JPH09220573A - Electrolytic method using two-chamber type electrolytic cell - Google Patents

Electrolytic method using two-chamber type electrolytic cell

Info

Publication number
JPH09220573A
JPH09220573A JP5233996A JP5233996A JPH09220573A JP H09220573 A JPH09220573 A JP H09220573A JP 5233996 A JP5233996 A JP 5233996A JP 5233996 A JP5233996 A JP 5233996A JP H09220573 A JPH09220573 A JP H09220573A
Authority
JP
Japan
Prior art keywords
chamber
water
cathode
anode
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5233996A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishiki
善則 錦
Masashi Tanaka
正志 田中
Yasuo Nakajima
保夫 中島
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP5233996A priority Critical patent/JPH09220573A/en
Publication of JPH09220573A publication Critical patent/JPH09220573A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the mixing of impurities such as metal into modified water, the lowering of electrolytic efficiency and an increase in power consumption by electrolyzing a soln. containing ammonium ions or aq. ammonia while supplying the same to the cathode chamber of a two-chamber electrolytic cell to obtain acidic water of which the redox potential and pH are specific values in an anode chamber. SOLUTION: Porous platinum plates are used as an anode 7 and a cathode 8 and an anion exchange membrane 2 is inserted into the space between both electrodes to constitute an electrolytic cell 1. A current is supplied across the anode 7 and the cathode 8 while a soln. containing ammonium ions, for example, ammonium chloride aq. soln. or aq. ammonia is supplied into an anode chamber to electrolyze the soln. containing ammonium ions or aq. ammonia. Acidic water with redox potential of 1000V or higher and pH of 4 or less is formed in the anode chamber while alkali water is formed in a cathode chamber. By this constitution, modified water can be obtained with high current efficiency under low power consumption.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩や金属が存在せず、
酸化力が高くかつpHが低い酸性水又は還元力が高くp
Hが高いアルカリ水を同時に製造するための電解方法に
関し、より詳細には半導体洗浄プロセスに使用できる洗
浄力の優れた酸性水又はアルカリ水を提供するための電
解方法に関する。
FIELD OF THE INVENTION The present invention is free from salts and metals,
Acidic water with high oxidizing power and low pH or high reducing power p
The present invention relates to an electrolysis method for simultaneously producing alkaline water having a high H content, and more particularly to an electrolysis method for providing acidic water or alkaline water having excellent detergency that can be used in a semiconductor cleaning process.

【0002】[0002]

【従来技術とその問題点】電解により水を改質して酸性
水やアルカリ水等の改質水を製造することは従来から広
く行なわれているが、最近は特にそれらの用途が拡大
し、上水処理、医療用殺菌、食品工業等の各分野におい
て改質水が汎用されている。従来の電解により製造され
る改質水のうち陰極室で生成するアルカリ水は酸化還元
電位(ORP)として−600 mV以上の還元力を有し、
析出した酸化物を溶解除去する機能を有している。同時
に電解槽の陽極室では通常pHが3以下で酸化還元電位
(ORP)が1.2 V以上である酸性水が生成する。
2. Description of the Related Art Conventionally, reforming water by electrolysis to produce reformed water such as acidic water and alkaline water has been widely practiced in the past. Modified water is widely used in various fields such as clean water treatment, medical sterilization, and food industry. Of the reformed water produced by conventional electrolysis, alkaline water produced in the cathode chamber has a reducing power of -600 mV or more as an oxidation-reduction potential (ORP),
It has a function of dissolving and removing the precipitated oxide. At the same time, acidic water having a pH of 3 or less and an oxidation-reduction potential (ORP) of 1.2 V or more is usually produced in the anode chamber of the electrolytic cell.

【0003】通常の電解を行なうためには電解液中にイ
オン伝導性を与えるために適切な支持電解質を添加す
る。多くの場合この支持電解質は金属塩でありこの金属
塩を含む電解液を電解しても金属イオンが生成する改質
水中に残存し、該改質水を例えば半導体洗浄に使用する
と該改質水中の金属イオンが不純物として半導体表面に
付着して絶縁不良を招くといった不都合が生ずる。陽極
室と陰極室を区画する隔膜として中性隔膜を使用する場
合には、電解電圧低減のために隔膜を挟んだ両極を接近
させて配置する。しかしこのような配置でも隔膜の気液
透過性が高いため各極室で発生した種々の生成物が対極
室に移行して再酸化又は還元を起こすため効率が低下す
る。一般に電解液の濃度が低いので電気抵抗が大きく、
1A/dm2 という極めて小さい電流密度でも極間1mm程度
で10V以上の電圧となることがある。極間距離を大きく
するとある程度はこの欠点を解消できるが完全ではな
く、更に極間距離の増加に伴う抵抗増大の結果生ずる消
費電力量の増加が著しくなり、しばしばこの抵抗損によ
る発熱が大きいので液の冷却が必要となり、更に余分の
電力消費が発生するといった問題点があった。
In order to carry out ordinary electrolysis, an appropriate supporting electrolyte is added to the electrolyte to provide ionic conductivity. In many cases, this supporting electrolyte is a metal salt and remains in the reforming water in which metal ions are generated even when the electrolytic solution containing the metal salt is electrolyzed. Inconvenience arises in that the metal ions of (3) adhere to the surface of the semiconductor as impurities to cause insulation failure. When a neutral diaphragm is used as a diaphragm for partitioning the anode compartment and the cathode compartment, the two electrodes sandwiching the diaphragm are arranged close to each other to reduce the electrolytic voltage. However, even with such an arrangement, since the gas-liquid permeability of the diaphragm is high, various products generated in each electrode chamber are transferred to the counter electrode chamber and reoxidized or reduced to cause a reduction in efficiency. Generally, the electrolyte concentration is low, so the electrical resistance is high,
Even with an extremely low current density of 1 A / dm 2, a voltage of 10 V or more may occur with a gap of about 1 mm. This defect can be solved to some extent by increasing the distance between the electrodes, but it is not perfect.In addition, the increase in the power consumption resulting from the increase in the resistance due to the increase in the distance between the electrodes becomes remarkable, and the heat generated by this resistance loss is often large. However, there is a problem in that extra power consumption occurs.

【0004】[0004]

【発明の目的】本発明は、前述の従来技術の問題点、つ
まり電解により生ずる改質水中に金属等の不純物が混入
しやすくかつ電解効率が低く消費電力量が大きくなりや
すいという欠点を解消した電解方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, that is, impurities such as metals are easily mixed in the reforming water generated by electrolysis, and the electrolysis efficiency is low and the power consumption is apt to increase. It is intended to provide an electrolysis method.

【0005】[0005]

【問題点を解決するための手段】本発明は、陽イオン交
換膜により陽極室及び陰極室に区画された該イオン交換
膜の両面に陽極及び陰極を密着状態で設置した2室型電
解槽の前記陰極室にアンモニウムイオンを含む溶液又は
アンモニア水を供給しながら電解を行ない、陽極室で酸
化還元電位が1000mV以上でpH4以下の酸性水を、陰
極室でアルカリ水をそれぞれ得ることを特徴とする2室
型電解槽を使用する電解方法である。
The present invention is directed to a two-chamber type electrolytic cell in which an anode and a cathode are closely attached to both sides of the ion exchange membrane divided into an anode chamber and a cathode chamber by a cation exchange membrane. Electrolysis is performed while supplying a solution containing ammonium ions or ammonia water to the cathode chamber, and acidic water having an oxidation-reduction potential of 1000 mV or more and a pH of 4 or less is obtained in the anode chamber, and alkaline water is obtained in the cathode chamber. This is an electrolysis method using a two-chamber electrolysis cell.

【0006】以下本発明を詳細に説明する。陽極室に純
水等を加え陰極室にアンモニウムイオンやアンモニアを
添加する電解で酸性水やアルカリ水が得られる理由は次
のように推察される。陽極室に純水(脱イオン水)や希
釈酸性水を加え、陰極室にアンモニウムイオン(アンモ
ニウム塩を含む溶液又はアンモニア水)を添加して通電
すると、陰極室のアンモニウムイオンが濃度勾配による
拡散によって一部が陽イオン交換膜を透過して陽極室側
に移行する。移行したアンモニウムイオンは再び電気泳
動により陰極室側へ移動する。従って陽極で水電解によ
り生成した水素イオンの移行割合がその分減少し陽極室
側のpHが減少する。陽極では酸素あるいはオゾンが生
成し溶解するため平衡電位が貴に変化し活性の高い酸性
水が得られる。アンモニウム塩として塩化アンモニウム
や硫酸アンモニウムを使用すると陰極液中に塩素イオン
や硫酸イオンが生ずるが、これらのイオンは陽イオン交
換膜を透過できないため陰極室内に残り、陽極室で生成
する酸性水には影響を与えない。又アンモニア水を電解
質として使用すると、電解槽内には水酸イオンのみが陰
イオンとして存在し、不純物の非常に少ない改質水が得
られる。
Hereinafter, the present invention will be described in detail. The reason why acidic water or alkaline water is obtained by electrolysis in which pure water or the like is added to the anode chamber and ammonium ions or ammonia is added to the cathode chamber is presumed as follows. When pure water (deionized water) or diluted acidic water is added to the anode chamber, and ammonium ions (solution containing ammonium salt or ammonia water) are added to the cathode chamber and electricity is applied, the ammonium ions in the cathode chamber are diffused due to the concentration gradient. Part of it permeates the cation exchange membrane and moves to the side of the anode chamber. The transferred ammonium ions again move to the cathode chamber side by electrophoresis. Therefore, the transfer rate of hydrogen ions generated by water electrolysis at the anode is reduced by that amount, and the pH on the anode chamber side is reduced. Since oxygen or ozone is generated and dissolved at the anode, the equilibrium potential is changed to be noble and acidic water with high activity is obtained. When ammonium chloride or ammonium sulfate is used as an ammonium salt, chloride ions and sulfate ions are generated in the catholyte solution, but these ions remain in the cathode chamber because they cannot pass through the cation exchange membrane and affect the acidic water generated in the anode chamber. Don't give. When ammonia water is used as the electrolyte, only hydroxide ions exist as anions in the electrolytic cell, and reformed water containing very few impurities can be obtained.

【0007】陰極室では陽極室側から移行する水素イオ
ンの不足により水からの水素発生反応が進行しpHがア
ルカリ側にシフトし、かつ陰極で発生する水素ガスの溶
存により活性の高いアルカリ水が得られる。本発明で
は、隔膜として陽イオン交換膜を使用する電解槽、好
ましくは高分子固体電解質型電解槽を、陽極として好
ましくは白金族金属又は白金族金属酸化物陽極を、陰
極として好ましくは白金族金属又はカーボン陰極を、更
に電解質としてアンモニウム塩又はアルカリを使用
し、該電解質の溶液を電解槽の陰極室に供給する。
In the cathode chamber, the hydrogen generation reaction from water progresses due to the shortage of hydrogen ions transferred from the anode chamber side, the pH shifts to the alkaline side, and the highly active alkaline water is generated due to the dissolution of the hydrogen gas generated at the cathode. can get. In the present invention, an electrolytic cell using a cation exchange membrane as a diaphragm, preferably a solid polymer electrolyte type electrolytic cell, preferably a platinum group metal or platinum group metal oxide anode as an anode, preferably a platinum group metal as a cathode Alternatively, a carbon cathode is further used, and an ammonium salt or an alkali is used as an electrolyte, and a solution of the electrolyte is supplied to the cathode chamber of the electrolytic cell.

【0008】の陽イオン交換膜を装着した電解槽を使
用するため、本発明では、陽極液と陰極液との混合によ
る効率低下を回避できると共に、低電圧運転による省エ
ネルギー化を達成できる。更に高電流密度下での運転が
可能になり、小型の装置で同一量の改質水を製造できる
ようになる。更に前述した通り陰極室に塩素イオンや硫
酸イオン等の陽イオンが供給される場合でも、前記陽イ
オン交換膜により該陽イオンの陽極室への透過が防止さ
れ、金属等の汚染のない酸性水が得られる。又理由は明
らかではないが電極物質の消耗が少なくなり、換言する
と電極物質の混入による改質水の汚染が回避される。こ
れは電解質の導電性が良いため電流偏在がなくなり部分
的にせよ電気抵抗が低下しこれにより温度上昇が抑止さ
れること、及び膜に接触している部分が三次元的に機能
することにより電極への負担が実質的に低減されること
に起因すると推測できる。
Since the electrolytic cell equipped with the cation exchange membrane is used, in the present invention, it is possible to avoid the efficiency decrease due to the mixing of the anolyte and the catholyte, and to achieve the energy saving by the low voltage operation. Further, it becomes possible to operate under a high current density, and it becomes possible to produce the same amount of reforming water with a small device. Further, as described above, even when cations such as chlorine ions and sulfate ions are supplied to the cathode chamber, the cation exchange membrane prevents the cations from permeating into the anode chamber, and acidic water free from contamination such as metals. Is obtained. Although the reason is not clear, the consumption of the electrode material is reduced, in other words, the contamination of the reforming water due to the mixing of the electrode material is avoided. This is because the conductivity of the electrolyte is good, so that the uneven distribution of current is eliminated and the electrical resistance is reduced even if partially, and the temperature rise is suppressed, and the portion in contact with the membrane functions three-dimensionally. It can be speculated that this is due to the fact that the burden on the

【0009】経験的には電極物質が白金である非固体電
解質型の場合、塩化ナトリウム濃度が1000ppm程度の
塩水電解での消耗度が10〜30mg/KAHであるのに対
し、固体電解質型の場合には0.5 〜3mg/KAHと1/
10〜1/20の消耗に抑えることができる。電極物質が酸化
イリジウムの場合には消耗は更に小さく、0.05〜0.3m
g/KAHとなる。この電極物質の消耗量の低減に起因
する改質水中への不純物混入の抑制は、導電性固形物の
混入を最小限にすることを要求される半導体の場合に特
に重要である。固体電解質を使用すると該固体電解質は
隔膜としての機能も有し、イオンに対する選択性が大き
く、陽極液及び陰極液とも合目的となりやすい。
Empirically, in the case of the non-solid electrolyte type in which the electrode material is platinum, the degree of consumption in salt water electrolysis with a sodium chloride concentration of about 1000 ppm is 10 to 30 mg / KAH, whereas in the case of the solid electrolyte type 0.5 to 3 mg / KAH and 1 /
It can be reduced to 10 to 1/20 consumption. When the electrode material is iridium oxide, the consumption is even smaller, 0.05-0.3m
It becomes g / KAH. The suppression of the mixing of impurities into the modified water due to the reduction of the consumption amount of the electrode material is particularly important in the case of a semiconductor in which the mixing of conductive solids is required to be minimized. When a solid electrolyte is used, the solid electrolyte also has a function as a diaphragm, has high selectivity for ions, and is likely to be suitable for both anolyte and catholyte.

【0010】前記陽イオン交換膜としてはパーフルオロ
カーボンスルホン酸型の陽イオン交換膜等を使用するこ
とができ、該イオン交換膜の使用により腐食性物質に対
する耐性が極めて強く安定した運転ができる。更に陽イ
オン交換膜は導電性が高く、希釈電解液や純水中でも電
解に対して安定である。更に前記イオン交換膜は多くの
薬品に対して極めて高い耐性を示す。
As the cation exchange membrane, a perfluorocarbon sulfonic acid type cation exchange membrane or the like can be used, and by using the ion exchange membrane, the resistance to corrosive substances is extremely strong and stable operation can be performed. Further, the cation exchange membrane has high conductivity and is stable against electrolysis even in a diluted electrolytic solution or pure water. Further, the ion exchange membrane has extremely high resistance to many chemicals.

【0011】次に本発明では上述した通り陽極として
白金族金属又は白金族金属酸化物陽極を使用することが
好ましい。この白金族金属や白金族金属酸化物自体電解
による消耗が極めて小さく、前述の望ましい高分子固体
電解質の使用に加えて、これらの電極物質の使用によ
り、得られる改質水の汚染を更に小さくすることができ
る。例えば該電極物質以外の従来の電極物質である炭素
を陽極物質として使用すると、陽極反応により該炭素が
酸化されて二酸化炭素が生成し、電極が脆弱化するとい
う問題点が生ずる。なお本発明では高分子固体電解質型
の電極を使用することが好ましいが、これに限定される
ものではなく、例えば多孔性板状の白金電極等を使用す
ることも可能である。
Next, in the present invention, it is preferable to use a platinum group metal or platinum group metal oxide anode as the anode as described above. This platinum group metal or platinum group metal oxide itself has a very small consumption due to electrolysis, and in addition to the use of the desirable polymer solid electrolyte described above, the use of these electrode materials further reduces the pollution of the obtained reformed water. be able to. For example, when carbon, which is a conventional electrode material other than the electrode material, is used as the anode material, the carbon is oxidized by the anodic reaction to generate carbon dioxide, which causes a problem of weakening the electrode. In the present invention, it is preferable to use a polymer solid electrolyte type electrode, but the present invention is not limited to this, and it is also possible to use, for example, a porous plate-shaped platinum electrode or the like.

【0012】そして本発明では上述の通り陰極として
好ましくは白金族金属又はカーボン陰極を使用する。こ
れらの材料は高濃度アルカリ水中で安定であり、水素発
生能に優れている。次に電解質として前述した通りア
ンモニウム塩溶液、具体的には塩化アンモニウムや硫酸
アンモニウム、又はアンモニア水を使用し、これを電解
槽の陰極室に供給する。電解液中に含有されるアンモニ
ウム塩は陽イオンであるアンモニウムイオンが電解によ
り陰極室に残り、洗浄液の成分として使用可能であり、
更に揮発性であるため、不要な場合には容易に除去でき
る。又金属イオンを含有しないため、該金属イオンの除
去のための特別な工夫をする必要がなく、金属の混入に
よる純度低下がなくなる。
In the present invention, a platinum group metal or carbon cathode is preferably used as the cathode as described above. These materials are stable in highly concentrated alkaline water and have excellent hydrogen generating ability. Next, as described above, an ammonium salt solution, specifically, ammonium chloride, ammonium sulfate, or ammonia water is used as an electrolyte, and this is supplied to the cathode chamber of the electrolytic cell. Ammonium salt contained in the electrolytic solution, ammonium ions which are cations remain in the cathode chamber by electrolysis, and can be used as a component of the cleaning solution,
Further, since it is volatile, it can be easily removed when unnecessary. Further, since it does not contain metal ions, it is not necessary to take special measures for removing the metal ions, and the deterioration of purity due to the mixing of the metal is eliminated.

【0013】これらの電解質の濃度は100 〜10000 ppm
とすることが望ましく、100 ppm 未満では電解反応が不
十分になり、陽極室で得られる酸性水のORPが1000m
V以上には上昇せず、又pHの低下も不十分となり、更
に反応の電流効率も低くなる。一方10000 ppm を越える
と、ORP及びpHとも容易に満足できるレベルに達す
るが、望ましくない副反応が生ずる恐れがある。つまり
塩素イオンを含む場合には塩素ガスの発生が活発になり
塩素ガスによる腐食等の問題が起こりやすくなる。又硫
酸イオンの場合には生成する過硫酸イオン濃度が高くな
り過ぎて電解槽自体や付属機器及び配管等が腐食する恐
れがある。しかし純水を電解槽に供給してその濃度を調
節することにより、前記欠点を解決できる。
The concentration of these electrolytes is 100-10000 ppm
If less than 100 ppm, the electrolytic reaction becomes insufficient and the ORP of the acidic water obtained in the anode chamber is 1000 m.
It does not rise above V, the pH is insufficiently lowered, and the current efficiency of the reaction is lowered. On the other hand, if it exceeds 10,000 ppm, both ORP and pH easily reach satisfactory levels, but undesirable side reactions may occur. That is, when chlorine ions are contained, the generation of chlorine gas becomes active and problems such as corrosion due to chlorine gas easily occur. Further, in the case of sulfate ions, the concentration of persulfate ions produced becomes too high, which may corrode the electrolytic cell itself, auxiliary equipment, piping and the like. However, the above drawbacks can be solved by supplying pure water to the electrolytic cell and adjusting the concentration thereof.

【0014】このように構成された電解槽、特に高分子
固体電解質型電解槽を使用してアンモニウム塩を含む溶
液やアンモニア水を陰極室に供給しながら電解を行なう
と、高分子固体電解質型電解において特徴的である低電
力消費量の下、高電流効率で改質水を得ることができ
る。この際、供給される電解液中に金属イオンが含有さ
れていないため、得られる改質水中にも金属の存在はな
く、該改質水は特に金属イオンの存在が絶縁不良等の問
題を生じさせる半導体の洗浄水として有効に使用でき
る。
When electrolysis is performed while supplying a solution containing ammonium salt or aqueous ammonia to the cathode chamber using the electrolytic cell thus constructed, particularly the solid polymer electrolyte type electrolytic cell, the solid polymer electrolyte type electrolysis is performed. The reformed water can be obtained with high current efficiency under the low power consumption which is characteristic of the above. At this time, since the supplied electrolytic solution does not contain metal ions, there is no metal in the obtained reformed water, and in the reformed water, the presence of metal ions causes a problem such as poor insulation. It can be effectively used as washing water for semiconductors.

【0015】次に添付図面に基づいて本発明に係わる電
解方法に使用可能な電解槽の一例を説明する。図1は、
本発明方法に使用できる電解槽の一例を示す概略断面図
である。改質水製造用電解槽1は、陽イオン交換膜2の
周囲を挟持する額縁状の陽極室ガスケット3及び陰極室
ガスケット4、及び各ガスケット3及び4の前記陽イオ
ン交換膜2とは反対面に密着して設置された電解液流通
機能を有する陽極室壁板5及び陰極室壁板6により構成
されている。
Next, an example of an electrolytic cell which can be used in the electrolysis method according to the present invention will be described with reference to the accompanying drawings. FIG.
It is a schematic sectional drawing which shows an example of the electrolytic cell which can be used for the method of this invention. The electrolyzer 1 for producing reformed water has a frame-shaped anode chamber gasket 3 and cathode chamber gasket 4 that sandwich the periphery of the cation exchange membrane 2, and the surface of each gasket 3 and 4 opposite to the cation exchange membrane 2. It is constituted by an anode chamber wall plate 5 and a cathode chamber wall plate 6 which are installed in close contact with each other and have an electrolytic solution circulation function.

【0016】前記陽イオン交換膜2の陽極面には白金、
ルテニウム、イリジウム、ロジウム等の白金族金属又は
酸化ルテニウム、酸化イリジウム等の白金族金属酸化物
粉末から成る多孔性陽極7が密着状態で設置され、一方
前記陰イオン交換膜2の陰極面にはニッケル等から成る
多孔性陰極8が密着状態で設置されている。該陽極7及
び陰極8には、それぞれ陽極集電体9及び陰極集電体10
が接続され、該集電体を通して通電が行なわれる。前記
陽極室壁板5の内部には陽極液流通路11が形成され、陽
極液入口12から供給されるイオン交換水等の陽極液が陽
極室開口部13から陽極室内に進入して陽極7と接触し高
pH値の改質水として陽極液出口14から取り出される。
On the anode surface of the cation exchange membrane 2, platinum,
A porous anode 7 made of a platinum group metal such as ruthenium, iridium or rhodium or a platinum group metal oxide powder such as ruthenium oxide or iridium oxide is placed in close contact with the cathode surface of the anion exchange membrane 2 and nickel. A porous cathode 8 made of, for example, is installed in a close contact state. The anode 7 and the cathode 8 have an anode current collector 9 and a cathode current collector 10, respectively.
Are connected, and electricity is supplied through the current collector. An anolyte flow passage 11 is formed inside the anodic chamber wall plate 5, and anolyte such as ion-exchanged water supplied from an anolyte inlet 12 enters into the anodic chamber through an anodic chamber opening 13 to form an anode 7. It comes into contact with and is taken out from the anolyte outlet 14 as high pH reforming water.

【0017】又前記陰極室壁板6の内部には陰極液流通
路15が形成され、陰極液入口16から供給される塩化アン
モニウム水溶液やアンモニア水等が陰極室開口部17から
陰極室内に進入して水酸イオンを生成するとともにアン
モニウム塩が前記陽イオン交換膜2を通して陽極室側に
透過して前述した通り陽極室に高pH値の改質水を与
え、陰極室で生成したアルカリ水が陰極液出口18から取
り出される。
A cathode liquid flow passage 15 is formed inside the cathode chamber wall plate 6, and an ammonium chloride aqueous solution or ammonia water supplied from a cathode liquid inlet 16 enters the cathode chamber through an opening 17 in the cathode chamber. As a result, the ammonium salt permeates to the anode chamber side through the cation exchange membrane 2 to give modified water having a high pH value to the anode chamber as described above, and the alkaline water generated in the cathode chamber becomes the cathode. It is taken out from the liquid outlet 18.

【0018】[0018]

【実施例】次に本発明に係わる電解方法の実施例を記載
するが、該実施例は本発明を限定するものではない。
EXAMPLES Next, examples of the electrolysis method according to the present invention will be described, but the examples do not limit the present invention.

【実施例1】陽極として電極面積が0.053 dm2 である
多孔性白金板を、陰極として電極面積が0.053 dm2
ある多孔性白金板を、陽イオン交換膜としてデュポン社
のナフィオン117 (商品名)をそれぞれ使用して図1に
示す電解槽を構成した。陰極液として濃度3000ppm の塩
化アンモニウム水溶液を12cc/分で、陽極液としてイオ
ン交換水を12cc/分でそれぞれ供給しながら、電流密度
が30A/dm2 となるように両極間に通電したところ、陽極
室からpHが4でORPが1000mVの酸性水が得られ
た。
EXAMPLE 1 Porous platinum plate electrode area as an anode is 0.053 dm 2, the porous platinum plate electrode area is 0.053 dm 2 as the cathode, DuPont Nafion 117 (trade name cation exchange membrane ) Were used to construct the electrolytic cell shown in FIG. An ammonium chloride aqueous solution with a concentration of 3000 ppm was supplied as the catholyte at 12 cc / min, and ion-exchanged water as the anolyte was supplied at 12 cc / min, respectively, while energizing between both electrodes so that the current density was 30 A / dm 2. Acidic water having a pH of 4 and an ORP of 1000 mV was obtained from the chamber.

【0019】[0019]

【比較例1】塩化アンモニウムを電解質として添加しな
かったこと以外は実施例1と同一条件で電解を行なった
ところ、得られた酸性水のpHは5.6 でORPは230 m
Vであった。
[Comparative Example 1] Electrolysis was carried out under the same conditions as in Example 1 except that ammonium chloride was not added as an electrolyte. The obtained acidic water had a pH of 5.6 and an ORP of 230 m.
V.

【0020】[0020]

【実施例2】濃度3000ppm の塩化アンモニウム水溶液を
濃度3000ppm のアンモニア水に代えたこと以外は実施例
1と同一条件で電解を行なったところ、陰極室でpHが
9.3でORPが−800 mVであるアルカリ水が得られ
た。
Example 2 Electrolysis was carried out under the same conditions as in Example 1 except that the ammonium chloride aqueous solution having a concentration of 3000 ppm was replaced with ammonia water having a concentration of 3000 ppm.
At 9.3 alkaline water with an ORP of -800 mV was obtained.

【0021】[0021]

【発明の効果】本発明方法は、陽イオン交換膜により陽
極室及び陰極室に区画された該イオン交換膜の両面に陽
極及び陰極を密着状態で設置した2室型電解槽の前記陰
極室にアンモニウムイオンを含む溶液又はアンモニア水
を供給しながら電解を行ない、陽極室で酸化還元電位が
1000mV以上でpH4以下の酸性水を、及び陰極室でア
ルカリ水を得ることを特徴とする2室型電解槽を使用す
る電解方法である。
According to the method of the present invention, the cathode chamber of the two-chamber electrolytic cell in which the anode and the cathode are closely attached to both sides of the ion exchange membrane divided into the anode chamber and the cathode chamber by the cation exchange membrane is used. Electrolysis is performed while supplying a solution containing ammonium ions or ammonia water, and the redox potential is increased in the anode chamber.
This is an electrolysis method using a two-chamber electrolysis cell, wherein acidic water having a pH of 4 or less at 1000 mV and alkaline water is obtained in a cathode chamber.

【0022】本発明方法では、アンモニウムイオンの陰
極室から陽極室、更に該陽極室から前記陰極室への移行
により陽極室に酸性水が、又陰極室ではアルカリ水が同
時に得られる。更に本発明では陽イオン交換膜を装着し
た電解槽、特に高分子固体電解質型電解槽を使用し、更
に電解液としてアンモニウム塩溶液やアンモニア水を使
用しているため、低電力消費量の下、高電流効率で改質
水を得ることができ、更に該酸性水中には金属は存在せ
ず、該酸性水は特に金属イオンが絶縁不良等の問題を生
じさせる半導体の洗浄水として有効に使用できる。又陽
極室に塩素イオンや硫酸イオンが存在する電解では、塩
素ガス、次亜塩素酸、過硫酸等が発生することがあり、
これらの生体に対する刺激が好ましくない場合がある
が、本発明方法では前記塩素イオン等が陽極室に存在し
ないため刺激臭等が発生することがない。更に陰極室に
アンモニア水を供給する電解では、電解槽内には水酸イ
オンのみが陰イオンとして存在し、不純物の非常に少な
い改質水が得られる。
According to the method of the present invention, acidic water is obtained in the anode chamber and alkaline water is simultaneously obtained in the cathode chamber by transferring ammonium ions from the cathode chamber to the anode chamber and further from the anode chamber to the cathode chamber. Furthermore, in the present invention, an electrolytic cell equipped with a cation exchange membrane, particularly a solid polymer electrolyte type electrolytic cell is used, and since an ammonium salt solution or ammonia water is used as an electrolytic solution, under low power consumption, It is possible to obtain reformed water with high current efficiency, and further, metal does not exist in the acidic water, and the acidic water can be effectively used as washing water for semiconductors in which metal ions particularly cause problems such as poor insulation. . Also, in the electrolysis where chlorine ions and sulfate ions are present in the anode chamber, chlorine gas, hypochlorous acid, persulfuric acid, etc. may be generated,
Stimulation of these living bodies may not be preferable, but in the method of the present invention, since the chlorine ions and the like do not exist in the anode chamber, no irritating odor or the like is generated. Further, in electrolysis in which ammonia water is supplied to the cathode chamber, only hydroxide ions exist as anions in the electrolytic cell, and reformed water containing very few impurities can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる電解方法で使用できる電解槽の
一例を示す概略断面図。
FIG. 1 is a schematic cross-sectional view showing an example of an electrolytic cell that can be used in an electrolysis method according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・電解槽 2・・・陽イオン交換膜 3、4・・
・ガスケット 5・・・陽極室壁板 6・・・陰極室壁
板 7・・・陽極 8・・・陰極 9、10・・・集電体
11・・・陽極液流通路 15・・・陰極液流通路
1 ... Electrolyzer 2 ... Cation exchange membrane 3, 4 ...
・ Gasket 5 ・ ・ ・ Anode chamber wall plate 6 ・ ・ ・ Cathode chamber wall plate 7 ・ ・ ・ Anode 8 ・ ・ ・ Cathode 9, 10 ・ ・ ・ Current collector
11 ... Anode liquid flow passage 15 ... Cathode liquid flow passage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陽イオン交換膜により陽極室及び陰極室
に区画された該イオン交換膜の両面に陽極及び陰極を密
着状態で設置した2室型電解槽の前記陰極室にアンモニ
ウムイオンを含む溶液又はアンモニア水を供給しながら
電解を行ない、陽極室で酸化還元電位が1000mV以上で
pH4以下の酸性水を、陰極室でアルカリ水をそれぞれ
得ることを特徴とする2室型電解槽を使用する電解方
法。
1. A solution containing ammonium ions in the cathode chamber of a two-chamber electrolysis cell in which an anode and a cathode are closely attached to both sides of the ion exchange membrane divided into an anode chamber and a cathode chamber by a cation exchange membrane. Alternatively, electrolysis using a two-chamber electrolysis cell is characterized in that electrolysis is performed while supplying aqueous ammonia, acidic water having an oxidation-reduction potential of 1000 mV or more and pH 4 or less is obtained in the anode chamber, and alkaline water is obtained in the cathode chamber. Method.
JP5233996A 1996-02-14 1996-02-14 Electrolytic method using two-chamber type electrolytic cell Pending JPH09220573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5233996A JPH09220573A (en) 1996-02-14 1996-02-14 Electrolytic method using two-chamber type electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5233996A JPH09220573A (en) 1996-02-14 1996-02-14 Electrolytic method using two-chamber type electrolytic cell

Publications (1)

Publication Number Publication Date
JPH09220573A true JPH09220573A (en) 1997-08-26

Family

ID=12912049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5233996A Pending JPH09220573A (en) 1996-02-14 1996-02-14 Electrolytic method using two-chamber type electrolytic cell

Country Status (1)

Country Link
JP (1) JPH09220573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010035910A (en) * 1999-10-04 2001-05-07 문재덕 High Efficiency Electrolytic Water Production Equipment
KR100458604B1 (en) * 2002-02-04 2004-12-03 이계행 Electrolyzed Oxidizer water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010035910A (en) * 1999-10-04 2001-05-07 문재덕 High Efficiency Electrolytic Water Production Equipment
KR100458604B1 (en) * 2002-02-04 2004-12-03 이계행 Electrolyzed Oxidizer water

Similar Documents

Publication Publication Date Title
JP2525553B2 (en) Electrodialysis tank and electrodialysis method
JP3716042B2 (en) Acid water production method and electrolytic cell
US5460705A (en) Method and apparatus for electrochemical production of ozone
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
US6143163A (en) Method of water electrolysis
US20090266706A1 (en) High electric field electrolysis cell
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
KR19980081448A (en) Electrolyzer for Acid and Alkaline Water Production
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JP3420820B2 (en) Method and apparatus for producing electrolytic acidic water
JP3421021B2 (en) Electrolysis method of alkali chloride
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JPH1099861A (en) Water electrolyzing method
JP2004010904A (en) Electrolytic cell for manufacturing hydrogen peroxide
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JPH09220573A (en) Electrolytic method using two-chamber type electrolytic cell
JPH101794A (en) Electrolytic cell and electrolyzing method
JP3645636B2 (en) 3-chamber electrolytic cell
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
JPH09195079A (en) Electrolytic cell for producing electrolyzed water
CN220223738U (en) Diaphragm electrolytic device for wastewater treatment
JP3373175B2 (en) Method of starting operation of alkaline chloride electrolytic cell using gas diffusion cathode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A711 Notification of change in applicant

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Effective date: 20050118

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060410