JP2011184793A - Method and device for generating hydrogen - Google Patents

Method and device for generating hydrogen Download PDF

Info

Publication number
JP2011184793A
JP2011184793A JP2010136275A JP2010136275A JP2011184793A JP 2011184793 A JP2011184793 A JP 2011184793A JP 2010136275 A JP2010136275 A JP 2010136275A JP 2010136275 A JP2010136275 A JP 2010136275A JP 2011184793 A JP2011184793 A JP 2011184793A
Authority
JP
Japan
Prior art keywords
porous body
electrodes
electrode
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010136275A
Other languages
Japanese (ja)
Inventor
Masakazu Sugimoto
正和 杉本
Masashi Hatta
勝志 八田
Hitoko Kanai
仁子 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquafairy Corp
Original Assignee
Aquafairy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquafairy Corp filed Critical Aquafairy Corp
Priority to JP2010136275A priority Critical patent/JP2011184793A/en
Priority to TW099120860A priority patent/TWI465608B/en
Publication of JP2011184793A publication Critical patent/JP2011184793A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for generating hydrogen, which efficiently performs hydrogen generation reaction on both electrodes for a long period of time. <P>SOLUTION: The device for generating hydrogen includes an anode 1 comprising magnesium and aluminum, a cathode 2, a porous body 3 which is arranged in contact with the both electrodes and retains an electrolyte aqueous solution 4 therein and a means 5 which conducts electricity between the both electrodes or applies a voltage between both the electrodes, wherein as the cathode 2, the one including magnesium or aluminum is preferable. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電極反応を利用した水素発生方法および水素発生装置に関し、特に燃料電池に水素を供給して発電するための技術として有用である。   The present invention relates to a hydrogen generation method and a hydrogen generation apparatus using an electrode reaction, and is particularly useful as a technique for generating power by supplying hydrogen to a fuel cell.

従来、水を供給して水素ガスを発生させる水素発生剤としては、鉄、アルミニウム等の金属を主成分とするものが知られている。なかでも、アルミニウム等の金属を用いる水素発生方法は、水素発生剤の原料コストが安価であるという利点がある。しかし、アルミニウムを用いる場合、室温では、粒子を小さくしないと反応性が低く、また、水との反応の際にアルミ表面に被膜が生成して、反応が進みにくくなるという問題があった。   2. Description of the Related Art Conventionally, as a hydrogen generating agent that supplies water to generate hydrogen gas, a material mainly composed of a metal such as iron or aluminum is known. Among these, the hydrogen generation method using a metal such as aluminum has an advantage that the raw material cost of the hydrogen generator is low. However, when aluminum is used, there is a problem that at room temperature, if the particles are not made small, the reactivity is low, and a film is formed on the aluminum surface upon reaction with water, making the reaction difficult to proceed.

一方、特許文献1には、マグネシウムをアノード極とし、不活性金属をカソード極として、両極を塩水に浸漬して電池を構成し、両極の電流を制御することで、水素発生量を調整する水素発生方法が開示されている。   On the other hand, Patent Document 1 discloses a battery in which magnesium is used as an anode electrode, an inert metal is used as a cathode electrode, and both electrodes are immersed in salt water to control the current of both electrodes, thereby adjusting the hydrogen generation amount. A method of generation is disclosed.

また、特許文献2には、マグネシウムやアルミニウム等をアノード極とし、不活性金属をカソード極として、両極を電解質水溶液に浸漬して水の電気分解を行うことで、水素を発生させる水素発生方法が開示されている。   Patent Document 2 discloses a hydrogen generation method for generating hydrogen by electrolyzing water by immersing both electrodes in an aqueous electrolyte solution using magnesium or aluminum as an anode electrode, an inert metal as a cathode electrode, and both electrodes in an electrolyte aqueous solution. It is disclosed.

更に、特許文献3には、水を電気分解してイオン水を生成させる際に、不織布で電解隔膜を形成する装置が開示されている。この不織布は、両側の電極から離れた位置に配置されている。   Furthermore, Patent Document 3 discloses an apparatus for forming an electrolytic diaphragm with a nonwoven fabric when electrolyzing water to generate ionic water. This nonwoven fabric is arrange | positioned in the position away from the electrode of both sides.

米国特許第3892653号公報U.S. Pat. No. 3,892,653 米国公開2004/9392号公報US Publication No. 2004/9392 特開平10−235357号公報Japanese Patent Laid-Open No. 10-235357

しかしながら、特許文献1に記載された水素発生方法では、カソード極においてカソード極を構成する金属の反応が生じないため、水素発生量が少なくなるという問題があった。また、特許文献2に記載された水素発生方法では、同様にカソード極を構成する金属の反応が生じないため、十分な水素発生量を確保する上で、電気分解のために供給する電力を大きくする必要があった。   However, the hydrogen generation method described in Patent Document 1 has a problem that the amount of hydrogen generation is reduced because the reaction of the metal constituting the cathode electrode does not occur in the cathode electrode. Further, in the hydrogen generation method described in Patent Document 2, the reaction of the metal constituting the cathode electrode does not occur in the same manner. Therefore, in order to secure a sufficient hydrogen generation amount, the power supplied for electrolysis is increased. There was a need to do.

その結果、電気分解による水素発生方法では、発生した水素によって燃料電池で発電を行いながら、その電力で電気分解を行って発電を継続することが不可能であった。つまり、燃料電池による発電電力が、電気分解の消費電力を超えること、即ち電力収支をプラスにすることが不可能であった。   As a result, in the method for generating hydrogen by electrolysis, it is impossible to continue power generation by performing electrolysis with the electric power while generating power with the fuel cell using the generated hydrogen. That is, it has been impossible for the power generated by the fuel cell to exceed the power consumption of electrolysis, that is, to make the power balance positive.

一方、電解隔膜として不織布等を用いる際に、特許文献3に記載のように、不織布等と電極とを離間して配置すると、水素発生の際の消費電力が大きく、上記と同様に電力収支をプラスになり難いことが判明した。   On the other hand, when using a nonwoven fabric or the like as the electrolytic diaphragm, as described in Patent Document 3, if the nonwoven fabric and the electrode are arranged apart from each other, the power consumption during hydrogen generation is large, and the power balance is similar to the above. It turned out to be difficult to be positive.

そこで、本発明の目的は、両電極での水素発生反応を、効率良く長時間生じさせることができる水素発生方法および水素発生装置を提供することにある。   Therefore, an object of the present invention is to provide a hydrogen generation method and a hydrogen generation apparatus capable of efficiently generating a hydrogen generation reaction at both electrodes for a long time.

本発明者らは、水の電気分解反応を利用した水素発生方法について鋭意研究したところ、電極に多孔質体を接触させて両極間に介在させることにより、両電極での水素発生反応の効率が良くなり、また長時間の水素発生が行えることを見出し、本発明を完成するに至った。   The inventors of the present invention have intensively studied a hydrogen generation method using an electrolysis reaction of water. As a result, the efficiency of the hydrogen generation reaction at both electrodes can be improved by bringing a porous body into contact with the electrode and interposing between both electrodes. As a result, it was found that hydrogen generation can be performed for a long time, and the present invention has been completed.

即ち、本発明の水素発生方法は、マグネシウム又はアルミニウムを含むアノード極と、カソード極とに、多孔質体を接触させて両極間に介在させ、その多孔質体に電解質水溶液を保持させた状態で、前記両極を導通させるか又は前記両極に電圧を印加して、水素を発生させることを特徴とする。その際、前記カソード極がマグネシウム又はアルミニウムを含むことが好ましい。   That is, in the hydrogen generation method of the present invention, a porous body is brought into contact with an anode electrode containing magnesium or aluminum and a cathode electrode and interposed between both electrodes, and an electrolyte aqueous solution is held in the porous body. The hydrogen is generated by conducting the electrodes or applying a voltage to the electrodes. In that case, it is preferable that the said cathode pole contains magnesium or aluminum.

本発明の水素発生方法によると、電極に多孔質体を接触させて両極間に介在させているため、多孔質体が接触しない場合と比較して、アノード極での反応に伴う酸性度と、カソード極での反応に伴うアルカリ性度とが維持されやすくなり、酸性条件での電極の自己反応(水素発生反応)が促進されて、水素発生反応が効率良く生じると考えられる。カソード極がマグネシウム又はアルミニウムを含む場合には、さらに、カソード極において、アルカリ性条件での電極の自己反応(水素発生反応)が促進されて、水素発生反応が効率良く生じると考えられる。また、反応で生成する成分(例えば金属水酸化物)が、電極表面に付着せずに多孔質体の空孔内部に取り込まれるため、副生成物による反応阻害を抑制することができ、長時間の水素発生が行えると考えられる。その結果、両電極での水素発生反応を、効率良く長時間生じさせることができる水素発生方法を提供することができる。   According to the hydrogen generation method of the present invention, since the porous body is brought into contact with the electrode and interposed between the electrodes, the acidity associated with the reaction at the anode electrode compared to the case where the porous body does not contact, It is considered that the alkalinity accompanying the reaction at the cathode electrode is easily maintained, the self-reaction (hydrogen generation reaction) of the electrode under acidic conditions is promoted, and the hydrogen generation reaction is efficiently generated. When the cathode electrode contains magnesium or aluminum, it is considered that the self-reaction (hydrogen generation reaction) of the electrode under alkaline conditions is further promoted at the cathode electrode, and the hydrogen generation reaction is efficiently generated. In addition, since a component generated by the reaction (for example, a metal hydroxide) is taken into the pores of the porous body without adhering to the electrode surface, reaction inhibition by by-products can be suppressed, and a long time It is thought that hydrogen can be generated. As a result, it is possible to provide a hydrogen generation method capable of efficiently generating a hydrogen generation reaction at both electrodes for a long time.

本発明において、前記多孔質体が、空孔率30〜99.9%の多孔質体であることが好ましい。この範囲の空孔率であると、アノード極での反応に伴う酸性度と、カソード極での反応に伴うアルカリ性度とがより維持されやすく、また、副生成物による反応阻害を抑制する観点からも好ましい。   In the present invention, the porous body is preferably a porous body having a porosity of 30 to 99.9%. When the porosity is within this range, the acidity associated with the reaction at the anode electrode and the alkalinity associated with the reaction at the cathode electrode are more easily maintained, and from the viewpoint of suppressing reaction inhibition by by-products. Is also preferable.

本発明において、前記多孔質体が、弾性変形可能なスポンジ状樹脂からなる多孔質体であることが好ましい。弾性変形可能なスポンジ状樹脂を用いると、弾性復元力によって電極表面との接触が均一になり易く、上記の作用効果をより安定して発現する事ができる。   In the present invention, the porous body is preferably a porous body made of an elastically deformable sponge-like resin. When an elastically deformable sponge-like resin is used, the contact with the electrode surface tends to be uniform due to the elastic restoring force, and the above-described effects can be expressed more stably.

本発明において、前記アノード極と前記カソード極とが板状に形成され、両極間に前記多孔質体が介在することが好ましい。これにより、薄型の電極ユニットが構成されて、一定体積内に配置する電極の面積、即ち電極ユニットの体積密度を高めることができる。   In the present invention, the anode electrode and the cathode electrode are preferably formed in a plate shape, and the porous body is interposed between the electrodes. Thereby, a thin electrode unit is comprised and the area of the electrode arrange | positioned in a fixed volume, ie, the volume density of an electrode unit, can be raised.

本発明において、前記両極の周囲にも多孔質体が存在し、その多孔質体が前記両極間に介在する多孔質体と連続一体化したものであることがより好ましい。この構成によると、周囲の多孔質体から電極間に介在する多孔質体へと効率良く電解質水溶液を供給して、効率良く反応を継続することができる。   In the present invention, it is more preferable that a porous body exists around the two electrodes, and the porous body is continuously integrated with a porous body interposed between the two electrodes. According to this configuration, the aqueous electrolyte solution can be efficiently supplied from the surrounding porous body to the porous body interposed between the electrodes, and the reaction can be continued efficiently.

一方、本発明の水素発生装置は、マグネシウム又はアルミニウムを含むアノード極と、カソード極と、前記両極に接触して配置され電解質水溶液を保持させた多孔質体と、前記両極を導通させるか又は前記両極に電圧を印加する手段と、を備えることを特徴とする。その際、前記カソード極がマグネシウム又はアルミニウムを含むことが好ましい。   On the other hand, the hydrogen generator of the present invention includes an anode electrode containing magnesium or aluminum, a cathode electrode, a porous body disposed in contact with both electrodes and holding an aqueous electrolyte solution, and electrically connecting the electrodes. And means for applying a voltage to both electrodes. In that case, it is preferable that the said cathode pole contains magnesium or aluminum.

本発明の水素発生装置によると、電極に多孔質体を接触させて両極間に介在させているため、多孔質体が接触しない場合と比較して、アノード極での反応に伴う酸性度と、カソード極での反応に伴うアルカリ性度とが維持されやすくなり、酸性条件での電極の自己反応(水素発生反応)が促進されて、水素発生反応が効率良く生じると考えられる。カソード極がマグネシウム又はアルミニウムを含む場合には、さらに、カソード極において、アルカリ性条件での電極の自己反応(水素発生反応)が促進されて、水素発生反応が効率良く生じると考えられる。また、反応で生成する成分(例えば金属水酸化物)が、電極表面に付着せずに多孔質体の空孔内部に取り込まれるため、副生成物による反応阻害を抑制することができ、長時間の水素発生が行えると考えられる。その結果、両電極での水素発生反応を、効率良く長時間生じさせることができる水素発生装置を提供することができる。   According to the hydrogen generator of the present invention, since the porous body is brought into contact with the electrode and interposed between both electrodes, compared with the case where the porous body does not contact, the acidity accompanying the reaction at the anode electrode, It is considered that the alkalinity accompanying the reaction at the cathode electrode is easily maintained, the self-reaction (hydrogen generation reaction) of the electrode under acidic conditions is promoted, and the hydrogen generation reaction is efficiently generated. When the cathode electrode contains magnesium or aluminum, it is considered that the self-reaction (hydrogen generation reaction) of the electrode under alkaline conditions is further promoted at the cathode electrode, and the hydrogen generation reaction is efficiently generated. In addition, since a component generated by the reaction (for example, a metal hydroxide) is taken into the pores of the porous body without adhering to the electrode surface, reaction inhibition by by-products can be suppressed, and a long time It is thought that hydrogen can be generated. As a result, it is possible to provide a hydrogen generator capable of efficiently generating a hydrogen generation reaction at both electrodes for a long time.

本発明の水素発生装置の例を示す縦断面図The longitudinal cross-sectional view which shows the example of the hydrogen generator of this invention 本発明の水素発生装置の例を示す横断面図Cross-sectional view showing an example of the hydrogen generator of the present invention 実施例1における結果を示すグラフThe graph which shows the result in Example 1 実施例1〜2及び比較例1における結果を示すグラフThe graph which shows the result in Examples 1-2 and Comparative Example 1 実施例3及び比較例2における結果を示すグラフThe graph which shows the result in Example 3 and Comparative Example 2 実施例4及び比較例3における結果を示すグラフThe graph which shows the result in Example 4 and Comparative Example 3 実施例5及び比較例4における結果を示すグラフThe graph which shows the result in Example 5 and Comparative Example 4 実施例3−1、4−1、及び5−1における結果を示すグラフGraph showing results in Examples 3-1, 4-1, and 5-1. (a)pH測定試験に用いる装置および(b)測定結果を示すグラフ(A) Apparatus used for pH measurement test and (b) Graph showing measurement results 実施例6における結果を示すグラフThe graph which shows the result in Example 6

本発明の水素発生方法は、マグネシウム又はアルミニウムを含むアノード極と、カソード極とに、多孔質体を接触させて両極間に介在させ、その多孔質体に電解質水溶液を保持させた状態で、前記両極を導通させるか又は前記両極に電圧を印加して、水素を発生させる。ここで、アノード極とは、電子を放出する電極反応を伴う極であり、カソード極とは、電子を受け取る電極反応を伴う極である。
カソード極としては、マグネシウム、アルミニウム、亜鉛、鉄、ニッケル、錫、鉛などの標準電極電位の低い金属の他、白金、金等の貴金属を使用することも可能である。但し、水素発生の効率や純度の観点から、マグネシウム、アルミニウム、ニッケル、亜鉛、鉄、銀、白金、金が好ましい。
In the hydrogen generation method of the present invention, the porous body is brought into contact with an anode electrode containing magnesium or aluminum and the cathode electrode and interposed between both electrodes, and the electrolyte solution is retained in the porous body. Hydrogen is generated by conducting both electrodes or applying a voltage to both electrodes. Here, the anode electrode is an electrode with an electrode reaction that emits electrons, and the cathode electrode is an electrode with an electrode reaction that receives electrons.
As the cathode electrode, it is possible to use a metal having a low standard electrode potential such as magnesium, aluminum, zinc, iron, nickel, tin, lead, or a noble metal such as platinum or gold. However, from the viewpoint of hydrogen generation efficiency and purity, magnesium, aluminum, nickel, zinc, iron, silver, platinum, and gold are preferable.

両極に電圧を印加する場合、マグネシウムを含むアノード極とマグネシウムを含むカソード極との組合せ、又はアルミニウムを含むアノード極とアルミニウムを含むカソード極との組合せが好ましいが、マグネシウムを含むアノード極とアルミニウムを含むカソード極との組合せ、又はアルミニウムを含むアノード極とマグネシウムを含むカソード極との組合せでも、水素発生は可能である。   When voltage is applied to both electrodes, a combination of an anode electrode containing magnesium and a cathode electrode containing magnesium, or a combination of an anode electrode containing aluminum and a cathode electrode containing aluminum is preferable. Hydrogen generation is also possible by a combination with a cathode electrode containing or a combination of an anode electrode containing aluminum and a cathode electrode containing magnesium.

両極を導通させる場合、マグネシウムを含むアノード極とアルミニウムを含むカソード極との組合せ、又はマグネシウムを含むアノード極とニッケルを含むカソード極との組合せが好ましい。同じ金属同士の組合せでは電位差が殆ど又は全く生じないので、上記のように両極に電圧を印加するのが好ましい。   When conducting both electrodes, a combination of an anode electrode containing magnesium and a cathode electrode containing aluminum, or a combination of an anode electrode containing magnesium and a cathode electrode containing nickel is preferable. Since there is little or no potential difference between combinations of the same metals, it is preferable to apply a voltage to both electrodes as described above.

本発明では、電子の授受を伴う電極反応と、電子の授受を伴わない自己反応(自発反応)との両者が生じ得る。電子の授受を伴う電極反応は、印加する電力の消費又は電池として発生する電力の消費を伴うため、両電極での水素発生反応を効率良く行うためには、自己反応の比率を高めることが重要になる。これらの反応は、例えば次の通りである。   In the present invention, both an electrode reaction accompanied by electron exchange and a self-reaction (spontaneous reaction) not accompanied by electron exchange can occur. Since electrode reactions involving the transfer of electrons involve the consumption of applied power or the power generated as batteries, it is important to increase the ratio of self-reactions in order to efficiently perform the hydrogen generation reaction at both electrodes. become. These reactions are as follows, for example.

例えば、両極がアルミニウムの場合、アノード極では、
Al+3OH→Al(OH)+3e(水の電気分解)と、
2Al+6HO→2Al(OH)+3H↑(Al活性化による自己反応)
が生じると考えられる。
For example, if both electrodes are aluminum,
Al + 3OH → Al (OH) 3 + 3e (electrolysis of water),
2Al + 6H 2 O → 2Al (OH) 3 + 3H 2 ↑ (self-reaction by Al activation)
Is considered to occur.

また、カソード極では
2H+2e→H↑(水の電気分解)と、
2Al+6HO→2Al(OH)+3H↑(Al活性化による自己反応)
が生じると考えられる。
In the cathode electrode, 2H + + 2e → H 2 ↑ (electrolysis of water),
2Al + 6H 2 O → 2Al (OH) 3 + 3H 2 ↑ (self-reaction by Al activation)
Is considered to occur.

マグネシウムを使用する場合、アノード極では、
Mg+2OH→Mg(OH)+2e(水の電気分解)、
Mg+2HO→Mg(OH)+H↑(Mg活性化による自己反応)
が生じると考えられる。カソード極に使用する場合は、同様の自己反応と、アルミニウムの場合と同じ水の電気分解反応が生じると考えられる。
When using magnesium, at the anode,
Mg + 2OH → Mg (OH) 2 + 2e (electrolysis of water),
Mg + 2H 2 O → Mg (OH) 2 + H 2 ↑ (Self-reaction by Mg activation)
Is considered to occur. When used for the cathode, the same self-reaction and the same water electrolysis reaction as in the case of aluminum are considered to occur.

上記の反応に伴い、アノード極の近傍では水酸化物イオンの消費により酸性度が向上し、カソード極の近傍では水素イオンの消費によりアルカリ性度が向上する。電極に多孔質体が接触しない場合には、局部的な酸性度やアルカリ性度が維持しにくくなる。特に、多孔質体が存在せずに電解質液のみが存在する場合には、拡散による中和現象により、酸性度やアルカリ性度が維持できない。   Accompanying the above reaction, the acidity is improved by consumption of hydroxide ions in the vicinity of the anode electrode, and the alkalinity is improved by consumption of hydrogen ions in the vicinity of the cathode electrode. When the porous body does not contact the electrode, it becomes difficult to maintain local acidity and alkalinity. In particular, when only the electrolyte solution is present without the porous body, the acidity and alkalinity cannot be maintained due to the neutralization phenomenon due to diffusion.

アルミニウムの自己反応による水素発生は、アルカリ性条件および酸性条件で生じるため、このように酸性度とアルカリ性度とを維持することが、水素発生反応の効率を向上させる。また、マグネシウムの自己反応による水素発生は酸性条件の方が有利であるため、酸性度を維持することが、水素発生反応の効率を向上させる。この観点から、マグネシウムはアノード極に使用するのが好ましい。   Since hydrogen generation by the self-reaction of aluminum occurs under alkaline conditions and acidic conditions, maintaining the acidity and alkalinity in this way improves the efficiency of the hydrogen generation reaction. In addition, since hydrogen generation by magnesium self-reaction is more advantageous under acidic conditions, maintaining the acidity improves the efficiency of the hydrogen generation reaction. From this viewpoint, it is preferable to use magnesium for the anode electrode.

アルミニウムを含む電極としては、アルミニウムの純度が90%以上が好ましく、99〜99.9%がより好ましい。電極に含まれる他の元素としては、Mg,Mn,Zn,Cu,Si,Fe,Ti,Cr,V,Bi,Pb,Zr,Bなどが挙げられる。   As an electrode containing aluminum, the purity of aluminum is preferably 90% or more, and more preferably 99 to 99.9%. Other elements contained in the electrode include Mg, Mn, Zn, Cu, Si, Fe, Ti, Cr, V, Bi, Pb, Zr, and B.

マグネシウムを含む電極としては、マグネシウムの純度が90%以上が好ましく、96 399.99%がより好ましい。電極に含まれる他の元素としては、Al,Mn,Zn,Cu,Si,Fe,Ti,Cr,Ni,Ca,Zr,Beなどが挙げられる。   As an electrode containing magnesium, the purity of magnesium is preferably 90% or more, and more preferably 96 399.99%. Examples of other elements contained in the electrode include Al, Mn, Zn, Cu, Si, Fe, Ti, Cr, Ni, Ca, Zr, and Be.

アノード極及び/又はカソード極(以下、これらを「電極」という場合がある)の形状は、柱状、板状、塊状など何れでも良いが、電極面積を広くする上で、板状のものが好ましい。板状の場合、パンチングメタルのような有孔タイプ、櫛状電極のようなスリットを有するタイプ、メッシュタイプ、不織布状物などでもよい。板状の電極は、平板状の他、板状物を円筒状、四角筒状、スパイラル状、ジグザク状、プリーツ状などに加工したものなどでもよい。   The shape of the anode and / or cathode (hereinafter, these may be referred to as “electrodes”) may be any of a columnar shape, a plate shape, a lump shape, etc., but a plate shape is preferable for increasing the electrode area. . In the case of a plate shape, a perforated type such as a punching metal, a type having a slit such as a comb-like electrode, a mesh type, or a non-woven fabric may be used. The plate-like electrode may be a plate-like electrode, or a plate-like material processed into a cylindrical shape, a rectangular tube shape, a spiral shape, a zigzag shape, a pleated shape, or the like.

アノード極又はカソード極は、それぞれ単数ずつ設けても良く、複数ずつ設けても良い。複数ずつ設ける場合、電気的に直列に接続してもよく、並列に接続してもよく、両者を併用してもよい。   A single anode electrode or cathode electrode may be provided, or a plurality of anode electrodes or cathode electrodes may be provided. When two or more are provided, they may be electrically connected in series, may be connected in parallel, or both may be used in combination.

アルミニウムを用いる場合の電極の厚みは、十分な水素発生量を確保しつつ金属の反応率を高める観点から、0.03〜5mmが好ましく、0.1〜1mmがより好ましい。マグネシウムを用いる場合の電極の厚みは、同様の観点から、0.3〜10mmが好ましく、0.5〜5mmがより好ましい。ニッケル等のその他の金属を用いる場合の電極の厚みは、自己反応が少ないためコストを低減する観点から、0.0001〜5mmが好ましく、0.03〜1mmがより好ましい。なお、ニッケル等の金属は、メッキ層として形成してもよい。   In the case of using aluminum, the thickness of the electrode is preferably 0.03 to 5 mm, more preferably 0.1 to 1 mm, from the viewpoint of increasing the metal reaction rate while ensuring a sufficient amount of hydrogen generation. From the same viewpoint, the thickness of the electrode when using magnesium is preferably 0.3 to 10 mm, and more preferably 0.5 to 5 mm. In the case of using other metals such as nickel, the thickness of the electrode is preferably 0.0001 to 5 mm, and more preferably 0.03 to 1 mm from the viewpoint of reducing cost since there is little self-reaction. Note that a metal such as nickel may be formed as a plating layer.

アノード極及びカソード極には、多孔質体を接触させて両極間に介在させている。多孔質体としては、連通孔を有するものであれば何れでもよく、スポンジ(フォーム)、不織布、織布、紙類、多孔質膜、焼結体、多孔板などが挙げられる。   A porous body is in contact with the anode electrode and the cathode electrode and is interposed between both electrodes. The porous body may be any one as long as it has communication holes, and examples thereof include sponge (foam), nonwoven fabric, woven fabric, paper, porous membrane, sintered body, and porous plate.

多孔質体の空孔率は、副生成物を取り込む空間を確保しつつ、電極との接触状態を維持する観点から、空孔率が30〜99.9%であることが好ましく、80〜99.5%であることがより好ましい。なお、空孔率(%)は、(1−(多孔質体の密度/材質の密度))×100で計算した値である。   The porosity of the porous body is preferably 30 to 99.9% from the viewpoint of maintaining a contact state with the electrode while securing a space for taking in by-products. More preferably, it is 5%. The porosity (%) is a value calculated by (1− (density of porous body / density of material)) × 100.

多孔質体表面の平均孔径としては、空孔の目詰まりを抑制しつつ、電極との接触状態を確保する観点から、1〜3000μmが好ましく、50〜100μmがより好ましい。平均孔径は、表面の顕微鏡観察により測定し、数平均により求めた値である。   The average pore diameter on the surface of the porous body is preferably 1 to 3000 μm and more preferably 50 to 100 μm from the viewpoint of ensuring contact with the electrode while suppressing clogging of the pores. The average pore diameter is a value obtained by measuring the surface with a microscope and calculating the number average.

多孔質体の材質としては、樹脂、セラミックスなどの絶縁物質や、これらに導電性物質を添加して導電性を向上させてもの、など何れでもよい。但し、電解質水溶液を保持する観点から、親水性の材料が好ましい。樹脂製の多孔質体の場合、弾性変形可能なもの、塑性変形可能なもの、殆ど変形しないものなどが挙げられるが、弾性変形可能なスポンジ状樹脂からなる多孔質体が特に好ましい。   The material of the porous body may be any of insulating materials such as resins and ceramics, and conductive materials added to these materials to improve conductivity. However, a hydrophilic material is preferable from the viewpoint of holding the electrolyte aqueous solution. In the case of a resin-made porous body, examples thereof include those that can be elastically deformed, those that can be plastically deformed, those that hardly deform, and the like. A porous body made of an elastically deformable sponge-like resin is particularly preferred.

多孔質体を構成する樹脂としては、メラミン樹脂、ウレタン樹脂、フェノール樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、セルロース系樹脂、などが挙げられる。なかでも、適当な空孔率、孔径、弾性を有する多孔質体が得られ易い観点から、メラミン樹脂、ウレタン樹脂、ポリエステル樹脂、セルロース系樹脂が好ましい。   Examples of the resin constituting the porous body include melamine resin, urethane resin, phenol resin, polypropylene resin, polyethylene resin, polyester resin, polyamide resin, epoxy resin, and cellulose resin. Among these, melamine resin, urethane resin, polyester resin, and cellulose resin are preferable from the viewpoint of easily obtaining a porous body having appropriate porosity, pore diameter, and elasticity.

多孔質体の厚み(運転状態)又は電極間の距離は、電解質水溶液を保持しつつ副生成物を取り込む空間を確保する観点から、1〜10mmが好ましく、2〜5mmがより好ましい。多孔質体は、単層であっても複数層であってもよく、複数層の場合、各層の孔径を変えるなど、異なる種類のものを積層してもよい。弾性変形可能な多孔質体を用いる場合、接触性を向上させる観点から、配置する電極間の距離に対して、1〜3倍が好ましく、1.2〜2倍がより好ましい。   The thickness (operating state) of the porous body or the distance between the electrodes is preferably 1 to 10 mm, more preferably 2 to 5 mm, from the viewpoint of securing a space for taking in by-products while holding the electrolyte aqueous solution. The porous body may be a single layer or a plurality of layers. In the case of a plurality of layers, different types of layers such as changing the pore diameter of each layer may be laminated. In the case of using a porous body that can be elastically deformed, from the viewpoint of improving contactability, it is preferably 1 to 3 times, more preferably 1.2 to 2 times the distance between the electrodes to be arranged.

多孔質体には、電解質水溶液を保持させている。電解質水溶液は、酸性又はアルカリ性でもよいが、両極で酸性度とアルカリ性度とを発現する観点から、中性、例えばpH5〜9が好ましく、pH6〜8がより好ましい。   The porous body holds an electrolyte aqueous solution. The electrolyte aqueous solution may be acidic or alkaline, but is neutral, for example, pH 5 to 9 is preferable, and pH 6 to 8 is more preferable, from the viewpoint of expressing acidity and alkalinity at both electrodes.

電解質水溶液に含有される電解質としては、アルカリ金属塩、アルカリ土類金属塩、その他の金属塩、アンモニウム塩、ホスホニウム塩など何れでも良いが、取扱い性の観点から、塩化ナトリウム、塩化カリウム、塩化リチウムが好ましい。電解質は2種以上混合することも可能であり、酸性塩や塩基性塩との併用も可能である。また、アルカリ性物質や酸性物質を併用することも可能である。   The electrolyte contained in the electrolyte aqueous solution may be any of alkali metal salts, alkaline earth metal salts, other metal salts, ammonium salts, phosphonium salts, but sodium chloride, potassium chloride, lithium chloride from the viewpoint of handleability. Is preferred. Two or more kinds of electrolytes can be mixed, and can be used in combination with an acid salt or a basic salt. Moreover, it is also possible to use an alkaline substance and an acidic substance together.

電解質の濃度としては、電気抵抗を適度に調整して、効率よく電極反応を生じさせる観点から、5〜30重量%が好ましく、20〜26重量%がより好ましい。なお、水素発生反応の途中で、水を別途添加したり、電解質を別途添加してもよい。また、多孔質体に予め電解質等を添着(含浸・乾燥)しておき、反応の初期に水等を供給して、多孔質体に電解質水溶液を保持させてもよい。また、完全に溶解しない電解質が存在する状態(飽和状態)で反応を行ってもよい。   The concentration of the electrolyte is preferably 5 to 30% by weight, more preferably 20 to 26% by weight, from the viewpoint of adjusting the electric resistance appropriately to cause an electrode reaction efficiently. In the middle of the hydrogen generation reaction, water may be added separately or an electrolyte may be added separately. Alternatively, an electrolyte or the like may be preliminarily attached (impregnated / dried) to the porous body, and water or the like may be supplied at the initial stage of the reaction to hold the aqueous electrolyte solution in the porous body. Moreover, you may react in the state (saturated state) in which the electrolyte which does not melt | dissolve completely exists.

電解質水溶液は、少なくともその一部が多孔質体に保持されていればよく、残部は容器内に存在してもよい。また、電解質水溶液の全体が多孔質体に保持されるようにしてもよい。電解質水溶液を水素発生反応の途中で別途添加することも可能である。   It suffices that at least a part of the electrolyte aqueous solution is held in the porous body, and the remaining part may exist in the container. Further, the entire electrolyte aqueous solution may be held by the porous body. It is also possible to add the electrolyte aqueous solution separately during the hydrogen generation reaction.

電解質水溶液の量は、できるだけ過不足無く水素発生反応を行う観点から、電極の総重量100重量部に対して、1500〜10000重量部が好ましく、2000〜5000重量部がより好ましい。   The amount of the electrolyte aqueous solution is preferably 1500 to 10,000 parts by weight, and more preferably 2000 to 5000 parts by weight with respect to 100 parts by weight of the total weight of the electrode, from the viewpoint of performing the hydrogen generation reaction as much as possible.

本発明では、前記両極を導通させるか又は前記両極に電圧を印加して、水素を発生させる。両極で電位差が生じる場合には、両極を導通させるだけで、電極反応を継続して生じさせることができるが、両極で電位差が生じない場合には、少なくとも初期には両極に電圧を印加する必要がある。また、両極を導通させるだけで電極反応が生じる場合でも、初期に電圧を印加することで、電極を早期に活性化することができる。両極を導通させる場合、抵抗を介在させてもよく、可変抵抗により電流を調節することで、水素発生量を制御してもよい。   In the present invention, hydrogen is generated by conducting the two electrodes or applying a voltage to the electrodes. If there is a potential difference between the two electrodes, the electrode reaction can be continued by simply conducting both electrodes. However, if there is no potential difference between the two electrodes, it is necessary to apply a voltage to both electrodes at least initially. There is. Moreover, even when an electrode reaction occurs only by making both electrodes conductive, the electrode can be activated early by applying a voltage in the initial stage. When conducting both electrodes, a resistor may be interposed, and the amount of hydrogen generation may be controlled by adjusting the current with a variable resistor.

両極に電圧を印加する場合、電圧を変化させたり、オンオフを行ったり、導通と印加とを繰り返してもよい。また、正負の電圧を途中で逆に印加したり、交流電圧を印加することも可能である。但し、各電極付近での酸性度とアルカリ性度とを維持する上で、少なくとも1分以上は、正負を逆転せずに維持することが好ましい。   When a voltage is applied to both electrodes, the voltage may be changed, on / off may be performed, and conduction and application may be repeated. Moreover, it is also possible to apply a positive / negative voltage reversely in the middle, or to apply an alternating voltage. However, in order to maintain the acidity and alkalinity in the vicinity of each electrode, it is preferable to maintain positive and negative without reversing at least 1 minute or more.

アルミニウムを含むアノード極と、アルミニウムを含むカソード極とに電圧を印加する場合、適度な自己反応率を実現する上で、0.1〜5Vで印加するのが好ましく、0.5〜1.5Vで印加するのがより好ましい。マグネシウムを含むアノード極と、マグネシウムを含むカソード極とに電圧を印加する場合、適度な自己反応率を実現する上で、0.3〜5Vで印加するのが好ましく、1〜3Vで印加するのがより好ましい。マグネシウムを含むアノード極と、アルミニウムを含むカソード極とに電圧を印加する場合、適度な自己反応率を実現する上で、0〜2Vで印加するのが好ましく、0〜0.5Vで印加するのがより好ましい。   When applying a voltage to the anode electrode containing aluminum and the cathode electrode containing aluminum, it is preferable to apply at 0.1 to 5 V in order to achieve an appropriate self-reaction rate, and 0.5 to 1.5 V. It is more preferable to apply by. When applying a voltage to the anode electrode containing magnesium and the cathode electrode containing magnesium, it is preferable to apply at 0.3 to 5 V, and to apply at 1 to 3 V in order to achieve an appropriate self-reaction rate. Is more preferable. When applying a voltage to the anode electrode containing magnesium and the cathode electrode containing aluminum, it is preferable to apply at 0 to 2 V, and to apply at 0 to 0.5 V in order to achieve an appropriate self-reaction rate. Is more preferable.

上記印加を行う際の電流は、上記電圧値と系の抵抗とによって決まるが、系の抵抗は、電極面積、電解質濃度、電極間距離、電極の数、多孔質体の空孔率などにより変化する。   The current at the time of applying the voltage is determined by the voltage value and the system resistance. The system resistance varies depending on the electrode area, the electrolyte concentration, the distance between the electrodes, the number of electrodes, the porosity of the porous body, and the like. To do.

電圧の印加の際には、定電圧による印加の他、一定電流への電圧制御、一定水素発生量への電圧制御、あるいはこれらに対応する電流制御などを行っても良い。本発明では、水素発生の効率が高く、発生した水素を燃料電池に供給する場合の発電電力が、電気分解の消費電力を超えること、即ち電力収支をプラスにすることが可能となる。このため、発生した水素を供給した燃料電池により、電圧の印加を行っても良い。   When applying a voltage, in addition to applying a constant voltage, voltage control to a constant current, voltage control to a constant hydrogen generation amount, or current control corresponding to these may be performed. In the present invention, the efficiency of hydrogen generation is high, and the generated power when the generated hydrogen is supplied to the fuel cell can exceed the power consumption of electrolysis, that is, the power balance can be made positive. For this reason, the voltage may be applied by a fuel cell supplied with the generated hydrogen.

本発明の水素発生方法は、本発明の水素発生装置を用いて好適に実施することができる。本発明の水素発生装置では、以上で説明した電極、多孔質体、電解質水溶液、電圧の印加条件等を何れも利用することができる。以下、図面を参照しながら、本発明の水素発生装置における、具体的な電極と多孔質体の配置等について説明する。   The hydrogen generation method of the present invention can be preferably carried out using the hydrogen generation apparatus of the present invention. In the hydrogen generator of the present invention, any of the electrodes, porous bodies, aqueous electrolyte solutions, voltage application conditions, and the like described above can be used. Hereinafter, specific arrangements of electrodes and porous bodies in the hydrogen generator of the present invention will be described with reference to the drawings.

図1(a)は、最も基本的な構造を例を示している。即ち、本発明の水素発生装置は、図1(a)に示すように、マグネシウム又はアルミニウムを含むアノード極1と、マグネシウム又はアルミニウムを含むカソード極2と、前記両極に接触して配置され電解質水溶液4を保持させた多孔質体3と、前記両極を導通させるか又は前記両極に電圧を印加する手段(電源5)と、を備えることを特徴とする。両極を導通させる場合、電源5の代わりに、スイッチ、結線等が用いられる。   FIG. 1 (a) shows an example of the most basic structure. That is, as shown in FIG. 1 (a), the hydrogen generator of the present invention comprises an anode electrode 1 containing magnesium or aluminum, a cathode electrode 2 containing magnesium or aluminum, and an electrolyte aqueous solution arranged in contact with both the electrodes. And a means (power supply 5) for making the two electrodes conductive or applying a voltage to the two electrodes. When conducting both electrodes, a switch, connection, or the like is used instead of the power supply 5.

図1(a)には、電源5により両極に電圧を印加する場合の例が示されており、容器の両端に、板状のアノード極1とカソード極2とが配置され、その両極に接触して多孔質体3が配置されている。多孔質体3が弾性変形可能な場合、予め圧縮した状態で、両極間に配置することで、弾性復元力によって接触状態をより高めることができる。   FIG. 1 (a) shows an example in which a voltage is applied to both electrodes by a power source 5, and a plate-like anode electrode 1 and cathode electrode 2 are arranged at both ends of the container and are in contact with both electrodes. And the porous body 3 is arrange | positioned. In the case where the porous body 3 can be elastically deformed, the contact state can be further enhanced by the elastic restoring force by disposing the porous body 3 between both poles in a compressed state.

図1(b)の例では、アノード極1とカソード極2とが、両側の多孔質体3に挟まれた状態で容器内に配置されている。このように電極の両側に多孔質体3が配置されることにより、それに保持可能な電解質水溶液の量を多くして、水素発生総量をより多くすることができる。   In the example of FIG. 1B, the anode 1 and the cathode 2 are disposed in the container in a state of being sandwiched between the porous bodies 3 on both sides. By disposing the porous body 3 on both sides of the electrode in this manner, the amount of the electrolyte aqueous solution that can be held by the porous body 3 can be increased, and the total amount of hydrogen generation can be increased.

図1(c)の例では、1つのアノード極1に対して、2つのカソード極2が設けられ、電源5から並列接続した状態で電圧が印加される。このように複数の電極を用いることにより、反応場の数を増やすことができるため、水素発生総量をより多くすることができる。本発明では、更に複数の電極を設けたり、各々を直列接続することも可能である。   In the example of FIG. 1C, two cathode electrodes 2 are provided for one anode electrode 1, and a voltage is applied in a state of being connected in parallel from a power source 5. By using a plurality of electrodes in this manner, the number of reaction fields can be increased, so that the total amount of hydrogen generation can be increased. In the present invention, it is also possible to provide a plurality of electrodes or connect them in series.

図2(a)の例では、横断面が略正方形の容器内に、多孔質体3が配置され、対角線の方向に平行に設けた2本のスリット内に、板状のアノード極1とカソード極2とが配置されている。両極には多孔質体3が接触しており、多孔質体3が弾性変形可能な場合、予め圧縮した状態で、容器内に配置することで、弾性復元力によって接触状態をより高めることができる。   In the example of FIG. 2A, the porous body 3 is disposed in a container having a substantially square cross section, and the plate-like anode electrode 1 and the cathode are disposed in two slits provided parallel to the diagonal direction. A pole 2 is arranged. When the porous body 3 is in contact with both electrodes and the porous body 3 can be elastically deformed, the contact state can be further enhanced by the elastic restoring force by placing the porous body 3 in a container in a compressed state. .

図2(b)の例では、板状のアノード極1とカソード極2との間に、電極の幅より長い多孔質体3の一端が挟持され、挟持されていない部分を、アノード極1とカソード極2との周囲に巻き付けた状態で、容器内に収容している。この構造により、両極の周囲にも多孔質体3が存在し、その多孔質体3が両極間に介在する多孔質体3と連続一体化したものとなる。同様に、電極の幅より長い多孔質体3の中央部を、板状のアノード極1とカソード極2との間に挟持し、両側の挟持されていない部分を、アノード極1とカソード極2との周囲に巻き付けた状態で、容器内に収容してもよい。   In the example of FIG. 2B, one end of the porous body 3 longer than the width of the electrode is sandwiched between the plate-like anode electrode 1 and the cathode electrode 2, and the portion not sandwiched is connected to the anode electrode 1. It is housed in a container in a state of being wound around the cathode electrode 2. With this structure, the porous body 3 is also present around the two electrodes, and the porous body 3 is continuously integrated with the porous body 3 interposed between the two electrodes. Similarly, the center part of the porous body 3 longer than the width of the electrode is sandwiched between the plate-like anode electrode 1 and the cathode electrode 2, and the non-clamped parts on both sides are sandwiched between the anode electrode 1 and the cathode electrode 2. You may accommodate in a container in the state wound around.

図2(c)の例では、板状のアノード極1とカソード極2とを略円形に加工し、両極の間と、その内外にほぼ一定厚みの多孔質体3を設けたものである。同様に、板状のアノード極1とカソード極2と、両極で挟持した多孔質体3と、その内側又は外側に積層した多孔質体3とを用いて、これらの積層体をスパイラル状に巻き付けることも可能である。   In the example of FIG. 2C, the plate-like anode electrode 1 and cathode electrode 2 are processed into a substantially circular shape, and a porous body 3 having a substantially constant thickness is provided between both electrodes and inside and outside thereof. Similarly, using a plate-like anode electrode 1 and cathode electrode 2, a porous body 3 sandwiched between both electrodes, and a porous body 3 laminated inside or outside thereof, these laminated bodies are wound in a spiral shape. It is also possible.

水素発生装置には、密閉型又は開放型の容器を用いることができ、必要に応じて、発生した水素ガスを導出する排出路や、材料や水溶液等を導入するための供給路又は添加装置、電圧印加の制御を行うための制御装置などが設けられる。また、保温や加温を行うための手段を適宜設けてもよい。   As the hydrogen generator, a sealed or open container can be used, and if necessary, a discharge path for deriving the generated hydrogen gas, a supply path or an addition apparatus for introducing a material or an aqueous solution, A control device or the like for controlling voltage application is provided. Moreover, you may provide the means for performing a heat retention or warming suitably.

本発明の水素発生方法は、水素発生装置の装置構造を簡易化できるため、特に携帯機器用の燃料電池の水素供給装置に使用する場合に有効である。   The hydrogen generation method of the present invention is effective particularly when used in a fuel cell hydrogen supply device for portable equipment because the device structure of the hydrogen generation device can be simplified.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。   Examples and the like specifically showing the configuration and effects of the present invention will be described below.

実施例1
電極となるアルミニウム板(純度99.5%、縦35×横50×厚み0.3mm、1.44g)を2枚用意し、2枚の間に多孔質体(BASF社製、メラミンフォーム、縦35×横50×厚み5mm、密度0.0093g/cm、空孔率99.4%、平均孔径70μm)を挟み、電極間の距離が5mmになるような平型ケース(約8mL)に入れて、20重量%NaCl水溶液を約8mL注入した。ケースの上部空間を閉空間とし、発生した水素ガスを排出する流路に、膜式流量計(堀場製作所社製)を接続して、常時、水素発生流量をモニターした。各々の電極を安定化電源に正極および負極として接続し、水素発生流量が約10mL/minになるように、手動で電源の電流値を変化させながら1時間運転を行った。その際の水素発生量を図3(a)に、電圧と電流の関係を図3(b)、これらから計算される発生電力と消費電力を図3(c)に示す。なお、水素発生流量が10mL/minの場合に、燃料電池による発生電力は0.83Wとして計算を行った。
Example 1
Two aluminum plates (purity 99.5%, length 35 × width 50 × thickness 0.3 mm, 1.44 g) to be electrodes are prepared, and a porous body (BASF, melamine foam, length) 35 × width 50 × thickness 5 mm, density 0.0093 g / cm 3 , porosity 99.4%, average pore diameter 70 μm) sandwiched in a flat case (about 8 mL) with a distance of 5 mm between electrodes Then, about 8 mL of 20 wt% NaCl aqueous solution was injected. The upper space of the case was closed, and a membrane flow meter (manufactured by Horiba Ltd.) was connected to the flow path for discharging the generated hydrogen gas, and the hydrogen generation flow rate was constantly monitored. Each electrode was connected to a stabilized power source as a positive electrode and a negative electrode, and operated for 1 hour while manually changing the current value of the power source so that the hydrogen generation flow rate was about 10 mL / min. FIG. 3A shows the hydrogen generation amount at that time, FIG. 3B shows the relationship between the voltage and the current, and FIG. 3C shows the generated power and the power consumption calculated from these. When the hydrogen generation flow rate was 10 mL / min, the calculation was performed assuming that the generated power by the fuel cell was 0.83 W.

この結果から、消費電力以上の発電が可能(1.14〜5.2倍)なことが分かった。電圧印加により、電極のアルミが活性化され、電気分解以外の自己反応により水素発生が生じていると考えられる。なお、消費電力0.5W以下の持続時間は約90minであった。   From this result, it was found that power generation more than power consumption is possible (1.14 to 5.2 times). It is considered that the aluminum of the electrode is activated by the voltage application, and hydrogen is generated by a self-reaction other than electrolysis. The duration of power consumption of 0.5 W or less was about 90 minutes.

実施例2
実施例1において、使用した多孔質体を下記の多孔質体に代える以外は、実施例1と全く同じ条件で水素発生流量が約10mL/minになるように、手動で電源の電流値を変化させながら1時間運転を行った。その際の電圧と電流から計算される消費電力を、実施例1の結果と併せて図4に示す。
(実施例2−1)ソフラス(ポリウレタン、0.22g/cm、空孔率82%、平均孔径1μm)5mm厚み
(実施例2−2)ポリウレタン(食器洗いスポンジ0.028g/cm、空孔率98%、平均孔径2000μm)5mm厚み
(実施例2−3)蒸発紙(ポリエステル樹脂、0.26g/cm、空孔率78%、平均孔径50μm)1mm厚み×5枚
(実施例2−4)ベルイーター(ポリビニルアルコールスポンジ、0.089g/cm、空孔率95%、平均孔径70μm)1.8mm厚み×2枚。
Example 2
In Example 1, except that the porous body used was replaced with the following porous body, the current value of the power supply was manually changed so that the hydrogen generation flow rate was about 10 mL / min under exactly the same conditions as in Example 1. The operation was carried out for 1 hour. The power consumption calculated from the voltage and current at that time is shown in FIG. 4 together with the result of Example 1.
Example 2-1 Sofras (Polyurethane, 0.22 g / cm 3 , Porosity 82%, Average Pore Diameter 1 μm) 5 mm Thickness (Example 2-2) Polyurethane (Dishwashing Sponge 0.028 g / cm 3 , Pore Rate 98%, average pore diameter 2000 μm) 5 mm thickness (Example 2-3) evaporation paper (polyester resin, 0.26 g / cm 3 , porosity 78%, average pore diameter 50 μm) 1 mm thickness × 5 sheets (Example 2- 4) Bell eater (polyvinyl alcohol sponge, 0.089 g / cm 3 , porosity 95%, average pore diameter 70 μm) 1.8 mm thickness × 2 sheets.

比較例1
実施例1において、多孔質体を使用せずに、同量のNaCl水溶液のみが電極間に存在するようにした以外は、実施例1と全く同じ条件で水素発生流量が約10mL/minになるように、手動で電源の電流値を変化させながら1時間運転を行った。その際の電圧と電流から計算される消費電力を、図4に併せて示す。その結果、多孔質体を用いない場合には、初期に消費電力が非常に大きくなり、電力収支がマイナスになる部分(消費電力0.8W以上)が生じた。
Comparative Example 1
In Example 1, the hydrogen generation flow rate is about 10 mL / min under exactly the same conditions as in Example 1 except that the porous body is not used and only the same amount of NaCl aqueous solution is present between the electrodes. As described above, the operation was performed for 1 hour while manually changing the current value of the power source. The power consumption calculated from the voltage and current at that time is also shown in FIG. As a result, when the porous body was not used, the power consumption became very large in the initial stage, and a portion where the power balance was negative (power consumption 0.8 W or more) was generated.

実施例3−1
電極となるアルミニウム板(純度99.5%、縦35×横20×厚み0.3mm、0.57g)を2枚用意し、2枚の間と両外側とに多孔質体(BASF社製、メラミンフォーム、縦35×横50×厚み5mm、密度0.0093g/cm、空孔率99.4%)を1枚ずつ配置し、これを容器(深さ35×横50×幅15mm、容積約27mL)に入れて、20重量%NaCl水溶液を約15mL注入した。容器の上部空間を閉空間とし、発生した水素ガスを排出する流路に、膜式流量計(堀場製作所社製)を接続して測定した。各々の電極を安定化電源に正極および負極として接続し、電源の電流値を0.5Aに制御して2時間運転を行った。その際の消費電力を図5(a)に、消費電力量を図5(b)、利用可能電力を図5(c)に、利用可能電力量を図5(d)に示す。
Example 3-1
Two aluminum plates (purity 99.5%, length 35 × width 20 × thickness 0.3 mm, 0.57 g) to be electrodes are prepared, and a porous body (made by BASF, Melamine foam, length 35 x width 50 x thickness 5 mm, density 0.0093 g / cm 3 , porosity 99.4%) are placed one by one, and this is a container (depth 35 x width 50 x width 15 mm, volume) About 27 mL), and about 15 mL of 20 wt% NaCl aqueous solution was injected. The measurement was performed by connecting the membrane-type flow meter (manufactured by Horiba, Ltd.) to the flow path for discharging the generated hydrogen gas, with the upper space of the container being a closed space. Each electrode was connected to a stabilized power source as a positive electrode and a negative electrode, and the current value of the power source was controlled to 0.5 A, and operation was performed for 2 hours. FIG. 5A shows the power consumption at that time, FIG. 5B shows the power consumption, FIG. 5C shows the available power, and FIG. 5D shows the available power.

実施例3−2
実施例3−1において、使用した多孔質体の厚みを10mmに代える以外は、実施例3−1と全く同じ条件で2時間運転を行った。その際の消費電力を図5(a)に、消費電力量を図5(b)、利用可能電力を図5(c)に、利用可能電力量を図5(d)に併せて示す。
Example 3-2
In Example 3-1, the operation was performed for 2 hours under exactly the same conditions as in Example 3-1, except that the thickness of the porous body used was changed to 10 mm. FIG. 5A shows the power consumption at that time, FIG. 5B shows the power consumption, FIG. 5C shows the available power, and FIG. 5D shows the available power.

比較例2
実施例3−1において、使用した3枚の多孔質体の厚みを3mmに代え、多孔質体と電極との間に厚さ1mmのシリコーンゴムよりなる枠状スペーサ(電極とは上端と下端とでのみ幅2mmで接する)を介在させて、電極と多孔質体との距離を1mmにしたこと以外は、実施例3−1と全く同じ条件で2時間運転を行った。その際の消費電力を図5(a)に、消費電力量を図5(b)、利用可能電力を図5(c)に、利用可能電力量を図5(d)に併せて示す。
Comparative Example 2
In Example 3-1, the thickness of the three porous bodies used was changed to 3 mm, and a frame spacer made of silicone rubber having a thickness of 1 mm between the porous body and the electrode (the electrodes are the upper end and the lower end). The electrode was operated for 2 hours under exactly the same conditions as in Example 3-1, except that the distance between the electrode and the porous body was 1 mm. FIG. 5A shows the power consumption at that time, FIG. 5B shows the power consumption, FIG. 5C shows the available power, and FIG. 5D shows the available power.

実施例3−1、3−2と比較例2の結果を対比すると、アルミ電極とスポンジの接触が良いほど、反応効率は向上し、特に非接触の場合は反応が鈍化し、消費電力が跳ね上がっていることが分かった。   Comparing the results of Examples 3-1 and 3-2 and Comparative Example 2, the better the contact between the aluminum electrode and the sponge, the better the reaction efficiency, especially in the case of non-contact, the reaction slows down and the power consumption jumps. I found out.

実施例4−1
電極となるマグネシウム板(AZ31,純度96%、縦35×横20×厚み0.3mm、0.36g)を2枚用意し、2枚の間と両外側とに多孔質体(BASF社製、メラミンフォーム、縦35×横50×厚み5mm、密度0.0093g/cm、空孔率99.4%)を1枚ずつ配置し、これを容器(深さ35×横50×幅15mm、容積約27mL)に入れて、20重量%NaCl水溶液を約15mL注入した。容器の上部空間を閉空間とし、発生した水素ガスを排出する流路に、膜式流量計(堀場製作所社製)を接続して測定した。各々の電極を安定化電源に正極および負極として接続し、電源の電流値を0.5Aに制御して1時間運転を行った。その際の消費電力を図6(a)に、消費電力量を図6(b)、利用可能電力を図6(c)に、利用可能電力量を図6(d)に示す。
Example 4-1
Two magnesium plates (AZ31, purity 96%, length 35 × width 20 × thickness 0.3 mm, 0.36 g) serving as electrodes were prepared, and a porous body (made by BASF, Melamine foam, length 35 x width 50 x thickness 5 mm, density 0.0093 g / cm 3 , porosity 99.4%) are placed one by one, and this is a container (depth 35 x width 50 x width 15 mm, volume) About 27 mL), and about 15 mL of 20 wt% NaCl aqueous solution was injected. The measurement was performed by connecting the membrane-type flow meter (manufactured by Horiba, Ltd.) to the flow path for discharging the generated hydrogen gas, with the upper space of the container being a closed space. Each electrode was connected to a stabilized power source as a positive electrode and a negative electrode, and the current value of the power source was controlled to 0.5 A and operated for 1 hour. FIG. 6A shows the power consumption at that time, FIG. 6B shows the power consumption, FIG. 6C shows the available power, and FIG. 6D shows the available power.

実施例4−2
実施例4−1において、使用した多孔質体の厚みを10mmに代える以外は、実施例4−1と全く同じ条件で1時間運転を行った。その際の消費電力を図6(a)に、消費電力量を図6(b)、利用可能電力を図6(c)に、利用可能電力量を図6(d)に併せて示す。
Example 4-2
In Example 4-1, the operation was performed for 1 hour under exactly the same conditions as in Example 4-1, except that the thickness of the porous body used was changed to 10 mm. 6A shows the power consumption at that time, FIG. 6B shows the power consumption, FIG. 6C shows the available power, and FIG. 6D shows the available power.

比較例3
実施例4−1において、使用した3枚の多孔質体の厚みを3mmに代え、多孔質体と電極との間に厚さ1mmのシリコーンゴムよりなる枠状スペーサ(電極とは上端と下端とでのみ幅2mmで接する)を介在させて、電極と多孔質体との距離を1mmにしたこと以外は、実施例4−1と全く同じ条件で1時間運転を行った。その際の消費電力を図6(a)に、消費電力量を図6(b)、利用可能電力を図6(c)に、利用可能電力量を図6(d)に併せて示す。
Comparative Example 3
In Example 4-1, the thickness of the three porous bodies used was changed to 3 mm, and a frame spacer made of silicone rubber having a thickness of 1 mm between the porous body and the electrode (the electrodes are the upper end and the lower end). The electrode was operated for 1 hour under exactly the same conditions as in Example 4-1, except that the distance between the electrode and the porous body was 1 mm. 6A shows the power consumption at that time, FIG. 6B shows the power consumption, FIG. 6C shows the available power, and FIG. 6D shows the available power.

実施例4−1、4−2と比較例3の結果を対比すると、非接触の場合は反応が鈍化し、消費電力が大きくなることが分かった。マグネシウム電極とスポンジの接触が弱いいほど、反応効率は向上しており、これは接触が強いほど、マグネシウムの副生成物(酸化物、水酸化物)による堆積を許容しにくくなるためであると考えられる。   When the results of Examples 4-1 and 4-2 and Comparative Example 3 were compared, it was found that in the case of non-contact, the reaction slowed down and the power consumption increased. The weaker the contact between the magnesium electrode and the sponge, the better the reaction efficiency. This is because the stronger the contact, the less likely it is to allow deposition by magnesium by-products (oxides, hydroxides). Conceivable.

実施例5−1
アノード極となるマグネシウム板(純度96%、縦35×横20×厚み0.3mm、0.36g)と、カソード極となるアルミニウム板(純度99.5%、縦35×横20×厚み0.3mm、0.57g)とを用意し、2枚の間と両外側とに多孔質体(BASF社製、メラミンフォーム、縦35×横50×厚み5mm、密度0.0093g/cm、空孔率99.4%)を1枚ずつ配置し、これを容器(深さ35×横50×幅15mm、容積約27mL)に入れて、20重量%NaCl水溶液を約15mL注入した。容器の上部空間を閉空間とし、発生した水素ガスを排出する流路に、膜式流量計(堀場製作所社製)を接続して測定した。各々の電極を銅板(幅10mm、厚み0.5mm、抵抗5〜8mΩ)で導通させ、水素発生流量が約6mL/min以下になるまで運転を行った。その際の利用可能電力を図7(a)に、利用可能電力量を図7(b)に示す。
Example 5-1
Magnesium plate (purity 96%, length 35 × width 20 × thickness 0.3 mm, 0.36 g) serving as an anode electrode and aluminum plate (purity 99.5%, length 35 × width 20 × thickness 0. 6 mm) serving as a cathode electrode. 3mm, 0.57g) and a porous body (made by BASF, melamine foam, length 35 × width 50 × thickness 5mm, density 0.0093g / cm 3 , pores between two sheets and both outer sides (99.4% rate) were placed one by one, and placed in a container (depth 35 × width 50 × width 15 mm, volume about 27 mL), and about 15 mL of 20 wt% NaCl aqueous solution was injected. The measurement was performed by connecting the membrane-type flow meter (manufactured by Horiba, Ltd.) to the flow path for discharging the generated hydrogen gas, with the upper space of the container being a closed space. Each electrode was conducted with a copper plate (width 10 mm, thickness 0.5 mm, resistance 5 to 8 mΩ), and the operation was performed until the hydrogen generation flow rate was about 6 mL / min or less. FIG. 7A shows the available power at that time, and FIG. 7B shows the available power amount.

実施例5−2
実施例5−1において、使用した多孔質体の厚みを10mmに代える以外は、実施例5−1と全く同じ条件で1時間運転を行った。その際の利用可能電力を図7(a)に、利用可能電力量を図7(b)に併せて示す。
Example 5-2
In Example 5-1, the operation was performed for 1 hour under exactly the same conditions as in Example 5-1, except that the thickness of the porous body used was changed to 10 mm. FIG. 7A shows the available power at that time, and FIG. 7B shows the available power amount.

比較例4
実施例5−1において、使用した3枚の多孔質体の厚みを3mmに代え、多孔質体と電極との間に厚さ1mmのシリコーンゴムよりなる枠状スペーサ(電極とは上端と下端とでのみ幅2mmで接する)を介在させて、電極と多孔質体との距離を1mmにしたこと以外は、実施例5−1と全く同じ条件で1時間運転を行った。その際の利用可能電力を図7(a)に、利用可能電力量を図7(b)に併せて示す。
Comparative Example 4
In Example 5-1, the thickness of the three porous bodies used was changed to 3 mm, and a frame-shaped spacer made of silicone rubber having a thickness of 1 mm between the porous body and the electrode (the electrodes are the upper end and the lower end). The electrode was operated for 1 hour under exactly the same conditions as in Example 5-1, except that the distance between the electrode and the porous body was 1 mm. FIG. 7A shows the available power at that time, and FIG. 7B shows the available power amount.

実施例5−1、5−2と比較例4の結果を対比すると、水素発生反応の効率はほとんど変わらないものの、非接触の場合は副生成物による反応阻害が早く生じるため、利用可能電力量はより小さくなった。   When the results of Examples 5-1 and 5-2 and Comparative Example 4 are compared, the efficiency of the hydrogen generation reaction is almost the same, but in the case of non-contact, the reaction inhibition by the by-product occurs quickly, so the available electric energy Became smaller.

(自己反応率の対比)
実施例3−1、4−1、及び5−1の結果から、次のようにして自己反応率を計算した。即ち、電流から求めた、「移動した電子量」から電気分解反応で発生した水素量を算出し、これを実際の水素発生量から差し引き、各々の電極で自己反応と、電気分解反応の比率を求めた。
その結果を図8(a)に示す。また、計算に使用した電流値と電圧値のデータを、それぞれ図8(b)と図8(c)とに示す。図8の結果から、Al−Mg、Al−Al、Mg−Mgの順序で、自己反応の比率が高いことが分かった。
(Contrast of self-reaction rate)
From the results of Examples 3-1, 4-1, and 5-1, the self-reaction rate was calculated as follows. That is, the amount of hydrogen generated by the electrolysis reaction is calculated from the “amount of electrons transferred” obtained from the current, and this is subtracted from the actual amount of hydrogen generation, and the ratio of the self-reaction and the electrolysis reaction at each electrode is calculated. Asked.
The result is shown in FIG. The current value and voltage value data used for the calculation are shown in FIGS. 8B and 8C, respectively. From the results of FIG. 8, it was found that the ratio of self-reaction was high in the order of Al—Mg, Al—Al, and Mg—Mg.

(pH測定試験)
図9(a)に示すように、電極となるアルミニウム板(純度99.5%、縦35×横50×厚み0.3mm、1.44g)を2枚用意し、電極間の距離が45mmになるように容器内(約27mL)に配置して、容器の中央をセロファンフィルム((株)トーヨー製、セロファン紙、厚み10μm)で仕切り、20重量%NaCl水溶液を約26mL注入した。各々の電極を安定化電源に正極および負極として接続し、一定の電流値(0.5A)で1時間運転を行った。その際のアノード側の電極とセロファンフィルムとの中央の位置、およびカソード側の電極とセロファンフィルムとの中央の位置でのpHをpHメータで測定した。その結果を図9(b)に示す。
(PH measurement test)
As shown in FIG. 9A, two aluminum plates (purity 99.5%, length 35 × width 50 × thickness 0.3 mm, 1.44 g) are prepared, and the distance between the electrodes is 45 mm. In the container (about 27 mL), the center of the container was partitioned with a cellophane film (manufactured by Toyo Corporation, cellophane paper, thickness 10 μm), and about 26 mL of 20 wt% NaCl aqueous solution was injected. Each electrode was connected to a stabilized power source as a positive electrode and a negative electrode, and operated for 1 hour at a constant current value (0.5 A). The pH at the central position between the anode-side electrode and the cellophane film and the central position between the cathode-side electrode and the cellophane film were measured with a pH meter. The result is shown in FIG.

この結果から、アノード極では反応に伴い酸性度が高まり、カソード極では反応に伴いアルカリ性度が高まることが分かった。上記と同様にして、実施例3−1において、各電極付近のpHを測定したところ、多孔質体を用いて接触させることにより、より酸性度とアルカリ性度とが高まることが分かった。   From this result, it was found that the acidity increased with the reaction at the anode electrode, and the alkalinity increased with the reaction at the cathode electrode. In the same manner as described above, in Example 3-1, when the pH in the vicinity of each electrode was measured, it was found that the acidity and alkalinity were further increased by contacting with a porous body.

実施例6−1
アノード極となるマグネシウム板(純度96%、縦57×横10×厚み0.3mm、0.3g)を2枚と、カソード極となるニッケル板(純度99%、縦57×横10×厚み0.05mm、0.26g)を3枚用意し、交互に積層しつつ夫々の間に多孔質体(BASF社製、メラミンフォーム、縦57×横10×厚み5mm、密度0.0093g/cm、空孔率99.4%)を1枚ずつ計4枚配置し、これを容器(深さ57×横10×幅5mm、容積約2.85mL)に入れて、20重量%NaCl水溶液を約3mL注入した。容器の上部空間を閉空間とし、発生した水素ガスを排出する流路に、膜式流量計(堀場製作所社製)を接続して測定した。各々の電極を銅線(抵抗8mΩ)で導通させ、20分間運転を行った。その際の水素発生量と流量とを図10に示す。
Example 6-1
Two magnesium plates (purity 96%, length 57 × width 10 × thickness 0.3 mm, 0.3 g) serving as the anode and nickel plates (purity 99%, length 57 × width 10 × thickness 0) serving as the cathode electrode .05 mm, 0.26 g) are prepared, and while being alternately laminated, a porous body (made by BASF, melamine foam, length 57 × width 10 × thickness 5 mm, density 0.0093 g / cm 3 , 4 pieces in total, each of which has a porosity of 99.4%, is placed in a container (depth 57 × width 10 × width 5 mm, volume about 2.85 mL), and 20 wt% NaCl aqueous solution is about 3 mL. Injected. The measurement was performed by connecting the membrane-type flow meter (manufactured by Horiba, Ltd.) to the flow path for discharging the generated hydrogen gas, with the upper space of the container being a closed space. Each electrode was made conductive with a copper wire (resistance 8 mΩ) and operated for 20 minutes. FIG. 10 shows the amount of hydrogen generated and the flow rate at that time.

実施例6−2
実施例6−1において、使用した多孔質体をスポンジ(井和工業(株)社製、FDスポンジ、材質:ポリ酢酸ビニル、縦57×横10×厚み5mm、密度0.115g/cm、空孔率88%)に代え、10重量%NaCl水溶液を使用したこと以外は、実施例6−1と全く同じ条件で運転を行った。その際の水素発生量と流量を図10に併せて示す。
実施例6−3
実施例6−1において、使用した多孔質体を濾紙(アドバンテック東洋(株)製、商品名5B、縦57×横10×厚み0.21mm×3枚積層、密度0.514g/cm、空孔率46%)に代えたこと以外は、実施例6−1と全く同じ条件で運転を行った。その際の水素発生量と流量を図10に併せて示す。
実施例7
実施例6−1において、カソード極の材質を銅(純度99%、縦57×横10×厚み0.05mm、0.16g)に代えたこと以外は、実施例6−1と全く同じ条件で運転を行った。その際の水素発生量と流量は、実施例6−1と同等であった。
Example 6-2
In Example 6-1, the porous body used was a sponge (Iwa Kogyo Co., Ltd., FD sponge, material: polyvinyl acetate, length 57 × width 10 × thickness 5 mm, density 0.115 g / cm 3 , The operation was performed under exactly the same conditions as in Example 6-1 except that a 10 wt% NaCl aqueous solution was used instead of the porosity (88%). The hydrogen generation amount and flow rate at that time are also shown in FIG.
Example 6-3
In Example 6-1, the porous material used was filter paper (manufactured by Advantech Toyo Co., Ltd., trade name 5B, length 57 × width 10 × thickness 0.21 mm × 3 layers, density 0.514 g / cm 3 , empty The operation was performed under exactly the same conditions as in Example 6-1 except that the porosity was changed to 46%. The hydrogen generation amount and flow rate at that time are also shown in FIG.
Example 7
In Example 6-1, the material of the cathode electrode was changed to copper (purity 99%, length 57 × width 10 × thickness 0.05 mm, 0.16 g) under exactly the same conditions as Example 6-1. Drove. The amount of hydrogen generated and the flow rate at that time were the same as in Example 6-1.

1 アノード極
2 カソード極
3 多孔質体
4 電解質水溶液
5 電源(電圧を印加する手段)
DESCRIPTION OF SYMBOLS 1 Anode pole 2 Cathode pole 3 Porous body 4 Electrolyte aqueous solution 5 Power supply (means to apply voltage)

Claims (12)

マグネシウム又はアルミニウムを含むアノード極と、カソード極とに、多孔質体を接触させて両極間に介在させ、その多孔質体に電解質水溶液を保持させた状態で、前記両極を導通させるか又は前記両極に電圧を印加して、水素を発生させる水素発生方法。   A porous body is brought into contact with an anode electrode containing magnesium or aluminum and a cathode electrode and interposed between both electrodes, and the two electrodes are made to conduct in a state in which an electrolyte aqueous solution is held in the porous material, or the both electrodes A hydrogen generation method in which a voltage is applied to generate hydrogen. 前記カソード極がマグネシウム又はアルミニウムを含むものである請求項1に記載の水素発生方法。   The method for generating hydrogen according to claim 1, wherein the cathode electrode contains magnesium or aluminum. 前記多孔質体が、空孔率30〜99.9%の多孔質体である請求項1又は2に記載の水素発生方法。   The method for generating hydrogen according to claim 1 or 2, wherein the porous body is a porous body having a porosity of 30 to 99.9%. 前記多孔質体が、弾性変形可能なスポンジ状樹脂からなる多孔質体である請求項1〜3いずれかに記載の水素発生方法。   The hydrogen generation method according to claim 1, wherein the porous body is a porous body made of an elastically deformable sponge-like resin. 前記アノード極と前記カソード極とが板状に形成され、両極間に前記多孔質体が介在する請求項1〜4いずれかに記載の水素発生方法。   5. The method for generating hydrogen according to claim 1, wherein the anode electrode and the cathode electrode are formed in a plate shape, and the porous body is interposed between the electrodes. 前記両極の周囲にも多孔質体が存在し、その多孔質体が前記両極間に介在する多孔質体と連続一体化したものである請求項1〜5いずれかに記載の水素発生方法。   The method for generating hydrogen according to any one of claims 1 to 5, wherein a porous body is also present around the two electrodes, and the porous body is continuously integrated with a porous body interposed between the two electrodes. マグネシウム又はアルミニウムを含むアノード極と、カソード極と、前記両極に接触して配置され電解質水溶液を保持させた多孔質体と、前記両極を導通させるか又は前記両極に電圧を印加する手段と、を備える水素発生装置。   An anode electrode containing magnesium or aluminum, a cathode electrode, a porous body disposed in contact with the electrodes and holding an aqueous electrolyte solution, and means for conducting the electrodes or applying a voltage to the electrodes. A hydrogen generator provided. 前記カソード極がマグネシウム又はアルミニウムを含むものである請求項7に記載の水素発生装置。   The hydrogen generator according to claim 7, wherein the cathode electrode contains magnesium or aluminum. 前記多孔質体が、空孔率30〜99.9%の多孔質体である請求項7又は8に記載の水素発生装置。   The hydrogen generator according to claim 7 or 8, wherein the porous body is a porous body having a porosity of 30 to 99.9%. 前記多孔質体が、弾性変形可能なスポンジ状樹脂からなる多孔質体である請求項7〜9いずれかに記載の水素発生装置。   The hydrogen generator according to any one of claims 7 to 9, wherein the porous body is a porous body made of an elastically deformable sponge-like resin. 前記アノード極と前記カソード極とが板状に形成され、両極間に前記多孔質体が介在する請求項7〜10いずれかに記載の水素発生装置。   The hydrogen generator according to claim 7, wherein the anode electrode and the cathode electrode are formed in a plate shape, and the porous body is interposed between the electrodes. 前記両極の周囲にも多孔質体が存在し、その多孔質体が前記両極間に介在する多孔質体と連続一体化したものである請求項7〜11いずれかに記載の水素発生装置。
The hydrogen generator according to any one of claims 7 to 11, wherein a porous body is also present around the electrodes, and the porous body is continuously integrated with a porous body interposed between the electrodes.
JP2010136275A 2010-02-09 2010-06-15 Method and device for generating hydrogen Pending JP2011184793A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010136275A JP2011184793A (en) 2010-02-09 2010-06-15 Method and device for generating hydrogen
TW099120860A TWI465608B (en) 2010-02-09 2010-06-25 Hydrogen generating method and hydrogen generating appartus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010026793 2010-02-09
JP2010026793 2010-02-09
JP2010136275A JP2011184793A (en) 2010-02-09 2010-06-15 Method and device for generating hydrogen

Publications (1)

Publication Number Publication Date
JP2011184793A true JP2011184793A (en) 2011-09-22

Family

ID=44791416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136275A Pending JP2011184793A (en) 2010-02-09 2010-06-15 Method and device for generating hydrogen

Country Status (2)

Country Link
JP (1) JP2011184793A (en)
TW (1) TWI465608B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205874A (en) * 2013-04-11 2014-10-30 株式会社健康支援センター Electrolytic device
JP2017515982A (en) * 2014-04-12 2017-06-15 大連双迪創新科技研究院有限公司Dalian Shuangdi Innovative Technology Research Institute Co.,Ltd. Large-scale ultrafine bubble hydrogen production system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2632815C1 (en) * 2016-07-04 2017-10-10 Федеральное государственное бюджетное учреждение науки Институт машиноведения им. А.А. Благонравова Российской академии наук (ИМАШ РАН) Method for producing hydrogen based on chemical reaction of aluminium alloy and alkaline water solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082490A (en) * 1998-09-08 2000-03-21 Toshiba Battery Co Ltd Alkaline secondary battery
JP2008544084A (en) * 2005-06-21 2008-12-04 ナショナル リサーチ カウンシル オブ カナダ Hydrogen generation system
JP2009263793A (en) * 2008-04-21 2009-11-12 Samsung Electro Mech Co Ltd Apparatus for generating hydrogen and fuel cell power generation system having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082490A (en) * 1998-09-08 2000-03-21 Toshiba Battery Co Ltd Alkaline secondary battery
JP2008544084A (en) * 2005-06-21 2008-12-04 ナショナル リサーチ カウンシル オブ カナダ Hydrogen generation system
JP2009263793A (en) * 2008-04-21 2009-11-12 Samsung Electro Mech Co Ltd Apparatus for generating hydrogen and fuel cell power generation system having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205874A (en) * 2013-04-11 2014-10-30 株式会社健康支援センター Electrolytic device
JP2017515982A (en) * 2014-04-12 2017-06-15 大連双迪創新科技研究院有限公司Dalian Shuangdi Innovative Technology Research Institute Co.,Ltd. Large-scale ultrafine bubble hydrogen production system

Also Published As

Publication number Publication date
TWI465608B (en) 2014-12-21
TW201127996A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
JP5751589B2 (en) An open-type lithium-air battery using a metal mesh, a metal film, or a sintered body of a metal powder and a solid electrolyte as an air electrode
KR102028915B1 (en) Device for producing organic hydride
JP7103626B2 (en) Lithium recovery device and lithium recovery method
JP6234917B2 (en) Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same
ES2238498T3 (en) ELECTROCHEMICAL DEVICE WITH REMOVABLE ELECTRODE.
WO2013031522A1 (en) Water electrolysis device
JP6255423B2 (en) Metal air battery
TWI465608B (en) Hydrogen generating method and hydrogen generating appartus
JP2005144240A (en) Electrolytic cell and electrolytic water generator
EP3125359B1 (en) Air cell
JP2016167365A (en) Magnesium metal battery, interchangeable battery and power supply device
JPH02501125A (en) A device for electrochemically generating gas for transporting liquid media
JP2011249161A (en) Power generator
GB2104279A (en) Method of loading metallic battery plaques
WO2015019845A1 (en) Metal electrode and metal-air battery
Genthe et al. Long‐Term Performance of a Zinc–Silver/Air Hybrid Flow Battery with a Bifunctional Gas‐Diffusion Electrode at High Current Density
JP2015224392A (en) Oxygen-consuming electrode and method for its production
JP6474725B2 (en) Metal electrode cartridge and metal air battery
JP6439229B2 (en) ELECTRODE STRUCTURE, AIR BATTERY SINGLE CELL STRUCTURE, AND AIR BATTERY STACK STRUCTURE
CN104278290A (en) Method for producing oxygen-consuming electrodes which are stable during transport and storage
WO2021039476A1 (en) Electricity storage device
WO2016035383A1 (en) Functional water-generating apparatus
JP2006152318A (en) Electrolytic cell in electrolytic water generator
JP6333863B2 (en) Metal air battery
JP2005144239A (en) Electrolytic cell and electrolytic water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140620