KR20140027866A - Electrolytic bath for manufacturing acid water and the using method of the water - Google Patents

Electrolytic bath for manufacturing acid water and the using method of the water Download PDF

Info

Publication number
KR20140027866A
KR20140027866A KR1020130062744A KR20130062744A KR20140027866A KR 20140027866 A KR20140027866 A KR 20140027866A KR 1020130062744 A KR1020130062744 A KR 1020130062744A KR 20130062744 A KR20130062744 A KR 20130062744A KR 20140027866 A KR20140027866 A KR 20140027866A
Authority
KR
South Korea
Prior art keywords
water
electrode
acidic
ion exchange
electrodes
Prior art date
Application number
KR1020130062744A
Other languages
Korean (ko)
Inventor
임신교
Original Assignee
임신교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임신교 filed Critical 임신교
Priority to KR1020130062744A priority Critical patent/KR20140027866A/en
Priority to DE112013000327.9T priority patent/DE112013000327B4/en
Priority to PCT/KR2013/007418 priority patent/WO2014035088A1/en
Priority to SG11201404539PA priority patent/SG11201404539PA/en
Priority to JP2014540987A priority patent/JP5835599B2/en
Priority to US14/382,841 priority patent/US9624117B2/en
Priority to CN201380003623.8A priority patent/CN104024480B/en
Priority to RU2014130407/04A priority patent/RU2602234C2/en
Publication of KR20140027866A publication Critical patent/KR20140027866A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • C02F2001/46157Perforated or foraminous electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention provides an electrolytic bath for acidic water, by which pure water or ultrapure water as well as tap water may be electrolyzed by securing sufficient conductivity and the stability of the surface of an electrode through the wide surface of the electrode, without using a separate catalytic agent or an ion exchange resin, through connecting electrodes having the same polarity into one body to supply a power source simultaneously, and a method of using the acidic water. In addition, in contrast to a common electrolytic bath, by which acidic and oxidizing properties may be obtained at a cathode, and alkaline and reducing properties may be obtained at an anode with a catalytic agent, the present invention provides an electrolytic bath of acidic water, by which water (acidic reducing water) acidic and having reducing properties may be obtained at a cathode and water (acidic oxidizing water) acidic and having oxidizing properties may be obtained at an anode without using a catalyst, and a method of using the acidic water. Particularly, the area of an electrode may be enlarged and the distance between electrodes may be minimized by additionally providing a plurality of the electrodes and a mesh electrode having different polarity on one side of an ion exchange membrane. In this case, an oxidation reduction reaction may be further promoted, and acidic water of high concentration may be obtained.

Description

산성수 전해조 및 그 산성수의 이용방법{ELECTROLYTIC BATH FOR MANUFACTURING ACID WATER AND THE USING METHOD OF THE WATER}ELECTROLTITIC BATH FOR MANUFACTURING ACID WATER AND THE USING METHOD OF THE WATER

본 발명은 산성수 전해조 및 그 산성수의 이용방법에 관한 것으로, 더욱 상세하게는 이온교환수지를 사용하지 않고, 특히 하나의 극성을 갖는 전극을 복수 개로 구성하여 동일 극성을 인가하고, 나머지 하나의 극성을 갖는 전극에 메쉬 전극(Mesh Electrode)을 통해 동일 전극을 인가함으로써, 서로 다른 극성을 갖는 전극의 반응면적인 전극 표면을 넓히면서도 전극 사이의 간격을 좁혀 산화환원 반응을 촉진시켜 줌으로써, 수돗물뿐만 아니라 순수(RO)나 초순수(DI)를 전기분해하여 고농도의 산성 환원수나 산성 산화수를 얻을 수 있는 산성수 전해조 및 그 산성수의 이용방법에 관한 것이다.The present invention relates to an acidic electrolyzer and a method of using the acidic water, and more particularly, does not use an ion exchange resin, and in particular, constitutes a plurality of electrodes having one polarity and applies the same polarity to each other. By applying the same electrode to the electrode having a polarity through the mesh electrode (Mesh Electrode), by increasing the surface area of the electrode of the electrode having a different polarity, while reducing the interval between the electrodes to promote the redox reaction, Rather, the present invention relates to an acidic electrolyzer and a method of using the acidic water, which can electrolytically decompose pure water (RO) or ultrapure water (DI) to obtain a high concentration of acidic reduced or acidic oxidized water.

특허문헌과 같이, 알카리성 환원수를 생성하는 전해조가 출원되어 등록된 바 있다. 이러한 알카리성 환원수 생성 전해조는, 전해액에 접하는 캐소드 전극의 면적은 전해액에 접하는 애노드 전극의 면적보다 더 크게 형성되며, 상기 애노드 전극은 상부가 개방된 애노드실에 안착되고, 상기 캐소드 전극이 안착되는 캐소드실은 상기 애노드실의 측면에 연속적으로 배치되고 상기 애노드실에 형성된 출구는 인접한 상기 캐소드실의 입구와 연통되게 형성되고, 연속적으로 배치되는 n-1번째의 상기 캐소드실의 출구는 인접한 n번째의 상기 캐소드실의 입구와 연통되는 구성이다. 이와 같은 발명에 의해 화학약품의 첨가 없이 액성의 변화가 가능하게 된다.As in the patent document, an electrolytic cell for generating alkaline reduced water has been filed and registered. In the alkaline reducing water generating electrolytic cell, the area of the cathode electrode in contact with the electrolytic solution is formed larger than the area of the anode electrode in contact with the electrolytic solution, the anode electrode is seated in the anode chamber with the top open, The outlet of the (n-1) th cathode chamber which is continuously disposed on the side of the anode chamber and is formed in the anode chamber to communicate with the inlet of the adjacent cathode chamber, And communicates with the inlet of the chamber. According to this invention, it is possible to change the liquidity without adding the chemical agent.

이렇게 생성된 알칼리성 환원수는 반도체 웨이퍼나 포토마스크등의 표면 미립자 세정에 유용하며 초순수 또는 순수만을 원료수로 사용했기 때문에 패턴의 데미지 및 표면의 산화방지를 해결할 수 있는 효과가 있고, 특히 배수된 물을 저비용으로 재사용할 수 있어 환경문제를 경감할 수 있는 효과가 발생된다.The generated alkaline reduced water is useful for cleaning surface particles such as semiconductor wafers and photomasks, and since only pure water or pure water is used as raw material water, it has the effect of solving pattern damage and preventing oxidation of the surface. It can be reused at low cost, which can reduce the environmental problems.

하지만, 특허문헌에 기재된 전해조는 다음과 같은 문제가 발생하였다.However, the following problems arise in the electrolytic cell described in the patent document.

(1) 같은 극성을 갖는 복수의 전극에 대하여 각각 독립적으로 전원공급이 이루어지기 때문에 이들 전극 표면에 대한 전위차가 일정하지 않아 전극표면을 안정화하는데 어려움이 있었다.(1) Since power is independently supplied to a plurality of electrodes having the same polarity, there is a difficulty in stabilizing the electrode surface because the potential difference between these electrodes is not constant.

(2) 기존의 전해조는 순수(RO)나 초순수(DI)를 원수(原水)로 사용하기 때문에 이들 원수의 전도도가 낮아서 전도성을 높이기 위해서는 이온교환수지를 이용해야 했다.(2) Since the existing electrolytic cell uses pure water (RO) or ultrapure water (DI) as raw water, the conductivity of these raw waters is low, and ion exchange resins have to be used to increase conductivity.

(3) 이러한 이온교환수지는 전해조를 통해 반복적으로 사용하다 보면 수지의 내열성이 저하되어 그 수명에 제약을 받게 되었다.(3) Repeated use of these ion exchange resins through electrolyzers lowers the heat resistance of the resin and constrains its lifetime.

(4) 일반적으로 전기분해는 음극과 양극의 전극표면에서 분해반응이 일어난다. 이 때문에, 기존의 전해조는 전극표면과 직접적으로 접촉되지 않는 부분에서는 전해효율이 저하되는 문제가 발생하였다.(4) In general, electrolysis takes place at the electrode surface of the cathode and anode. For this reason, the conventional electrolytic cell has the problem that electrolytic efficiency falls in the part which does not directly contact an electrode surface.

(5) 이웃하게 설치되어 같은 극성을 갖는 전극이 각각 별도로 전원을 공급받기 때문에 전극 표면을 확장시키는데 안정적이지 못하게 되는 요인으로 작용하였다.(5) Since the electrodes having the same polarity were separately supplied with power to each other, it acted as a factor of instability in extending the electrode surface.

한국등록특허 제10-0660609호(2006년 12월 15일)Korean Patent No. 10-0660609 (December 15, 2006)

본 발명은 이러한 점을 감안하여 안출한 것으로, 별도의 촉매제나 이온교환수지를 이용하지 않으면서도, 특히 동일 극성을 갖는 전극을 하나로 연결하여 이들 동일 극성의 전극에 전원공급이 동시에 이루어질 수 있게 함으로써, 넓은 전극 표면을 통해 충분한 전도성과 전극표면의 안정성을 확보하여 수돗물 뿐만 아니라 순수나 초순수도 전기분해할 수 있는 산성수 전해조 및 그 산성수의 이용방법을 제공하는데 그 목적이 있다.The present invention has been made in view of the above, by using a single electrode having the same polarity, in particular, without the use of a separate catalyst or ion exchange resin, so that the power supply to these electrodes of the same polarity can be made at the same time, The purpose of the present invention is to provide an acidic electrolyzer and a method of using the acidic water, which can electrolyze not only tap water but also pure water or ultrapure water by securing sufficient conductivity and stability of the electrode surface through a wide electrode surface.

또한, 본 발명은, 기존의 전해조가 촉매제를 사용하여 전기분해를 하면 양극측에서는 산성이면서 산화력을 음극측에서는 알칼리성이면서 환원력의 물성을 얻을 수 있는데 반하여, 촉매제를 사용하지 않고 캐소드측의 물성을 산성이면서 환원력을 갖는 물(산성 환원수)과 양극측에서는 산성이면서 산화력을 갖는 물(산성 산화수)을 얻을 수 있는 산성수 전해조 및 그 산성수의 이용방법을 제공하는데 다른 목적이 있다.In addition, in the present invention, when the electrolytic cell is electrolyzed using a catalyst, it is possible to obtain acidic and oxidizing power on the positive electrode side and alkaline and reducing power on the negative electrode side, whereas the physical property on the cathode side without using a catalyst is acidic and reducing power. It is another object of the present invention to provide an acidic electrolyzer and a method of using the acidic water to obtain water (acidic reduced water) and an acidic and oxidizing water (acidic oxidation water) on the anode side.

특히, 본 발명은 이온 교환막의 일면에 상술한 복수의 전극과 극성이 다른 메쉬 전극(Mesh Electrode)을 추가로 더 구성함으로써, 전극면적을 넓히면서도 전극간 거리를 최소화함으로써, 산화 환원 반응을 더욱 더 촉진할 수 있게 하여 고농도의 산성수를 얻을 수 있는 산성수 전해조 및 그 산성수의 이용방법을 제공하는데 또 다른 목적이 있다.In particular, the present invention further comprises a mesh electrode having a different polarity from the plurality of electrodes described above on one surface of the ion exchange membrane, thereby minimizing the distance between the electrodes while increasing the electrode area, thereby further reducing the redox reaction. Another object of the present invention is to provide an acidic electrolyzer and a method of using the acidic water, which can be promoted to obtain a high concentration of acidic water.

이러한 목적을 달성하기 위한 본 발명에 따른 산성수 전해조는, 적어도 하나의 이온 교환막(111)을 중심으로 분리된 적어도 2개의 충진실(110a,110b)이 구비되고, 각 충진실(110a,110b)에는 각각 입수구(112a,113a) 및 출수구(112b,113b)가 형성된 하우징(100); 상기 충진실(110a)에 설치되는 제1전극(200); 나머지 충진실(110b) 내에 이온 교환막(111)과 근접하게 설치되며 제1전극(200)과 다른 극성을 갖는 제2전극(300); 및 상기 각 충진실(110b)에, 제2전극(300)과 동일 극성을 가지면서 이 제2전극(300)과 미리 정해진 간격만큼 이격되게 설치되는 제3전극(300');을 포함하고, 상기 제2전극(300) 및 제3전극(300')은 서로 연결되어 동시에 전원이 인가되도록 구성된 것을 특징으로 한다.The acidic water electrolyzer according to the present invention for achieving the above object is provided with at least two filling chambers 110a and 110b separated around at least one ion exchange membrane 111, and each filling chamber 110a and 110b. The housing 100 is formed with inlets 112a and 113a and outlets 112b and 113b, respectively; A first electrode 200 installed in the filling chamber 110a; A second electrode 300 installed near the ion exchange membrane 111 in the remaining filling chamber 110b and having a different polarity from that of the first electrode 200; And third electrodes 300 ′ installed in the filling chambers 110 b to have the same polarity as the second electrodes 300 and spaced apart from the second electrodes 300 by a predetermined interval. The second electrode 300 and the third electrode 300 ′ may be connected to each other and configured to simultaneously apply power.

특히, 상기 이온 교환막(111)과 상기 제1전극(200)은 0.1~2.0㎜의 간극(W1)만큼 이격되게 설치하여 원수가 통과할 수 있도록 그 사이를 충진공간으로 이용하는 것을 특징으로 한다.In particular, the ion exchange membrane 111 and the first electrode 200 is installed so as to be spaced apart by a gap (W1) of 0.1 ~ 2.0mm characterized in that it is used as a filling space so that raw water can pass through.

또한, 상기 제2전극(300)과 상기 제3전극(300')은 0.1~100.0㎜의 간극(W2)만큼 이격되게 설치하여 원수가 통과할 수 있도록 그 사이를 충진공간으로 이용하는 것을 특징으로 한다.In addition, the second electrode 300 and the third electrode (300 ') is installed so as to be spaced apart by a gap (W2) of 0.1 ~ 100.0mm is characterized in that it is used as a filling space so that raw water can pass through. .

한편, 본 발명에 따른 산성수 전해조는, 제1전극(200)이 설치된 충진실(110a)의 입수구(112a)와 출수구(112b) 사이에, 이온탱크(400)를 더 구비할 수 있다.Meanwhile, the acidic water electrolytic cell according to the present invention may further include an ion tank 400 between the inlet 112a and the outlet 112b of the filling chamber 110a provided with the first electrode 200.

그리고, 상기 이온 교환막(111)은 불소계 캐치온 교환막인 것을 특징으로 한다.The ion exchange membrane 111 is characterized in that the fluorine-based catch-on membrane.

또한, 상기 제1 내지 제3전극(200,300,300')은 타공성 백금전극 또는 메쉬 백금 전극인 것을 특징으로 한다.In addition, the first to third electrodes 200, 300, and 300 ′ may be perforated platinum electrodes or mesh platinum electrodes.

또한, 상기 이온 교환막(111)에는 제1전극(200)과 마주보는 면의 일부 면적에 대하여 이 제1전극(200)과 동일 극성을 갖는 메쉬 전극(114)이 더 구비되어 있는 것을 특징으로 한다. 이 메쉬 전극(114)은 이온 교환막(111)의 한쪽 표면의 전체 크기에 대하여 30~80% 크기로 형성된 것을 특징으로 한다.In addition, the ion exchange membrane 111 is further provided with a mesh electrode 114 having the same polarity as the first electrode 200 with respect to a partial area of the surface facing the first electrode 200. . The mesh electrode 114 is formed to have a size of 30 to 80% of the total size of one surface of the ion exchange membrane (111).

한편, 본 발명에 따른 산성수 전해조는, 산성수의 용존수소농도(DH)가 200ppb~1,500ppb인 것을 특징으로 한다. On the other hand, the acidic water electrolytic cell according to the present invention is characterized in that the dissolved hydrogen concentration (DH) of the acidic water is 200ppb ~ 1500ppb.

특히, 이러한 본 발명에 따른 산성수 전해조는, 전도도가 50uS/cm 이하인 원수를 전해하여 음극측에서 산성(pH4~pH6.9)이면서 환원력(ORP -100㎷~-650㎷)을 갖은 산성의 환원수를 얻는 것을 특징으로 한다. 그리고, 이 산성의 환원수는 황산화제 원료수·음용수나 음료수의 원료수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용된다.In particular, the acidic water electrolytic cell according to the present invention, the electrolytic raw water having a conductivity of 50uS / cm or less, acidic reducing water having an acid (pH4 ~ pH6.9) and reducing power (ORP -100 ~ ~ 650 ~) at the cathode side Characterized in that obtains. The acidic reduced water is used as raw material water for sulfated water, raw water for drinking water or beverage, microbial growth and drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw water such as vegetables and fruits.

마지막으로, 본 발명에 따른 산성수 전해조는, 전도도가 50uS/cm이하인 원수을 전해하여 양극측에서 산성(pH3.5~pH6.0)이면서 산화력(ORP +700㎷~+1,200㎷)을 갖은 산성의 산화수를 얻는 것을 특징으로 한다. 그리고, 이 산성의 환원수는 살균수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용된다.Finally, the acidic water electrolytic cell according to the present invention is an acidic (pH 3.5 ~ pH 6.0) and acidic (ORP +700 kPa ~ + 1,200 kPa) acidic at the anode side by electrolyzing raw water having a conductivity of 50uS / cm or less It is characterized by obtaining oxidized water. The acidic reduced water is used as sterilizing water, microbial growth and drinking water for cell proliferation, growth promotion, browning prevention water such as vegetables or fruits, or cosmetic raw water.

본 발명의 산성수 전해조 및 그 산성수의 이용방법에 따르면 다음과 같은 효과가 있다.According to the acidic water electrolytic cell of the present invention and the use method of the acidic water has the following effects.

(1) 동일 극성을 갖는 적어도 2개의 전극을 하나로 연결하고 이들 전극에 동시에 전원공급이 이루어지게 함으로써, 이들 전극에 의한 전극표면의 넓이를 안정적으로 확보할 수 있게 되어 산화환원 반응 효과를 향상시킬 수 있게 된다.(1) By connecting at least two electrodes having the same polarity into one and supplying power to these electrodes at the same time, it is possible to stably secure the area of the electrode surface by these electrodes, thereby improving the redox reaction effect. Will be.

(2) 이온교환수지를 사용하지 않고 이온 교환막을 이용하기 때문에, 기존의 이온교환수지와 달리 내구성의 저하와 같은 문제점이 발생하지 않아 전해조의 수명을 연장시켜 사용할 수 있게 된다.(2) Since the ion exchange membrane is used without using the ion exchange resin, unlike the conventional ion exchange resin, problems such as deterioration of durability do not occur, and thus the life of the electrolytic cell can be extended.

(3) 전기분해에 사용되는 원수로서 이물질이 많아 전도도가 높은 수돗물 뿐만 아니라 순수(RO)나 초순수(DI)를 원수로서 사용하더라도 이를 전기분해하여 산성수를 얻을 수 있다.(3) As raw water used for electrolysis, there is a large amount of foreign matter, so that even if pure water (RO) or ultrapure water (DI) is used as raw water, it is possible to obtain acidic water by electrolysis.

(4) 충진실에 인가되는 극성에 따라서 산성 환원수 또는 산성 산화수를 선택적으로 전기분해하여 얻을 수 있다.(4) Depending on the polarity applied to the filling chamber, it can be obtained by selective electrolysis of acidic reduced or acidic oxidized water.

(5) 이렇게 얻은 산성 산화수나 산성 환원수는 그 특성에 따라 다양한 원수로서 사용될 수 있다.(5) The acidic oxidized water or acidic reduced water thus obtained can be used as various raw waters depending on its characteristics.

(6) 특히, 본 발명은 미리 정해진 간격만큼 이격되게 설치된 캐소드 전극 사이로 원수가 유동되게 구성함으로써, 이 캐소드의 표면에서 반응이 일어나게 하여 고농도의 수소수(산성수)를 생성할 수 있다.(6) In particular, in the present invention, the raw water flows between the cathode electrodes provided spaced at predetermined intervals, so that the reaction occurs on the surface of the cathode to generate a high concentration of hydrogen water (acidic water).

(7) 메쉬 전극(Mesh Electrode)을 통해 반응 면적(전극의 면적)을 넓혀주면서도 반응 전극간 거리를 좁힐 수 있게 되어 산화 환원 반응을 촉진하여 수소수의 농도를 높일 수 있게 된다.(7) It is possible to narrow the distance between the reaction electrodes while widening the reaction area (the area of the electrode) through the mesh electrode (Mesh Electrode) to promote the redox reaction to increase the concentration of hydrogen water.

(8) 특히, 이러한 메쉬 전극은 산성수의 흐름을 방해하지 않도록 이온 교환막의 일부, 바람직하게는 30~80% 넓이로 형성함으로써, 산성수가 원활하게 유동할 수 있도록 공간을 확보하면서도 산화환원 반응을 촉진하여 산성수의 수소 농도를 높일 수 있게 된다.(8) In particular, such a mesh electrode is formed in a portion of the ion exchange membrane, preferably 30 to 80%, so as not to disturb the flow of acidic water, thereby providing a space for smooth flow of the acidic water while maintaining a redox reaction. It can be promoted to increase the hydrogen concentration of the acidic water.

도 1은 본 발명의 실시예1에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.
도 2는 본 발명에 따른 산성수 전해조의 음극측으로부터 얻은 수소수를 이용하여 쥐의 항산화력을 측정하는 상태를 보여주는 사진.
도 3은 본 발명의 실시예2에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.
도 4는 본 발명의 실시예3에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.
도 5는 본 발명의 실시예4에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.
도 6은 본 발명의 실시예5에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view schematically showing the construction of an acidic water electrolytic cell according to a first embodiment of the present invention; FIG.
2 is a photograph showing a state in which antioxidative capacity of a rat is measured by using hydrogen water obtained from the cathode side of an acid water electrolytic bath according to the present invention.
3 is a cross-sectional view schematically showing the construction of an acidic water electrolytic cell according to a second embodiment of the present invention.
4 is a cross-sectional view schematically showing a configuration of an acidic water electrolytic cell according to a third embodiment of the present invention.
5 is a cross-sectional view schematically showing the construction of an acidic water electrolytic cell according to a fourth embodiment of the present invention.
Figure 6 is a schematic cross-sectional view to show the configuration of the acidic water electrolytic cell according to a fifth embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 보다 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.

따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
Therefore, the embodiments described in the present specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention. Therefore, various equivalents It should be understood that water and variations may be present.

본 발명의 실시예1에 따른 산성수 전해조는, 도 1과 같이, 전기분해가 이루어지는 하우징(100), 하우징(100)에 설치되어 전기분해에 필요한 전원을 공급시켜 주기 위해 서로 다른 극성을 갖는 제1 전극(200)과 제2전극(300), 그리고 이들 전극중 어느 하나와 같은 전극을 가지면서 해당 이온수를 증가시켜 전위차를 높여서 산성 산화수 또는 산성 환원수를 얻을 수 있도록 한 것이다.The acidic water electrolytic cell according to the first embodiment of the present invention, as shown in Figure 1, is installed in the housing 100, the housing 100, the electrolysis is made of a material having a different polarity to supply power for electrolysis Having the same electrode as the first electrode 200 and the second electrode 300, and any one of these electrodes to increase the potential difference to obtain the acidic oxidation or acidic reduced water.

특히, 본 발명에 따른 산성수 전해조는, 전기분해된 이온들이 미리 정해진 공간 내에 충진될 수 있도록 하우징(100) 내부에 이온 교환막(111)을 이용하여 충진실(110a,110b)을 구성한 것이다.In particular, the acidic water electrolytic cell according to the present invention configures the filling chambers 110a and 110b by using the ion exchange membrane 111 inside the housing 100 so that the electrolyzed ions can be filled in a predetermined space.

또한, 본 발명에 따른 산성수 전해조는, 제2전극(300) 및 이와 같은 극성을 갖는 다른 하나의 전극(제3전극)을 하나로 연결하여 동일한 세기의 전원을 공급할 수 있게 함으로써, 이들 제2전극(300)과 제3전극에 전원공급이 동시에 이루어지게 되어 이들 전극에 동일한 전위차의 전원공급이 가능하게 하여 표면전극을 안정적으로 확장시킬 수 있도록 한 것이다.
In addition, the acidic water electrolytic cell according to the present invention, by connecting the second electrode 300 and the other electrode (third electrode) having the same polarity as one to supply power of the same intensity, these second electrodes The power is supplied to the 300 and the third electrode at the same time to enable the power supply of the same potential difference to these electrodes to stably extend the surface electrode.

이하,이러한 구성에 대하여 보다 구체적으로 설명하면 다음과 같다.Hereinafter, this configuration will be described in more detail as follows.

하우징(100)은 내부에 일정량의 원수(原水)를 공급받아 전기분해를 일으키기 위한 전해조 본체이다.The housing 100 is an electrolyzer body for causing electrolysis by receiving a predetermined amount of raw water therein.

이러한 하우징(100)은 내부가 빈 중공의 형태로 형성되며, 전기분해된 이온을 분리할 수 있도록 이온 교환막(111)이 구비된다. 이온 교환막(111)은 하우징(100)의 내부를 적어도 2개의 충진실(110a,110b)로 구획한다. 본 발명의 바람직한 실시예에서는 2개로 분리된 것으로 설명하고 있으나 이보다 더 많게 분리하여 구성할 수도 있다. 본 발명의 바람직한 실시예에서, 이러한 이온 교환막으로는 불소계 캐치온 교환막(듀퐁사 나피온 117)을 이용할 수 있다.The housing 100 is formed in a hollow hollow shape, and is provided with an ion exchange membrane 111 to separate the electrolyzed ions. The ion exchange membrane 111 partitions the inside of the housing 100 into at least two filling chambers 110a and 110b. Although the preferred embodiment of the present invention has been described as being divided into two parts, it is also possible to divide it into more parts. In a preferred embodiment of the present invention, such an ion exchange membrane may use a fluorine-based catch-on exchange membrane (Dupont Nafion 117).

한편, 상기 각 충진실(110a,110b)에는 전기분해를 위해 원수을 공급받기 위한 입수구(112a,113a)와 전기분해된 산성수를 외부로 배출하기 위한 출수구(112b,113b)가 형성된다.Meanwhile, in each of the filling chambers 110a and 110b, inlets 112a and 113a for receiving raw water for electrolysis and outlets 112b and 113b for discharging the electrolyzed acidic water to the outside are formed.

여기서, 상기 충진실(110a,110b)은 상술한 바와 같이 하나의 이온 교환막(111)을 이용하는 경우 2개가 구성된 것으로 설명하고 있다. 그러나, 이온 교환막(111)이 "N"개가 사용되는 경우, 충진실은 (N+1)개가 형성되며, 각 충진실마다 출수구와 입수구가 구성된다.
Here, the filling chambers 110a and 110b are described as being configured in the case of using one ion exchange membrane 111 as described above. However, when " N " pieces are used for the ion exchange membrane 111, (N + 1) filling chambers are formed, and each filling chamber has an outlet and an inlet.

제1전극(200)은 어느 하나의 충진실(110a)에 설치된다. 이때, 제1전극(200)은 이온 교환막(111)과의 사이에 미리 정해진 크기의 충진공간을 확보하게 된다.The first electrode 200 is installed in one of the filling chambers 110a. In this case, the first electrode 200 secures a filling space having a predetermined size between the ion exchange membrane 111.

이를 위하여, 상기 제1전극(200)은 이온 교환막(111)과의 간극(W1)을 0.1~2.0㎜이 되도록 충진실(110a)에 설치한다. 이는 간극(W1)이 이보다 넓어 버리면 후술하게 될 제2전극(300)과의 전기분해능이 저하되고, 이보다 넓으면 산성수나 원수의 흐름을 방해할 수 있기 때문이다.To this end, the first electrode 200 is installed in the filling chamber 110a such that the gap W1 with the ion exchange membrane 111 is 0.1 to 2.0 mm. This is because if the gap W1 becomes wider than this, the electrolysis with the second electrode 300, which will be described later, is reduced, and if the gap W1 is wider than this, the flow of acidic water or raw water may be disturbed.

본 발명의 바람직한 실시예에서, 상기 제1전극(200)은 충진실이 2개 이상 구성된 하우징(100)에 장착하는 경우에는 가장 바깥쪽에 구비된 충진실에 장착하게 된다.
In the preferred embodiment of the present invention, when the first electrode 200 is mounted on the housing 100 having two or more charging chambers, the first electrode 200 is mounted on the outermost charging chamber.

제2전극(300)은 제1전극(200)과 다른 극성을 가지면서 이온 교환막(111)과 인접하도록 다른 충진실(110b)에 설치된다. The second electrode 300 has a different polarity from that of the first electrode 200 and is installed in the other filling chamber 110b to be adjacent to the ion exchange membrane 111.

이때, 제2전극(300)이 설치되는 충진실(110b)이 복수개가 구비된 경우에는 각각의 충진실마다 제2전극(300)을 하나씩 설치한다.
At this time, when a plurality of charging chambers 110b in which the second electrodes 300 are provided are provided, the second electrodes 300 are installed one by one for each charging chamber.

제3전극(300')은 제2전극(300)과 동일한 극성을 가지면서 이 제2전극(300)이 설치된 충진실(110b) 내에 설치된다.The third electrode 300 'has the same polarity as the second electrode 300 and is installed in the charging chamber 110b in which the second electrode 300 is installed.

이때, 상기 제3전극(300')은 제2전극(300)과의 사이의 미리 정해진 간극(W2)만큼 이격되게 설치된다. 이 경우 간극(W2)은 0.1~100.0㎜로 형성하여 그 사이를 이온의 충진공간으로 활용하게 된다.
At this time, the third electrode 300 'is spaced apart from the second electrode 300 by a predetermined gap W2. In this case, the gap W2 is formed to be 0.1 to 100.0 mm, and utilized as a space for filling ions therebetween.

한편, 본 발명의 바람직한 실시예에서, 상술한 제1 내지 제3전극(200,300,300')은 타공성 백금전극이나 메쉬 백금 전극을 이용할 수 있다.Meanwhile, in a preferred embodiment of the present invention, the above-described first to third electrodes 200, 300, and 300 'may use a porous platinum electrode or a mesh platinum electrode.

또한, 본 발명의 바람직한 실시예에서, 상기 제2전극(300)과 제3전극(300')은 서로 연결, 예를 들어서 병렬 형태로 연결하여 이들 전극에 대하여 동시에 전원공급이 이루어질 수 있게 하는 것이 바람직하다. 이는 동일한 극성이 인가되는 제2전극(300)과 제3전극(300')에 동시에 전원이 인가되게 함으로써, 이들 제2전극(300)과 제3전극(300')에 대하여 동일한 세기의 전위차를 제공하여 전극표면에 대하여 안정적이면서도 균일하게 확장시켜 사용할 수 있도록 하기 위한 것이다.
In addition, in a preferred embodiment of the present invention, the second electrode 300 and the third electrode 300 ′ are connected to each other, for example, in a parallel form so that power can be simultaneously supplied to these electrodes. desirable. This allows power to be simultaneously applied to the second electrode 300 and the third electrode 300 'to which the same polarity is applied, thereby providing a potential difference of the same intensity with respect to the second electrode 300 and the third electrode 300'. It is to provide a stable and evenly extended to the electrode surface to use.

[동작][action]

상술한 본 발명의 실시예1과 같은 구성을 갖는 본 발명에 따른 산성수 전해조의 동작에 대하여 설명하면 다음과 같다.The operation of the acidic water electrolytic cell according to the present invention having the same structure as that of the first embodiment of the present invention will now be described.

우선, 하우징(100)에는 입수구(112a,113a)를 통해 원수를 공급한다. 이때, 원수는 2개의 입수구(112a,113a) 중에서 어느 하나만을 통해 공급할 수도 있다.First, raw water is supplied to the housing 100 through the inlet ports 112a and 113a. At this time, the raw water may be supplied through only one of the two inlet ports 112a and 113a.

이어, 제1전극(200)에는 양극(+)을 인가하고, 제2전극(300)과 제3전극(300')에는 음극(-)을 인가하게 된다. 이에, 원수의 전기분해가 일어나면서 이온 교환막(111)에 의해 양극이 인가된 충진실(110a)에는 OH-이 충진되고, 다른 충진실(110b)에는 H+이 충진된다. 이때, 상기 제2전극(300)과 제3전극(300')이 하나로 연결된 경우에는 이들 전극에 동시에 전원이 인가된다.A positive electrode is applied to the first electrode 200 and a negative electrode is applied to the second electrode 300 and the third electrode 300 '. Thus, as the electrolysis of raw water occurs, OH is filled in the filling chamber 110a to which the anode is applied by the ion exchange membrane 111, and H + is filled in the other filling chamber 110b. In this case, when the second electrode 300 and the third electrode 300 ′ are connected together, power is simultaneously applied to these electrodes.

이처럼 각 충진실(110a,110b)에 OH-과 H+이 충진되게 되면 이들 이온의 전위차로 인하여 전류가 흐르게 된다. 특히, 제3전극(300')이 설치된 충진실(110b)의 경우 음극(-)성 이온의 증가로 인하여 H+은 H나 H2로 변환될 것으로 생각된다.When OH - and H + are filled in each of the filling chambers 110a and 110b, a current flows due to a potential difference between these ions. In particular, in the case of the filling chamber 110b in which the third electrode 300 'is installed, it is considered that H + is converted to H or H 2 due to the increase of the negative (-) ion.

이처럼 이온들의 충진으로 인하여 얻어지는 높은 전위차는 일반적으로 사용되는 수돗물뿐만 아니라 전도도가 낮은 순수(RO)나 초순수(DI)를 전기분해하는데에도 유용하게 사용할 수 있다.
This high potential difference due to the filling of ions can be useful for electrolysis of pure water (RO) or ultrapure water (DI) with low conductivity as well as tap water.

<< 음극간의Between the cathodes 간극 변화에 대한 물성변화> Changes in physical properties for gap changes>

이와 같이 동작하는 본 발명에 따른 산성수 전해조를 이용하여 음극측, 즉 상술한 충진실(110b)에서 얻은 산성수에 대하여, 간극(W2)의 변화에 따른 물성 변화를 얻기 위하여 다음과 같이 시험을 수행하였다.In order to obtain a change in the physical properties of the acidic water electrolytic bath according to the present invention operating as described above with respect to the negative electrode side, that is, the acidic water obtained in the above-mentioned filling chamber 110b according to the change in the gap W2, Respectively.

원수 : 물(전도도 10uS/cm이하, pH7.0, ORP +230㎷, 온도 25.5℃)Water (conductivity: 10uS / cm or less, pH 7.0, ORP + 230㎷, temperature: 25.5 ℃)

전원 : DC24VPower: DC24V

유속(유량) : 0.3l/minFlow rate (flow rate): 0.3 l / min

측정기 : 토아사의 계측기Measuring instrument: Toasan's measuring instrument

pH : TOA- 21PpH: TOA- 21P

ORP : TOA- 21PORP: TOA- 21P

DH : TOA DH-35ADH: TOA DH-35A

다음은 그 측정 결과를 나타내는 그래프이다.The following is a graph showing the measurement results.


간극 / 물성

Gap / property

pH1 )

pH 1 )

ORP2 )

ORP 2 )

DH3 )

DH 3 )

2㎜

2 mm

4.82

4.82

-653㎷

-653㎷

1.43ppm

1.43 ppm

5㎜

5 mm

5.05

5.05

-620 ㎷

-620 ㎷

1.21ppm

1.21 ppm

10㎜

10 mm

5.37

5.37

-586 ㎷

-586 ㎷

0.97ppm

0.97 ppm

20㎜

20 mm

5.83

5.83

-534 ㎷

-534 ㎷

0.81ppm

0.81 ppm

30㎜

30 mm

6.20

6.20

-508 ㎷

-508 ㎷

0.77ppm

0.77 ppm

40㎜

40 mm

6.42

6.42

-472 ㎷

-472 ㎷

0.68ppm

0.68 ppm

50㎜

50 mm

6.75

6.75

-426 ㎷

-426 ㎷

0.52ppm

0.52 ppm

60㎜

60 mm

6..81

6..81

-398 ㎷

-398 ㎷

0.43ppm

0.43 ppm

70㎜

70 mm

6.98

6.98

-327 ㎷

-327 ㎷

0.32ppm

0.32 ppm

1) pH : 수소이온 농도 지수(Potential of Hydrogen)
2) ORP : 산화환원 전위차(Oxidation Redution Potential)
3) DH : 용존수소농도(Dissolved Hydrogen)

1) pH: Potential of Hydrogen
2) ORP: Oxidation Redution Potential
3) DH: Dissolved Hydrogen

위의 [표 1]에서와 같이, 본 발명에 의해 얻어진 전해수는, 전반적으로 산성을 띄고 있으며, 특히 간극(W2)이 좁아질수록 점차 강산성을 띄고, 산화환원 전위차(ORP) 또한 간극(W2)이 커져감에 따라 높아짐을 알 수 있다. 결과적으로, 이렇게 얻어진 전해수는 산성 환원수임을 알 수 있게 된다.
As shown in Table 1 above, the electrolytic water obtained by the present invention is acidic in general, and the electrolytic water gradually becomes strongly acidic as the gap W2 becomes narrower, and the redox potential difference (ORP) As shown in FIG. As a result, it can be seen that the electrolytic water thus obtained is an acidic reduced water.

<< 양극측의Anode side 산화력  Oxidative power 측정예Measurement example >>

본 발명에 따른 산화수 전해조의 양극이 구비된 충진실에서의 전류변화에 따른 산화력의 물성 변화를 측정한 결과는 다음과 같다.The results of measurement of the change in the physical properties of the oxidative force according to the current change in the charging chamber provided with the anode of the oxidized water electrolytic bath according to the present invention are as follows.

원수 : 물(전도도 10uS/cm이하, pH7.0, ORP +230mV, 25.5℃)Raw water: Water (conductivity 10uS / cm or less, pH7.0, ORP + 230mV, 25.5 ℃)

전원 : DC24VPower: DC24V

유속(유량) : 0.3l/minFlow rate (flow rate): 0.3 l / min

측정기 : 토아사의 계측기Measuring instrument: Toasan's measuring instrument

pH : TOA -21PpH: TOA-21P

ORP : TOA- 21PORP: TOA- 21P

다음은 그 측정 결과를 나타내는 그래프이다.The following is a graph showing the measurement results.


전류(A)

Current (A)

전압(V)

Voltage (V)

ORP1 )(mV)

ORP 1 ) (mV)

pH2 )

pH 2 )

0,5

0.5

6.0

6.0

+995

+995

4.80

4.80

1.0

1.0

8.5

8.5

+1041

+1041

4.46

4.46

1.5

1.5

10.5

10.5

+1952

+1952

4.41

4.41

2.0

2.0

12.0

12.0

+1060

+1060

4.39

4.39

2.5

2.5

12.9

12.9

+1067

+1067

4.34

4.34

3.0

3.0

14.1

14.1

+1073

+1073

4.28

4.28

1) ORP : 산화환원 전위차(Oxidation Redution Potential)
2) pH : 수소이온 농도 지수(Potential of Hydrogen)

1) ORP: Oxidation Redution Potential
2) pH: Potential of Hydrogen

위의 표에서 보는 바와 같이, 전류의 세기가 커질수록 산화환원 전위차(ORP)가 커져 산화력이 커질 뿐만 아니라 pH농도 또한 낮아져서 산성에 가까워짐을 알 수 있다.
As shown in the above table, as the current intensity increases, the oxidation-reduction potential (ORP) becomes larger and the oxidizing power becomes larger. In addition, the pH concentration becomes lower and becomes closer to the acidity.

<산성수의 유해성 시험><Hazard test of acid water>

(1) 캐소드측의 수소수가 눈의 망막에 미치는 영향.(1) Influence of hydrogen on the cathode side on the retina of the eye.

안압(intraocular pressure, IOP)의 일시적 상승에 의한 망막(retinal) 허혈 재관류(ischemia-reperfusion, IR) 손상은 활성산소를 발생시켜 신경세포손상을 일으키는 것으로 알려져 있다.Retinal ischemia-reperfusion (IR) damage caused by a temporary increase in intraocular pressure (IOP) is known to cause free radicals and damage nerve cells.

실험쥐의 IOP를 60분간 올려 허혈을 유도하였다. 허혈 재관류 기간 동안 본 발명에 따른 산성의 수소수로 이루어진 수소 기체가 포화된 식염수 점안제(eye drops)를 지속적으로 투여하였다.IOP of experimental mice was induced for 60 minutes to induce ischemia. During the ischemia reperfusion period, saline eye drops saturated with hydrogen gas composed of acidic hydrogen water according to the present invention were continuously administered.

그 결과 유리체(vitreous body)의 수소농도를 즉시 증기시켰고 IR-유도 OH를 감소시켰다. 점안제는 망막 세포사 및 산화적 스트레스 지표-양성(positive) 세포수를 감소시켰고 뮬러(Muller) 교질세포(glia), 성상세포(astrocytes) 및 소교세포(microglia) 의 활성화에 따른 망막 두께 감소를 억제했다.As a result, the hydrogen concentration in the vitreous body was immediately vaporized and the IR-induced OH was reduced. Eye drops reduced retinal cell death and oxidative stress indicator-positive cell numbers and inhibited retinal thickness loss due to activation of Muller glia, astrocytes, and microglia .

점안제는 망막두께를 70%이상 회복시켰다.
Eye drops restored retinal thickness by more than 70%.

(2) 측시형(immediate-type) 앨러지(allergic) 반응(2) Immediate-type allergic reaction

본 발명의 산성수 전해조의 음극측에서 얻은 수소수(수소 1.0ppm)를 섭취한 생쥐로부터 측시형(immediate-type) 앨러지(allergic) 반응을 관찰했다.Allergic reactions were observed from mice fed with hydrogen peroxide (1.0 ppm hydrogen) obtained from the cathode side of the acidic water electrolytic bath of the present invention.

쥐의 RBL-2H3 마스트(mast) 세포에서 수소는 FcεRI-연관(associated) Lyn 인산화(phosphorylation)와 이의 하류 신호전달[downstream signal transduction, NADPH 산화효소(oxidase) 활성을 억제하고 과산화수소 생성을 감소시킴]을 저해시켰다
In rat RBL-2H3 mast cells, hydrogen inhibited FcεRI-associated Lyn phosphorylation and downstream signal transduction (NADPH oxidase activity and decreased hydrogen peroxide production) Inhibited

(3) 음극측에서 얻은 수소수의 항산화력을 측정시험(3) Measurement of the antioxidant power of the hydrogen water obtained from the cathode side

4주령의 웅성 ICR 생쥐를 1주간 적응시킨 후, 15일간 사료와 수소수를 자유로이 섭취하게 하였으며 대조군은 수돗물을 섭취시켰다. 수소수의 농도 저하를 방지하기 위해 하루 3회 수소수를 교체하였다. 시료투여 종료 후 생쥐를 이서(ether)로 마취시킨 후 심장에서 혈액을 채취하였다. 채취된 혈액은 항응고제가 들은 시험관에서 혈장을 분리하였다.Four-week-old male ICR mice were acclimated for one week, followed by free feeding of feed and hydrogen water for 15 days, and the control group consumed tap water. Hydrogen water was replaced three times a day to prevent the concentration of hydrogen water. After the end of the sample administration, mice were anesthetized with ether and blood was collected from the heart. The collected blood was separated from the plasma of the anticoagulants.

혈장 총항산화력은 랜독스(Randox)사(U. K.)의 총항산화상태(total antioxdant status) 측정용 키트(kit)를 이용하여 측정하였다. 체력 증진 효과를 조사하기 위하여 6분간의 강제 수영 동안 부동(immobility)시간이 측정되었다. 도 2와 같이 원형 원통(높이: 25cm, 지름: 10cm)에 23~25℃의 물을 10cm 깊이로 채웠다. 종료 전 4분간의 부동 시간이 측정되었다. 머리를 물 위에 내밀고 움직임이 없이 떠 있는 자세를 부동으로 하였다.Plasma total antioxidant activity was measured using a kit for measuring total antioxdant status of Randox Inc. (U. K.). Immobility time was measured during 6 minutes of forced swimming to investigate the effects of stamina enhancement. A circular cylinder (height: 25 cm, diameter: 10 cm) was filled with water of 23-25 ° C. to a depth of 10 cm as shown in FIG. 2. A dead time of 4 minutes before termination was measured. The head was placed on the water and the floating posture was immovable.

그리고, 강제 수영 시험 후 생쥐를 이서(ether)로 마취시킨 후 심장에서 혈액을 채취하였다. 채취된 혈액을 4℃에서 3000rpm으로 10분간 원심분리하여 혈청을 얻었다. After the forced swimming test, mice were anesthetized with ether and blood was collected from the heart. The collected blood was centrifuged at 4 ° C at 3000 rpm for 10 minutes to obtain serum.

오토애널라이[Autoanalyzer, 히다치(Hitachi) 747. 히다치 일본]을 이용하여 혈청의 혈액 요소태 질소(blood urea nitrogen), 크레아틴 카이네이즈(creatin kinase), 유산 탈수소효소(lactic dehydrogrnase), 포도당 및 총 단백질(total protein)이 측정되었다. 측정치는 스튜던트 t-검정(Student's t-test)로 분석되었으며 M±SEM으로 표시되었다.Using autoanalyzer (Hitachi 747, Hitachi, Japan), blood urea nitrogen, creatin kinase, lactic dehydrogenase, glucose and total protein total protein) were measured. Measurements were analyzed by Student's t-test and expressed as M ± SEM.

산소는 유기호흡을 하는 생물에게 필수적인 원소지만 에너지 대사과정 중 불완전하게 환원될 때 발생하는 활성산소는 세포 내의 거대분자를 변성, 파괴하여 세포의 항상성을 깨뜨려 세포를 사멸시킨다. 활성 산소는 담배, 매연 등의 요인에 의해 생성되어 단백질, DNA, 효소, T-세포 등의 생체 구성요소를 손상시켜 각종 질환을 일으키며, 특히 생체막의 구성성분인 불포화지방산을 공격, 과산화지질을 생성하여 노화 및 성인병을 일으킨다고 알려져 있다.Oxygen is an essential element for organisms in organic respiration, but active oxygen generated when incomplete reduction during energy metabolism destroys and destroys homeostasis of cells by denaturing and destroying macromolecules in cells. Active oxygen is generated by factors such as tobacco and soot, which damages biological components such as proteins, DNA, enzymes, and T-cells, and causes various diseases, and in particular, attacks fatty fatty acids, which are components of biological membranes, to generate lipid peroxide. It is known to cause aging and adult disease.

5주령의 ICR 생쥐에게 수소수를 15일간 섭취시킨 뒤 혈장을 분리하여 총 항산화력(total antioxidant status)를 측정하여 [표 3]에 나타내었다.5-week-old ICR mice were fed with drinking water for 15 days and plasma was separated to measure the total antioxidant status (Table 3).


구분

division

비교 트롤록스 (relative Trolox) 농도[nmol/ml 혈장(plasma)]

Compare Trolox (relative Trolox) concentration [nmol / ml plasma]

대조군(비교예)

Control (Comparative)

1.24±0.06

1.24 ± 0.06

수소수(실시예)

Hydrophilic (Example)

1.46±0.13*

1.46 + 0.13 *
[표 3] 수소수의 투여가 생쥐 혈장의 총 산화력에 미치는 영향1의 측정결과
1평균치±SEM, n=10.
2수용성(water-soluble) 비타민E 유사체(analogue).
*P<0.05, 대조군과 비교
[Table 3] Effect of Hydrophobic Administration on Total Oxidation Capacity of Mouse Plasma 1
1 mean ± SEM, n = 10.
2 water-soluble vitamin E analogue.
* P <0.05 compared with control group

그 결과, 수소수 섭취군의 총항산화력이 수돗물을 섭취시킨 대조군에 비하여 유의하게 18%증가했다(P<0.05). 혈장의 총항산화력은 체내의 항산력을 대표하는 값으로 생각될 수 있으며 혈장 총항산화력의 증가는 수소수의 섭취에 의해 체내 항산화력이 증가하였음을 의미한다. 이러한 결과는 수소수가 생체 항산화력을 증가시켜서 여러 요인에 의하여 발생하는 여러 가지 질병 및 노화로부터 생체를 보호할 수 있음을 보여주고 있다.
As a result, the total antioxidant power of the hydrogen water intake group was significantly increased by 18% compared to the control group ingesting tap water (P <0.05). The total antioxidant power of plasma can be considered as a representative value of the antioxidant power in the body, and the increase in the total plasma antioxidant power means that the antioxidant power in the body is increased by the intake of hydrogen water. These results show that hydrogen water can increase the antioxidant power of the living body to protect the living body from various diseases and aging caused by various factors.

강제 수영시험은 항피로 및 지구력조사에 사용된다. 5주령의 웅성 ICR 생쥐에게 수소수를 15일간 섭취시킨 뒤 강제 수영 시험을 하여 부동 시간을 측정하고 혈액 생화학검사를 실시하였다(도 2참조). 수소수의 섭취에 의해 생쥐의 강제 수영 시험에서 부동시간이 대조군에 비하여 유의성 있게 13%감소하였다([표 4]참조). 이는 수소수의 섭취가 항피로 및 지구력 증가 작용을 하여 부동 기간을 감소시켰음을 나타내는 것이다.Forced swimming tests are used for anti fatigue and endurance tests. Hydrogen water was ingested for 15 days in male ICR mice of 5 weeks of age and then subjected to a forced swimming test to measure immobility time and blood biochemistry (see FIG. 2). The immersion time in the forced swimming test of the mice was significantly reduced by 13% compared to the control group (see Table 4). This indicates that the intake of hydrogen water acted to increase antifatigue and endurance, thereby reducing immobility period.


비교예

Comparative Example

실시예(수소수군)

Example (hydrogen Nitrogen group)

섭취 전

Before ingestion

190±13

190 ± 13

193±11

193 ± 11

섭취 후

After ingestion

224±8

224 ± 8

195±7*

195 ± 7 *
표4 수소수의 섭취가 생쥐의 강제 수영 시험에서 부동시간(초)에 미치는 영향1
1평균치±SEM, n=10.
*P<0.05, 대조군과 비교.
Table 4 Effect of hydrogen water intake on immobility time (seconds) in forced swimming test in mice 1
1 mean ± SEM, n = 10.
* P <0.05 compared with control group.

피로와 관련된 혈액 생화학 지표인 혈액 요소태 질소(blood urea nitrogen) 15%감소, 크레아틴 카이네이즈(creatin kinase) 22%감소, 유산 탈수소효소(lactic dehydrogrnase) 9%감소, 포도당 9%증가 및 총 단백질(total protein)이 19%증가하여 모든 측정치가 수소수의 섭취에 의해 개선되었다([표 5] 참조).The blood biochemical indicators associated with fatigue include a 15% decrease in blood urea nitrogen, a 22% decrease in creatin kinase, a 9% decrease in lactic dehydrogrnase, a 9% increase in glucose and a decrease in total protein protein) increased by 19%, and all measurements were improved by the ingestion of drinking water (see Table 5).

따라서 수소수의 섭취가 체력증강 및 항피로 효과를 지니고 있음이 입증되었다.Therefore, it has been proved that the consumption of drinking water has the effect of strengthening and anti - fatigue.


대조군

Control group

수소수군

Hydrogen nuclide

혈액 요소태 질소(blood urea nitrogen, mg/dl)

Blood urea nitrogen (mg / dl)

22.0±0.9

22.0 ± 0.9

18.8±0.6*

18.8 ± 0.6 *

크레아틴 카이네이즈(creatin kinase,mg/dl))

Creatin kinase (mg / dl))

0.36±0.03

0.36 + 0.03

0.28±0.02*

0.28 0.02 *

유산 탈수소효소(lactic dehydrogrnase, U/I)

The lactic dehydrogenase (U / I)

988±167

988 ± 167

896±171

896 ± 171

포도당(mg/dl)

Glucose (mg / dl)

219±13

219 ± 13

238±14

238 ± 14

총 단백질(total protein, g/dl)

Total protein (g / dl)

4.3±0.1

4.3 ± 0.1

5.1±0.1*

5.1 ± 0.1 *
[표 5]수소수의 섭취가 생쥐의 혈액 생화학 지표에 미치는 영향1
1평균치±SEM, n=10.
*P<0.05, 대조군과비교
[Table 5] Influence of drinking water intake on blood biochemical indicators of mice 1
1 mean ± SEM, n = 10.
* P <0.05 compared with control group

이상과 같이 본 발명은 충진공간을 통해 해리된 이온을 충진시켜 전위차를 높여 산성 환원수를 얻을 수 있을 뿐만 아니라 그 극성을 바꾸어줌으로써 산성 산화수를 얻을 수 있게 되는 것이다.
As described above, the present invention not only obtains acidic reduced water by increasing the potential difference by filling dissociated ions through the filling space, but also obtains acidic oxidation water by changing its polarity.

본 발명의 실시예2에 따른 산성수 전해조는, 실시예1의 구성과 비교하여, 실시예1의 하우징(100)에 이온탱크(400)를 더 구성한 것이다. 여기서, 실시예1과 동일한 구성에 대해서는 동일부호를 부여하고, 그 상세한 설명을 생략한다.
The acidic water electrolytic bath according to the second embodiment of the present invention is different from the first embodiment in that the housing 100 of the first embodiment further includes the ion tank 400. Here, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

이온탱크(400)는, 도 3과 같이, 상기 하우징(100)의 입수구(112a)와 출구수(112b) 사이에 설치되며, 제1전극(200)에 의해 충진실(110a) 내에 충진된 이온을 저장해 주는 탱크이다.
3, the ion tank 400 is provided between the inlet 112a and the outlet 112b of the housing 100 and is connected to the first electrode 200 through the ion- Is a tank that stores the water.

이에, 본 발명의 실시예2에 따른 산성수 전해조는, 이 이온탱크(400)에 저장되는 이온량만큼 비례하게 더 큰 전위차를 발생시킬 수 있게 되어 그만큼 산성화 및 환원력을 높여줄 수 있게 되는 것이다.
Thus, the acidic water electrolytic cell according to the second embodiment of the present invention can generate a larger potential difference proportionally larger than the amount of ions stored in the ionic tank 400, thereby increasing the acidification and reducing power.

본 발명의 실시예3에 따른 산성수 전해조는, 도 4와 같이, 전극의 극성을 바꿔서 인가하도록 한 것이다. 여기서, 실시예1과 동일한 구성에 대해서는 동일부호를 부여하고, 그 상세한 설명을 생략한다.
In the acidic water electrolytic cell according to the third embodiment of the present invention, as shown in FIG. Here, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

즉, 실시예3의 산성조 전해조에서는, 제1전극(200a)에 음극(-)을 인가하고, 제2전극(300a) 및 제3전극(300b)에는 양극(+)을 인가하여 구성한 것이다.
That is, in the acid bath of the third embodiment, the cathode (-) is applied to the first electrode 200a, and the anode (+) is applied to the second electrode 300a and the third electrode 300b.

이에, 실시예1에서는 산성이면서 환성성이 있는 산성수를 얻을 수 있으나, 실시예3에서는 산성이면서 산화성이 높은 산성수를 얻을 수 있게 되는 것이다.
Thus, in Example 1, acidic and cyclic acidic water can be obtained. In Example 3, acidic and highly oxidizable acidic water can be obtained.

본 발명의 실시예4에 따른 산성수 전해조는, 도 5와 같이, 실시예3의 하우징(100)에 이온탱크(400)를 더 구성한 것이다. 여기서, 실시예3과 동일한 구성에 대해서는 동일부호를 부여하고, 그 상세한 설명을 생략한다.
In the acidic water electrolytic cell according to the fourth embodiment of the present invention, as shown in FIG. 5, the ion tank 400 is further configured in the housing 100 of the third embodiment. Here, the same components as those in the third embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

이에, 본 발명의 실시예4에 따른 산성수 전해조는, 이 이온탱크(400)에 저장되는 이온량만큼 비례하게 더 큰 전위차를 발생시킬 수 있게 되어 그만큼 산성화성이 높은 산성수를 얻을 수 있게 되는 것이다.
Thus, the acidic water electrolytic cell according to the fourth embodiment of the present invention is capable of generating a potential difference proportionally larger by the amount of ions stored in the ion tank 400, so that acidic water having a high acidification can be obtained. .

(이용발명)(Invention)

본 발명에 따른 전해조로부터 얻은 산성 환원수는, 전도도가 50uS/cm 이하인 원수를 전해하여 음극측에서 산성(pH4~pH6.9)이면서 환원력(ORP -100㎷~-650㎷)을 갖는 것을 특징으로 한다. 그리고, 이러한 산성 환원수는 용존수소농도(DH)가 200ppb~1,500ppb인 것을 특징으로 한다. 그리고 이러한 본 발명에 따른 산성 환원수는 황산화제 원료수·음용수나 음료수의 원료수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 및 화장품 원료수로 이용할 수 있다.
The acid reduced water obtained from the electrolytic cell according to the present invention is characterized in that it has an acidity (pH 4 to pH 6.9) and reducing power (ORP-100 kPa to -650 kPa) at the cathode side by electrolyzing raw water having conductivity of 50 uS / cm or less. . And, the acidic reduced water is characterized in that the dissolved hydrogen concentration (DH) is 200ppb ~ 1500ppb. The acidic reduced water according to the present invention can be used as a source of sulfating agent, water for drinking water, source water for raw water, microbial growth, cell water, edible water, growth promotion, browning preventive water for vegetables and fruits, and cosmetics raw water.

한편, 본 발명에 따른 전해조로부터 얻은 산성 산화수는, 전도도가 50uS/cm이하인 원수을 전해하여 양극측에서 산성(pH3.5~pH6.0)이면서 산화력(ORP +700㎷~+1,200㎷)을 갖는다. 이러한 산성 환원수는 살균수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용할 수 있다.
On the other hand, the acidic oxidized water obtained from the electrolytic cell according to the present invention electrolyzes raw water having a conductivity of 50 uS / cm or less and has an oxidizing power (ORP +700 kPa to +1,200 kPa) while being acidic (pH 3.5 to pH 6.0) at the anode side. Such acidic reduced water can be used as sterilizing water, microbial proliferation, cell stimulation edible water, growth promotion, browning prevention of vegetables and fruits, or cosmetic raw material water.

본 발명의 실시예5는, 도 6과 같이, 실시예1과 비교해 볼 때에 이온 교환막(111)의 일면에 메쉬 전극(114)이 더 구성된다. 여기서, 설명의 편의를 위해 실시예1의 구성과 동일한 구성에 대해서는 상세한 설명을 생략한다.
In Example 5 of the present invention, as shown in FIG. 6, the mesh electrode 114 is further configured on one surface of the ion exchange membrane 111 as compared with Example 1. FIG. Here, for the convenience of description, detailed description of the same configuration as that of the first embodiment will be omitted.

메쉬 전극(Mesh Electrode)은, 그물망 형태로 제작된 전극으로서 전극의 표면적을 넓힐 수 있을 뿐만 아니라 유연성이 있어 장착 위치에 제약을 받지 않는다. 또한, 메쉬 전극은 이러한 그물망 형태로 인하여 원수나 수소수의 흐름이 원활하게 이루어질 뿐만 아니라 반응하는 전극 사이의 간격을 좁혀줄 수 있게 되어 산화 환원 반응을 촉진할 수 있다.
Mesh Electrode is a mesh fabricated electrode that not only increases the surface area of the electrode but also is flexible and is not limited by the mounting position. In addition, the mesh electrode can facilitate the flow of raw water or hydrogen water due to such a mesh shape, as well as to narrow the gap between the reacting electrodes, thereby promoting a redox reaction.

본 발명에서는 이러한 통상의 기술로 이루어진 메쉬 전극(114)을 제1전극(200)과 마주보는 이온 교환막(111)의 일면에 장착하고, 이 제1전극(200)과 동일한 전원을 인가하게 된다. 이때의 전원인가는 별도로 인가할 수도 있으나, 제1전극(200)과 메쉬 전극(114)을 하나로 연결하여 동시에 전원 인가 및 차단이 이루어질 수 있게 하는 것이 바람직하다.
In the present invention, the mesh electrode 114 formed by the conventional technique is mounted on one surface of the ion exchange membrane 111 facing the first electrode 200, and the same power source as the first electrode 200 is applied. At this time, the power may be applied separately, but it is preferable to connect the first electrode 200 and the mesh electrode 114 to one and to simultaneously apply and cut off the power.

또한, 본 발명의 바람직한 실시예에서, 상기 메쉬 전극(114)은 이온 교환막(111)의 한 면의 크기만큼 제작할 수도 있으나, 이보다 작은 크기, 바람직하게는 이온 교환막(111)의 전체 면적에 대하여 30~80%의 넓이로 구성하는 것이 바람직하다. 이는 이온 교환막(111)을 통해 유출입되는 이온 간 교환에 있어서 방해를 줄이면서도 산성수가 원활하게 유동될 수 있게 하기 위한 것이다.
In addition, in a preferred embodiment of the present invention, the mesh electrode 114 may be manufactured by the size of one side of the ion exchange membrane 111, but smaller than this, preferably 30 to the total area of the ion exchange membrane 111 It is preferable to comprise in the area of -80%. This is to allow the acidic water to flow smoothly while reducing interference in the exchange between ions flowing in and out through the ion exchange membrane 111.

이와 같이 설치된 메쉬 전극(114)은 제1전극(200)과 동일 극성을 띄며 이온 교환막(111)을 기준으로 반대쪽에 배치된 제2극성(300)과 상극이기 때문에, 이들 전극 사이에서 산화환원 반응이 일어나게 된다. 이때, 메쉬 전극(114)과 제2전극(300)간의 반응 거리를 최소화되어 있고, 특히 메쉬 전극(114)이 그물망 형태로 구성되어 있기 때문에 이들 전극 사이에서 이루어지는 산화환원 반응을 더욱 더 촉진되게 되는 것이다.
Since the mesh electrode 114 installed as described above has the same polarity as the first electrode 200 and is the upper pole of the second polarity 300 disposed on the opposite side with respect to the ion exchange membrane 111, a redox reaction is performed between these electrodes. This will happen. At this time, the reaction distance between the mesh electrode 114 and the second electrode 300 is minimized, and in particular, since the mesh electrode 114 is formed in a mesh form, the redox reaction between the electrodes is further promoted. will be.

그리고, 본 발명에 따른 메쉬 전극(114)의 구성은 실시예1의 이온 교환막(111)에 설치된 것으로 설명하고 있으나, 다른 실시예들에도 적용할 수 있음을 당업자에게 있어서는 자명하다.
In addition, although the configuration of the mesh electrode 114 according to the present invention is described as being installed in the ion exchange membrane 111 of the first embodiment, it is apparent to those skilled in the art that the present invention can be applied to other embodiments.

이상과 같이 본 발명은 하나의 극성을 갖는 전극을 복수 개 구성하여 한 번에 전원공급이 이루어질 수 있게 하고, 다른 하나의 극성에는 메쉬 전극을 이용하여 전원공급이 이루어질 수 있게 함으로써, 산화환원 반응이 이루어지는 전극의 면적을 넓혀주면서도 반응 전극 사이의 간격을 좁혀 이러한 산화환원 반응을 더욱 더 촉진하여 고농도의 산성수를 얻을 수 있게 되는 것이다.As described above, the present invention configures a plurality of electrodes having one polarity so that power can be supplied at a time, and the other polarity allows power to be supplied using a mesh electrode, thereby reducing the redox reaction. While increasing the area of the electrode is made, the gap between the reaction electrodes is narrowed to further promote the redox reaction to obtain a high concentration of acidic water.

100 : 하우징
110a, 110b : 충진실
111 : 이온 교환막
112a, 113a : 입수구
112b, 113b : 출수구
114 : 메쉬 전극
200 : 제1전극
300 : 제2전극
300' : 제3전극
400 : 이온탱크
100: Housing
110a, 110b: Charging chamber
111: ion exchange membrane
112a, 113a:
112b, 113b:
114: mesh electrode
200: first electrode
300: second electrode
300 ': third electrode
400: ion tank

Claims (13)

적어도 하나의 이온 교환막(111)을 중심으로 분리된 적어도 2개의 충진실(110a,110b)이 구비되고, 각 충진실(110a,110b)에는 각각 입수구(112a,113a) 및 출수구(112b,113b)가 형성된 하우징(100); 상기 충진실(110a)에 설치되는 제1전극(200); 나머지 충진실(110b) 내에 이온 교환막(111)과 근접하게 설치되며 제1전극(200)과 다른 극성을 갖는 제2전극(300); 및 상기 각 충진실(110b)에, 제2전극(300)과 동일 극성을 가지면서 이 제2전극(300)과 미리 정해진 간격만큼 이격되게 설치되는 제3전극(300');을 포함하고,
상기 제2전극(300) 및 제3전극(300')은 서로 연결되어 동시에 전원이 인가되도록 구성된 것을 특징으로 하는 산성수 전해조.
At least two filling chambers 110a and 110b separated from the at least one ion exchange membrane 111 are provided, and the filling chambers 110a and 110b are provided with inlets 112a and 113a and outlets 112b and 113b, respectively. The housing 100 is formed; A first electrode 200 installed in the charging chamber 110a; A second electrode 300 installed near the ion exchange membrane 111 in the remaining filling chamber 110b and having a different polarity from that of the first electrode 200; And third electrodes 300 ′ installed in the filling chambers 110 b to have the same polarity as the second electrodes 300 and spaced apart from the second electrodes 300 by a predetermined interval.
The second electrode 300 and the third electrode 300 'is connected to each other acidic water electrolytic cell, characterized in that configured to be applied at the same time power.
제 1 항에 있어서,
상기 이온 교환막(111)과 상기 제1전극(200)은 0.1~2.0㎜의 간극(W1)만큼 이격되게 설치하여 원수가 통과할 수 있도록 그 사이를 충진공간으로 이용하는 것을 특징으로 하는 산성수 전해조.
The method of claim 1,
The ion exchange membrane 111 and the first electrode 200 is installed by spaced apart by a gap (W1) of 0.1 ~ 2.0mm acidic water electrolytic cell, characterized in that used as a filling space so that raw water can pass through.
제 1 항 또는 제 2 항에 있어서,
상기 제2전극(300)과 상기 제3전극(300')은 0.1~100.0㎜의 간극(W2)만큼 이격되게 설치하여 원수가 통과할 수 있도록 그 사이를 충진공간으로 이용하는 것을 특징으로 하는 산성수 전해조.
3. The method according to claim 1 or 2,
Wherein the second electrode (300) and the third electrode (300 ') are spaced apart from each other by a gap (W2) of 0.1 to 100.0 mm and used as a filling space therebetween so that raw water can pass therethrough. Electrolytic cell.
제 3 항에 있어서,
제1전극(200)이 설치된 충진실(110a)의 입수구(112a)와 출수구(112b) 사이에는,
이온탱크(400)가 구비된 것을 특징으로 하는 산성수 전해조.
The method of claim 3, wherein
Between the inlet 112a and the outlet 112b of the filling chamber 110a in which the first electrode 200 is installed,
And an ion tank (400).
제 4 항에 있어서,
상기 이온 교환막(111)은 불소계 캐치온 교환막인 것을 특징으로 하는 산성수 전해조.
5. The method of claim 4,
The ion exchange membrane 111 is an acidic water electrolytic cell, characterized in that the fluorine-based catch-on membrane.
제 5 항에 있어서,
상기 제1 내지 제3전극(200,300,300')은 타공성 백금전극 또는 메쉬 백금 전극인 것을 특징으로 하는 산성수 전해조.
The method of claim 5, wherein
Wherein the first to third electrodes (200, 300, 300 ') are a porous platinum electrode or a mesh platinum electrode.
제 1 항에 있어서,
상기 이온 교환막(111)에는 제1전극(200)과 마주보는 면의 일부 면적에 대하여 이 제1전극(200)과 동일 극성을 갖는 메쉬 전극(114)이 더 구비되어 있는 것을 특징으로 하는 산성수 전해조.
The method of claim 1,
The ion exchange membrane 111 has an acidic water, characterized in that the mesh electrode 114 having the same polarity as that of the first electrode 200 with respect to a part of the surface facing the first electrode 200 is further provided. Electrolyzer.
제 7 항에 있어서,
상기 메쉬 전극(114)은 이온 교환막(111)의 한쪽 표면의 전체 크기에 대하여 30~80% 크기로 형성된 것을 특징으로 하는 산성수 전해조.
The method of claim 7, wherein
The mesh electrode 114 is an acidic water electrolytic cell, characterized in that formed in the size of 30 to 80% of the total size of one surface of the ion exchange membrane (111).
제 6 항에 있어서,
상기 전해조로부터 전해된 물은 용존수소농도(DH)가 200ppb~1,500ppb인 것을 특징으로 하는 산성수 전해조.
The method according to claim 6,
Wherein electrolytic water from the electrolytic cell has a dissolved hydrogen concentration (DH) of 200 ppb to 1,500 ppb.
제 9 항에 의한 전해조에 전도도가 50uS/cm 이하인 원수를 전해하여 음극측에서 산성(pH4~pH6.9)이면서 환원력(ORP -100㎷~-650㎷)을 갖은 산성의 환원수를 얻는 것을 특징으로 하는 산성수 전해조.
The electrolytic cell according to claim 9 is electrolyzed in raw water having a conductivity of 50 uS / cm or less to obtain acidic reduced water having an acid (pH 4 to pH 6.9) and reducing power (ORP -100 kPa to -650 kPa) at the cathode side. Acid water electrolyzer.
제 10 항에 있어서,
상기 산성의 환원수는 황산화제 원료수·음용수나 음료수의 원료수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용하는 이용방법.
11. The method of claim 10,
The acidic reduced water is used as the raw material water of sulfated water, drinking water or beverage water, microbial growth and drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw water such as vegetables and fruits.
제 9 항에 의한 전해조에 전도도가 50uS/cm이하인 원수을 전해하여 양극측에서 산성(pH3.5~pH6.0)이면서 산화력(ORP +700㎷~+1,200㎷)을 갖은 산성의 산화수를 얻는 것을 특징으로 하는 산성수 전해조.
The electrolyzer according to claim 9 is electrolyzed in raw water having a conductivity of 50 uS / cm or less to obtain an acidic oxidation water having an acidity (pH3.5 to pH6.0) and an oxidizing power (ORP +700 kPa to +1,200 kPa) at the anode side. Acid water electrolyzer.
제 12 항에 있어서,
상기 산성의 환원수는 살균수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용하는 이용방법.
13. The method of claim 12,
The acidic reduced water is used as sterilizing water, microbial growth and drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw material water such as vegetables and fruits.
KR1020130062744A 2012-08-27 2013-05-31 Electrolytic bath for manufacturing acid water and the using method of the water KR20140027866A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020130062744A KR20140027866A (en) 2012-08-27 2013-05-31 Electrolytic bath for manufacturing acid water and the using method of the water
DE112013000327.9T DE112013000327B4 (en) 2012-08-27 2013-08-19 Electrolysis bath for producing acidic water and its use
PCT/KR2013/007418 WO2014035088A1 (en) 2012-08-27 2013-08-19 Electrolysis bath for acidic water and method for using the acidic water
SG11201404539PA SG11201404539PA (en) 2012-08-27 2013-08-19 Electrolytic bath for manufacturing acidic water and use of the acidic water
JP2014540987A JP5835599B2 (en) 2012-08-27 2013-08-19 Acid water electrolyzer and method of using the acid water
US14/382,841 US9624117B2 (en) 2012-08-27 2013-08-19 Electrolysis bath for acidic water and method for using the acidic water
CN201380003623.8A CN104024480B (en) 2012-08-27 2013-08-19 The Application way of acid water electrolyser and its acid water
RU2014130407/04A RU2602234C2 (en) 2012-08-27 2013-08-19 Electrolysis bath for acidic water and method of using acid water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020120093589 2012-08-27
KR20120093589 2012-08-27
KR1020130062744A KR20140027866A (en) 2012-08-27 2013-05-31 Electrolytic bath for manufacturing acid water and the using method of the water

Publications (1)

Publication Number Publication Date
KR20140027866A true KR20140027866A (en) 2014-03-07

Family

ID=50183846

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130062744A KR20140027866A (en) 2012-08-27 2013-05-31 Electrolytic bath for manufacturing acid water and the using method of the water

Country Status (8)

Country Link
US (1) US9624117B2 (en)
JP (1) JP5835599B2 (en)
KR (1) KR20140027866A (en)
CN (1) CN104024480B (en)
DE (1) DE112013000327B4 (en)
RU (1) RU2602234C2 (en)
SG (1) SG11201404539PA (en)
WO (1) WO2014035088A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159455A1 (en) * 2015-03-31 2016-10-06 주식회사 심스바이오닉스 Acid water electrolyzer
KR20170024618A (en) 2015-08-25 2017-03-08 주식회사 심스바이오닉스 Apparatus for producing acid water
KR20200027089A (en) 2018-08-30 2020-03-12 한양대학교 산학협력단 Hybrid item recommending method and apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105198045A (en) * 2014-06-18 2015-12-30 Mag技术株式会社 Electrolytic Bath For Manufacturing Acid Water And Using Method Of The Water
KR101610045B1 (en) * 2014-06-18 2016-04-08 (주) 마그테크놀러지 Electrolytic bath for manufacturing acid water and the using method of the water
CN108139520A (en) * 2015-09-29 2018-06-08 松下知识产权经营株式会社 Wavelength changing element and light-emitting device
JP2017070920A (en) * 2015-10-08 2017-04-13 モレックス エルエルシー Device for producing electrolytic water
JP6578181B2 (en) * 2015-10-08 2019-09-18 モレックス エルエルシー Electrolyzed water production equipment
WO2018021435A1 (en) * 2016-07-27 2018-02-01 株式会社マイトス Composition including hydrogen as active ingredient, for improving exercise endurance or for alleviating fatigue perceived after exercise
JP2018085971A (en) * 2016-11-30 2018-06-07 広瀬 幸雄 Method for making hydrogen-containing ice, and method for keeping freshness of fishery product
JP7103626B2 (en) * 2018-02-22 2022-07-20 国立大学法人弘前大学 Lithium recovery device and lithium recovery method
JP2021079315A (en) * 2019-11-15 2021-05-27 株式会社東芝 Water treatment apparatus and water treatment method
CN116969554B (en) * 2023-09-22 2024-01-12 康亦健(集团)有限公司 Electrolytic reduction water making machine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1577529A (en) * 1967-10-02 1969-08-08
US4689124A (en) 1985-09-13 1987-08-25 The Dow Chemical Company Flow-through electrolytic cell
US6183623B1 (en) * 1993-07-13 2001-02-06 Lynntech, Inc. Electrochemical conversion of anhydrous hydrogen halide to halogen gas using an ionically conducting membrane
US5534120A (en) * 1995-07-03 1996-07-09 Toto Ltd. Membraneless water electrolyzer
JPH0985252A (en) * 1995-09-28 1997-03-31 Bridgestone Corp Ionized water preparation device
JP3673000B2 (en) 1996-01-17 2005-07-20 ペルメレック電極株式会社 Electrolyzer for electrolyzed water production
KR100504412B1 (en) * 1996-04-02 2005-11-08 페르메렉덴꾜꾸가부시끼가이샤 Electrolytes and electrolytic baths using the electrodes
JP3408394B2 (en) * 1996-08-27 2003-05-19 株式会社日本トリム Method for producing electrolytic hydrogen dissolved water and apparatus for producing the same
JP4038253B2 (en) * 1997-04-16 2008-01-23 クロリンエンジニアズ株式会社 Electrolyzer for production of acidic water and alkaline water
JPH10286571A (en) 1997-04-16 1998-10-27 Permelec Electrode Ltd Electrolytic cell for acidic water and alkaline water preparation
US6251259B1 (en) * 1997-08-27 2001-06-26 Miz Co., Ltd. Method and apparatus for producing electrolyzed water
JP3913923B2 (en) * 1999-03-15 2007-05-09 ペルメレック電極株式会社 Water treatment method and water treatment apparatus
TW546257B (en) * 1999-09-01 2003-08-11 Nihon Trim Co Ltd Method and apparatus for producing electrolytic reduced water
JP3432778B2 (en) * 1999-11-19 2003-08-04 森澤 紳勝 Active oxygen scavenger concentrate, process for producing the same, and active oxygen scavenger powder
US20020074241A1 (en) * 2000-12-20 2002-06-20 Shinichi Natsume Apparatus and method for electrolysis of beverages
JP5140218B2 (en) * 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー Electrolyzer for producing charged anode water suitable for surface cleaning and surface treatment, method for producing the same, and method of use
KR100419536B1 (en) * 2001-11-02 2004-02-19 강송식 A water parifier using electrolysis
JP4653945B2 (en) * 2003-10-24 2011-03-16 ミズ株式会社 Pharmacologically functional water and its use
US7238272B2 (en) * 2004-02-27 2007-07-03 Yoichi Sano Production of electrolytic water
KR100660609B1 (en) 2005-03-30 2006-12-22 가부시키가이샤 니혼야쿠힌한바이 electrolyzer which produces alkali reducing water
JP4216892B1 (en) * 2007-04-13 2009-01-28 優章 荒井 Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP5282201B2 (en) * 2009-10-13 2013-09-04 株式会社 ゴーダ水処理技研 Electrolyzed water generator
KR101147491B1 (en) 2010-04-06 2012-05-21 박상길 Electrolysis apparatus
US8641874B2 (en) * 2010-12-09 2014-02-04 Rayne Guest Compact closed-loop electrolyzing process and apparatus
CN105198045A (en) * 2014-06-18 2015-12-30 Mag技术株式会社 Electrolytic Bath For Manufacturing Acid Water And Using Method Of The Water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159455A1 (en) * 2015-03-31 2016-10-06 주식회사 심스바이오닉스 Acid water electrolyzer
KR20170024618A (en) 2015-08-25 2017-03-08 주식회사 심스바이오닉스 Apparatus for producing acid water
KR20200027089A (en) 2018-08-30 2020-03-12 한양대학교 산학협력단 Hybrid item recommending method and apparatus

Also Published As

Publication number Publication date
DE112013000327T5 (en) 2014-08-21
CN104024480A (en) 2014-09-03
DE112013000327B4 (en) 2023-12-07
CN104024480B (en) 2017-08-04
SG11201404539PA (en) 2014-10-30
JP5835599B2 (en) 2015-12-24
WO2014035088A1 (en) 2014-03-06
US9624117B2 (en) 2017-04-18
RU2014130407A (en) 2016-10-20
JP2014532561A (en) 2014-12-08
RU2602234C2 (en) 2016-11-10
US20150021171A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
KR20140027866A (en) Electrolytic bath for manufacturing acid water and the using method of the water
KR101408502B1 (en) Electrolytic bath for manufacturing acid water and the using method of the water
US10479979B2 (en) Method for making and using cold atmospheric plasma stimulated media for cancer treatment
EP1218297B8 (en) Apparatus for preparing sterilizing water and process for sterilizing water
US20050170011A1 (en) Method of inhibiting oxidation, water capable of inhibiting oxidation and use thereof
US6475371B1 (en) Method and apparatus for producing electrolytic reduced water
EP3202956B1 (en) Electrode, preparation method therefor, and uses thereof
TWI652374B (en) Electrolytic cell equipped with concentric electrode pairs
WO2007004709A1 (en) Electrolytic water and method for production thereof
ES2299388B1 (en) REACTOR FOR THE ELECTROCHEMICAL TREATMENT OF BIOMASS.
KR102308922B1 (en) Manufacturing method of feed composition for improving immune and bowel function of chicken using water containing nitrogen oxides and hydrogen
CN107140723A (en) A kind of hydrogen rich water generation device for being used to treat diabetes
JP2013094693A (en) Apparatus and method for manufacturing hydrogen water enhanced in dissolved hydrogen concentration
CN206896204U (en) A kind of cup lid and the hydrogen-rich cup with the cup lid
CN210796095U (en) High-magnetization hydrogen-rich multifunctional water dispenser
CN104270956A (en) Method for obtaining plant proteins
US20090017174A1 (en) Food product treatment using alkaline electrolyzed water
CN101921033A (en) Electrocatalysis device for rapidly increasing oxygen/removing disinfection byproducts for household drinking water
CN206985812U (en) A kind of hydrogen rich water generation device for being used to treat diabetes
JP7308234B2 (en) Hydrogen water for suppressing alcoholic liver injury
WO2015025991A1 (en) Electrolytic bath for preparing acidic water and method for using acidic water
KR100991936B1 (en) An apparatus and method for making sterilizable water using electrolysis
CN110550807A (en) high-magnetization hydrogen-rich multifunctional water dispenser
KR102586800B1 (en) Chamber-type sterilizing device
AU2009304917B2 (en) Apparatus for producing hydrogen-dissolved drinking water and process for producing the dissolved drinking water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20140911

Effective date: 20150730