JP7103626B2 - Lithium recovery device and lithium recovery method - Google Patents

Lithium recovery device and lithium recovery method Download PDF

Info

Publication number
JP7103626B2
JP7103626B2 JP2018030181A JP2018030181A JP7103626B2 JP 7103626 B2 JP7103626 B2 JP 7103626B2 JP 2018030181 A JP2018030181 A JP 2018030181A JP 2018030181 A JP2018030181 A JP 2018030181A JP 7103626 B2 JP7103626 B2 JP 7103626B2
Authority
JP
Japan
Prior art keywords
electrode
tank
electrolyte membrane
lithium
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018030181A
Other languages
Japanese (ja)
Other versions
JP2019141807A (en
Inventor
一哉 佐々木
潔人 新村
駿資 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Original Assignee
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC filed Critical Hirosaki University NUC
Priority to JP2018030181A priority Critical patent/JP7103626B2/en
Publication of JP2019141807A publication Critical patent/JP2019141807A/en
Application granted granted Critical
Publication of JP7103626B2 publication Critical patent/JP7103626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、水溶液からリチウムイオンを選択的に回収するリチウム回収装置およびリチウム回収方法に関する。 The present invention relates to a lithium recovery device and a lithium recovery method for selectively recovering lithium ions from an aqueous solution.

リチウム(Li)は、リチウムイオン二次電池や核融合炉の燃料等の原料として需要の高い資源であり、安定供給可能かつより安価な採取方法が求められている。Liの安定供給源としては、陽イオンLi+の形で溶存する海水等がある。また、リチウムイオン二次電池の主に正極が、コバルト酸リチウム(LiCoO2)等としてLiを含有することから、バッテリー寿命等により廃棄された電池からの安価な回収技術が期待されている。 Lithium (Li) is a resource that is in high demand as a raw material for lithium ion secondary batteries, fuels for fusion reactors, and the like, and there is a demand for a stable supply and cheaper sampling method. As a stable source of Li, there is seawater dissolved in the form of cation Li + . Further, since the positive electrode of the lithium ion secondary battery mainly contains Li as lithium cobalt oxide (LiCoO 2 ) or the like, an inexpensive recovery technique from a battery discarded due to battery life or the like is expected.

海水等からのLiの回収技術として、従来より、リチウムマンガン酸化物等のリチウム吸着剤を使用した吸着法が多く適用されている。しかし、吸着法では、吸着剤の選択性が不完全であるために、低濃度(170ppb)のLiに対し、多量に海水に溶存するナトリウム、マグネシウム、カルシウム、カリウム等も一緒に回収されてしまう。また、懸濁物や微生物の付着による吸着剤表面の急激な失活や、吸着剤の機械的強度不足による再使用回数の制限等の問題点がある。 As a technique for recovering Li from seawater or the like, an adsorption method using a lithium adsorbent such as lithium manganese oxide has been widely applied. However, in the adsorption method, since the selectivity of the adsorbent is incomplete, a large amount of sodium, magnesium, calcium, potassium, etc. dissolved in seawater are also recovered with respect to Li at a low concentration (170 ppb). .. In addition, there are problems such as rapid deactivation of the surface of the adsorbent due to adhesion of suspensions and microorganisms, and limitation of the number of times of reuse due to insufficient mechanical strength of the adsorbent.

そこで、リチウムイオン伝導性を有する電解質膜を使用した電気透析法による回収が開発されている(例えば、特許文献1、非特許文献1)。電気透析法によるLi回収方法について、図7を参照して説明する。リチウム回収装置100は、処理槽1を、両面に多孔質膜からなる電極131,132を付着させた電解質膜2で供給槽11と回収槽12とに仕切り、電極131,132間に電源105を、正(+)極を供給槽11側の電極131、負(-)極を回収槽12側の電極132に接続して構成されている。供給槽11にはLi源として海水等のLi含有水溶液SWを投入し、回収槽12には純水等のLi回収用水溶液ASを投入する。そして、電圧を印加すると、供給槽11の水溶液SWに接触する電極131の表面では下式(1)の、回収槽12の水溶液ASに接触する電極132の表面では下式(2)の、電気化学反応が生じる。すると、水溶液SW、電解質膜2(electrolyte)、および水溶液ASのそれぞれに含まれるLi+(Li+(SW)、Li+(electrolyte)、Li+(AS))の電気化学ポテンシャル差により、水溶液SW中からLi+が電解質膜2を透過して水溶液ASへ移動する。電解質膜2は、格子欠陥サイトのサイズが小さいので、Li+よりも径の大きいNa+,Ca2+等、水溶液SWに含有されるLi+以外の金属イオンMn+を透過させない。したがって、水溶液SWからLi+が選択的に水溶液ASへ移動し、回収槽12にLi+の水溶液(水酸化リチウム(LiOH)水溶液)が得られる。

Figure 0007103626000001
Therefore, recovery by an electrodialysis method using an electrolyte membrane having lithium ion conductivity has been developed (for example, Patent Document 1 and Non-Patent Document 1). The Li recovery method by the electrodialysis method will be described with reference to FIG. In the lithium recovery device 100, the treatment tank 1 is divided into a supply tank 11 and a recovery tank 12 by an electrolyte membrane 2 to which electrodes 131 and 132 made of porous membranes are attached on both sides, and a power supply 105 is connected between the electrodes 131 and 132. The positive (+) electrode is connected to the electrode 131 on the supply tank 11 side, and the negative (−) electrode is connected to the electrode 132 on the recovery tank 12 side. A Li-containing aqueous solution SW such as seawater is charged into the supply tank 11 as a Li source, and a Li recovery aqueous solution AS such as pure water is charged into the recovery tank 12. Then, when a voltage is applied, the electricity of the following formula (1) on the surface of the electrode 131 in contact with the aqueous solution SW of the supply tank 11 and the following formula (2) on the surface of the electrode 132 in contact with the aqueous solution AS of the recovery tank 12 A chemical reaction occurs. Then, due to the electrochemical potential difference of Li + (Li + (SW), Li + (electrolyte), Li + (AS)) contained in each of the aqueous solution SW, the electrolyte membrane 2 (electrolyte), and the aqueous solution AS, the aqueous solution SW From the inside, Li + permeates the electrolyte membrane 2 and moves to the aqueous solution AS. Since the size of the lattice defect site is small, the electrolyte membrane 2 does not allow metal ions M n + other than Li + contained in the aqueous solution SW, such as Na + and Ca 2+ , which have a diameter larger than Li + , to permeate. Therefore, Li + selectively moves from the aqueous solution SW to the aqueous solution AS, and an aqueous solution of Li + (lithium hydroxide (LiOH) aqueous solution) is obtained in the recovery tank 12.
Figure 0007103626000001

特許第6233877号公報Japanese Patent No. 6233877

Kunugi S., Inaguma Y., Itoh M., "Electrochemical recovery and isotope separation of lithium ion employing lithium ion conductive perovskite-type oxides", Solid State Ionics, Vol. 122, Issues 1-4, pp. 35-39, July 1999Kunugi S., Inaguma Y., Itoh M., "Electrochemical recovery and isotope separation of lithium ion epitaxial lithium ion conductive perovskite-type oxides", Solid State Ionics, Vol. 122, Issues 1-4, pp. 35-39, July 1999

前記の特許文献1等に記載された回収方法では、水溶液SWから電極131、電極132から水溶液ASへのそれぞれの電子e-の時間あたりの移動量が多いほど、式(1)、(2)の反応が高速になって、Li+の時間あたりの移動量も増加することになる。ところが、電子e-の時間あたりの移動量を増加させようとして電源105の電圧を大きくすると、実際には、ある程度以上の電圧では、Li+の時間あたりの移動量がそれ以上には増加し難くなる。これは、電解質膜2が、両面の電位差がその電解質を構成する金属イオンの一部が還元する電位に到達したことにより、電子e-も伝導させることによると考えられる。このような電圧を印加されると、図7に太破線矢印で示すように、電解質膜2が、電源105の負極から電極132に供給された電子e-の一部を電極131へ移動させてしまう。その結果、印加電圧の増加によって電極131から電源105を経由して電極132へ移動する電子e-の時間あたりの移動量が増加しても、水溶液SW-電極131間、電極132-水溶液AS間での電子e-の時間あたりの移動量はそれほど増加しないので、Li+の時間あたりの移動量が増加しない。その上、エネルギー効率は低下することになる。したがって、この回収方法は、生産性向上に限界があるといえる。 In the recovery method described in Patent Document 1 and the like, the larger the amount of each electron e transferred from the aqueous solution SW to the electrode 131 and from the electrode 132 to the aqueous solution AS per hour, the more the equations (1) and (2). The reaction of Li + becomes faster, and the amount of movement of Li + per hour also increases. However, when the voltage of the power supply 105 is increased in an attempt to increase the amount of movement of electrons e- per hour , in reality, at a voltage above a certain level, the amount of movement of Li + per hour is unlikely to increase further. Become. It is considered that this is because the electrolyte membrane 2 also conducts the electron e - when the potential difference on both sides reaches the potential at which a part of the metal ions constituting the electrolyte is reduced. When such a voltage is applied, as shown by the thick broken line arrow in FIG. 7, the electrolyte membrane 2 moves a part of the electrons e supplied from the negative electrode of the power supply 105 to the electrode 132 to the electrode 131. It ends up. As a result, even if the amount of movement of electrons e-moving from the electrode 131 to the electrode 132 via the power supply 105 increases due to the increase in the applied voltage, the amount of electrons e - moving between the aqueous solution SW and the electrode 131 and between the electrode 132 and the aqueous solution AS increases. Since the amount of movement of electrons e - in time does not increase so much, the amount of movement of Li + per hour does not increase. Moreover, energy efficiency will be reduced. Therefore, it can be said that this recovery method has a limit in improving productivity.

本発明は前記問題点に鑑みてなされたものであり、電気透析法による、選択性と共に生産性の高いリチウム回収方法およびリチウム回収装置を提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium recovery method and a lithium recovery device by an electrodialysis method, which have high selectivity and productivity.

本発明者らは、鋭意研究により、電解質膜に電子伝導性が発現しないように両面の電位差を抑制するために、電気透析のための電圧を電解質膜の両面から印加せず、電解質膜から離間した電極による回路を形成することに想到した。 According to diligent research, the present inventors did not apply a voltage for electrodialysis from both sides of the electrolyte membrane and separated it from the electrolyte membrane in order to suppress the potential difference between the two sides so that electron conductivity was not exhibited in the electrolyte membrane. I came up with the idea of forming a circuit with the electrodes.

すなわち、本発明に係るリチウム回収装置は、第1槽と第2槽とに仕切られた処理槽を備え、前記第2槽に収容した水または水溶液へ前記第1槽に収容したリチウムイオンを含有する水溶液からリチウムイオンを移動させる装置であって、前記処理槽を仕切るリチウムイオン伝導性電解質膜と、前記第1槽内に設けられた第1電極と、前記第2槽内に設けられた第2電極と、前記第1電極に正極、前記第2電極に負極を接続する電源と、を備える。そして、本発明に係るリチウム回収装置は、前記第1電極が、多孔質構造を有し前記リチウムイオン伝導性電解質膜の一面に接触させて設けられ、前記第2電極が、前記リチウムイオン伝導性電解質膜から離間して設けられた構成とする。あるいは、本発明に係るリチウム回収装置は、前記第1電極および前記第2電極の一方が、多孔質構造を有し前記リチウムイオン伝導性電解質膜の一面に接触させて設けられ、他方が、前記リチウムイオン伝導性電解質膜から離間して設けられ、前記リチウムイオン伝導性電解質膜の前記一面の反対側の面に接触させて設けられた多孔質構造を有する第3電極をさらに備え、前記電源が直列に接続した第1電源と第2電源とからなる構成として、前記第3電極が前記第1電源と前記第2電源の間に接続されている構成とするThat is, the lithium recovery device according to the present invention includes a treatment tank partitioned into a first tank and a second tank, and the water or aqueous solution contained in the second tank contains lithium ions contained in the first tank. It is a device for moving lithium ions from the aqueous solution, and is provided in the lithium ion conductive electrolyte membrane that partitions the treatment tank, the first electrode provided in the first tank, and the second tank. A second electrode, a power supply for connecting a positive electrode to the first electrode and a negative electrode to the second electrode are provided. Then, in the lithium recovery device according to the present invention, the first electrode has a porous structure and is provided in contact with one surface of the lithium ion conductive electrolyte membrane, and the second electrode is the lithium ion conduction device. The configuration is provided so as to be separated from the sex electrolyte membrane. Alternatively , in the lithium recovery device according to the present invention, one of the first electrode and the second electrode has a porous structure and is provided in contact with one surface of the lithium ion conductive electrolyte membrane, and the other is provided. A third electrode having a porous structure provided apart from the lithium ion conductive electrolyte membrane and provided in contact with the surface opposite to the one surface of the lithium ion conductive electrolyte membrane is further provided , and the power supply is provided. As a configuration including a first power supply and a second power supply connected in series, the third electrode is connected between the first power supply and the second power supply.

かかる構成により、本発明に係るリチウム回収装置においては、電源の一方の極に接続する電極を電解質膜から離間して設けることにより、印加電圧が大きくなっても、電解質膜は両面の電位差が大きくならず電子伝導性が発現しないので、第2電極から供給された電子が第1電極側へ電解質膜を伝導しない。したがって、印加電圧が大きくなるにしたがい、リチウムの時間あたりの移動量が増加する。 With this configuration, in the lithium recovery device according to the present invention, by providing the electrode connected to one electrode of the power supply at a distance from the electrolyte membrane, the electrolyte membrane has a large potential difference on both sides even if the applied voltage is large. Since the electron conductivity is not exhibited, the electrons supplied from the second electrode do not conduct the electrolyte film to the first electrode side. Therefore, as the applied voltage increases, the amount of lithium transferred per hour increases.

また、本発明に係るリチウム回収方法は、リチウムイオン伝導性電解質膜で第1槽と第2槽とに仕切られた処理槽において、前記第2槽に収容した水または水溶液へ前記第1槽に収容したリチウムイオンを含有する水溶液からリチウムイオンを移動させる方法である。そして、本発明に係るリチウム回収方法は、前記リチウムイオン伝導性電解質膜の前記第1槽の側の面に接触させて設けられた多孔質構造の電極と、前記第2槽内に前記リチウムイオン伝導性電解質膜の一面の反対側の面に離間して対向するように設けられた第2の電極と、の間に前記第1槽の側を正極として接続した電源が、電圧を印加する。あるいは、本発明に係るリチウム回収方法は、前記リチウムイオン伝導性電解質膜の両面にそれぞれ接触させて設けられた多孔質構造の電極同士の間に、前記第1槽の側を正極として接続した第1電源と、前記第1電源に直列に接続すると共に、前記第1槽または前記第2槽の一方の槽の側に設けられた前記多孔質構造の電極と、前記一方の槽内に前記多孔質構造の電極および前記リチウムイオン伝導性電解質膜から離間して設けられた第2の電極との間に接続した第2電源と、が電圧を印加する。 Further, in the lithium recovery method according to the present invention, in a treatment tank divided into a first tank and a second tank by a lithium ion conductive electrolyte membrane, the water or aqueous solution contained in the second tank is added to the first tank. This is a method of moving lithium ions from the contained aqueous solution containing lithium ions. The lithium recovery method according to the present invention comprises an electrode having a porous structure provided in contact with the surface of the lithium ion conductive electrolyte membrane on the side of the first tank, and the lithium ion in the second tank. A power source connected to a second electrode provided so as to face the opposite surface of one surface of the conductive electrolyte film so as to be separated from the surface and the side of the first tank as a positive electrode applies a voltage. .. Alternatively, in the lithium recovery method according to the present invention, the side of the first tank is connected as a positive electrode between electrodes having a porous structure provided in contact with both sides of the lithium ion conductive electrolyte membrane. An electrode having a porous structure connected to one power source in series with the first power source and provided on the side of one of the first tank or the second tank, and the porous structure in the one tank. A voltage is applied by a second power source connected between an electrode having a quality structure and a second electrode provided apart from the lithium ion conductive electrolyte membrane.

かかる方法により、電解質膜の片面に接触して設けられた電極と電解質膜から離間した電極との間に電源を接続して電圧を印加することにより、電圧が大きくなっても、電解質膜は両面の電位差が大きくならず電子伝導性が発現しないので、電源の負極に接続した第2槽内の電極から供給された電子が第1槽側へ電解質膜を伝導しない。したがって、印加電圧を大きくすることにより、リチウムの時間あたりの移動量を多くすることができる。 By such a method, by connecting a power source between an electrode provided in contact with one side of the electrolyte membrane and an electrode separated from the electrolyte membrane and applying a voltage, the electrolyte membrane can be formed on both sides even if the voltage increases. Since the potential difference between the two is not large and the electron conductivity is not exhibited, the electrons supplied from the electrodes in the second tank connected to the negative electrode of the power supply do not conduct the electrolyte membrane to the first tank side. Therefore, by increasing the applied voltage, the amount of lithium transferred per hour can be increased.

本発明に係るリチウム回収装置およびリチウム回収方法によれば、海水のようなリチウムが極めて低濃度でかつ他の金属イオンと共存する水溶液からも、リチウムを選択的にかつ高速で回収して生産性を向上させることができ、さらにエネルギー効率が低下し難い。 According to the lithium recovery device and the lithium recovery method according to the present invention, lithium can be selectively and quickly recovered from an aqueous solution such as seawater in which lithium coexists with other metal ions at an extremely low concentration to achieve productivity. Can be improved, and energy efficiency is unlikely to decrease.

本発明の第1実施形態に係るリチウム回収装置の構成を説明する概略図である。It is the schematic explaining the structure of the lithium recovery apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るリチウム回収方法を説明する、図1に示すリチウム回収装置の概略図である。It is the schematic of the lithium recovery apparatus shown in FIG. 1 explaining the lithium recovery method which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るリチウム回収装置の構成およびリチウム回収方法を説明する概略図である。It is the schematic explaining the structure of the lithium recovery apparatus and the lithium recovery method which concerns on 2nd Embodiment of this invention. 実施例および比較例におけるリチウムの時間あたりの移動量の電圧依存性を表すグラフである。It is a graph which shows the voltage dependence of the movement amount of lithium per time in an Example and a comparative example. 実施例および比較例におけるリチウム移動量あたりの消費エネルギーの電圧依存性を表すグラフである。It is a graph which shows the voltage dependence of the energy consumption per lithium transfer amount in an Example and a comparative example. 本発明の第1実施形態に係る実施例におけるリチウムイオン伝導性電解質膜の両面間の電位差の電圧依存性を表すグラフである。It is a graph which shows the voltage dependence of the potential difference between both sides of the lithium ion conductive electrolyte membrane in the Example which concerns on 1st Embodiment of this invention. 電気透析法による、従来のリチウム回収方法を説明するリチウム回収装置の概略図である。It is the schematic of the lithium recovery apparatus explaining the conventional lithium recovery method by the electrodialysis method.

本発明に係るリチウム回収装置およびリチウム回収方法を実施するための形態について、図を参照して説明する。 A mode for carrying out the lithium recovery device and the lithium recovery method according to the present invention will be described with reference to the drawings.

〔第1実施形態〕
(リチウム回収装置)
図1に示すように、本発明の第1実施形態に係るリチウム回収装置10は、処理槽1、電解質膜(リチウムイオン伝導性電解質膜)2、電解質膜2の各面に被覆した第1電極31と第3電極32、第2電極4、および電源5を備える。処理槽1は、電解質膜2によって、海水等のLi含有水溶液SWを収容する供給槽(第1槽)11と、Li回収用水溶液ASを収容する回収槽(第2槽)12と、の2つに仕切られている。第2電極4は、回収槽12内に電解質膜2から離間して設けられる。電源5は、正(+)極が第1電極31に接続され、負(-)極が第2電極4に接続される。すなわち本実施形態に係るリチウム回収装置10は、電気透析法による従来のリチウム回収装置(例えば、図7に示すリチウム回収装置100)に対して、電源5の負極の接続先を、新たに追加した第2電極4に変えた構成である。以下、本発明の実施形態に係るリチウム回収装置を構成する各要素について説明する。
[First Embodiment]
(Lithium recovery device)
As shown in FIG. 1, the lithium recovery device 10 according to the first embodiment of the present invention has a first electrode coated on each surface of a treatment tank 1, an electrolyte membrane (lithium ion conductive electrolyte membrane) 2, and an electrolyte membrane 2. It includes a 31 and a third electrode 32, a second electrode 4, and a power supply 5. The treatment tank 1 is composed of an electrolyte membrane 2 and a supply tank (first tank) 11 for accommodating a Li-containing aqueous solution SW such as seawater and a recovery tank (second tank) 12 for accommodating an aqueous solution AS for Li recovery. It is divided into two. The second electrode 4 is provided in the recovery tank 12 at a distance from the electrolyte membrane 2. In the power supply 5, the positive (+) electrode is connected to the first electrode 31, and the negative (−) electrode is connected to the second electrode 4. That is, the lithium recovery device 10 according to the present embodiment newly adds a connection destination of the negative electrode of the power supply 5 to the conventional lithium recovery device by the electrodialysis method (for example, the lithium recovery device 100 shown in FIG. 7). The configuration is changed to the second electrode 4. Hereinafter, each element constituting the lithium recovery device according to the embodiment of the present invention will be described.

処理槽1は、Li含有水溶液SWおよびLi回収後を含めたLi回収用水溶液AS(例えば、水酸化リチウム(LiOH)水溶液)に接触しても腐食等の変質のない材料からなる。そして、処理槽1は、必要な処理能力に対応した容積を有していればよく、形状等は特に限定されない。 The treatment tank 1 is made of a material that does not deteriorate even if it comes into contact with the Li-containing aqueous solution SW and the Li recovery aqueous solution AS (for example, lithium hydroxide (LiOH) aqueous solution) including after Li recovery. The processing tank 1 may have a volume corresponding to the required processing capacity, and the shape and the like are not particularly limited.

電解質膜2は、リチウムイオン伝導性を有し、かつ、Li含有水溶液SWに含有されるLi+以外の金属イオンMn+が伝導しない電解質であり、さらに電子e-が伝導しないことが好ましい。Li+以外の金属イオンMn+は、例えばLi含有水溶液SWが海水である場合、Na+,Mg2+,Ca2+等である。さらに好ましくは、これらの性質を有するセラミックス製の電解質である。具体的には、リチウムランタンチタン酸化物(La2/3-xLi3xTiO3、LLTOとも称される)等が挙げられる。 It is preferable that the electrolyte membrane 2 is an electrolyte that has lithium ion conductivity and does not conduct metal ions M n + other than Li + contained in the Li-containing aqueous solution SW, and further does not conduct electrons e . The metal ions M n + other than Li + are, for example, Na + , Mg 2+ , Ca 2+ , etc. when the Li-containing aqueous solution SW is seawater. More preferably, it is a ceramic electrolyte having these properties. Specific examples thereof include lithium lanthanum titanium oxide (La 2 / 3-x Li 3x TiO 3 , also referred to as LLTO).

第1電極31は、電解質膜2の供給槽11側の面に接触して、後記の第2電極4と対となって電圧を印加するために設けられる電極である。第1電極31は、電解質膜2の広い範囲に電圧を印加する一方で、電解質膜2の表面の十分な面積にLi含有水溶液SWが接触するように、網状等の多孔質構造を有する。第1電極31は、下式(3)の反応および下式(4)の反応に対する触媒活性と電子伝導性とを有し、Li含有水溶液SW中で電圧印加時にも安定な電極材料で形成され、さらに前記形状への加工が容易な材料であることが好ましく、例えば白金(Pt)が好ましい。

Figure 0007103626000002
The first electrode 31 is an electrode provided for contacting the surface of the electrolyte membrane 2 on the supply tank 11 side and pairing with the second electrode 4 described later to apply a voltage. The first electrode 31 has a porous structure such as a network so that the Li-containing aqueous solution SW comes into contact with a sufficient area on the surface of the electrolyte membrane 2 while applying a voltage over a wide range of the electrolyte membrane 2. The first electrode 31 is made of an electrode material that has catalytic activity and electron conductivity for the reaction of the following formula (3) and the reaction of the following formula (4) and is stable even when a voltage is applied in a Li-containing aqueous solution SW. Further, it is preferable that the material is easily processed into the above-mentioned shape, and for example, platinum (Pt) is preferable.
Figure 0007103626000002

第3電極32は、必要に応じて、電解質膜2の回収槽12側の面に接触して設けられ、電解質膜2の表面の十分な面積にLi回収用水溶液ASが接触するように、第1電極31と同様に、網状等の多孔質構造を有する。第3電極32は、電解質膜2中のLi+がLi回収用水溶液ASへ溶出する下式(5)の反応に対する触媒活性と電子伝導性を有し、Li回収後も含めたLi回収用水溶液AS中で電圧印加時にも安定な電極材料で形成され、さらに前記形状への加工が容易な材料であることが好ましく、例えば白金(Pt)が好ましい。

Figure 0007103626000003
The third electrode 32 is provided in contact with the surface of the electrolyte membrane 2 on the recovery tank 12 side, if necessary, so that the Li recovery aqueous solution AS comes into contact with a sufficient area on the surface of the electrolyte membrane 2. Like the one electrode 31, it has a porous structure such as a net. The third electrode 32 has catalytic activity and electron conductivity for the reaction of the following formula (5) in which Li + in the electrolyte membrane 2 is eluted into the Li recovery aqueous solution AS, and the Li recovery aqueous solution including after Li recovery. It is preferably a material that is formed of an electrode material that is stable even when a voltage is applied in AS and that can be easily processed into the shape, and for example, platinum (Pt) is preferable.
Figure 0007103626000003

第2電極4は、第1電極31と対となって電圧を印加するために回収槽12内に設けられる電極であり、電解質膜2および第3電極32に接触しないように配置される。また、第2電極4は、第1電極31と平行に配置されることが好ましく、さらに、Li回収用水溶液ASとの接触面積を多くするように、メッシュ状等の形状であることが好ましい。第2電極4は、下式(6)の反応に対する触媒活性と電子伝導性を有し、Li回収後も含めたLi回収用水溶液AS中で電圧印加時にも安定な電極材料で形成され、例えば白金(Pt)やニッケル(Ni)が好ましい。

Figure 0007103626000004
The second electrode 4 is an electrode provided in the recovery tank 12 in pair with the first electrode 31 to apply a voltage, and is arranged so as not to come into contact with the electrolyte membrane 2 and the third electrode 32. Further, the second electrode 4 is preferably arranged in parallel with the first electrode 31, and is preferably in a mesh shape or the like so as to increase the contact area with the Li recovery aqueous solution AS. The second electrode 4 has catalytic activity and electron conductivity for the reaction of the following formula (6), and is formed of an electrode material that is stable even when a voltage is applied in the Li recovery aqueous solution AS including after Li recovery. Platinum (Pt) and nickel (Ni) are preferable.
Figure 0007103626000004

電源5は、直流電源装置であり、正極が第1電極31に接続し、負極が第2電極4に接続して、所定の電圧を印加する。 The power supply 5 is a DC power supply device, in which the positive electrode is connected to the first electrode 31 and the negative electrode is connected to the second electrode 4, and a predetermined voltage is applied.

Li含有水溶液SWは、Li源であり、リチウムイオンLi+の他に、Na+,Ca2+等の他の金属イオンMn+を含有する水溶液である。このような水溶液として、例えば、海水、温泉水、使用済みリチウムイオン二次電池等を破砕して酸に溶解した後pH調整した水溶液が挙げられる。 The Li-containing aqueous solution SW is a Li source and is an aqueous solution containing other metal ions M n + such as Na + and Ca 2+ in addition to the lithium ion Li + . Examples of such an aqueous solution include an aqueous solution in which seawater, hot spring water, a used lithium ion secondary battery and the like are crushed and dissolved in an acid, and then the pH is adjusted.

Li回収用水溶液ASは、Li含有水溶液SWから回収したリチウムイオンLi+を収容するための溶液である。金属の中からLiのみを選択的に得るために、Li回収用水溶液ASは、リチウムイオンLi+以外の金属イオン(Na+等)を含有しない水溶液が好ましく、純水でもよい。ただし、回収開始時(電源印加開始時)において、Li+の移動を円滑に進行させるために、Li回収用水溶液ASはLi+を微量に含有する水溶液(水酸化リチウム(LiOH)水溶液)であることが好ましい。 The Li recovery aqueous solution AS is a solution for containing the lithium ion Li + recovered from the Li-containing aqueous solution SW. In order to selectively obtain only Li from the metals, the Li recovery aqueous solution AS is preferably an aqueous solution that does not contain metal ions (Na + or the like) other than lithium ion Li + , and may be pure water. However, in order to allow the movement of Li + to proceed smoothly at the start of recovery (at the start of power application), the Li recovery aqueous solution AS is an aqueous solution containing a small amount of Li + (lithium hydroxide (LiOH) aqueous solution). Is preferable.

(リチウム回収方法)
本発明の第1実施形態に係るリチウム回収方法について、図2を参照して説明する。本実施形態に係るリチウム回収方法は、図1に示す第1実施形態に係るリチウム回収装置10により、以下のように行う。
(Lithium recovery method)
The lithium recovery method according to the first embodiment of the present invention will be described with reference to FIG. The lithium recovery method according to the present embodiment is carried out as follows by the lithium recovery device 10 according to the first embodiment shown in FIG.

リチウム回収装置10において、電源5が、第1電極31に、第2電極4に対して正の電圧Vを印加すると、第1電極31の近傍では、Li含有水溶液SW中の水酸化物イオン(OH-)が下式(3)の反応を生じて、電子e-を第1電極31へ放出させ、水(H2O)と酸素(O2)を発生させる。Li含有水溶液SWにおいては、OH-が減少したことに伴い、電荷のバランスを保つために、Li含有水溶液SW中のLi+が電解質膜2中へ移動する下式(4)の反応を、電解質膜2の近傍すなわち第1電極31の近傍で生じる。下式(3)と下式(4)の反応を総合すると、第1電極31の近傍で下式(1)の反応を生じることになる。一方、第2電極4の近傍では、Li回収用水溶液AS中のH2Oが電子e-を供給されることにより、下式(6)の反応を生じて、水素(H2)とOH-を発生させる。Li回収用水溶液ASにおいては、OH-が増加したことに伴い、電荷のバランスを保つために、電解質膜2中のLi+が移動してくる下式(5)の反応を、電解質膜2の近傍で生じる。下式(6)と下式(5)の反応を総合すると、Li回収用水溶液ASでは下式(2)の反応を生じることになる。

Figure 0007103626000005
In the lithium recovery device 10, when the power source 5 applies a positive voltage V to the first electrode 31 with respect to the second electrode 4, in the vicinity of the first electrode 31, hydroxide ions (hydroxide ions) in the Li-containing aqueous solution SW ( OH ) causes the reaction of the following equation (3) to release the electron e to the first electrode 31 to generate water (H 2 O) and oxygen (O 2 ). In the Li-containing aqueous solution SW, the reaction of the following formula (4) in which Li + in the Li-containing aqueous solution SW moves into the electrolyte membrane 2 in order to maintain the charge balance as the OH decreases is carried out by the electrolyte. It occurs in the vicinity of the film 2, that is, in the vicinity of the first electrode 31. When the reactions of the following equation (3) and the following equation (4) are combined, the reaction of the following equation (1) occurs in the vicinity of the first electrode 31. On the other hand, in the vicinity of the second electrode 4, H 2 O in the Li recovery aqueous solution AS is supplied with electrons e to cause the reaction of the following equation (6), and hydrogen (H 2 ) and OH are generated. To generate. In the Li recovery aqueous solution AS, the reaction of the following formula (5) in which Li + in the electrolyte membrane 2 moves in order to maintain the charge balance as OH increases is carried out by the electrolyte membrane 2. Occurs in the vicinity. When the reactions of the following formula (6) and the following formula (5) are combined, the reaction of the following formula (2) occurs in the Li recovery aqueous solution AS.
Figure 0007103626000005

このように、電源5に接続する一対の電極の一方である第2電極4が、電解質膜2から離間して配置されていても、従来のリチウム回収方法(図7参照)と同様に、式(1)、式(2)の反応を生じて、Li含有水溶液SW中のLi+を選択的に電解質膜2内で伝導させてLi回収用水溶液AS中へ移動させて回収することができる。そして、第2電極4がLi回収用水溶液ASで隔てられて電解質膜2から離間していることにより、電源5の電圧Vに対して電解質膜2の両面の電位差が小さい。したがって、印加電圧Vが大きくても電解質膜2が電子e-を伝導し難い。一方で、第1電極31が電解質膜2に接触して設けられていることにより、従来のリチウム回収方法に対して電圧Vを大幅に大きくしなくても、式(1)、式(2)の反応が生じ易い。さらに、電解質膜2のLi回収用水溶液ASと接触する面に第3電極32が接触して設けられていることにより、電解質膜2中のLi+がLi回収用水溶液ASへ溶出する反応が活性化されて、第2電極4が電解質膜2から離間していても、式(2)の反応が生じ易い。なお、第2電極4と電解質膜2の間の距離が長いほど本発明の効果が高く、電圧Vが大きくても電解質膜2が電子e-を伝導し難く、一方で、電圧Vを十分に大きくしないと、Li+が移動するための電気化学ポテンシャル差を生じない。 In this way, even if the second electrode 4, which is one of the pair of electrodes connected to the power source 5, is arranged apart from the electrolyte membrane 2, the formula is the same as in the conventional lithium recovery method (see FIG. 7). The reactions of (1) and (2) can be generated, and Li + in the Li-containing aqueous solution SW can be selectively conducted in the electrolyte membrane 2 and moved into the Li recovery aqueous solution AS for recovery. Since the second electrode 4 is separated from the electrolyte membrane 2 by being separated by the Li recovery aqueous solution AS, the potential difference between both sides of the electrolyte membrane 2 is small with respect to the voltage V of the power supply 5. Therefore, even if the applied voltage V is large, it is difficult for the electrolyte membrane 2 to conduct electrons e . On the other hand, since the first electrode 31 is provided in contact with the electrolyte membrane 2, the equations (1) and (2) do not require a significant increase in the voltage V as compared with the conventional lithium recovery method. Reaction is likely to occur. Further, since the third electrode 32 is provided in contact with the surface of the electrolyte membrane 2 in contact with the Li recovery aqueous solution AS, the reaction in which Li + in the electrolyte membrane 2 is eluted into the Li recovery aqueous solution AS is active. Even if the second electrode 4 is separated from the electrolyte membrane 2, the reaction of the formula (2) is likely to occur. The longer the distance between the second electrode 4 and the electrolyte membrane 2, the higher the effect of the present invention, and even if the voltage V is large, it is difficult for the electrolyte membrane 2 to conduct electrons e- , while the voltage V is sufficiently applied. If it is not increased, there will be no electrochemical potential difference for Li + to move.

(変形例)
第1実施形態に係るリチウム回収装置10は、第3電極32を設けず、すなわち、電解質膜2の片面のみに第1電極31が形成された構造であってもよい。あるいは、リチウム回収装置10は、第2電極4に代えて、供給槽11内に電解質膜2および第1電極31から離間した電極(図示せず)を設けて、この電極に電源5の正極を接続し、負極を第3電極32に接続することもできる。このような構成では、Li含有水溶液SWにおいては、電解質膜2から離間した電極の近傍で式(3)の反応を生じ、電解質膜2の近傍で式(4)の反応を生じるので、これらの反応を総合して式(1)の反応が生じる。したがって、図2に示す前記実施形態と同様に、Li+を選択的に電解質膜2内で伝導させることができ、また、電源5の電圧Vを増加することにより、Li+の時間あたりの移動量を増加させることができる。ただし、電源5の負極の方が電解質膜2に接触していると、電解質膜2の構成元素が還元され易い傾向があるので、印加電圧Vがあまり大きくないことが好ましい。また、Li含有水溶液SWは、金属イオンMn+の濃度等によっては電子伝導性が高いので、電解質膜2の供給槽11側の面の電位が電源5の正極に近くなって、電解質膜2の両面の電位差が大きくなる傾向がある。
(Modification example)
The lithium recovery device 10 according to the first embodiment may have a structure in which the third electrode 32 is not provided, that is, the first electrode 31 is formed on only one side of the electrolyte membrane 2. Alternatively, the lithium recovery device 10 is provided with an electrode (not shown) separated from the electrolyte membrane 2 and the first electrode 31 in the supply tank 11 instead of the second electrode 4, and the positive electrode of the power supply 5 is attached to this electrode. It is also possible to connect and connect the negative electrode to the third electrode 32. In such a configuration, in the Li-containing aqueous solution SW, the reaction of the formula (3) occurs in the vicinity of the electrode separated from the electrolyte membrane 2, and the reaction of the formula (4) occurs in the vicinity of the electrolyte membrane 2. The reaction of the formula (1) occurs by integrating the reactions. Therefore, as in the embodiment shown in FIG. 2, Li + can be selectively conducted in the electrolyte membrane 2, and the movement of Li + per time is performed by increasing the voltage V of the power supply 5. The amount can be increased. However, when the negative electrode of the power source 5 is in contact with the electrolyte membrane 2, the constituent elements of the electrolyte membrane 2 tend to be reduced, so that the applied voltage V is preferably not very large. Further, since the Li-containing aqueous solution SW has high electron conductivity depending on the concentration of metal ions M n + and the like, the potential of the surface of the electrolyte membrane 2 on the supply tank 11 side becomes close to the positive electrode of the power supply 5, and the electrolyte membrane 2 The potential difference on both sides tends to be large.

〔第2実施形態〕
第1実施形態においては、電解質膜の片面側には電源を直接に接続しないことにより、電解質膜の両面の電位差を抑制する構成としている。しかし、リチウムの回収の進行に伴い、電子伝導性が高くなった回収槽側の水溶液を介して、電解質膜の回収槽側の面の電位が電源の負極に近付くようになる。したがって、印加電圧Vが大きいと、電解質膜の両面の電位差が、電解質膜を構成する金属イオンの一部が還元する(例えば、Ti4++e-→Ti3+)電位に到達して、電解質膜が電子e-を伝導するようになる虞がある。そこで、印加電圧に対して電解質膜の両面の電位差をいっそう抑制するために、以下の構成とした。以下、本発明の第2実施形態に係るリチウム回収装置およびリチウム回収方法について、図3を参照して説明する。第1実施形態(図1および図2参照)と同一の要素については同じ符号を付し、説明を省略する。
[Second Embodiment]
In the first embodiment, the potential difference between both sides of the electrolyte membrane is suppressed by not directly connecting the power supply to one side of the electrolyte membrane. However, as the recovery of lithium progresses, the potential of the surface of the electrolyte membrane on the recovery tank side approaches the negative electrode of the power supply through the aqueous solution on the recovery tank side where the electron conductivity is increased. Therefore, when the applied voltage V is large, the potential difference on both sides of the electrolyte membrane reaches the potential at which some of the metal ions constituting the electrolyte membrane are reduced (for example, Ti 4+ + e-→ Ti 3+ ), and the electrolyte There is a risk that the film will conduct electrons e- . Therefore, in order to further suppress the potential difference on both sides of the electrolyte membrane with respect to the applied voltage, the following configuration is used. Hereinafter, the lithium recovery device and the lithium recovery method according to the second embodiment of the present invention will be described with reference to FIG. The same elements as those in the first embodiment (see FIGS. 1 and 2) are designated by the same reference numerals, and the description thereof will be omitted.

(リチウム回収装置)
本発明の第2実施形態に係るリチウム回収装置10Aは、処理槽1、電解質膜(リチウムイオン伝導性電解質膜)2、電解質膜2の各面に被覆した第1電極31と第3電極32、第2電極4、ならびに、第1電源51と第2電源52を直列に接続した電源5Aを備える。すなわち本実施形態に係るリチウム回収装置10Aは、第1実施形態に係るリチウム回収装置10に対して、電源5に代えて電源5Aを備え、さらに電源5Aの電源51,52間に第3電極32を接続した構成である。
(Lithium recovery device)
The lithium recovery device 10A according to the second embodiment of the present invention includes a treatment tank 1, an electrolyte membrane (lithium ion conductive electrolyte membrane) 2, and a first electrode 31 and a third electrode 32 coated on each surface of the electrolyte membrane 2. The second electrode 4 and the power source 5A in which the first power source 51 and the second power source 52 are connected in series are provided. That is, the lithium recovery device 10A according to the present embodiment includes a power supply 5A instead of the power supply 5 with respect to the lithium recovery device 10 according to the first embodiment, and further, a third electrode 32 between the power supplies 51 and 52 of the power supply 5A. It is a configuration in which is connected.

第1電源51および第2電源52は、それぞれ直流電源装置であり、正極側に第1電源51、負極側に第2電源52を直列に接続して、電源5Aが構成されている。第1電源51は、正極が第1電極31に接続し、負極が第2電源52に接続すると共に第3電極32に接続する。すなわち第1電源51は、電解質膜2の両面に接触して設けられた第1電極31と第3電極32の間に接続されている。このように接続された第1電源51は、電解質膜2の両面の電位差を一定に保持するために設けられる。一方、第2電源52は、負極が第2電極4に接続する。すなわち、電源5A全体では、電源5と同様に、正極が第1電極31に接続し、負極が第2電極4に接続する。このように接続された第2電源52は、電源5Aによる印加電圧Vを設定するために設けられる。 The first power supply 51 and the second power supply 52 are DC power supply devices, respectively, and the first power supply 51 is connected in series on the positive electrode side and the second power supply 52 is connected in series on the negative electrode side to form a power supply 5A. In the first power source 51, the positive electrode is connected to the first electrode 31, the negative electrode is connected to the second power source 52, and the negative electrode is connected to the third electrode 32. That is, the first power supply 51 is connected between the first electrode 31 and the third electrode 32 provided in contact with both surfaces of the electrolyte membrane 2. The first power supply 51 connected in this way is provided to keep the potential difference on both sides of the electrolyte membrane 2 constant. On the other hand, in the second power supply 52, the negative electrode is connected to the second electrode 4. That is, in the entire power supply 5A, the positive electrode is connected to the first electrode 31 and the negative electrode is connected to the second electrode 4 as in the power supply 5. The second power supply 52 connected in this way is provided to set the voltage V applied by the power supply 5A.

(リチウム回収方法)
本発明の第2実施形態に係るリチウム回収方法は、電源5Aが電圧Vを印加することによって、第1実施形態と同様に、供給槽11内のLi含有水溶液SWでは下式(1)の反応、回収槽12内のLi回収用水溶液ASでは下式(2)の反応をそれぞれ生じて、Li含有水溶液SW中のLi+を電解質膜2内で伝導させてLi回収用水溶液AS中へ移動させる。本実施形態においては、第1電源51によって、電解質膜2を両面から挟む第1電極31と第3電極32との間の電位差が一定に保たれる。すなわち、第2電源52によって電源5A全体の電圧Vを大きくしても、また、Li回収用水溶液ASがLi+濃度の上昇等によって電子伝導性が高くなっても、電解質膜2の回収槽12側の面の電位は、第1電源51の負極に接続した第3電極32によって固定されているので第2電極4の電位に近付くことがない。したがって、第1電源51の電圧V1を、電解質膜2が電子伝導性を有する電位差未満に設定することにより、電源5Aの電圧Vが大きくても、電解質膜2が電子e-を伝導することがなく、Li+の回収速度を高くすることができる。

Figure 0007103626000006
(Lithium recovery method)
In the lithium recovery method according to the second embodiment of the present invention, when the power source 5A applies a voltage V, the reaction of the following formula (1) is carried out in the Li-containing aqueous solution SW in the supply tank 11 as in the first embodiment. In the Li recovery aqueous solution AS in the recovery tank 12, the reaction of the following formula (2) occurs, and Li + in the Li-containing aqueous solution SW is conducted in the electrolyte membrane 2 and moved into the Li recovery aqueous solution AS. .. In the present embodiment, the first power source 51 keeps the potential difference between the first electrode 31 and the third electrode 32 sandwiching the electrolyte membrane 2 from both sides constant. That is, even if the voltage V of the entire power source 5A is increased by the second power source 52, or the electron conductivity of the Li recovery aqueous solution AS increases due to an increase in Li + concentration or the like, the recovery tank 12 of the electrolyte film 2 Since the potential on the side surface is fixed by the third electrode 32 connected to the negative electrode of the first power supply 51, it does not approach the potential of the second electrode 4. Therefore, by setting the voltage V1 of the first power supply 51 to be less than the potential difference at which the electrolyte membrane 2 has electron conductivity, the electrolyte membrane 2 can conduct electrons e - even if the voltage V of the power supply 5A is large. However, the recovery rate of Li + can be increased.
Figure 0007103626000006

本実施形態に係るリチウム回収方法は、印加電圧Vが大きい場合に特に効果が高く、したがって、第2電源52の電圧V2が第1電源51の電圧V1よりも大きいことが好ましい(V1+V2=V)。第1電源51の電圧V1は、前記したように電解質膜2の電子伝導性に応じて設定すればよく、一方、下限は特に規定しないが0V超であることが好ましい。電解質膜2の両面の間で電位勾配があることにより、電解質膜2の供給槽11側の面に吸着した陽イオンであるLi+が、低電位の回収槽12側の面へ電解質膜2を伝導して移動し易い。 The lithium recovery method according to the present embodiment is particularly effective when the applied voltage V is large, and therefore it is preferable that the voltage V2 of the second power supply 52 is larger than the voltage V1 of the first power supply 51 (V1 + V2 = V). .. The voltage V1 of the first power supply 51 may be set according to the electron conductivity of the electrolyte membrane 2 as described above, while the lower limit is not particularly specified, but is preferably more than 0 V. Due to the potential gradient between both sides of the electrolyte membrane 2, Li + , which is a cation adsorbed on the surface of the electrolyte membrane 2 on the supply tank 11 side, causes the electrolyte membrane 2 to move to the surface of the low potential recovery tank 12 side. Easy to conduct and move.

(変形例)
第2実施形態に係るリチウム回収装置10Aは、第1実施形態の変形例と同様に、第2電極4に代えて、供給槽11内に電解質膜2および第1電極31から離間した電極(図示せず)を設けて、さらに第2電源52を第1電源51の正極側に接続して、供給槽11内の前記電極に第2電源52の正極を接続することもできる。このような構成でも、第2電源52の電圧V2を増加してLi+の時間あたりの移動量を増加させ得る。
(Modification example)
The lithium recovery device 10A according to the second embodiment has an electrode (FIG.) separated from the electrolyte membrane 2 and the first electrode 31 in the supply tank 11 instead of the second electrode 4, as in the modified example of the first embodiment. (Not shown) may be provided, and the second power supply 52 may be further connected to the positive electrode side of the first power supply 51 to connect the positive electrode of the second power supply 52 to the electrode in the supply tank 11. Even in such a configuration, the voltage V2 of the second power supply 52 can be increased to increase the amount of movement of Li + per hour.

第1、第2実施形態に係るリチウム回収装置10,10Aは、外部と供給槽11との間でLi含有水溶液SWを循環させる循環装置を備えてもよい。循環装置は、例えば、ポンプや、塵芥等を除去するフィルタ等を備える。特に、Li含有水溶液SWが海水や温泉水等である場合、これらの供給源から供給槽11内にLi含有水溶液SWを循環させながら電圧を印加することが好ましい。このような方法により、Li+の回収が進行してもLi含有水溶液SWのLi+濃度がほぼ一定に維持され、低濃度のLi水溶液であってもLi回収速度が低下し難く、長時間の連続運転が可能である。あるいは、一定時間の運転毎に、循環装置で供給槽11内のLi含有水溶液SWを交換してもよい。また、リチウム回収装置10,10Aは、供給槽11がフィルタ等を介して外部(例えば海中)に開放された構造であってもよい。 The lithium recovery devices 10 and 10A according to the first and second embodiments may include a circulation device that circulates the Li-containing aqueous solution SW between the outside and the supply tank 11. The circulation device includes, for example, a pump, a filter for removing dust and the like, and the like. In particular, when the Li-containing aqueous solution SW is seawater, hot spring water, or the like, it is preferable to apply a voltage while circulating the Li-containing aqueous solution SW from these supply sources into the supply tank 11. By such a method, the Li + concentration of the Li-containing aqueous solution SW is maintained almost constant even if the recovery of Li + progresses, and the Li recovery rate is unlikely to decrease even with a low-concentration Li aqueous solution for a long time. Continuous operation is possible. Alternatively, the Li-containing aqueous solution SW in the supply tank 11 may be replaced by the circulation device every fixed time of operation. Further, the lithium recovery devices 10 and 10A may have a structure in which the supply tank 11 is opened to the outside (for example, in the sea) via a filter or the like.

以上、本発明に係るリチウム回収装置およびリチウム回収方法について、本発明を実施するための形態について説明したが、以下に、本発明の効果を確認した実施例について説明する。なお、本発明はこの実施例および前記形態に限定されるものではなく、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。 The lithium recovery device and the lithium recovery method according to the present invention have been described above in terms of embodiments of the present invention, but examples of confirmed effects of the present invention will be described below. It should be noted that the present invention is not limited to this example and the above-described embodiment, and it goes without saying that various modifications, modifications, etc. based on these descriptions are also included in the gist of the present invention.

図1~3に示す、本発明の第1、第2実施形態に係るリチウム回収装置、および比較例として図7に示す従来のリチウム回収装置について、それぞれ一定時間の電圧印加によるリチウムの移動量を測定した。 For the lithium recovery device according to the first and second embodiments of the present invention shown in FIGS. 1 to 3, and the conventional lithium recovery device shown in FIG. 7 as a comparative example, the amount of lithium movement due to voltage application for a certain period of time is measured. It was measured.

(リチウム回収装置の作製)
リチウム回収装置は、電解質膜として、50mm×50mm、厚さ0.5mmの板状のLa0.57Li0.29TiO3(リチウムイオン伝導性セラミックスLLTO、東邦チタニウム(株)製)を使用した。この電解質膜の両面のそれぞれの中央部に、第1電極および第3電極として、厚さ10μm、幅0.5mm、間隔0.5mmの格子状の電極を19.5mm×20.5mmの大きさに形成し、さらにこの電極に接続する、電源に接続するためのリード線を形成した。第1電極、第3電極、およびリード線は、Ptペーストを電解質膜の表面にスクリーン印刷し、大気中において900℃で1h焼成して形成した。また、第2電極として、20mm×20mmのNiメッシュ電極を使用した。電極等を形成した電解質膜を、アクリル板製の処理槽内に装着して供給槽と回収槽に仕切り、回収槽内に、第2電極を電解質膜表面の第3電極に正対するように配置して(第2電極-電解質膜間距離:50mm)、リチウム回収装置とした。
(Manufacturing of lithium recovery device)
As the lithium recovery device, a plate-shaped La 0.57 Li 0.29 TiO 3 (lithium ion conductive ceramics LLTO, manufactured by Toho Titanium Co., Ltd.) having a thickness of 50 mm × 50 mm and a thickness of 0.5 mm was used as the electrolyte film. At the center of each of the two sides of the electrolyte membrane, grid-like electrodes having a thickness of 10 μm, a width of 0.5 mm, and an interval of 0.5 mm are provided as the first electrode and the third electrode in a size of 19.5 mm × 20.5 mm. A lead wire for connecting to a power source was formed, which was formed in the above and further connected to this electrode. The first electrode, the third electrode, and the lead wire were formed by screen-printing Pt paste on the surface of the electrolyte membrane and firing at 900 ° C. for 1 h in the air. Further, as the second electrode, a 20 mm × 20 mm Ni mesh electrode was used. The electrolyte membrane on which the electrodes and the like are formed is mounted in a processing tank made of an acrylic plate and partitioned into a supply tank and a recovery tank, and the second electrode is arranged in the recovery tank so as to face the third electrode on the surface of the electrolyte membrane. Then (distance between the second electrode and the electrolyte membrane: 50 mm), a lithium recovery device was used.

リチウム回収装置の供給槽にLi含有水溶液として1mol/lの水酸化リチウム水溶液を、回収槽にLi回収用水溶液として0.001mol/lの水酸化リチウム水溶液を、150mlずつ、第1電極、第2電極および第3電極が完全に浸るように投入した。 A 1 mol / l lithium hydroxide aqueous solution as a Li-containing aqueous solution was placed in the supply tank of the lithium recovery device, and a 0.001 mol / l lithium hydroxide aqueous solution as a Li recovery aqueous solution was placed in the recovery tank in an amount of 150 ml each at the first electrode and the second. It was charged so that the electrode and the third electrode were completely immersed.

(実施例1)
図2に示すように、電源の正極を第1電極に、負極を第2電極にそれぞれ接続し、第3電極には何も接続しない状態で直流電圧を印加した。電圧印加時に、電源に直列に接続した電流計(図示せず)により、電流値を計測した。そして、電圧を1h印加した後に、回収槽内の水溶液のLi濃度を、誘導結合プラズマ発光分析(ICP-OES)装置(Optima7000DV、(株)パーキンエルマー製)で測定し、Liの移動量を算出した。同様の実験を、印加電圧を1Vから10Vまで1V刻みで変化させて行った。なお、実験は、実施例2-1,2-2および比較例も含めて室温(24℃)で行った。
(Example 1)
As shown in FIG. 2, the positive electrode of the power supply was connected to the first electrode, the negative electrode was connected to the second electrode, and a DC voltage was applied without connecting anything to the third electrode. When the voltage was applied, the current value was measured with an ammeter (not shown) connected in series with the power supply. Then, after applying the voltage for 1 hour, the Li concentration of the aqueous solution in the recovery tank was measured by an inductively coupled plasma emission spectrometry (ICP-OES) apparatus (Optima 7000DV, manufactured by PerkinElmer Co., Ltd.), and the amount of movement of Li was calculated. did. A similar experiment was performed with the applied voltage varied from 1V to 10V in 1V increments. The experiment was carried out at room temperature (24 ° C.) including Examples 2-1 and 2-2 and Comparative Examples.

(実施例2-1)
図3に示すように、第1電源の正極を第1電極に、負極を第3電極および第2電源の正極にそれぞれ接続し、第2電源の負極を第2電極に接続して、第1電源と第2電源から直流電圧を印加した。また、電流計を、第2電源と第2電極の間に挿入して接続した(図示せず)。実施例1と同様に、電圧印加時に電流値を計測し、印加停止後に、回収槽内の水溶液のLi濃度を測定した。実施例2-1では、第1電源の電圧を2Vに固定し、第1電源と第2電源の電圧の和を印加電圧として、3Vから8Vまでの1V刻みとなるように第2電源の電圧を変化させて実験を行った。
(Example 2-1)
As shown in FIG. 3, the positive electrode of the first power supply is connected to the first electrode, the negative electrode is connected to the third electrode and the positive electrode of the second power supply, and the negative electrode of the second power supply is connected to the second electrode. A DC voltage was applied from the power source and the second power source. Further, an ammeter was inserted and connected between the second power supply and the second electrode (not shown). Similar to Example 1, the current value was measured when the voltage was applied, and the Li concentration of the aqueous solution in the recovery tank was measured after the application was stopped. In Example 2-1 the voltage of the first power supply is fixed to 2V, the sum of the voltages of the first power supply and the second power supply is used as the applied voltage, and the voltage of the second power supply is set in 1V increments from 3V to 8V. Was changed and the experiment was conducted.

(実施例2-2)
図3において、第1電源を0Vとした場合を模擬して、実施例2-1から第1電源を外して、第1電極と第3電極を短絡させて第2電源の正極に接続して、第2電源から直流電圧を印加した。実施例1と同様に、電圧印加時に電流値を計測し、印加停止後に、回収槽内の水溶液のLi濃度を測定した。実施例2-2では、印加電圧を3V,4V,10Vに設定して実験を行った。
(Example 2-2)
In FIG. 3, simulating the case where the first power supply is 0 V, the first power supply is removed from Example 2-1 and the first electrode and the third electrode are short-circuited and connected to the positive electrode of the second power supply. , A DC voltage was applied from the second power source. Similar to Example 1, the current value was measured when the voltage was applied, and the Li concentration of the aqueous solution in the recovery tank was measured after the application was stopped. In Example 2-2, the experiment was performed by setting the applied voltage to 3V, 4V, and 10V.

(比較例)
第2電極をリチウム回収装置から取り外し、図7に示すように、電源の正極を第1電極に、負極を第3電極にそれぞれ接続して、実施例1と同様に、電流値を計測しながら直流電圧を印加し、印加停止後に回収槽内の水溶液のLi濃度を測定した。比較例では、印加電圧を2V,3V,4Vに設定して実験を行った。
(Comparison example)
The second electrode is removed from the lithium recovery device, and as shown in FIG. 7, the positive electrode of the power supply is connected to the first electrode and the negative electrode is connected to the third electrode, and the current value is measured in the same manner as in Example 1. A DC voltage was applied, and after the application was stopped, the Li concentration of the aqueous solution in the recovery tank was measured. In the comparative example, the experiment was performed by setting the applied voltage to 2V, 3V, and 4V.

実施例1、実施例2-1、実施例2-2、および比較例のそれぞれについて、印加電圧毎に、1時間の電圧印加によるLi移動量を算出した。また、印加電圧および計測した電流値、ならびにLi移動量から、Li移動量1mgあたりの消費エネルギーを算出した。Liの時間あたりの移動量、およびLi移動量あたりの消費エネルギーを、電圧依存性のグラフで図4および図5に表す。 For each of Example 1, Example 2-1 and Example 2-2, and Comparative Example, the amount of Li movement due to voltage application for 1 hour was calculated for each applied voltage. In addition, the energy consumption per 1 mg of Li transfer amount was calculated from the applied voltage, the measured current value, and the Li transfer amount. The amount of movement of Li per time and the amount of energy consumed per amount of Li movement are shown in FIGS. 4 and 5 in a voltage-dependent graph.

電解質膜の両面に接続した第1電極と第3電極の間に電源を接続した比較例においては、Liの時間あたりの移動量は、印加電圧を2Vから3Vに増加させると増加したが、さらに4Vに増加させても3V印加時からほとんど変化しなかった。また、2V印加時では電流がほとんど流れず、すなわち電解質膜が電子伝導性を示さなかったが、3Vを印加すると電流が多く流れるようになって、Liの時間あたりの移動量が増加してもそれを大きく上回って消費エネルギーが増大した。4Vを印加すると電流値が3V印加時の約2倍に増大し、さらにLiの時間あたりの移動量がほとんど変化せず、これ以上、移動量を増加させることは困難であることが確認された。 In the comparative example in which the power supply was connected between the first electrode and the third electrode connected to both sides of the electrolyte membrane, the amount of movement of Li per hour increased when the applied voltage was increased from 2V to 3V, but further. Even if it was increased to 4V, there was almost no change from the time when 3V was applied. Further, when 2V was applied, almost no current flowed, that is, the electrolyte membrane did not show electron conductivity, but when 3V was applied, a large amount of current flowed, and even if the amount of movement of Li per hour increased. The energy consumption increased significantly beyond that. It was confirmed that when 4 V was applied, the current value increased about twice as much as when 3 V was applied, and the amount of movement of Li per hour hardly changed, and it was difficult to further increase the amount of movement. ..

電解質膜の片面に接続した第1電極と電解質膜から離間した第2電極との間に電源を接続した実施例1においては、印加電圧が3V以下ではLi+がほとんど移動しなかった。これは、第1電極と第2電極の間に、電解質膜だけでなく電子伝導性の低い極めて低濃度の水酸化リチウム水溶液が存在することにより、電解質膜の両面近傍の電位差が小さく、Li+が電解質膜を伝導するまでに至らなかったためと推測される。しかし、印加電圧が4V以上になると、Li+の移動量が十分に多くなり、さらに電圧に比例してLiの時間あたりの移動量が増加した。また、電圧の増加に伴い電流値が増加して一定量のLiを移動させるための消費エネルギーが漸増したが、その変化量は小さく、エネルギー効率の観点において問題ない範囲であった。消費エネルギーの増加は、主に、電源の両極に接続した第1電極と第2電極に発生する過電圧と、回収槽内の水酸化リチウム水溶液の電子伝導で生じる発熱(ジュール熱)によるエネルギー損失と考えられる。実施例1においては、比較例の印加電圧3V相当のLiの移動量を得るためには約6.3Vの電圧を要する。しかし、実施例1では、このような大きさの電圧を印加されても電解質膜に電子伝導がほとんど生じないので、Li+の移動に関与しない無駄な電流が流れず、比較例と比べて消費エネルギーが大幅に低減される。したがって、実施例1は、印加電圧を増加させることにより、Liの時間あたりの移動量を増加させてLiの回収を高速化することができるうえに、エネルギー効率がほとんど低下しない。 In Example 1 in which a power source was connected between the first electrode connected to one side of the electrolyte membrane and the second electrode separated from the electrolyte membrane, Li + hardly moved when the applied voltage was 3 V or less. This is because not only the electrolyte membrane but also an extremely low concentration lithium hydroxide aqueous solution having low electron conductivity exists between the first electrode and the second electrode, so that the potential difference near both sides of the electrolyte membrane is small, and Li + It is presumed that this was because it did not conduct the electrolyte film. However, when the applied voltage becomes 4 V or more, the amount of movement of Li + becomes sufficiently large, and the amount of movement of Li per hour increases in proportion to the voltage. Further, as the voltage increased, the current value increased and the energy consumption for moving a certain amount of Li gradually increased, but the amount of change was small and there was no problem in terms of energy efficiency. The increase in energy consumption is mainly due to the overvoltage generated in the first and second electrodes connected to both electrodes of the power supply and the energy loss due to heat generation (Joule heat) generated by the electron conduction of the lithium hydroxide aqueous solution in the recovery tank. Conceivable. In Example 1, a voltage of about 6.3 V is required to obtain the amount of movement of Li corresponding to the applied voltage of 3 V in the comparative example. However, in Example 1, since electron conduction hardly occurs in the electrolyte membrane even when a voltage of such a magnitude is applied, unnecessary current that is not involved in the movement of Li + does not flow and is consumed as compared with Comparative Example. Energy is significantly reduced. Therefore, in the first embodiment, by increasing the applied voltage, the amount of movement of Li per hour can be increased to speed up the recovery of Li, and the energy efficiency is hardly lowered.

第1電源と第2電源を直列に接続した電源を第1電極と第2電極の間に接続して、第3電極を第1電源と第2電源の間に接続した実施例2-1においては、電解質膜の両面に接続した第1電極と第3電極の間の電圧が第1電源により2Vを確保されているので、全体の印加電圧が3VでもLiの移動量が十分に多かった。さらに、比較例の3V印加時と異なり、電解質膜の電子伝導による電流がほとんど流れないので、エネルギー効率が良好であった。そして、実施例1と同様に、印加電圧に比例してLiの時間あたりの移動量が増加した。また、一定量のLiを移動させるための消費エネルギーは、電圧の増加に伴う変化量が実施例1よりも大きいものの十分に小さく、エネルギー効率の観点において問題ない範囲であった。 In Example 2-1 in which the power supply in which the first power supply and the second power supply are connected in series is connected between the first electrode and the second electrode, and the third electrode is connected between the first power supply and the second power supply. Since the voltage between the first electrode and the third electrode connected to both sides of the electrolyte membrane was secured at 2V by the first power supply, the amount of movement of Li was sufficiently large even when the total applied voltage was 3V. Further, unlike the case of applying 3V in the comparative example, the current due to the electron conduction of the electrolyte membrane hardly flows, so that the energy efficiency is good. Then, as in Example 1, the amount of movement of Li per hour increased in proportion to the applied voltage. Further, the energy consumption for moving a certain amount of Li was sufficiently small, although the amount of change with increasing voltage was larger than that of Example 1, and was within a range where there was no problem from the viewpoint of energy efficiency.

電解質膜の両面に接続した第1電極と第3電極を短絡させた実施例2-2においては、印加電圧が3Vでは実施例1と同様にLi+がほとんど移動せず、4V以上になると電圧に比例してLiの時間あたりの移動量が増加した。また、一定量のLiを移動させるための消費エネルギーも十分に小さく、実施例2-1と同様に電解質膜の電子伝導を抑制して、大きな電圧の印加によるLi回収の高速化の効果があるといえる。ただし、実施例2-2は、実施例2-1、さらに実施例1よりも、印加電圧に対してLiの時間あたりの移動量が少なかった。これは、電解質膜が両面を同電位に固定されて電位勾配のないことによると推測される。すなわち、実施例2-1では、第1電源により電解質膜の両面の間で2Vの電位勾配があるため、Li+の電解質膜中の移動が促進されたといえる。また、実施例1では、印加電圧が4V以上になると、回収槽内の水酸化リチウム水溶液に電子伝導を生じて、第2電極によって電解質膜の回収槽側(第3電極側)の面の電位が、電源の正極に接続された第1電極側の面よりも低くなって電位勾配を生じたと推測される。 In Example 2-2 in which the first electrode and the third electrode connected to both sides of the electrolyte membrane were short-circuited, Li + hardly moved when the applied voltage was 3 V, as in Example 1, and the voltage was increased to 4 V or more. The amount of movement of Li per hour increased in proportion to. In addition, the energy consumption for moving a certain amount of Li is sufficiently small, and as in Example 2-1 there is an effect of suppressing electron conduction in the electrolyte membrane and speeding up Li recovery by applying a large voltage. It can be said that. However, in Example 2-2, the amount of movement of Li per hour was smaller than that in Example 2-1 and Example 1. It is presumed that this is because the electrolyte membrane is fixed at the same potential on both sides and there is no potential gradient. That is, in Example 2-1 it can be said that the movement of Li + in the electrolyte membrane was promoted because the first power source provided a potential gradient of 2 V between both sides of the electrolyte membrane. Further, in Example 1, when the applied voltage becomes 4 V or more, electron conduction occurs in the lithium hydroxide aqueous solution in the recovery tank, and the potential of the surface of the electrolyte film on the recovery tank side (third electrode side) by the second electrode. However, it is presumed that the potential gradient was generated below the surface on the first electrode side connected to the positive electrode of the power supply.

前記の通り、実施例1では、電解質膜の回収槽側の面は、直接に電圧を印加されていないが、供給槽側の面に対して低電位であると推測された。そこで、実施例1について、第1電極と第3電極の間に電圧計を接続して、電解質膜の両面間の電位差を測定した。図6に示すように、実施例1の電解質膜の両面間の電位差は、印加電圧の増加に伴い漸増し、印加電圧が7V以上で、実施例2-1の固定された電位差である2Vにほぼ到達した。このように、実施例1は、実施例2-1と同様に電解質膜の両面間に電位差を生じることにより、Li+の電解質膜中での移動が促進された。一方で、実施例1は、印加電圧10V以下では至らなかったが、さらに大きな電圧を印加されると、電解質膜が電子伝導性を有するような両面の電位差に到達し、比較例のように、Liの時間あたりの移動量がそれ以上には増加し難くなると推測される。比較例によれば、電解質膜は、両面間の電位差が少なくとも3V以上になると電子伝導性を有する。これに対して、実施例2-1および実施例2-2は、印加電圧をさらに増加させても電解質膜が電子伝導性を有し難く、Liの時間あたりの移動量をいっそう増加させることができると推測される。また、実施例1で、Liの移動量が十分に多くなった4V印加時における電解質膜の両面間の電位差が1.1Vであったことから、実施例2-1においては、電解質膜の両面間の電位差すなわち第1電源の電圧が約1V以上であることが好ましいと推測される。 As described above, in Example 1, the surface of the electrolyte membrane on the recovery tank side was not directly applied with a voltage, but it was presumed to have a low potential with respect to the surface on the supply tank side. Therefore, in Example 1, a voltmeter was connected between the first electrode and the third electrode, and the potential difference between both sides of the electrolyte membrane was measured. As shown in FIG. 6, the potential difference between both sides of the electrolyte membrane of Example 1 gradually increases as the applied voltage increases, and when the applied voltage is 7 V or more, the potential difference becomes 2 V, which is the fixed potential difference of Example 2-1. Almost reached. As described above, in Example 1, the movement of Li + in the electrolyte membrane was promoted by generating a potential difference between both sides of the electrolyte membrane as in Example 2-1. On the other hand, in Example 1, the applied voltage did not reach 10 V or less, but when a larger voltage was applied, the potential difference on both sides was reached so that the electrolyte membrane had electron conductivity, and as in the comparative example, It is presumed that the amount of movement of Li per hour is unlikely to increase any more. According to the comparative example, the electrolyte membrane has electron conductivity when the potential difference between the two surfaces is at least 3 V or more. On the other hand, in Examples 2-1 and 2-2, even if the applied voltage is further increased, the electrolyte membrane is unlikely to have electron conductivity, and the amount of Li transferred per hour can be further increased. It is presumed that it can be done. Further, in Example 1, the potential difference between both sides of the electrolyte membrane when 4 V was applied when the amount of Li movement was sufficiently large was 1.1 V. Therefore, in Example 2-1 on both sides of the electrolyte membrane. It is presumed that the potential difference between them, that is, the voltage of the first power source is preferably about 1 V or more.

以上のことから、本発明の第1、第2実施形態に係るリチウム回収装置およびリチウム回収方法はいずれも、Liの回収の高速化と消費エネルギーの増大の抑制を実現することが確認された。さらに、電解質膜が電子伝導性を有するに至らない印加電圧であれば、構造の比較的簡易な本発明の第1実施形態に係るリチウム回収装置が好適であり、一方、Liの回収をより高速に行うためには、本発明の第2実施形態に係るリチウム回収装置が好適であるといえる。 From the above, it was confirmed that both the lithium recovery device and the lithium recovery method according to the first and second embodiments of the present invention realize high-speed recovery of Li and suppression of increase in energy consumption. Further, if the applied voltage does not allow the electrolyte membrane to have electron conductivity, the lithium recovery device according to the first embodiment of the present invention having a relatively simple structure is suitable, while Li recovery is faster. It can be said that the lithium recovery device according to the second embodiment of the present invention is suitable for this purpose.

10,10A リチウム回収装置
1 処理槽
11 供給槽(第1槽)
12 回収槽(第2槽)
2 電解質膜(リチウムイオン伝導性電解質膜)
31 第1電極(多孔質構造の電極)
32 第3電極(多孔質構造の電極)
4 第2電極(第2の電極)
5,5A 電源
51 第1電源
52 第2電源
AS Li回収用水溶液
SW Li含有水溶液
10,10A Lithium recovery device 1 Treatment tank 11 Supply tank (1st tank)
12 Recovery tank (2nd tank)
2 Electrolyte membrane (lithium ion conductive electrolyte membrane)
31 First electrode (electrode with porous structure)
32 Third electrode (electrode with a porous structure)
4 Second electrode (second electrode)
5,5A power supply 51 1st power supply 52 2nd power supply AS Li recovery aqueous solution SW Li-containing aqueous solution

Claims (8)

第1槽と第2槽とに仕切られた処理槽を備え、前記第2槽に収容した水または水溶液へ、前記第1槽に収容したリチウムイオンを含有する水溶液からリチウムイオンを移動させるリチウム回収装置であって、
前記処理槽を仕切るリチウムイオン伝導性電解質膜と、前記リチウムイオン伝導性電解質膜の前記第1槽側の面に接触させて設けられ、多孔質構造を有する第1電極と、前記第2槽内に前記リチウムイオン伝導性電解質膜から離間して設けられた第2電極と、前記第1電極に正極、前記第2電極に負極を接続する電源と、を備えることを特徴とするリチウム回収装置。
A treatment tank divided into a first tank and a second tank is provided, and lithium ions are transferred from the lithium ion-containing aqueous solution contained in the first tank to the water or aqueous solution contained in the second tank. It ’s a device,
The lithium ion conductive electrolyte membrane that partitions the treatment tank, the first electrode that is provided in contact with the surface of the lithium ion conductive electrolyte membrane on the first tank side and has a porous structure, and the inside of the second tank. A lithium recovery device comprising a second electrode provided separately from the lithium ion conductive electrolyte membrane , a positive electrode connected to the first electrode, and a power source connecting the negative electrode to the second electrode. ..
第1槽と第2槽とに仕切られた処理槽を備え、前記第2槽に収容した水または水溶液へ、前記第1槽に収容したリチウムイオンを含有する水溶液からリチウムイオンを移動させるリチウム回収装置であって、
前記処理槽を仕切るリチウムイオン伝導性電解質膜と、前記第1槽内に設けられた第1電極と、前記第2槽内に設けられた第2電極と、多孔質構造を有する第3電極と、前記第1電極に正極、前記第2電極に負極を接続する電源と、を備え、
前記電源、直列に接続した第1電源と第2電源とからなり、
前記第1電極および前記第2電極の一方は、多孔質構造を有し前記リチウムイオン伝導性電解質膜の一面に接触させて設けられ、他方は、前記リチウムイオン伝導性電解質膜から離間して設けられ、
前記第3電極は、前記リチウムイオン伝導性電解質膜の前記一面の反対側の面に接触させて設けられ、前記第1電源と前記第2電源の間に接続されていることを特徴とするリチウム回収装置。
A treatment tank divided into a first tank and a second tank is provided, and lithium ions are transferred from the lithium ion-containing aqueous solution contained in the first tank to the water or aqueous solution contained in the second tank. It ’s a device,
A lithium ion conductive electrolyte film that partitions the treatment tank, a first electrode provided in the first tank, a second electrode provided in the second tank, and a third electrode having a porous structure. A power source for connecting a positive electrode to the first electrode and a negative electrode to the second electrode is provided.
The power supply consists of a first power supply and a second power supply connected in series.
One of the first electrode and the second electrode has a porous structure and is provided in contact with one surface of the lithium ion conductive electrolyte membrane, and the other is provided apart from the lithium ion conductive electrolyte membrane. Be,
The third electrode is provided in contact with the surface opposite to the one surface of the lithium ion conductive electrolyte membrane, and is connected between the first power source and the second power source. Lithium recovery device.
前記第1電極は、前記リチウムイオン伝導性電解質膜の前記第1槽側の面に接触させて設けられて多孔質構造を有し、
前記第2電極は、前記リチウムイオン伝導性電解質膜から離間して設けられていることを特徴とする請求項に記載のリチウム回収装置。
The first electrode is provided in contact with the surface of the lithium ion conductive electrolyte membrane on the first tank side and has a porous structure.
The lithium recovery device according to claim 2 , wherein the second electrode is provided apart from the lithium ion conductive electrolyte membrane.
リチウムイオンを含有する水溶液を、外部と前記第1槽内との間で循環させる循環手段を備えることを特徴とする請求項1ないし請求項のいずれか一項に記載のリチウム回収装置。 The lithium recovery device according to any one of claims 1 to 3 , further comprising a circulation means for circulating an aqueous solution containing lithium ions between the outside and the inside of the first tank. リチウムイオン伝導性電解質膜で第1槽と第2槽とに仕切られた処理槽において、前記第2槽に収容した水または水溶液へ、前記第1槽に収容したリチウムイオンを含有する水溶液からリチウムイオンを移動させるリチウム回収方法であって、
前記リチウムイオン伝導性電解質膜の前記第1槽の側の面に接触させて設けられた多孔質構造の電極と、前記第2槽内に前記リチウムイオン伝導性電解質膜に離間して対向するように設けられた第2の電極と、の間に前記第1槽の側を正極として接続した電源が、電圧を印加することを特徴とするリチウム回収方法。
In a treatment tank divided into a first tank and a second tank by a lithium ion conductive electrolyte membrane, lithium is added to the water or aqueous solution contained in the second tank from the lithium ion-containing aqueous solution contained in the first tank. It is a lithium recovery method that moves ions.
An electrode having a porous structure provided in contact with the surface of the lithium ion conductive electrolyte membrane on the side of the first tank is opposed to the lithium ion conductive electrolyte membrane in the second tank so as to be separated from each other. A lithium recovery method, characterized in that a voltage is applied to a power source connected to a second electrode provided in the above with the side of the first tank as a positive electrode.
リチウムイオン伝導性電解質膜で第1槽と第2槽とに仕切られた処理槽において、前記第2槽に収容した水または水溶液へ、前記第1槽に収容したリチウムイオンを含有する水溶液からリチウムイオンを移動させるリチウム回収方法であって、
前記リチウムイオン伝導性電解質膜の両面にそれぞれ接触させて設けられた多孔質構造の電極同士の間に、前記第1槽の側を正極として接続した第1電源と、
前記第1電源に直列に接続すると共に、前記第1槽または前記第2槽の一方の槽の側に設けられた前記多孔質構造の電極と、前記一方の槽内に前記多孔質構造の電極および前記リチウムイオン伝導性電解質膜から離間して設けられた第2の電極との間に接続した第2電源と、が電圧を印加することを特徴とするリチウム回収方法。
In a treatment tank divided into a first tank and a second tank by a lithium ion conductive electrolyte membrane, lithium is added to the water or aqueous solution contained in the second tank from the lithium ion-containing aqueous solution contained in the first tank. It is a lithium recovery method that moves ions.
A first power source in which the side of the first tank is connected as a positive electrode between electrodes having a porous structure provided in contact with both sides of the lithium ion conductive electrolyte membrane.
An electrode having a porous structure, which is connected in series to the first power source and provided on the side of one of the first tank or the second tank, and an electrode having the porous structure in the one tank. A method for recovering lithium , which comprises applying a voltage to a second power source connected to the second electrode provided apart from the lithium ion conductive electrolyte membrane.
前記第2の電極が前記第2槽内に設けられていることを特徴とする請求項に記載のリチウム回収方法。 The lithium recovery method according to claim 6 , wherein the second electrode is provided in the second tank. リチウムイオンを含有する水溶液を、外部と前記第1槽内との間で循環させながら、前
記電圧を印加することを特徴とする請求項ないし請求項のいずれか一項に記載のリチウム回収方法。
The lithium recovery according to any one of claims 5 to 7 , wherein the voltage is applied while circulating the aqueous solution containing lithium ions between the outside and the inside of the first tank. Method.
JP2018030181A 2018-02-22 2018-02-22 Lithium recovery device and lithium recovery method Active JP7103626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018030181A JP7103626B2 (en) 2018-02-22 2018-02-22 Lithium recovery device and lithium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018030181A JP7103626B2 (en) 2018-02-22 2018-02-22 Lithium recovery device and lithium recovery method

Publications (2)

Publication Number Publication Date
JP2019141807A JP2019141807A (en) 2019-08-29
JP7103626B2 true JP7103626B2 (en) 2022-07-20

Family

ID=67771635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018030181A Active JP7103626B2 (en) 2018-02-22 2018-02-22 Lithium recovery device and lithium recovery method

Country Status (1)

Country Link
JP (1) JP7103626B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022009905A1 (en) 2020-07-07 2022-01-13
JPWO2022239864A1 (en) 2021-05-14 2022-11-17
JPWO2023003044A1 (en) 2021-07-21 2023-01-26
WO2023027190A1 (en) 2021-08-27 2023-03-02 国立大学法人弘前大学 Lithium recovery device and lithium recovery method
WO2023190771A1 (en) * 2022-03-31 2023-10-05 国立大学法人弘前大学 Lithium isotope concentration device, multi-stage lithium isotope concentration device, and lithium isotope concentration method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245672A (en) 2002-02-25 2003-09-02 Nishinippon Environmental Energy Co Inc Electrolytic device for sodium solution and sodium recovery system using the device
US20120085658A1 (en) 2010-10-08 2012-04-12 Sai Bhavaraju Electrochemical systems and methods for operating an electrochemical cell with an acidic anolyte
JP2014532561A (en) 2012-08-27 2014-12-08 シームス バイオニックス インコーポレイテッド Acid water electrolyzer and method of using the acid water
JP2015034315A (en) 2013-08-08 2015-02-19 独立行政法人日本原子力研究開発機構 Apparatus and method for recovery of metal ion

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3667405B2 (en) * 1995-11-01 2005-07-06 ホシザキ電機株式会社 Electrolyzed water generator
JPH09262584A (en) * 1996-03-28 1997-10-07 Mizu Kk Electrolytic water producing apparatus and electrolytic water producing unit
JPH11169856A (en) * 1996-06-04 1999-06-29 Mizu Kk Electrolytic water producing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245672A (en) 2002-02-25 2003-09-02 Nishinippon Environmental Energy Co Inc Electrolytic device for sodium solution and sodium recovery system using the device
US20120085658A1 (en) 2010-10-08 2012-04-12 Sai Bhavaraju Electrochemical systems and methods for operating an electrochemical cell with an acidic anolyte
JP2014532561A (en) 2012-08-27 2014-12-08 シームス バイオニックス インコーポレイテッド Acid water electrolyzer and method of using the acid water
JP2015034315A (en) 2013-08-08 2015-02-19 独立行政法人日本原子力研究開発機構 Apparatus and method for recovery of metal ion

Also Published As

Publication number Publication date
JP2019141807A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP7103626B2 (en) Lithium recovery device and lithium recovery method
JP7029798B2 (en) Lithium isotope concentrator and multi-stage lithium isotope concentrator, and lithium isotope enrichment method
US8460814B2 (en) Fluid-surfaced electrode
US9932653B2 (en) Metal ion recovery device and metal ion recovery method
JP5550073B2 (en) Lithium-air battery comprising a cation exchange membrane between a solid electrolyte membrane and an electrolyte for an air electrode
US20110027638A1 (en) Fluid-surfaced electrode
US20110027639A1 (en) Fluid-surfaced electrode
JP5751589B2 (en) An open-type lithium-air battery using a metal mesh, a metal film, or a sintered body of a metal powder and a solid electrolyte as an air electrode
KR101163996B1 (en) a redox flow secondary cell having metal foam electrodes
Tehrani et al. Application of electrodeposited cobalt hexacyanoferrate film to extract energy from water salinity gradients
US20140027301A1 (en) Selective reductive electrowinning apparatus and method
JP6211800B2 (en) Electrolyte flow type secondary battery
JP2016122554A (en) Vanadium active material liquid and vanadium redox battery
WO2017106215A1 (en) Electrochemical cells and batteries
JP2017505229A (en) Apparatus for removing ions from water and method of making the apparatus
WO2022239864A1 (en) Lithium recovery device and lithium recovery method
WO2023027190A1 (en) Lithium recovery device and lithium recovery method
JP2015051421A (en) Electrodialyzer for seawater or the like composed of carbon electrode
US20220176320A1 (en) Metal ion recovery device, metal recovery system, and metal ion recovery method
JP2008041421A (en) Secondary battery
WO2022009905A1 (en) Lithium isotope concentration device, multi-stage lithium isotope concentration device, and lithium isotope concentration method
KR20140023967A (en) Alkali metal ion battery using alkali metal conductive ceramic separator
JP2011184793A (en) Method and device for generating hydrogen
WO2023190990A1 (en) Lithium recovery device and lithium recovery method
WO2023003044A1 (en) Lithium isotope concentration device, multi-stage lithium isotope concentration device, and lithium isotope concentration method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7103626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150