極
を、前記陽イオン交換膜の中間室面に中間室用陽極を、
及び該陽イオン交換膜の陰極室面に陰極室用陰極をそれ
ぞれ密着させて成る3室型電解水製造用電解槽におい
て、前記陽極室用陽極、中間室用陰極、中間室用陽極及
び陰極室用陰極の少なくとも1個の電極を非多孔性炭素
孔で構成したことを特徴とする電解槽。6. An anode chamber and an intermediate chamber are partitioned by an anion exchange membrane, and the intermediate chamber and a cathode chamber are partitioned by a cation exchange membrane, respectively, and an anode for the anode chamber is provided on the anode chamber surface of the anion exchange membrane. An intermediate chamber cathode on the intermediate chamber surface of the anion exchange membrane, an intermediate chamber anode on the intermediate chamber surface of the cation exchange membrane,
And a three-chamber electrolyzed cell for producing electrolyzed water in which a cathode chamber cathode is closely attached to the cathode chamber surface of the cation exchange membrane, the anode chamber anode, intermediate chamber cathode, intermediate chamber anode and cathode chamber An electrolytic cell, wherein at least one electrode of the cathode for use is composed of non-porous carbon holes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02329696A JP3673000B2 (en) | 1996-01-17 | 1996-01-17 | Electrolyzer for electrolyzed water production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02329696A JP3673000B2 (en) | 1996-01-17 | 1996-01-17 | Electrolyzer for electrolyzed water production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09195079A true JPH09195079A (en) | 1997-07-29 |
JP3673000B2 JP3673000B2 (en) | 2005-07-20 |
Family
ID=12106650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02329696A Expired - Fee Related JP3673000B2 (en) | 1996-01-17 | 1996-01-17 | Electrolyzer for electrolyzed water production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3673000B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6615851B2 (en) * | 2001-03-29 | 2003-09-09 | Cs Clean Systems Inc. | Storage vessel for liquid high-purity substances |
JP2006097054A (en) * | 2004-09-28 | 2006-04-13 | Permelec Electrode Ltd | Electroconductive diamond electrode and production method therefor |
JP2006190672A (en) * | 2004-12-28 | 2006-07-20 | Saft (Soc Accumulateurs Fixes Traction) Sa | Electrochemical generator having liquid cathode |
WO2014035088A1 (en) * | 2012-08-27 | 2014-03-06 | Yim Shin Gyo | Electrolysis bath for acidic water and method for using the acidic water |
-
1996
- 1996-01-17 JP JP02329696A patent/JP3673000B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6615851B2 (en) * | 2001-03-29 | 2003-09-09 | Cs Clean Systems Inc. | Storage vessel for liquid high-purity substances |
JP2006097054A (en) * | 2004-09-28 | 2006-04-13 | Permelec Electrode Ltd | Electroconductive diamond electrode and production method therefor |
JP4535822B2 (en) * | 2004-09-28 | 2010-09-01 | ペルメレック電極株式会社 | Conductive diamond electrode and manufacturing method thereof |
JP2006190672A (en) * | 2004-12-28 | 2006-07-20 | Saft (Soc Accumulateurs Fixes Traction) Sa | Electrochemical generator having liquid cathode |
EP1677376A3 (en) * | 2004-12-28 | 2010-08-04 | Saft | Electrochemical accumulator with liquid cathode. |
WO2014035088A1 (en) * | 2012-08-27 | 2014-03-06 | Yim Shin Gyo | Electrolysis bath for acidic water and method for using the acidic water |
CN104024480A (en) * | 2012-08-27 | 2014-09-03 | 希姆斯仿生有限公司 | Electrolysis bath for acidic water and method for using the acidic water |
US9624117B2 (en) | 2012-08-27 | 2017-04-18 | Mag Technology Co., Ltd. | Electrolysis bath for acidic water and method for using the acidic water |
Also Published As
Publication number | Publication date |
---|---|
JP3673000B2 (en) | 2005-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5460705A (en) | Method and apparatus for electrochemical production of ozone | |
JP3913923B2 (en) | Water treatment method and water treatment apparatus | |
JP3716042B2 (en) | Acid water production method and electrolytic cell | |
US5770033A (en) | Methods and apparatus for using gas and liquid phase cathodic depolarizers | |
JP3689541B2 (en) | Seawater electrolyzer | |
JP2000104189A (en) | Production of hydrogen peroxide and electrolytic cell for production | |
JPH05501737A (en) | electrochemical chlorine dioxide generator | |
JP2001192874A (en) | Method for preparing persulfuric acid-dissolving water | |
JP3007137B2 (en) | Electrolytic ozone generation method and apparatus | |
JP4157615B2 (en) | Method for producing insoluble metal electrode and electrolytic cell using the electrode | |
JP2007332441A (en) | Method of manufacturing persulfuric acid and electrolytic cell for manufacture | |
JP4975271B2 (en) | Electrolytic water treatment electrode | |
US6761815B2 (en) | Process for the production of hydrogen peroxide solution | |
JP3421021B2 (en) | Electrolysis method of alkali chloride | |
KR20030079726A (en) | Functional water, the process and the apparatus for preparing the same, and the process and the apparatus for cleansing the electronic part using the functional water | |
JP3561130B2 (en) | Electrolyzer for hydrogen peroxide production | |
JP3673000B2 (en) | Electrolyzer for electrolyzed water production | |
JPH101794A (en) | Electrolytic cell and electrolyzing method | |
JP3677078B2 (en) | Method and apparatus for producing hydrogen peroxide water | |
JP3645636B2 (en) | 3-chamber electrolytic cell | |
JP4038253B2 (en) | Electrolyzer for production of acidic water and alkaline water | |
JP3725685B2 (en) | Hydrogen peroxide production equipment | |
JP2001020089A (en) | Protective method of alkali chloride electrolytic cell and protective device therefor | |
WO1998012144A1 (en) | Electrolytic treatment of aqueous salt solutions | |
JP3909957B2 (en) | Electrolyzer for hydrogen peroxide production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050421 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |