JP2004010904A - Electrolytic cell for manufacturing hydrogen peroxide - Google Patents

Electrolytic cell for manufacturing hydrogen peroxide Download PDF

Info

Publication number
JP2004010904A
JP2004010904A JP2002161295A JP2002161295A JP2004010904A JP 2004010904 A JP2004010904 A JP 2004010904A JP 2002161295 A JP2002161295 A JP 2002161295A JP 2002161295 A JP2002161295 A JP 2002161295A JP 2004010904 A JP2004010904 A JP 2004010904A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
cathode
electrolytic cell
anode
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161295A
Other languages
Japanese (ja)
Other versions
JP3875922B2 (en
Inventor
Takeshi Kasuga
春日 武志
Tsuneto Furuta
古田 常人
Yoshinori Nishiki
錦 善則
Masao Sekimoto
関本 正生
Masaharu Uno
宇野 雅晴
Hozumi Tanaka
田中 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2002161295A priority Critical patent/JP3875922B2/en
Publication of JP2004010904A publication Critical patent/JP2004010904A/en
Application granted granted Critical
Publication of JP3875922B2 publication Critical patent/JP3875922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve an efficiency in the manufacturing of hydrogen peroxide by only doing a simple modification in the installation of an electrolytic cell for manufacturing hydrogen peroxide. <P>SOLUTION: The electrolytic cell for manufacturing hydrogen peroxide by comprising a positive pole 2 and an oxygen-gas diffusing negative pole 3 and by supplying an oxygen-containing gas and water to a negative pole, has the above positive pole and the above negative pole made to be inclined to the vertical direction. The inclination angle (θ) is preferably 10°≤θ≤90°, and more preferably 30°≤θ≤90°. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、運転時に電解セルの設置を工夫することで、食品、医薬品、パルプ、半導体産業等の用水や廃水の処理に使用される過酸化水素水の生成効率を向上させることのできる過酸化水素製造用電解セルに関する。
【0002】
【従来の技術】
産業及び生活廃棄物に起因する大気汚染や、河川及び湖沼の水質悪化などによる環境や人体への悪影響が憂慮され、その問題解決のための技術対策が急務となっている。例えば飲料水、下水及び廃水の処理において、その脱色やCOD低減及び殺菌のために塩素などの薬剤が投入されてきたが、多量の塩素注入により危険物質つまり環境ホルモン(外因性内分泌攪乱物質)、発ガン性物質などが生成するため、塩素注入は禁止される傾向にある。
又廃棄物の焼却処理では、燃焼条件に依っては廃ガス中に発ガン性物質(ダイオキシン類)が発生し生態系に影響するため、その安全性が問題視されている。この水処理関連の問題点を解決するために新規な水処理方法が検討されている。
【0003】
電解法はクリーンな電気エネルギーを利用して所望の電気化学反応を起こすことができ、陰極表面で化学反応を制御することにより、つまり酸素含有ガスと水を陰極に供給することにより過酸化水素を製造でき、これを利用して被処理物質を分解することによる水処理が従来から広く行われている。電解法によるとオンサイトでの過酸化水素製造が可能になり、安定化剤なしに長期間の保存が不可能であるという過酸化水素の欠点を解消し、かつ輸送に伴う危険性や汚染対策も不要になる。
この陰極還元による過酸化水素の製造で、陰極液として処理対象の廃水等を使用すると、生成する過酸化水素水による酸化処理に加えて前記廃水が直接電極に接触して陽極酸化又は陰極還元処理されることが期待され、更に例えば活性の高い1電子還元生成物であるスーパーオキシドアニオン(O )の作用も期待できる。
【0004】
【発明が解決しようとする課題】
Journal  of  Applied Electrochemistry Vol.25,613−(1995)では、過酸化水素の各種電解生成方法の比較が示されている。これらの発生方法はいずれもアルカリ水溶液の雰囲気で効率良く得られるため、原料としてアルカリ成分を供給する必要があり、KOHやNaOH等のアルカリ水溶液が必須になる。
Journal  of  Electrochemical Society  Vol.141,1174−(1994)では、純水を原料としイオン交換膜を用いてオゾンと過酸化水素をそれぞれ陽極と陰極で電解製造する手法が提案されているが、電流効率が小さく実用的でない。類似の方法として高圧下で電解することにより効率が上昇することも報告されているが、安全性の面からやはり実用的でない。更にパラジウム箔を用いた過酸化水素の電解製造方法も提案されているが、生成する過酸化水素の濃度が低く価格的にも限界がある。
【0005】
過酸化水素製造用の電解セルでは、軟水又はイオン交換水に電解質として塩化物、硫酸塩、硝酸塩、酢酸塩等の塩を添加した電解系が使用されることがあるが、この系では特に無隔膜電解セルでの電流効率が低く、ランニングコストが高くなるという問題点があった。
このように従来から、電解法による過酸化水素水製造において、電極物質やイオン交換膜等を検討して実用レベルで使用可能な過酸化水素製造用電解セルが提案されているが、生成する過酸化水素の濃度や安全性の面あるいは装置の複雑さ等の理由でいずれも満足できる結果は得られていない。
このような従来技術の問題点に鑑み、本発明は装置に簡単な修正を施すのみで生成効率を向上させることのできる過酸化水素製造用電解セルを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、陽極と陰極を有し、陰極に酸素含有ガスと水を供給して過酸化水素を製造するための電解セルにおいて、前記陽極及び陰極を垂直方向に対して傾斜させたことを特徴とする過酸化水素製造用電解セルである。
【0007】
以下本発明を詳細に説明する。
本発明者らは、過酸化水素製造用電解セルの設置に関し種々検討し、該過酸化水素製造用電解セルを所定角度傾斜させるのみで、過酸化水素の製造効率が上昇することを見出し、本発明に到達したものである。
本発明における電解セルの傾斜角(θ)は垂直方向に対して0°<θ≦90°であり、好ましくは10°≦θ≦90°、より好ましくは30°≦θ≦90°である。この場合の傾斜角とは電極面と垂直方向とが形成する角度(電極面と傾斜方向が直角になる)を意味し、電極の両端部と垂直方向が形成する角度(電極面の方向と傾斜方向が一致する)を意味しない。但し、常に電極面が傾斜方向に対して直角になる必要はなく、直角からずれていても良い。また傾斜の態様として陽極側が下になる態様と陰極側が下になる態様があり、いずれの場合も0°<θ≦90°の範囲の傾斜角で傾斜させる。
傾斜させた電解セルは、一般的な手法で固定すれば良く、例えば設置面に比較的大きなV字溝を形成してそのV字溝に固定したり、固定台に電解セルを凭せ掛けて固定しても良い。
【0008】
本発明により、過酸化水素製造用電解セルを所定角度傾斜させるのみで過酸化水素の生成効率が上昇する理由は明確ではないが、次のように推測できる。
陰極で生成した過酸化水素は、陽極で発生したガス上昇による攪拌効果で陽極に移動し、そこで分解するため、生成効率が低下する。又過酸化水素の発生効率はpH依存性があり、酸性では効率が小さくなる傾向があるため、陽極で生成するプロトンの陰極表面への移動を促進すると過酸化水素の生成効率が低下する。陰極を下側にして電解セルを傾斜させると、陽極で発生したガスは陽極板に沿って移動するため上昇スピードが低下し、攪拌効果が弱まると考えられる。よって陰極で生成した過酸化水素は陽極へ移動、分解されることなく速やかに排出され、過酸化水素の生成効率が低下しないと考えられる。又陽極で発生したプロトンの移動も抑制されるため、結果として効率が増大する。
【0009】
一方、陽極を下側にして傾斜させた場合、陽極で発生した酸素ガスは上昇して陰極に到達する。酸素ガスによる攪拌効果は陰極表面で大きくなるが、この場合、到達した酸素が陰極での過酸化水素生成反応に使用され、生成効率が向上すると考えられる。
電解セルを傾斜させることで陰極全体にかかる平均の水圧が減少するため、ガス陰極内に浸入している余分な溶液成分が減少し、代わって空気室からの原料ガスの供給ルートが十分に確保されるためとも推定される。
【0010】
過酸化水素は次の電解反応により生成する。

Figure 2004010904
陰極反応: O + 2H+ + 2e → H
【0011】
塩化物を溶解した場合には、次式の通り次亜塩素酸が生成する。
2Cl → Cl + 2e
Cl + HO → HCl + HClO
特に塩化物を溶解した場合、ガスの処理が不可欠になり、またこの酸化性物質が陰極に到達すると陰極材料を劣化させるので、次亜塩素酸が発生しにくい電極材料を使用することが望ましい。
硫酸塩を添加すると、電極材料によっては次の式に従って過硫酸が生成する。
2SO 2− → S 2− + 2e
又酢酸塩を添加すると、電極材料によっては酸素以外に次の式に従って二酸化炭素が生成する。
CHCOOH + 2HO → 2CO + 8H +8e
【0012】
本発明の電解セルでは、隔膜を使用して陽極室と陰極室に区画しても良く、隔膜を使用すると、陰極室で陰極還元により生成した過酸化水素が陽極に接触して分解することが回避できるため、前記隔膜を使用することが望ましい。
無隔膜電解で過酸化水素を生成させる際には、陰極が上側に位置するように電解セルを傾斜させて生成する過酸化水素が陽極に接触することを極力回避することが好ましい。
【0013】
一般的に水溶液の電解の際の陽極酸化反応は、水を原料とする電解生成反応になるが、水の放電に対して反応性の高い電極触媒を使用すると、水以外の共存物質の酸化反応が容易には進行しなくなることが多い。不純物の分解生成物は最終的には二酸化炭素、水、水素、酸素、窒素、アンモニア、塩化物イオン等の低分子の安全な物質に変換されることが好ましいが、分解過程にある中間体がかえって危険である可能性があるため、電解条件の設定には注意が必要である。
【0014】
本発明方法で使用する電解セルは過酸化水素製造用であれば特に限定されず、例えば次のような電解セルを使用できる。
使用できる陽極触媒は、水の酸化反応である酸素発生反応が、ハロゲン化物イオンの酸化によるハロゲンガスや次亜ハロゲン酸の生成より優先するように選択することが望ましく、例えば酸化鉛、酸化錫、白金、イリジウム、ルテニウムなどの貴金属又はそれらの酸化物から成るDSA(不溶性陽極)、カーボン等の材料があり、これらと、チタン、タンタルなどの弁金属の酸化物を含む複合酸化物も使用できる。更に二酸化マンガンあるいはマンガン−バナジウム、マンガン−モリブデン、マンガン−タングステン等の複合酸化物も使用でき、ハロゲン化物イオンの放電(ハロゲンガス発生)が抑制されることが知られている。
しかしながらこれらの高価な材料を用いても電流密度や通電時間に応じて消耗する。特に黒鉛や非晶質カーボン材料は著しい消耗がある。
【0015】
これらに替わる陽極材料として導電性ダイヤモンドがあり、この導電性ダイヤモンドは耐久性に優れ、更に水の分解反応に対しては不活性で、酸素からオゾン(陽極酸化反応)と過酸化水素(陰極還元反応)を生成する。従って陽極として導電性ダイヤモンドを使用すると、長寿命化が達成できるとともに、酸化力のあるOHラジカルが生成して、洗浄力の高い電解液が得られる。
これらの電極物質をそのまま板状にして用いるか、チタン、ニオブ、タンタル等の耐食性を有する板、金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂による固着法、複合メッキなどにより1〜500g/mとなるように形成させる。
陽極給電体としては、チタン等の弁金属又はそれらの合金を使用することが望ましい。
【0016】
過酸化水素発生用電極である陰極は、ニッケルやカーボン等の従来使用されている陰極を使用しても良いが、酸素ガス拡散陰極を使用することが望ましく、これにより酸素ガスの還元により効率的に過酸化水素を製造できる。
該酸素ガス電極は、触媒として金等の金属あるいは金属酸化物、又は黒鉛や導電性ダイヤモンド等のカーボンを使用することが好ましく、ポリアニリンやチオール(−SH含有有機化合物)などの有機材料をその表面に塗布したものでも良い。これらの触媒はそのまま板状又は多孔状として用いるか、ステンレス、ジルコニウム、銀、カーボンなどの耐食性を有する板、金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂による固着法、複合メッキなどにより1〜1000g/mとなるように担持する。
【0017】
陰極給電体としてはカーボン、ニッケル、チタン等の金属、それらの合金や酸化物を好ましくは多孔体又はシートとして使用し、反応生成ガス及び電解水の供給及び取り出しを円滑に行うために、疎水性又は親水性の材料を給電体表面に分散担持することが望ましい。
陰極液の電導度が低いと槽電圧の増加となり又電極寿命を短くするため、この場合にはガス電極の材料による汚染を防止する目的も含めて、酸素ガス拡散陰極をイオン交換膜に可能な限り近接させる(溶液室の幅を狭くする)構造を採用することが望ましい。
陰極への酸素供給量は理論量の1〜2倍程度が良く、酸素源として空気や市販のボンベを使用しても、別に設置した電解セルでの水電解で生成する酸素を使用しても、又PSA(Pressure Swing Adsorption)装置により空気から濃縮した酸素を使用しても良い。一般に酸素濃度が大きいほど、大きい電流密度で過酸化水素を製造できる。
【0018】
前述した通り、陽極室と陰極室を区画する隔膜の使用により、陰極反応で生成する過酸化水素を陽極に接触させることなく安定に保持でき、更に電解水の電導度が低い場合でも電解を速やかに進行させる機能を有する。隔膜としては中性隔膜やイオン交換膜の使用が可能で、特に陽イオン交換膜の使用が好ましい。隔膜の材質としてはフッ素樹脂系及び炭化水素系があり、耐食性の面から前者の使用が望ましい。
使用する電解液としては、純水、水道水、井戸水及び工業用水等を使用することができ、これらは伝導度が小さく、セル電圧に占める抵抗損失が無視できない。又伝導度が小さいと電極有効面積が限定される。これらを防止するため前記電解液に電気伝導度を付与することが望ましく、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、塩化ナトリウム及び塩化カリウムのような中性塩あるいは水酸化ナトリウムや硫酸といったアルカリ性や酸性の支持電解質を添加できる。
【0019】
但し塩化物を使用すると前述の通り次亜塩素酸の発生があり、これは陰極で生成する過酸化水素と別のラインで処理水として利用することも可能である。しかしながら一部の有効塩素成分は陰極側に流出し、陰極触媒や基体を酸化させ、結果として電極の短寿命化を引き起こすことがある。イオン交換膜や中性隔膜を設置することでその量は減少し得るが、安定な運転を阻害する傾向がある。
これを防止するためには、塩化物イオンが存在しても水の電解(酸素発生)が優先して進行する触媒を陽極として利用することが好ましい。二酸化マンガン系(MnO、Mn−W−O、Mn−V−O、Mn−Mo−O)電極はその選択性に優れた電極触媒として利用できる。
【0020】
一方硫酸塩、硝酸塩及び酢酸塩等の塩化物でない塩を溶解させることで、活性な酸化剤の発生を抑制することができる。水道水、井戸水などの用水を軟水化すると微量溶解している塩化ナトリウムや塩化カリウム等の成分から次亜塩素酸が生成して前述の問題の発生が懸念されるが、前記硫酸塩等を数倍以上の濃度で溶解させると、次亜塩素酸の生成効率は著しく減少する。
純水は塩化物を溶解していないため、この問題は発生しない。
前述した電気伝導度を付与する物質として炭酸塩は望ましくなく、これはアルカリ雰囲気に置かれる陰極上に炭酸ナトリウムや炭酸カリウムとして沈殿するからである。原料水に多量の二酸化炭素が溶解している場合には、前もって除去しておくことが好ましい。
【0021】
カルシウムやマグネシウム等の多価の金属イオンを多く含む処理対象では、陰極表面に水酸化物が沈殿し反応が阻害される恐れがあるため、前段階として多価金属カチオンを除去しておくことが望ましい。
電解条件は、液温5〜60℃、電流密度0.1〜100 A/dmが好ましく、特に安定して高性能を得るために液温20〜40℃、電流密度1〜20 A/dmが好ましい。電極間距離は抵抗損失を低下させるために小さくすべきであるが、電解水供給のためのポンプの圧力損失を小さくし圧力分布を均一に保つために1〜20mmとすることが好ましい。
電解セル材料は、耐久性、及び過酸化水素の安定性の観点から、ガラスライニング材料、カーボン、耐食性が優れたチタンやステンレス、PTFE樹脂等を使用することが好ましい。生成する過酸化水素の濃度は水量と電流密度を調節することにより、10〜10000 ppm(1重量%)までの制御が可能である。
【0022】
【発明の実施の形態】
本発明による過酸化水素水製造に使用できる好ましい電解セルの実施形態例を図1に基づいて説明する。
図1は、本発明による過酸化水素製造用電解セルの一実施形態例を示す縦断正面図である。
【0023】
電解セル1には、多孔板状の陽極2と、酸素ガス拡散陰極3が収容され、この酸素ガス拡散陰極3により、前記電解セル1が溶液室4とガス室5に区画され、前記酸素ガス拡散陰極3のガス室側には多孔性の陰極給電体6が密着して設置されている。
溶液室4側の底板及び天板にはそれぞれ電解液導入口7と電解液取出口8が形成され、ガス室5側の背板上部と下部にはそれぞれ酸素含有ガス導入口9と酸素含有ガス取出口10が形成されている。
【0024】
このような構成からなる電解セル1は基台11上に固定され、更に基台11ごと水平な設置面12上に傾斜角(θ)で酸素ガス拡散陰極3が陽極2より下側に位置するよう傾斜して設置され、前記設置面12上に設置した固定台13にガス室5の背板を凭れさせて前記傾斜位置に保持している。
このように傾斜角(θ)で設置された電解セル1の電解液導入口7から、支持電解質を溶解した水道水等の電解液を、酸素含有ガス導入口9から空気や酸素富化空気を導入しながら両極間に通電すると、酸素ガス拡散陰極3で酸素が還元されて過酸化水素が生じ、過酸化水素含有溶液として取出口8から取り出される。
【0025】
〔実施例〕
次に本発明による過酸化水素水の製造の実施例を記載するが、該実施例は本発明を限定するものではない。
【0026】
実施例1
チタン多孔板に酸化イリジウム触媒を熱分解法により10g/mとなるように担持させ陽極とした。
カーボン粉末(CABOT、Vulcan XC−72)を触媒とし、これとPTFE樹脂とを混練し、0.5mm厚のカーボンシートに塗工し、更に330℃で焼成して酸素ガス拡散陰極とし、この酸素ガス拡散陰極を、陰極給電体である多孔性SUS板(厚さ3mm)と一体化した。電極間距離を5mmとし、高さ20cm、電解有効面積が125cmである無隔膜型電解セルを構成し、陰極は大気開放とした。
この電解セルを陰極が陽極より下側に位置するように、傾斜角(θ)=82°で傾斜させた。水道水をイオン交換樹脂で軟水化し、0.056Mの硫酸ナトリウムを溶解して伝導度を10mS/cmとした水溶液を電極室入口から毎分10mlで供給した。液温を20℃とし、1.25Aの電流を流したところ、セル電圧は約2.4Vであり、出口から約1000ppmの過酸化水素が電流効率約74%で得られた。
【0027】
実施例2
電解セルを陽極が陰極より下側に位置するように、傾斜角(θ)=60°で傾斜させたこと以外は実施例1と同様にして過酸化水素製造用電解セルを構成し、過酸化水素を製造したところ、セル電圧は約2.4Vであり、出口から約830ppmの過酸化水素が電流効率約61%で得られた。
【0028】
実施例3
電解セルを陽極が陰極より下側に位置するように、傾斜角(θ)=10°で傾斜させたこと以外は実施例1と同様にして過酸化水素製造用電解セルを構成し、過酸化水素を製造したところ、セル電圧は約2.4Vであり、出口から約630ppmの過酸化水素が電流効率約46%で得られた。
【0029】
実施例4
電解セルを陰極が陽極より下側に位置するように、傾斜角(θ)=10°で傾斜させたこと以外は実施例1と同様にして過酸化水素製造用電解セルを構成し、過酸化水素を製造したところ、セル電圧は約2.4Vであり、出口から約610ppmの過酸化水素が電流効率約45%で得られた。
【0030】
比較例1
電解セルを直立させた〔傾斜角(θ)=0°〕こと以外は実施例1と同様にして過酸化水素製造用電解セルを構成し、過酸化水素を製造したところ、セル電圧は約2.4Vであり、出口から約560ppmの過酸化水素が電流効率約43%で得られた。
【0031】
【発明の効果】
本発明は、陽極と陰極を有し、陰極に酸素含有ガスと水を供給して過酸化水素を製造するための電解セルにおいて、前記陽極及び陰極を垂直方向に対して傾斜させたことを特徴とする過酸化水素製造用電解セルであり、傾斜角(θ)は10°≦θ≦90°であることが好ましく、30°≦θ≦90°であることがより好ましい。電解セルを傾斜させるという簡単な操作で過酸化水素の生成効率が向上するため、コスト上昇を殆ど伴うことなく、高い電流効率で高濃度過酸化水素が製造できるようになる。
【0032】
傾斜角は大きくなるほど効果は大きくなる傾向があり、30°≦θ≦90°の範囲の傾斜角で顕著な効果が得られる。
陽極と陰極の間に隔膜を設置すると、一旦生成した過酸化水素の陽極分解が防止できる。
陰極がガス拡散陰極であると、水素発生を抑制して電力量削減が達成できる。又導電性ダイヤモンドを陽極として使用すると、長寿命化が達成できるとともに、酸化力のあるOHラジカルが生成して、洗浄力の高い電解液が得られる。
【図面の簡単な説明】
【図1】本発明による過酸化水素製造用電解セルの一実施形態例を示す縦断正面図。
【符号の説明】
1  電解セル
2  陽極
3  酸素ガス拡散陰極
4  溶液室
5  ガス室
6  陰極給電体
12  設置面
13  固定台
θ  傾斜角[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, by devising the installation of an electrolytic cell during operation, it is possible to improve the production efficiency of hydrogen peroxide water used for treating water and wastewater in the food, pharmaceutical, pulp, semiconductor industries, and the like. The present invention relates to an electrolytic cell for producing hydrogen.
[0002]
[Prior art]
There are concerns about air pollution caused by industrial and domestic waste, and adverse effects on the environment and the human body due to the deterioration of water quality in rivers and lakes, and technical measures for solving the problems are urgently needed. For example, in the treatment of drinking water, sewage and wastewater, chemicals such as chlorine have been introduced for the purpose of decolorization, COD reduction and sterilization. However, a large amount of chlorine is injected so that dangerous substances, that is, environmental hormones (exogenous endocrine disruptors), Chlorine injection tends to be prohibited because of the generation of carcinogenic substances.
In the incineration of waste, carcinogenic substances (dioxins) are generated in waste gas depending on combustion conditions and affect the ecosystem. A new water treatment method is being studied to solve this water treatment-related problem.
[0003]
The electrolysis method can generate a desired electrochemical reaction by using clean electric energy, and by controlling the chemical reaction on the cathode surface, that is, by supplying oxygen-containing gas and water to the cathode, hydrogen peroxide is produced. Conventionally, water treatment by decomposing a substance to be treated by using it can be widely used. According to the electrolysis method, on-site production of hydrogen peroxide is possible, eliminating the disadvantages of hydrogen peroxide that long-term storage is not possible without a stabilizer, and measures against risks and pollution associated with transportation. Also becomes unnecessary.
In the production of hydrogen peroxide by this cathodic reduction, when wastewater or the like to be treated is used as a catholyte, in addition to the oxidation treatment with the generated hydrogen peroxide water, the wastewater comes into direct contact with the electrode to perform anodization or cathodic reduction treatment. In addition, the action of superoxide anion (O 2 ), which is a highly active one-electron reduction product, can be expected.
[0004]
[Problems to be solved by the invention]
Journal of Applied Electrochemistry Vol. 25, 613- (1995), shows a comparison of various electrolytic production methods for hydrogen peroxide. Since any of these generation methods can be efficiently obtained in an atmosphere of an alkaline aqueous solution, it is necessary to supply an alkaline component as a raw material, and an alkaline aqueous solution such as KOH or NaOH is essential.
Journal of Electrochemical Society Vol. 141, 1174 (1994) proposes a method of electrolytically producing ozone and hydrogen peroxide at the anode and cathode, respectively, using pure water as a raw material and an ion-exchange membrane, but the current efficiency is small and not practical. It has been reported that the efficiency is increased by electrolysis under a high pressure as a similar method, but it is not practical in terms of safety. Further, a method for electrolytically producing hydrogen peroxide using a palladium foil has been proposed, but the concentration of hydrogen peroxide produced is low and there is a limit in price.
[0005]
In an electrolytic cell for producing hydrogen peroxide, an electrolytic system in which salts such as chloride, sulfate, nitrate, and acetate are added as an electrolyte to soft water or ion-exchanged water may be used. There is a problem that the current efficiency in the diaphragm electrolysis cell is low and the running cost is high.
As described above, in the production of aqueous hydrogen peroxide by an electrolytic method, an electrolytic cell for producing hydrogen peroxide that can be used at a practical level by examining electrode materials and ion exchange membranes has been proposed. No satisfactory results have been obtained for reasons such as the concentration of hydrogen oxide, safety or the complexity of the apparatus.
In view of such problems of the prior art, an object of the present invention is to provide an electrolytic cell for producing hydrogen peroxide which can improve the production efficiency only by making a simple modification to the apparatus.
[0006]
[Means for Solving the Problems]
The present invention has an anode and a cathode, and in an electrolytic cell for producing hydrogen peroxide by supplying an oxygen-containing gas and water to the cathode, the anode and the cathode are inclined with respect to the vertical direction. This is an electrolytic cell for producing hydrogen peroxide.
[0007]
Hereinafter, the present invention will be described in detail.
The present inventors have conducted various studies on the installation of an electrolytic cell for producing hydrogen peroxide, and found that merely tilting the electrolytic cell for producing hydrogen peroxide at a predetermined angle increases the production efficiency of hydrogen peroxide. The invention has been reached.
The inclination angle (θ) of the electrolytic cell in the present invention is 0 ° <θ ≦ 90 °, preferably 10 ° ≦ θ ≦ 90 °, more preferably 30 ° ≦ θ ≦ 90 ° with respect to the vertical direction. The tilt angle in this case means the angle formed between the electrode surface and the vertical direction (the tilt direction is perpendicular to the electrode surface), and the angle formed between both ends of the electrode and the vertical direction (the direction of the electrode surface and the tilt). Direction does not mean). However, the electrode surface does not always need to be perpendicular to the tilt direction, and may be shifted from the perpendicular. In addition, there are two types of inclination: an aspect in which the anode side is downward and an aspect in which the cathode side is downward. In each case, the inclination is performed at an inclination angle in a range of 0 ° <θ ≦ 90 °.
The inclined electrolytic cell may be fixed by a general method, for example, by forming a relatively large V-shaped groove on the installation surface and fixing it to the V-shaped groove, or resting the electrolytic cell on a fixed base. It may be fixed.
[0008]
According to the present invention, the reason why the efficiency of generating hydrogen peroxide is increased only by inclining the electrolytic cell for producing hydrogen peroxide by a predetermined angle is not clear, but can be guessed as follows.
Hydrogen peroxide generated at the cathode moves to the anode under the effect of agitation due to the rise in gas generated at the anode, and is decomposed there, resulting in reduced production efficiency. Further, the efficiency of hydrogen peroxide generation is pH-dependent, and the efficiency tends to decrease in acidic conditions. Therefore, if the transfer of protons generated at the anode to the surface of the cathode is promoted, the efficiency of hydrogen peroxide generation decreases. When the electrolytic cell is tilted with the cathode facing down, the gas generated at the anode moves along the anode plate, so that the rising speed is reduced, and the stirring effect is considered to be weakened. Therefore, it is considered that the hydrogen peroxide generated at the cathode is quickly discharged without moving to the anode and being decomposed, and the generation efficiency of hydrogen peroxide does not decrease. In addition, since the transfer of protons generated at the anode is also suppressed, efficiency is increased as a result.
[0009]
On the other hand, when the anode is inclined downward, the oxygen gas generated at the anode rises and reaches the cathode. The stirring effect of the oxygen gas increases on the surface of the cathode. In this case, it is considered that the reached oxygen is used in the hydrogen peroxide generation reaction at the cathode, and the generation efficiency is improved.
By tilting the electrolysis cell, the average water pressure applied to the entire cathode is reduced, reducing excess solution components penetrating into the gas cathode, and instead ensuring a sufficient supply route for the source gas from the air chamber. It is estimated that
[0010]
Hydrogen peroxide is generated by the following electrolytic reaction.
Figure 2004010904
Cathodic reaction: O 2 + 2H + + 2e   → H 2 O 2
[0011]
When chloride is dissolved, hypochlorous acid is generated as in the following formula.
2Cl → Cl 2 + 2e
Cl 2 + H 2 O → HCl + HClO
In particular, when chlorides are dissolved, gas treatment becomes indispensable, and when the oxidizing substance reaches the cathode, the cathode material is deteriorated. Therefore, it is desirable to use an electrode material that does not easily generate hypochlorous acid.
When a sulfate is added, persulfuric acid is generated according to the following formula depending on the electrode material.
2SO 4 2- → S 2 O 8 2- + 2e
When acetate is added, carbon dioxide is generated according to the following equation in addition to oxygen depending on the electrode material.
CH 3 COOH + 2H 2 O → 2CO 2 + 8H + + 8e
[0012]
In the electrolytic cell of the present invention, a diaphragm may be used to partition the anode compartment and the cathode compartment.If a diaphragm is used, hydrogen peroxide generated by cathode reduction in the cathode compartment may be decomposed by contact with the anode. It is desirable to use the above-mentioned diaphragm because it can be avoided.
When hydrogen peroxide is generated by non-diaphragm electrolysis, it is preferable to prevent the generated hydrogen peroxide from contacting the anode as much as possible by tilting the electrolysis cell so that the cathode is positioned on the upper side.
[0013]
Generally, the anodic oxidation reaction in the electrolysis of an aqueous solution is an electrolysis reaction using water as a raw material.However, if an electrode catalyst that is highly reactive to water discharge is used, the oxidation reaction of coexisting substances other than water will occur. Often does not progress easily. The decomposition products of the impurities are preferably converted to low-molecular-weight safe substances such as carbon dioxide, water, hydrogen, oxygen, nitrogen, ammonia, and chloride ions. Care must be taken in setting the electrolysis conditions because they may be dangerous.
[0014]
The electrolytic cell used in the method of the present invention is not particularly limited as long as it is used for producing hydrogen peroxide. For example, the following electrolytic cell can be used.
The anode catalyst that can be used is desirably selected so that the oxygen generation reaction, which is the oxidation reaction of water, takes precedence over the generation of halogen gas or hypohalous acid by oxidation of halide ions, for example, lead oxide, tin oxide, There are materials such as noble metals such as platinum, iridium and ruthenium or oxides thereof such as DSA (insoluble anode), carbon and the like, and composite oxides containing these and valve metal oxides such as titanium and tantalum can also be used. It is also known that manganese dioxide or a composite oxide such as manganese-vanadium, manganese-molybdenum, manganese-tungsten or the like can be used, and that the discharge of halide ions (the generation of halogen gas) is suppressed.
However, even if these expensive materials are used, they are consumed according to the current density and the energizing time. In particular, graphite and amorphous carbon materials are significantly consumed.
[0015]
An alternative to these anodes is conductive diamond, which has excellent durability, is inactive against water decomposition reaction, converts oxygen from ozone (anodizing reaction) and hydrogen peroxide (cathodic reduction). Reaction). Therefore, when conductive diamond is used as the anode, a longer life can be achieved, and oxidizing OH radicals are generated, so that an electrolytic solution having a high detergency can be obtained.
These electrode materials may be used as they are in the form of a plate, or may be applied to a corrosion-resistant plate such as titanium, niobium or tantalum, a wire mesh, a powder sintered body, a metal fiber sintered body, by a thermal decomposition method, a resin fixing method, or a composite method. It is formed to have a thickness of 1 to 500 g / m 2 by plating or the like.
It is desirable to use a valve metal such as titanium or an alloy thereof as the anode power supply.
[0016]
As the cathode serving as the hydrogen peroxide generating electrode, a conventionally used cathode such as nickel or carbon may be used, but it is preferable to use an oxygen gas diffusion cathode, thereby reducing the oxygen gas more efficiently. To produce hydrogen peroxide.
The oxygen gas electrode preferably uses a metal such as gold or a metal oxide or carbon such as graphite or conductive diamond as a catalyst, and uses an organic material such as polyaniline or thiol (an organic compound containing -SH) on its surface. May be applied. These catalysts can be used as they are in the form of a plate or porous, or they can be fixed on plates, wire nets, powder sintered bodies, and metal fiber sintered bodies having corrosion resistance such as stainless steel, zirconium, silver, and carbon by thermal decomposition or resin. It is carried so as to be 1 to 1000 g / m 2 by a method, composite plating or the like.
[0017]
Metals such as carbon, nickel, and titanium, and alloys and oxides thereof are preferably used as the cathode power feeder as a porous body or a sheet. In order to smoothly supply and take out reaction product gas and electrolytic water, a hydrophobic material is used. Alternatively, it is desirable to disperse and carry a hydrophilic material on the power supply body surface.
If the conductivity of the catholyte is low, the cell voltage will increase and the life of the electrode will be shortened. In this case, an oxygen gas diffusion cathode can be used for the ion exchange membrane, including the purpose of preventing contamination by the material of the gas electrode. It is desirable to adopt a structure as close as possible (narrow the width of the solution chamber).
The amount of oxygen supplied to the cathode is preferably about 1 to 2 times the theoretical amount, whether air or a commercial cylinder is used as the oxygen source, or oxygen generated by water electrolysis in a separately installed electrolytic cell. Alternatively, oxygen concentrated from air by a PSA (Pressure Swing Adsorption) device may be used. Generally, the higher the oxygen concentration, the more hydrogen peroxide can be produced at a higher current density.
[0018]
As described above, the use of the diaphragm that separates the anode compartment and the cathode compartment makes it possible to stably hold hydrogen peroxide generated by the cathodic reaction without coming into contact with the anode, and to quickly perform electrolysis even when the conductivity of the electrolyzed water is low. It has the function to advance to. As the membrane, a neutral membrane or an ion exchange membrane can be used, and a cation exchange membrane is particularly preferable. As the material of the diaphragm, there are a fluororesin type and a hydrocarbon type, and the former is preferable from the viewpoint of corrosion resistance.
As the electrolytic solution to be used, pure water, tap water, well water, industrial water, and the like can be used. These have low conductivity, and the resistance loss occupying the cell voltage cannot be ignored. When the conductivity is low, the effective area of the electrode is limited. In order to prevent these, it is desirable to impart electric conductivity to the electrolytic solution, and a neutral salt such as sodium sulfate, potassium sulfate, sodium nitrate, sodium chloride and potassium chloride, or an alkaline or acidic salt such as sodium hydroxide or sulfuric acid. A supporting electrolyte can be added.
[0019]
However, when chloride is used, hypochlorous acid is generated as described above, and this can be used as treated water in a separate line from hydrogen peroxide generated at the cathode. However, some available chlorine components flow out to the cathode side, oxidizing the cathode catalyst and the base, and as a result, the life of the electrode may be shortened. By installing an ion-exchange membrane or a neutral diaphragm, the amount can be reduced, but it tends to hinder stable operation.
In order to prevent this, it is preferable to use, as an anode, a catalyst in which electrolysis of water (generation of oxygen) proceeds preferentially even when chloride ions are present. A manganese dioxide (MnO 2 , Mn-W- Ox , Mn-V- Ox , Mn-Mo- Ox ) electrode can be used as an electrode catalyst excellent in its selectivity.
[0020]
On the other hand, by dissolving non-chloride salts such as sulfates, nitrates and acetates, it is possible to suppress the generation of an active oxidizing agent. When water such as tap water or well water is softened, hypochlorous acid is generated from a trace amount of dissolved components such as sodium chloride and potassium chloride, which may cause the above-mentioned problem. When dissolved at twice or more the concentration, the production efficiency of hypochlorous acid is remarkably reduced.
This problem does not occur because pure water does not dissolve chloride.
Carbonate is not desirable as a substance imparting the above-mentioned electric conductivity because it precipitates as sodium carbonate or potassium carbonate on a cathode placed in an alkaline atmosphere. When a large amount of carbon dioxide is dissolved in the raw water, it is preferable to remove the carbon dioxide in advance.
[0021]
For a treatment target containing a large amount of polyvalent metal ions such as calcium and magnesium, hydroxide may precipitate on the cathode surface and hinder the reaction. desirable.
The electrolysis conditions are preferably a liquid temperature of 5 to 60 ° C. and a current density of 0.1 to 100 A / dm 2 , and in particular, a liquid temperature of 20 to 40 ° C. and a current density of 1 to 20 A / dm for stably obtaining high performance. 2 is preferred. The distance between the electrodes should be small in order to reduce the resistance loss, but is preferably 1 to 20 mm in order to reduce the pressure loss of the pump for supplying the electrolytic water and keep the pressure distribution uniform.
As the electrolytic cell material, it is preferable to use a glass lining material, carbon, titanium, stainless steel, PTFE resin, or the like having excellent corrosion resistance from the viewpoints of durability and stability of hydrogen peroxide. The concentration of the generated hydrogen peroxide can be controlled up to 10 to 10000 ppm (1% by weight) by adjusting the amount of water and the current density.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a preferred electrolytic cell that can be used for producing hydrogen peroxide solution according to the present invention will be described with reference to FIG.
FIG. 1 is a longitudinal sectional front view showing an embodiment of an electrolytic cell for producing hydrogen peroxide according to the present invention.
[0023]
The electrolytic cell 1 contains a perforated plate-shaped anode 2 and an oxygen gas diffusion cathode 3. The oxygen gas diffusion cathode 3 divides the electrolysis cell 1 into a solution chamber 4 and a gas chamber 5. On the gas chamber side of the diffusion cathode 3, a porous cathode power supply 6 is provided in close contact.
An electrolyte inlet 7 and an electrolyte outlet 8 are formed on the bottom plate and the top plate on the solution chamber 4 side, respectively, and an oxygen-containing gas inlet 9 and an oxygen-containing gas An outlet 10 is formed.
[0024]
The electrolytic cell 1 having such a configuration is fixed on the base 11, and the oxygen gas diffusion cathode 3 is positioned below the anode 2 at an inclination angle (θ) on the horizontal installation surface 12 together with the base 11. The back plate of the gas chamber 5 is leaned against a fixed base 13 installed on the installation surface 12 so as to be held at the inclined position.
An electrolytic solution such as tap water in which a supporting electrolyte is dissolved is supplied from the electrolytic solution introduction port 7 of the electrolytic cell 1 installed at the inclination angle (θ), and air or oxygen-enriched air is supplied from the oxygen-containing gas introduction port 9. When electricity is supplied between the two electrodes while being introduced, oxygen is reduced at the oxygen gas diffusion cathode 3 to generate hydrogen peroxide, which is taken out from the outlet 8 as a hydrogen peroxide-containing solution.
[0025]
〔Example〕
Next, examples of the production of aqueous hydrogen peroxide according to the present invention will be described, but the examples do not limit the present invention.
[0026]
Example 1
An iridium oxide catalyst was supported on a titanium porous plate by thermal decomposition so as to have a concentration of 10 g / m 2, and used as an anode.
Carbon powder (CABOT, Vulcan XC-72) is used as a catalyst, this is kneaded with a PTFE resin, coated on a 0.5 mm-thick carbon sheet, and fired at 330 ° C. to form an oxygen gas diffusion cathode. The gas diffusion cathode was integrated with a porous SUS plate (thickness: 3 mm) as a cathode power supply. A non-diaphragm type electrolysis cell having a distance between electrodes of 5 mm, a height of 20 cm, and an effective electrolysis area of 125 cm 2 was formed, and the cathode was open to the atmosphere.
The electrolytic cell was inclined at an inclination angle (θ) of 82 ° such that the cathode was located below the anode. Tap water was softened with an ion exchange resin, and an aqueous solution having a conductivity of 10 mS / cm by dissolving 0.056 M sodium sulfate was supplied at a rate of 10 ml / min from the electrode chamber inlet. When the liquid temperature was set to 20 ° C. and a current of 1.25 A was passed, the cell voltage was about 2.4 V, and about 1000 ppm of hydrogen peroxide was obtained from the outlet with a current efficiency of about 74%.
[0027]
Example 2
An electrolytic cell for producing hydrogen peroxide was constructed in the same manner as in Example 1 except that the electrolytic cell was inclined at an inclination angle (θ) of 60 ° so that the anode was positioned below the cathode. When hydrogen was produced, the cell voltage was about 2.4 V, and about 830 ppm of hydrogen peroxide was obtained from the outlet with a current efficiency of about 61%.
[0028]
Example 3
An electrolytic cell for producing hydrogen peroxide was constructed in the same manner as in Example 1 except that the electrolytic cell was inclined at an inclination angle (θ) of 10 ° so that the anode was located below the cathode. When hydrogen was produced, the cell voltage was about 2.4 V, and about 630 ppm of hydrogen peroxide was obtained from the outlet with a current efficiency of about 46%.
[0029]
Example 4
An electrolytic cell for producing hydrogen peroxide was constructed in the same manner as in Example 1 except that the electrolytic cell was inclined at an inclination angle (θ) of 10 ° so that the cathode was located below the anode. When hydrogen was produced, the cell voltage was about 2.4 V, and about 610 ppm of hydrogen peroxide was obtained from the outlet with a current efficiency of about 45%.
[0030]
Comparative Example 1
An electrolytic cell for producing hydrogen peroxide was constructed in the same manner as in Example 1 except that the electrolytic cell was set upright [tilt angle (θ) = 0 °], and hydrogen peroxide was produced. 0.4 V, and about 560 ppm of hydrogen peroxide was obtained from the outlet with a current efficiency of about 43%.
[0031]
【The invention's effect】
The present invention has an anode and a cathode, and in an electrolytic cell for producing hydrogen peroxide by supplying an oxygen-containing gas and water to the cathode, the anode and the cathode are inclined with respect to the vertical direction. Wherein the tilt angle (θ) is preferably 10 ° ≦ θ ≦ 90 °, and more preferably 30 ° ≦ θ ≦ 90 °. Since the efficiency of generating hydrogen peroxide is improved by a simple operation of inclining the electrolytic cell, high-concentration hydrogen peroxide can be produced at high current efficiency with little increase in cost.
[0032]
The effect tends to increase as the inclination angle increases, and a remarkable effect is obtained at an inclination angle in the range of 30 ° ≦ θ ≦ 90 °.
If a diaphragm is provided between the anode and the cathode, anodic decomposition of hydrogen peroxide once generated can be prevented.
When the cathode is a gas diffusion cathode, the generation of hydrogen can be suppressed and the amount of power can be reduced. When conductive diamond is used as the anode, the life can be prolonged, and OH radicals having oxidizing power are generated, so that an electrolytic solution having a high detergency can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view showing an embodiment of an electrolytic cell for producing hydrogen peroxide according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolysis cell 2 Anode 3 Oxygen gas diffusion cathode 4 Solution chamber 5 Gas chamber 6 Cathode feeder 12 Installation surface 13 Fixed base θ Tilt angle

Claims (6)

陽極と陰極を有し、陰極に酸素含有ガスと水を供給して過酸化水素を製造するための電解セルにおいて、前記陽極及び陰極を垂直方向に対して傾斜させたことを特徴とする過酸化水素製造用電解セル。An electrolytic cell having an anode and a cathode, wherein an oxygen-containing gas and water are supplied to the cathode to produce hydrogen peroxide, wherein the anode and the cathode are inclined with respect to a vertical direction. Electrolysis cell for hydrogen production. 傾斜角(θ)が10°≦θ≦90°である請求項1に記載の過酸化水素製造用電解セル。The electrolytic cell for producing hydrogen peroxide according to claim 1, wherein the inclination angle (θ) satisfies 10 ° ≦ θ ≦ 90 °. 傾斜角(θ)が30°≦θ≦90°である請求項1に記載の過酸化水素製造用電解セル。The electrolytic cell for producing hydrogen peroxide according to claim 1, wherein the inclination angle (θ) satisfies 30 ° ≦ θ ≦ 90 °. 陽極と陰極の間に隔膜を設置した請求項1から3までのいずれかに記載の過酸化水素製造用電解セル。4. The electrolytic cell for producing hydrogen peroxide according to claim 1, wherein a diaphragm is provided between the anode and the cathode. 陰極がガス拡散陰極である請求項1から4までのいずれかに記載の過酸化水素製造用電解セル。The electrolytic cell for producing hydrogen peroxide according to any one of claims 1 to 4, wherein the cathode is a gas diffusion cathode. 陽極の電極物質が導電性ダイヤモンドである請求項1から5までのいずれかに記載の過酸化水素製造用電解セル。6. The electrolytic cell for producing hydrogen peroxide according to claim 1, wherein the electrode material of the anode is conductive diamond.
JP2002161295A 2002-06-03 2002-06-03 Electrolysis cell for hydrogen peroxide production Expired - Fee Related JP3875922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161295A JP3875922B2 (en) 2002-06-03 2002-06-03 Electrolysis cell for hydrogen peroxide production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161295A JP3875922B2 (en) 2002-06-03 2002-06-03 Electrolysis cell for hydrogen peroxide production

Publications (2)

Publication Number Publication Date
JP2004010904A true JP2004010904A (en) 2004-01-15
JP3875922B2 JP3875922B2 (en) 2007-01-31

Family

ID=30430409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161295A Expired - Fee Related JP3875922B2 (en) 2002-06-03 2002-06-03 Electrolysis cell for hydrogen peroxide production

Country Status (1)

Country Link
JP (1) JP3875922B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014887A1 (en) * 2003-08-08 2005-02-17 Ebara Corporation Submerged electrode and material thereof
JP2007239041A (en) * 2006-03-09 2007-09-20 Central Japan Railway Co Ozone mist generating apparatus
JP2009538267A (en) * 2006-05-25 2009-11-05 ユーオーピー エルエルシー In situ generation of hydrogen peroxide
JP2012086167A (en) * 2010-10-20 2012-05-10 Toshiba Corp Device for generating hydrogen peroxide aqueous solution and sterilization system
JP5980373B1 (en) * 2015-04-28 2016-08-31 シャープ株式会社 Electrolyzer
JP6037419B1 (en) * 2016-06-15 2016-12-07 イノベーティブ・デザイン&テクノロジー株式会社 Electrolyzed water generating device and electrolyzed water generating and storing device
JP2017018897A (en) * 2015-07-10 2017-01-26 シャープ株式会社 Electrolytic water generator and washing machine
CN109498825A (en) * 2019-01-04 2019-03-22 厦门理工学院 A kind of household sterilizing device
JP2021037498A (en) * 2019-09-05 2021-03-11 デノラ・ペルメレック株式会社 Apparatus and method for producing acidic aqueous solution
CN113774409A (en) * 2021-09-24 2021-12-10 浙江清越科技有限公司 Standing type flat plate hydrogen peroxide electrochemical generator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005014887A1 (en) * 2003-08-08 2005-02-17 Ebara Corporation Submerged electrode and material thereof
JP2007239041A (en) * 2006-03-09 2007-09-20 Central Japan Railway Co Ozone mist generating apparatus
JP2009538267A (en) * 2006-05-25 2009-11-05 ユーオーピー エルエルシー In situ generation of hydrogen peroxide
JP2012086167A (en) * 2010-10-20 2012-05-10 Toshiba Corp Device for generating hydrogen peroxide aqueous solution and sterilization system
JP5980373B1 (en) * 2015-04-28 2016-08-31 シャープ株式会社 Electrolyzer
WO2016174782A1 (en) * 2015-04-28 2016-11-03 シャープ株式会社 Electrolysis device
CN107849712A (en) * 2015-04-28 2018-03-27 夏普生命科学株式会社 Electrolysis unit
JP2016204731A (en) * 2015-04-28 2016-12-08 シャープ株式会社 Electrolytic device
JP2017018897A (en) * 2015-07-10 2017-01-26 シャープ株式会社 Electrolytic water generator and washing machine
JP6037419B1 (en) * 2016-06-15 2016-12-07 イノベーティブ・デザイン&テクノロジー株式会社 Electrolyzed water generating device and electrolyzed water generating and storing device
CN109498825A (en) * 2019-01-04 2019-03-22 厦门理工学院 A kind of household sterilizing device
JP2021037498A (en) * 2019-09-05 2021-03-11 デノラ・ペルメレック株式会社 Apparatus and method for producing acidic aqueous solution
WO2021045191A1 (en) * 2019-09-05 2021-03-11 デノラ・ペルメレック株式会社 Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
JP7232158B2 (en) 2019-09-05 2023-03-02 デノラ・ペルメレック株式会社 Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
CN113774409A (en) * 2021-09-24 2021-12-10 浙江清越科技有限公司 Standing type flat plate hydrogen peroxide electrochemical generator
CN113774409B (en) * 2021-09-24 2023-12-19 浙江清越科技有限公司 Standing type flat hydrogen peroxide electrochemical generator

Also Published As

Publication number Publication date
JP3875922B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
US6767447B2 (en) Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide
JP3689541B2 (en) Seawater electrolyzer
EP0636051B1 (en) Apparatus comprising a water ionizing electrode and process of use of said apparatus
JP3716042B2 (en) Acid water production method and electrolytic cell
EP2035599B1 (en) Electrode, method of manufacture and use thereof
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
JP3420820B2 (en) Method and apparatus for producing electrolytic acidic water
JP3875922B2 (en) Electrolysis cell for hydrogen peroxide production
KR100634889B1 (en) An electrolytic apparatus for producing sodium hypochloride
US6761815B2 (en) Process for the production of hydrogen peroxide solution
JP3561130B2 (en) Electrolyzer for hydrogen peroxide production
JP3727579B2 (en) Hydrothermal electrolysis reactor and electrode
JP3615814B2 (en) Method and apparatus for removing nitrate and / or nitrite nitrogen
JP2001020089A (en) Protective method of alkali chloride electrolytic cell and protective device therefor
JPH05255882A (en) Method for protecting oxygen cathode
JP3844303B2 (en) Method for electrolytic synthesis of percarbonate compound and electrolytic synthesis cell
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
US20240174533A1 (en) Electrolyzed water production apparatus, and electrolyzed water production method using same
CN116732535A (en) Method and system for producing hypochlorous acid water by reverse-electrode electrolysis of sodium chloride
JPH09195079A (en) Electrolytic cell for producing electrolyzed water
JPH09220573A (en) Electrolytic method using two-chamber type electrolytic cell
US20080296170A1 (en) Method and Apparatus for Synthesizing Hypochlorous Acid
JPH09217185A (en) Three-chamber based electrolytic cell
JP5285393B2 (en) Electrolyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees