JP2005144239A - Electrolytic cell and electrolytic water generator - Google Patents

Electrolytic cell and electrolytic water generator Download PDF

Info

Publication number
JP2005144239A
JP2005144239A JP2003381741A JP2003381741A JP2005144239A JP 2005144239 A JP2005144239 A JP 2005144239A JP 2003381741 A JP2003381741 A JP 2003381741A JP 2003381741 A JP2003381741 A JP 2003381741A JP 2005144239 A JP2005144239 A JP 2005144239A
Authority
JP
Japan
Prior art keywords
electrode
electrolytic
raw water
electrodes
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003381741A
Other languages
Japanese (ja)
Inventor
Koichi Miyashita
公一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003381741A priority Critical patent/JP2005144239A/en
Publication of JP2005144239A publication Critical patent/JP2005144239A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic cell and an electrolytic water generator which are small in size and excellent in electrolysis efficiency. <P>SOLUTION: The electrolytic cell has a pair of electrolytic chambers 10a, 10b arranged opposite to each other through an ion permeable diaphragm 2, raw water supply means 11a, 11b, a pair of electrodes 3a, 3b installed in the electrolytic chambers 10a, 10b respectively so as to put the diaphragm 2 between them, and electrolytic water taking out means 12a, 12b for taking out electrolytic water. The diaphragm 2 is a cation permeable membrane, and the electrodes 3a, 3b are stuck fast to both surfaces of the cation permeable membrane 2 to form a cation permeable membrane-electrode structure. Only raw water fed to the cathode-side electrolytic chamber 10b contains an electrolyte. The electrodes 3a, 3b are porous material made of conductive powder, or are formed in the shape of mesh or a comb. The electrodes 3a, 3b are formed by applying a conductive paste containing the conductive powder to the surface of the cation permeable membrane 2 and heating or pressurizing it. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、イオン透過性の隔膜を介して対向配置された1対の電解室に供給される原水を、該隔膜を挟んで各電解室に設けられた1対の電極に電圧を印加して電解する電解槽及び該電解槽を用いて電解水を生成させる電解水生成装置に関するものである。   In the present invention, raw water supplied to a pair of electrolysis chambers opposed to each other through an ion-permeable diaphragm is applied to a pair of electrodes provided in each electrolysis chamber across the diaphragm. The present invention relates to an electrolytic cell for electrolysis and an electrolyzed water generating device for generating electrolyzed water using the electrolytic cell.

イオン透過性の隔膜を介して対向配置された1対の電解室と、該隔膜を挟んで各電解室に設けられた1対の電極とを備える電解槽を用いて電解水を生成させる電解水生成装置が知られている。前記電解水生成装置では、前記各電解室に電解質を含む原水を供給し、前記1対の電極に電圧を印加して該原水を電解することにより、陽極側の電解室に酸性の電解水、陰極側の電解室にアルカリ性の電解水を生成させることができる。   Electrolyzed water for generating electrolyzed water using an electrolytic cell comprising a pair of electrolysis chambers arranged opposite to each other with an ion-permeable diaphragm and a pair of electrodes provided in each electrolysis chamber across the diaphragm Generation devices are known. In the electrolyzed water generator, raw water containing an electrolyte is supplied to each electrolysis chamber, and a voltage is applied to the pair of electrodes to electrolyze the raw water, whereby acidic electrolyzed water is supplied to the electrolysis chamber on the anode side, Alkaline electrolyzed water can be generated in the electrolysis chamber on the cathode side.

前記電解水生成装置の電解槽では、通常、前記電極は前記隔膜から離間して設けられている。ところが、前記構成では、前記隔膜を挟んで配設される両電極の間隔が広いために電極間の電気抵抗が大きく、印加される電力に対する電解効率が低いという問題がある。   In the electrolytic cell of the electrolyzed water generating device, the electrode is usually provided apart from the diaphragm. However, the above-described configuration has a problem in that since the distance between both electrodes disposed across the diaphragm is wide, the electrical resistance between the electrodes is large and the electrolysis efficiency with respect to the applied power is low.

前記問題を解決するために、例えば、平織金網からなる多孔質電極素材とパンチドメタルとを重ね合わせた電極を隔膜に当接させることにより両電極の間隔を狭めると共に、該多孔質電極素材の内部に原水を流通させることにより該原水と電極との接触面積を大きくした電解槽が提案されている(例えば特許文献1参照)。   In order to solve the above problem, for example, the electrode between the porous electrode material made of plain woven wire mesh and the punched metal is brought into contact with the diaphragm to reduce the distance between both electrodes, and the porous electrode material There has been proposed an electrolytic cell in which the contact area between the raw water and the electrode is increased by circulating the raw water inside (see, for example, Patent Document 1).

しかしながら、前記電解槽では、印加される電力に対する電解効率をある程度向上させることができるものの十分ではなく、しかも前記原水は前記多孔質電極素材の内部に流通されるために流通抵抗が大きいので、単位時間当たりの電解水の生成量を多くしようとすると装置の大型化が避けられないという不都合がある。
特開2001−73177号公報
However, in the electrolytic cell, although the electrolytic efficiency with respect to the applied power can be improved to some extent, it is not sufficient, and since the raw water is circulated inside the porous electrode material, the flow resistance is large. If an attempt is made to increase the amount of electrolyzed water generated per hour, there is an inconvenience that the size of the apparatus cannot be avoided.
JP 2001-73177 A

本発明は、かかる不都合を解消して、小型で電解効率に優れた電解槽及び該電解槽を用いて電解水を生成させる電解水生成装置を提供することを目的とする。   An object of the present invention is to provide an electrolyzed water generator that eliminates such disadvantages and is small in size and excellent in electrolysis efficiency and generates electrolyzed water using the electrolyzer.

かかる目的を達成するために、本発明の電解槽は、イオン透過性の隔膜を介して対向配置された1対の電解室と、各電解室に原水を供給する原水供給手段と、該隔膜を挟んで各電解室に設けられた1対の電極と、両電極に電圧を印加して該原水供給手段により各電解室に供給された原水を電解することにより得られた電解水を各電解室から取り出す電解水取出手段とを備える電解槽において、該隔膜は陽イオン交換膜であり、該電極は該陽イオン交換膜の両表面に密着して陽イオンが透過できる膜−電極構造体を形成していることを特徴とする。   In order to achieve the above object, an electrolytic cell of the present invention comprises a pair of electrolytic chambers arranged opposite to each other with ion-permeable diaphragms, raw water supply means for supplying raw water to each electrolytic chamber, and the diaphragms. A pair of electrodes provided in each electrolysis chamber, and electrolyzed water obtained by electrolyzing raw water supplied to each electrolysis chamber by applying a voltage to both electrodes by the raw water supply means In the electrolytic cell provided with the electrolyzed water extraction means for taking out from the membrane, the diaphragm is a cation exchange membrane, and the electrode is in close contact with both surfaces of the cation exchange membrane to form a membrane-electrode structure capable of transmitting a cation. It is characterized by that.

本発明の電解槽では、前記原水供給手段により各電解室に原水を供給し、前記陽イオン交換膜の両表面に形成された電極に電圧を印加して前記原水の電解を行う。このようにすると、陰極側の電解室では、水の電解による水素ガスと、水酸イオン(OH-)とが生成し、該水酸イオンによりアルカリ性を呈する電解水(以下、アルカリ性電解水と略記する)が得られる。一方、陽極側の電解室では、水の電解による酸素ガスと、水素イオン(H)とが生成し、該水素イオンにより酸性を呈する電解水(以下、酸性電解水と略記する)が得られる。前記アルカリ性電解水、酸性電解水は、それぞれ電解水取出手段により電解槽から取り出される。 In the electrolytic cell of the present invention, raw water is supplied to each electrolysis chamber by the raw water supply means, and voltage is applied to electrodes formed on both surfaces of the cation exchange membrane to electrolyze the raw water. In this way, in the cathode-side electrolysis chamber, hydrogen gas by electrolysis of water and hydroxide ions (OH ) are generated, and electrolyzed water that exhibits alkalinity by the hydroxide ions (hereinafter abbreviated as alkaline electrolyzed water). Is obtained). On the other hand, in the electrolysis chamber on the anode side, oxygen gas by hydrogen electrolysis and hydrogen ions (H + ) are generated, and electrolyzed water exhibiting acidity by the hydrogen ions (hereinafter abbreviated as acidic electrolyzed water) is obtained. . The alkaline electrolyzed water and the acidic electrolyzed water are each taken out from the electrolytic cell by the electrolyzed water extracting means.

このとき、本発明の電解槽によれば、前記両電極が前記陽イオン透過膜の両表面に密着して形成されているので、両電極間の電気抵抗が小さく、印加される電力に対して優れた電解効率を得ることができる。   At this time, according to the electrolytic cell of the present invention, since both the electrodes are formed in close contact with both surfaces of the cation permeable membrane, the electrical resistance between the both electrodes is small, and the applied electric power Excellent electrolytic efficiency can be obtained.

一方、水の電解では標準酸化還元電位E0と実際の電極電位Eとの間には次式(1)で示される関係があることが知られている。 On the other hand, in the electrolysis of water, it is known that there is a relationship represented by the following formula (1) between the standard oxidation-reduction potential E 0 and the actual electrode potential E.

E=E0 − 0.06pH ・・・(1)
前記標準酸化還元電位E0は陽極側では、
2H2O = O2 + 4H + 4e0=1.23(V)
となり、陰極側では、
2H + 2e = H20=0(V)
となる。従って、前記式(1)は、陽極側では次式(2)で示され、陰極側では次式(3)で示される。
E = E 0 −0.06 pH (1)
The standard redox potential E 0 is on the anode side.
2H 2 O = O 2 + 4H + + 4e - E 0 = 1.23 (V)
And on the cathode side,
2H + + 2e = H 2 E 0 = 0 (V)
It becomes. Therefore, the formula (1) is represented by the following formula (2) on the anode side and is represented by the following formula (3) on the cathode side.

E=1.23 − 0.06pH ・・・(2)
E= −0.06pH ・・・(3)
ここで、本発明の電解槽では、陽極側の電解室で生成する前記水素イオンの一部が前記陽イオン透過膜を介して陰極側の電解室に移動する。この結果、陽極側の電解室では、前記陽イオン透過膜に密着して形成されている前記電極の近傍で水素イオンが欠乏し、pHが上昇する。また、陰極側の電解室では陽極側の電解室から移動してきた水素イオンにより前記陽イオン透過膜に密着して形成されている前記電極の近傍で水素イオンが富化し、pHが低下する。
E = 1.23-0.06 pH (2)
E = −0.06 pH (3)
Here, in the electrolytic cell of the present invention, a part of the hydrogen ions generated in the electrolytic chamber on the anode side moves to the electrolytic chamber on the cathode side through the cation permeable membrane. As a result, in the electrolytic chamber on the anode side, hydrogen ions are deficient in the vicinity of the electrode formed in close contact with the cation permeable membrane, and the pH rises. In the electrolysis chamber on the cathode side, hydrogen ions are enriched in the vicinity of the electrode formed in close contact with the cation permeable membrane by hydrogen ions moving from the electrolysis chamber on the anode side, and the pH is lowered.

この結果、電極電位Eは、式(2)、(3)のいずれにおいても絶対値が小さくなり、より低い電圧で電解が可能になるので、印加される電力に対して優れた電解効率を得ることができる。   As a result, the electrode potential E has a small absolute value in both the formulas (2) and (3), and electrolysis can be performed at a lower voltage, so that excellent electrolysis efficiency is obtained with respect to the applied power. be able to.

前記アルカリ性電解水を飲用に供する場合、前記電解質に塩化物を用いると、前記電解により該アルカリ性電解水中にトリハロメタンが生成する虞がある。そこで、前記電解質として塩化物に代えて、塩素を含まないカルシウム化合物を用いることが行われているが、前記カルシウム化合物を用いるとランニングコストの増大が避けられない。   When the alkaline electrolyzed water is used for drinking, if a chloride is used as the electrolyte, trihalomethane may be generated in the alkaline electrolyzed water due to the electrolysis. Therefore, a calcium compound containing no chlorine is used instead of chloride as the electrolyte. However, when the calcium compound is used, an increase in running cost is inevitable.

しかし、本発明の電解槽によれば、前述のように優れた電解効率が得られるので、前記電解質としての前記カルシウム化合物を少なくしても電解が可能であり、ランニングコストを低減することができる。   However, according to the electrolytic cell of the present invention, excellent electrolysis efficiency can be obtained as described above. Therefore, electrolysis is possible even if the calcium compound as the electrolyte is reduced, and the running cost can be reduced. .

また、本発明の電解槽によれば、前記電極が前記陽イオン透過膜と一体に形成されているので、部品点数が少なく、原水の流通構造も簡単になる。この結果、原水の流通抵抗が低くなるので、単位時間当たりの電解水の生成量が多くなり、装置の小型化が可能になる。さらに、本発明の電解槽によれば、前述のように両電極間の電気抵抗が小さく、優れた電解効率を得ることができるので、電源に対する負荷が小さく、該電源を小容量化することができる。   In addition, according to the electrolytic cell of the present invention, since the electrode is formed integrally with the cation permeable membrane, the number of parts is small and the flow structure of raw water is simplified. As a result, since the flow resistance of the raw water is reduced, the amount of electrolyzed water generated per unit time is increased, and the apparatus can be miniaturized. Furthermore, according to the electrolytic cell of the present invention, the electrical resistance between the two electrodes is small as described above, and excellent electrolysis efficiency can be obtained. Therefore, the load on the power source is small, and the capacity of the power source can be reduced. it can.

本発明の電解槽において、前記電極は、導電性の粉体から形成された多孔質体であることを特徴とする。前記多孔質体は例えば直径数μmの細孔を備えるので、例えば、前記陽イオン交換膜の全面を電極で被覆したとしても、該陽イオン透過膜は、該細孔に面した部分を露出部分とすることができる。この結果、前記電極は、前記陽極側の電解室で生成した水素イオンを前記露出部分で前記陽イオン透過膜に接触させることができ、前記陰極側の電解室では前記陽イオン透過膜の表面近傍で水素イオンが富化した状態とすることができる。   In the electrolytic cell of the present invention, the electrode is a porous body formed from conductive powder. Since the porous body has, for example, pores with a diameter of several μm, for example, even if the entire surface of the cation exchange membrane is covered with an electrode, the cation permeable membrane has an exposed portion facing the pore. It can be. As a result, the electrode can bring the hydrogen ions generated in the electrolytic chamber on the anode side into contact with the cation permeable membrane at the exposed portion, and in the vicinity of the surface of the cation permeable membrane in the electrolytic chamber on the cathode side. Thus, the hydrogen ions can be enriched.

また、本発明の電解槽において、前記電極は、メッシュ状または櫛形状に形成されていてもよい。この場合には、前記陽イオン透過膜は前記メッシュ状または櫛形状の間隙を露出部分とすることができ、前記メッシュ状または櫛形状の電極は、該露出部分に関し、前記多孔質体からなる電極と同様の作用が得られる。   In the electrolytic cell of the present invention, the electrode may be formed in a mesh shape or a comb shape. In this case, the cation permeable membrane can have the mesh-shaped or comb-shaped gap as an exposed portion, and the mesh-shaped or comb-shaped electrode is an electrode made of the porous body with respect to the exposed portion. The same effect is obtained.

また、一般にエッジ効果として知られるように、電極では端部に電流が集中して電荷のやり取りが起こり易いが、前記メッシュ状または櫛形状の電極は、前記端部となる部分が多いので、電荷のやり取りの上で有利であり、さらに優れた電解効率を得ることができる。   In addition, as is generally known as the edge effect, in an electrode, current is concentrated at the end portion, and charge exchange is likely to occur. However, since the mesh-shaped or comb-shaped electrode has many portions serving as the end portion, This is advantageous in terms of the exchange and further excellent electrolysis efficiency can be obtained.

前記メッシュ状または櫛形状の電極は、その形状からメッシュ状または櫛形状の間隙に前記陽イオン透過膜を露出させることができるので、実質的に前記細孔を備えない緻密な固体であってもよいが、前記導電性の粉体から形成された多孔質体であってもよい。   Since the mesh-shaped or comb-shaped electrode can expose the cation permeable membrane from the shape to the mesh-shaped or comb-shaped gap, even if it is a dense solid that does not substantially include the pores. However, it may be a porous body formed from the conductive powder.

前記導電性の粉体から形成された多孔質体からなる電極は、導電性の粉体を含む導電性ペーストを前記陽イオン透過膜の表面に塗布し、加熱または加圧することにより形成されていることを特徴とする。前記電極は、前記導電性ペーストを印刷等の手段を用いて前記陽イオン透過膜の表面に塗布することにより容易に任意の形状に形成することができ、量産化に好適である。前記電極は、前記導電性ペーストを陰イオン交換膜の表面に塗布したのち、加熱するか加圧するかいずれか一方の手段により形成してもよく、加熱した後さらに加圧するように両方の手段を併用して形成してもよい。   The electrode made of a porous body formed from the conductive powder is formed by applying a conductive paste containing a conductive powder to the surface of the cation permeable membrane and heating or pressurizing it. It is characterized by that. The electrode can be easily formed into an arbitrary shape by applying the conductive paste to the surface of the cation permeable membrane by means such as printing, and is suitable for mass production. The electrode may be formed by either heating or pressurizing after the conductive paste is applied to the surface of the anion exchange membrane, and both means may be used to further pressurize after heating. You may form together.

そして、本発明の電解水生成装置は、前記電解槽を用いて電解水を生成させることを特徴とする。本発明の電解水生成装置によれば、前記電解槽を備えることにより装置構成全体の小型化、軽量化を図ることができる。   And the electrolyzed water generating apparatus of this invention produces | generates electrolyzed water using the said electrolytic vessel, It is characterized by the above-mentioned. According to the electrolyzed water generating apparatus of the present invention, it is possible to reduce the overall size and weight of the apparatus by providing the electrolyzer.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の電解槽の組立図、図2は図1に示す電解槽の膜−電極構造体の説明的断面図、図3、図4は膜−電極構造体の他の例を示す平面図である。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. 1 is an assembly diagram of the electrolytic cell of the present embodiment, FIG. 2 is an explanatory sectional view of the membrane-electrode structure of the electrolytic cell shown in FIG. 1, and FIGS. 3 and 4 are other examples of the membrane-electrode structure. FIG.

図1に示すように、本実施形態の電解槽1は、陽イオン透過膜2の両表面に膜状の電極3a,3bが形成された膜−電極構造体4の両側に、集電板5a,5b、スペーサ6a,6b、外板7a,7bが重ね合わされた構成となっている。膜−電極構造体4、集電板5a,5b、スペーサ6a,6b、外板7a,7bは、図示しない貫通孔に挿通されるボルトと該ボルトに螺着されるナットにより締結される。   As shown in FIG. 1, the electrolytic cell 1 of the present embodiment includes a current collector plate 5 a on both sides of a membrane-electrode structure 4 in which film-like electrodes 3 a and 3 b are formed on both surfaces of a cation permeable membrane 2. , 5b, spacers 6a, 6b, and outer plates 7a, 7b are overlapped. The membrane-electrode structure 4, the current collector plates 5a and 5b, the spacers 6a and 6b, and the outer plates 7a and 7b are fastened by a bolt inserted through a through hole (not shown) and a nut screwed to the bolt.

膜−電極構造体4は、図2に示すように、陽イオン透過膜2の両表面に矩形状に形成された膜状の電極3a,3bを備えている。陽イオン透過膜2としては、例えば、旭化成工業株式会社製アシプレックス(登録商標)、旭硝子株式会社製セレミオン(登録商標)等の炭化水素系ポリマーからなる陰イオン交換膜を用いることができる。電極3a,3bは、カーボンブラック等の導電性粉体に、白金、イリジウム等の金属粉末を例えば前記導電体粉末に対して5重量%の割合で混合し、さらにポリビニルアルコールを水とアルコールとの混合液に溶解した混合物を加えたペースト状体を、陽イオン透過膜2の両表面に所定の形状に塗布し、加熱、加圧することにより、陽イオン透過膜2に密着し、陽イオン透過膜2と一体に形成されている。電極3a,3bは、前記導電性粉体、金属粉末から形成されるので、直径数μmの細孔を備える多孔質体となっており、陽イオン透過膜2は該細孔に面する部分が露出している。尚、前記ペースト状体において、ポリビニルアルコールは結着剤と溶剤とを兼ねている。   As shown in FIG. 2, the membrane-electrode structure 4 includes membrane electrodes 3 a and 3 b formed in a rectangular shape on both surfaces of the cation permeable membrane 2. As the cation permeable membrane 2, for example, an anion exchange membrane made of a hydrocarbon polymer such as Aciplex (registered trademark) manufactured by Asahi Kasei Kogyo Co., Ltd. or Ceremon (registered trademark) manufactured by Asahi Glass Co., Ltd. can be used. For the electrodes 3a and 3b, a metal powder such as platinum and iridium is mixed in a conductive powder such as carbon black at a ratio of 5% by weight with respect to the conductor powder, and polyvinyl alcohol is mixed with water and alcohol. The paste-like body to which the mixture dissolved in the mixed solution is applied is applied to both surfaces of the cation permeable membrane 2 in a predetermined shape, and is heated and pressurized so as to adhere to the cation permeable membrane 2, and the cation permeable membrane. 2 and one. Since the electrodes 3a and 3b are formed from the conductive powder and metal powder, the electrodes 3a and 3b are porous bodies having pores with a diameter of several μm, and the cation permeable membrane 2 has a portion facing the pores. Exposed. In the paste-like body, polyvinyl alcohol serves as both a binder and a solvent.

膜−電極構造体4では、陽イオン透過膜2は50〜200μmの膜厚を備えている。また、電極3a,3bは、前述の方法により乾燥膜厚が30〜200μmとなるように形成されている。   In the membrane-electrode structure 4, the cation permeable membrane 2 has a thickness of 50 to 200 μm. The electrodes 3a and 3b are formed so that the dry film thickness is 30 to 200 μm by the above-described method.

図1に戻って、集電板5a,5bは、アルミニウム等の金属箔からなり、中央部に電極3a,3bを露出させる窓部8a,8bを備えると共に窓部8a,8bの外周部で電極3a,3bに接触している。集電板5a,5bは、上端部に互いに異なる方向に引き出される端子部9a,9bを備え、端子部9a,9bを介して導線13により電源装置14に接続されている。   Returning to FIG. 1, the current collector plates 5 a and 5 b are made of a metal foil such as aluminum, and are provided with window portions 8 a and 8 b that expose the electrodes 3 a and 3 b at the center, and electrodes at the outer peripheral portions of the window portions 8 a and 8 b. It is in contact with 3a and 3b. The current collecting plates 5a and 5b are provided with terminal portions 9a and 9b drawn in different directions at the upper end portions, and are connected to the power supply device 14 by the conductive wires 13 through the terminal portions 9a and 9b.

スペーサ6a,6bは、中央部に集電板5a,5bの窓部8a,8bに連通する空洞部を備え、該空洞部が電解室10a,10bとなっている。また、スペーサ6a,6bは、電解室10a,10bに原水を供給する給水孔11a,11b、電解室10a,10bで生成した電解水を取り出す排水孔12a,12bを備えている。給水孔11a,11bは図示しない原水タンク等の原水供給手段に接続されており、排水孔12a,12bは図示しない貯水タンク等に接続されている。   The spacers 6a and 6b are provided with hollow portions communicating with the window portions 8a and 8b of the current collector plates 5a and 5b at the center, and the hollow portions serve as the electrolytic chambers 10a and 10b. The spacers 6a and 6b are provided with water supply holes 11a and 11b for supplying raw water to the electrolysis chambers 10a and 10b, and drainage holes 12a and 12b for taking out electrolyzed water generated in the electrolysis chambers 10a and 10b. The water supply holes 11a and 11b are connected to raw water supply means such as a raw water tank (not shown), and the drain holes 12a and 12b are connected to a water storage tank and the like (not shown).

外板7a,7bは、盲板であり、スペーサ6a,6bの空洞部を閉蓋して電解室10a,10bを形成するようになっている。   The outer plates 7a and 7b are blind plates, and the electrolytic chambers 10a and 10b are formed by closing the hollow portions of the spacers 6a and 6b.

本実施形態の電解槽1では、例えば電極3aを陽極、電極3bを陰極とし、給水孔11a,11bを介して電解室10a,10bに電解質を含む原水として乳酸カルシウム水溶液を供給しながら、電源装置14により電極3a,3bに通電する。この結果、電解室10aには酸性電解水が得られ、該酸性電解水は排水孔12aを介して取り出される。一方、電解室10bにはアルカリ性電解水が得られ、該アルカリ性電解水は排水孔12bを介して取り出される。電解槽1では、前記電解質として前記乳酸カルシウムのような塩素を含まないカルシウム塩を用いるので、前記アルカリ性電解水はトリハロメタンを含むことが無く、飲用に好適に供することができる。   In the electrolytic cell 1 of the present embodiment, for example, the electrode 3a is used as an anode, the electrode 3b is used as a cathode, and a calcium lactate aqueous solution is supplied as raw water containing electrolyte to the electrolytic chambers 10a and 10b via the water supply holes 11a and 11b. 14, the electrodes 3a and 3b are energized. As a result, acidic electrolyzed water is obtained in the electrolysis chamber 10a, and the acidic electrolyzed water is taken out through the drain hole 12a. On the other hand, alkaline electrolyzed water is obtained in the electrolysis chamber 10b, and the alkaline electrolyzed water is taken out through the drain hole 12b. In the electrolytic cell 1, since the calcium salt which does not contain chlorine like the said calcium lactate is used as the said electrolyte, the said alkaline electrolyzed water does not contain a trihalomethane and can be used suitably for drinking.

このとき、電極3a,3bは、陽イオン透過膜2の両表面に密着して陽イオン透過膜2と一体に形成されており両電極間の間隔が非常に狭いので、電極間抵抗が小さく、低電圧で効率よく電解を行うことができる。   At this time, the electrodes 3a and 3b are in close contact with both surfaces of the cation permeable membrane 2 and are formed integrally with the cation permeable membrane 2 and the distance between the two electrodes is very narrow. Electrolysis can be performed efficiently at a low voltage.

尚、前記実施形態では、陽イオン透過膜2の両表面に、多孔質体からなる膜状の電極3a,3bを矩形状に設けているが、電極3a,3bは前記形状に限定されるものではなく、図3に示すようにメッシュ状であってもよく、図4に示すように櫛形状であってもよい。電極3a,3bを櫛形状とする場合には、図4に示すように、電極3aと電極3b(図4に隠れ線で示す)とは、相互に重なり合わない位置に設けるようにしてもよい。   In the embodiment, the membrane electrodes 3a and 3b made of a porous material are provided on both surfaces of the cation permeable membrane 2 in a rectangular shape. However, the electrodes 3a and 3b are limited to the above shapes. Instead, it may be mesh-shaped as shown in FIG. 3, or may be comb-shaped as shown in FIG. When the electrodes 3a and 3b are comb-shaped, as shown in FIG. 4, the electrode 3a and the electrode 3b (shown by hidden lines in FIG. 4) may be provided at positions that do not overlap each other.

電極3a,3bは、前記メッシュ状または櫛形状に形成される場合、メッシュ状または櫛形状の間隙から陽イオン透過膜2が露出するので、多孔質体ではなく、細孔を備えない緻密な固体であってもよい。但し、図1に示す電極3a,3bと同様の多孔質体である場合には、前記ペースト状体をスクリーン印刷等の方法により陽イオン透過膜2に塗布することにより、前記メッシュ状または櫛形状の形状を容易に形成することができるので有利である。   When the electrodes 3a and 3b are formed in the mesh or comb shape, the cation permeable membrane 2 is exposed from the mesh or comb-shaped gap, so that the electrodes 3a and 3b are not a porous body but a dense solid having no pores. It may be. However, in the case of a porous body similar to the electrodes 3a and 3b shown in FIG. 1, the mesh-like or comb-like shape can be obtained by applying the paste-like body to the cation permeable membrane 2 by a method such as screen printing. This is advantageous because the shape can be easily formed.

また、前記実施形態の電解槽1は、電極3a,3bに電力を供給する電源装置14や前記原水供給手段等の作動を制御する制御装置等の周辺装置を備えることにより、電解水生成装置を構成することができる。   Moreover, the electrolytic cell 1 of the said embodiment is equipped with peripheral devices, such as the power supply device 14 which supplies electric power to electrode 3a, 3b, and the control apparatus which controls operation | movement of the said raw | natural water supply means, etc., thereby providing an electrolyzed water generating apparatus. Can be configured.

本発明に係る電解槽の一構成例を示す組立図。The assembly drawing which shows the example of 1 structure of the electrolytic vessel which concerns on this invention. 図1に示す電解槽の膜−電極構造体の説明的断面図。Explanatory sectional drawing of the membrane-electrode structure of the electrolytic cell shown in FIG. 膜−電極構造体の他の例を示す平面図。The top view which shows the other example of a membrane-electrode structure. 膜−電極構造体の他の例を示す平面図。The top view which shows the other example of a membrane-electrode structure.

符号の説明Explanation of symbols

1…電解槽、 2…陽イオン透過膜、 3a,3b…電極、 10a,10b…電解室、 11a,11b…原水供給手段、 12a,12b…電解水取出手段。   DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell, 2 ... Cation permeable membrane, 3a, 3b ... Electrode, 10a, 10b ... Electrolytic chamber, 11a, 11b ... Raw water supply means, 12a, 12b ... Electrolyzed water extraction means.

Claims (5)

イオン透過性の隔膜を介して対向配置された1対の電解室と、各電解室に原水を供給する原水供給手段と、該隔膜を挟んで各電解室に設けられた1対の電極と、両電極に電圧を印加して該原水供給手段により各電解室に供給された原水を電解することにより得られた電解水を各電解室から取り出す電解水取出手段とを備える電解槽において、
該隔膜は陽イオン交換膜であり、該電極は該陽イオン交換膜の両表面に密着して陽イオンが透過できる膜−電極構造体を形成していることを特徴とする電解槽。
A pair of electrolysis chambers opposed to each other via an ion-permeable diaphragm, raw water supply means for supplying raw water to each electrolysis chamber, a pair of electrodes provided in each electrolysis chamber with the diaphragm interposed therebetween, In an electrolytic cell comprising electrolyzed water taken out from each electrolysis chamber by applying voltage to both electrodes and electrolyzing the raw water supplied to each electrolysis chamber by the raw water supply means,
The electrolytic cell, wherein the diaphragm is a cation exchange membrane, and the electrode is in close contact with both surfaces of the cation exchange membrane to form a membrane-electrode structure capable of transmitting cations.
前記電極は、導電性の粉体から形成された多孔質体であることを特徴とする請求項1記載の電解槽。   The electrolytic cell according to claim 1, wherein the electrode is a porous body formed of conductive powder. 前記電極は、メッシュ状または櫛形状に形成されていることを特徴とする請求項1記載の電解槽。   The electrolytic cell according to claim 1, wherein the electrode is formed in a mesh shape or a comb shape. 前記電極は、導電性の粉体を含む導電性ペーストを前記陽イオン交換膜の表面に塗布し、加熱または加圧することにより形成されていることを特徴とする請求項2または請求項3記載の電解槽。   The said electrode is formed by apply | coating the electrically conductive paste containing electroconductive powder to the surface of the said cation exchange membrane, and heating or pressurizing. Electrolytic tank. イオン透過性の隔膜を介して対向配置された1対の電解室と、各電解室に原水を供給する原水供給手段と、該隔膜を挟んで各電解室に設けられた1対の電極と、両電極に電圧を印加して該原水供給手段により各電解室に供給された原水を電解することにより得られた電解水を各電解室から取り出す電解水取出手段とを備え、該隔膜は陽イオン交換膜であり、該電極は該電極は該陽イオン交換膜の両表面に密着して陽イオンが透過できる膜−電極構造体を形成している電解槽を用いて電解水を生成させることを特徴とする電解水生成装置。   A pair of electrolysis chambers opposed to each other via an ion-permeable diaphragm, raw water supply means for supplying raw water to each electrolysis chamber, a pair of electrodes provided in each electrolysis chamber with the diaphragm interposed therebetween, Electrolyzed water extraction means for taking out electrolyzed water obtained by applying voltage to both electrodes and electrolyzing raw water supplied to each electrolysis chamber by the raw water supply means from each electrolysis chamber; And an electrode for generating electrolyzed water using an electrolytic cell in which the electrode is in close contact with both surfaces of the cation exchange membrane to form a membrane-electrode structure capable of transmitting a cation. A characteristic electrolyzed water generating device.
JP2003381741A 2003-11-11 2003-11-11 Electrolytic cell and electrolytic water generator Pending JP2005144239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381741A JP2005144239A (en) 2003-11-11 2003-11-11 Electrolytic cell and electrolytic water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381741A JP2005144239A (en) 2003-11-11 2003-11-11 Electrolytic cell and electrolytic water generator

Publications (1)

Publication Number Publication Date
JP2005144239A true JP2005144239A (en) 2005-06-09

Family

ID=34691023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381741A Pending JP2005144239A (en) 2003-11-11 2003-11-11 Electrolytic cell and electrolytic water generator

Country Status (1)

Country Link
JP (1) JP2005144239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034625A (en) * 2007-08-02 2009-02-19 Mhi Environment Engineering Co Ltd Wastewater treatment apparatus and method
US7513980B2 (en) 2004-11-25 2009-04-07 Honda Motor Co., Ltd. Electrolytic cell for electrolyzed water generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513980B2 (en) 2004-11-25 2009-04-07 Honda Motor Co., Ltd. Electrolytic cell for electrolyzed water generator
JP2009034625A (en) * 2007-08-02 2009-02-19 Mhi Environment Engineering Co Ltd Wastewater treatment apparatus and method

Similar Documents

Publication Publication Date Title
US5415759A (en) Water ionizing electrode and electrochemical process for using
KR101220199B1 (en) Electrolytic synthesis of hydrogen peroxide directly from water and application thereof
JP2005144240A (en) Electrolytic cell and electrolytic water generator
US9108165B2 (en) Cell for depolarised electrodialysis of salt solutions
KR101278455B1 (en) The portable water generator containing hydrogen gas or containing oxygen gas
JP4249693B2 (en) Electrolyzer for electrolyzed water generator
GB2071157A (en) Catalytic electrode and combined catalytic electrode and electrolytic structure
US12018393B2 (en) Separatorless dual GDE cell for electrochemical reactions
Venkatkarthick et al. Studies on polymer modified metal oxide anode for oxygen evolution reaction in saline water
JPH07214063A (en) Production of electrolytic acidic water and producting device therefor
KR101863186B1 (en) Solid salt reverse electrodialysis device
US20070131541A1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
KR101071636B1 (en) Electrolysis vessel and apparatus for generating electrolyzed water
KR101211337B1 (en) Electrolytic cell of electrolysis water generation device
JP2006150153A (en) Electrolytic cell of electrolytic water generator
JP2006213932A (en) Electrode for generating electrolyzed water
JP2005144239A (en) Electrolytic cell and electrolytic water generator
JP2005293901A (en) Fuel cell system and driving method thereof
JP2012077381A (en) Method for manufacturing transport- and storage-stable oxygen-consuming electrode
JP2006152318A (en) Electrolytic cell in electrolytic water generator
KR100704440B1 (en) Method for manufacturing membrane electrode assemblies with porous electro catalytic layer
KR840002296B1 (en) Method of electrolyzing halides
Kucernak et al. Avoid Using Phosphate Buffered Saline (PBS) as an Electrolyte for Accurate OER Studies
JPH09217185A (en) Three-chamber based electrolytic cell
JP2006150152A (en) Electrolytic cell of electrolytic water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325