JP6234917B2 - Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same - Google Patents

Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same Download PDF

Info

Publication number
JP6234917B2
JP6234917B2 JP2014247411A JP2014247411A JP6234917B2 JP 6234917 B2 JP6234917 B2 JP 6234917B2 JP 2014247411 A JP2014247411 A JP 2014247411A JP 2014247411 A JP2014247411 A JP 2014247411A JP 6234917 B2 JP6234917 B2 JP 6234917B2
Authority
JP
Japan
Prior art keywords
metal
secondary battery
iron
negative electrode
air secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014247411A
Other languages
Japanese (ja)
Other versions
JP2016110846A (en
Inventor
林 和志
和志 林
尚敏 坂本
尚敏 坂本
松田 厚範
厚範 松田
浩行 武藤
浩行 武藤
剛 河村
剛 河村
康孝 前田
康孝 前田
翼 鈴木
翼 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Kobe Steel Ltd
Original Assignee
Toyohashi University of Technology NUC
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC, Kobe Steel Ltd filed Critical Toyohashi University of Technology NUC
Priority to JP2014247411A priority Critical patent/JP6234917B2/en
Publication of JP2016110846A publication Critical patent/JP2016110846A/en
Application granted granted Critical
Publication of JP6234917B2 publication Critical patent/JP6234917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、金属−空気二次電池用負極材料、及びこれを備える金属−空気二次電池に関する。   The present invention relates to a negative electrode material for a metal-air secondary battery and a metal-air secondary battery including the same.

実用化されている二次電池の中で、現在最もエネルギー密度(電池質量に対する放電可能な電力量)が高いものはリチウムイオン電池とされている。このリチウムイオン電池のエネルギー密度を超える二次電池の一つとして、金属−空気二次電池が注目されている。金属−空気二次電池においては、正極の反応物質が空気中の酸素であり、負極の反応物質が金属である。この金属−空気二次電池の最大の特徴は、正極で大気中の酸素を活用しているため、正極の反応物質の質量を理論上ゼロにできる点にある。電池の質量は、正負電極での反応物質の質量と、反応を仲介する電解質の質量とが大部分を占める。このため、片方の電極の反応物質の質量をゼロにできる金属−空気二次電池は、エネルギー密度を飛躍的に向上できる可能性がある。   Among secondary batteries in practical use, the one having the highest energy density (the amount of electric power that can be discharged with respect to the mass of the battery) is regarded as a lithium ion battery. As a secondary battery exceeding the energy density of this lithium ion battery, a metal-air secondary battery has attracted attention. In the metal-air secondary battery, the reactant of the positive electrode is oxygen in the air, and the reactant of the negative electrode is a metal. The greatest feature of this metal-air secondary battery is that, since oxygen in the atmosphere is utilized at the positive electrode, the mass of the reactant in the positive electrode can theoretically be zero. The mass of the battery occupies most of the mass of the reactant at the positive and negative electrodes and the mass of the electrolyte that mediates the reaction. For this reason, the metal-air secondary battery capable of reducing the mass of the reactant on one electrode to zero may greatly improve the energy density.

金属−空気二次電池としては、炭素粉末等の導電材と酸素還元触媒とを組み合わせたものを正極(空気極)とし、亜鉛、アルミニウム、鉄、リチウム等を負極(金属極)として構成されるものが一般的である。負極材料の中でも、鉄はコスト面などで優れ、例えばKOH−ZrO系固体電解質表面に、負極活物質である酸化鉄ナノ粒子が担持されてなる負極を有する金属−空気全固体二次電池が開発されている(特開2012−74371号公報参照)。このような負極を用いることで、鉄粉のみからなる負極を用いた場合と比べて、金属−空気全固体二次電池の特性が向上するとされる。しかし、上記負極を有する二次電池の最大放電容量も十分なものではなく、より性能に優れる金属−空気二次電池用負極材料の開発が強く望まれている。 As a metal-air secondary battery, a combination of a conductive material such as carbon powder and an oxygen reduction catalyst is used as a positive electrode (air electrode), and zinc, aluminum, iron, lithium, or the like is configured as a negative electrode (metal electrode). Things are common. Among the negative electrode materials, iron is excellent in terms of cost and the like. For example, a metal-air all solid secondary battery having a negative electrode in which iron oxide nanoparticles as a negative electrode active material are supported on the surface of a KOH-ZrO 2 based solid electrolyte. It has been developed (see JP 2012-74371 A). By using such a negative electrode, the characteristics of the metal-air all-solid secondary battery are improved as compared with the case of using a negative electrode made only of iron powder. However, the maximum discharge capacity of the secondary battery having the negative electrode is not sufficient, and development of a negative electrode material for a metal-air secondary battery having higher performance is strongly desired.

特開2012−74371号公報JP 2012-74371 A

本発明は、以上のような事情に基づいてなされたものであり、その目的は、金属−空気二次電池が良好な充放電性能を発揮することができる金属−空気二次電池用負極材料、及びこれを金属極として備える金属−空気二次電池を提供することである。   The present invention has been made based on the above circumstances, and the object thereof is a negative electrode material for a metal-air secondary battery, which can exhibit good charge / discharge performance of the metal-air secondary battery, And a metal-air secondary battery comprising the same as a metal electrode.

上記課題を解決するためになされた発明は、金属−空気二次電池に用いられる負極材料であって、多孔質状の表面部分を有する鉄又は酸化鉄を備えることを特徴とする金属−空気二次電池用負極材料である。   The invention made to solve the above problems is a negative electrode material used for a metal-air secondary battery, comprising iron or iron oxide having a porous surface portion. It is a negative electrode material for secondary batteries.

上記課題を解決するためになされた別の発明は、当該金属−空気二次電池用負極材料を金属極として備える金属−空気二次電池である。   Another invention made to solve the above problems is a metal-air secondary battery comprising the metal-air secondary battery negative electrode material as a metal electrode.

本発明によれば、金属−空気二次電池が良好な充放電性能を発揮することができる。   According to the present invention, a metal-air secondary battery can exhibit good charge / discharge performance.

実施例1の負極材料の表面のSEM画像である。3 is a SEM image of the surface of the negative electrode material of Example 1. 実施例1の金属−空気二次電池の放電容量の変化を示すグラフである。3 is a graph showing changes in discharge capacity of the metal-air secondary battery of Example 1. FIG. 実施例2の負極材料の表面のSEM画像である。3 is a SEM image of the surface of the negative electrode material of Example 2. 実施例2の金属−空気二次電池の放電容量の変化を示すグラフである。4 is a graph showing changes in discharge capacity of the metal-air secondary battery of Example 2.

[金属−空気二次電池用負極材料]
本発明の一実施形態に係る金属−空気二次電池用負極材料は、多孔質状の表面部分を有する鉄又は酸化鉄を備える。
[Anode material for metal-air secondary batteries]
A negative electrode material for a metal-air secondary battery according to an embodiment of the present invention includes iron or iron oxide having a porous surface portion.

鉄又は酸化鉄は、金属−空気二次電池における負極の活物質となる。鉄又は酸化鉄は、充電−放電状態により、その一部又は全部が、金属(Fe)又は金属酸化物(例えばFe、Fe等)として存在する。鉄は自然界で豊富に存在する金属であり、電池の電圧向上作用が期待できる。また、コストも他の金属と比べて圧倒的に安く、金属−空気二次電池の普及の助けとなる。 Iron or iron oxide becomes an active material of a negative electrode in a metal-air secondary battery. Part or all of iron or iron oxide exists as a metal (Fe) or a metal oxide (for example, Fe 2 O 3 , Fe 3 O 4, etc.) depending on the charge-discharge state. Iron is a metal that is abundant in nature and can be expected to improve battery voltage. In addition, the cost is overwhelmingly lower than other metals, which helps the spread of metal-air secondary batteries.

ここで、鉄とは、鉄そのもののみならず、鉄合金や鉄含有物質も含む広い意味である。鉄は、酸化還元電位の絶対値は比較的小さいが、そのイオン化物(鉄イオン)が移動しないため、繰返し充放電しても金属極が安定するという利点を有する。また、鉄は安価で埋蔵量も多く、二次電池として使用してもデンドライトの形成が起きないため、安全な二次電池の提供が期待できる。   Here, iron has a broad meaning including not only iron itself but also iron alloys and iron-containing substances. Although the absolute value of the oxidation-reduction potential is relatively small, iron has an advantage that the metal electrode is stabilized even when repeatedly charged and discharged because the ionized product (iron ion) does not move. In addition, iron is inexpensive and has a large reserve, and dendrite formation does not occur even when used as a secondary battery, so that a safe secondary battery can be provided.

しかしながら、鉄又は酸化鉄を金属−空気二次電池の負極材料に用いた場合、この鉄や酸化鉄は、亜鉛やマグネシウム等と異なり溶出しないため、鉄や酸化鉄が酸化還元反応に効率的に寄与する領域は、鉄又は酸化鉄の表面近傍(例えば表面から100nm程度)に限定される。従って、電池反応に寄与する割合を高めるためには、鉄又は酸化鉄の内部まで電解質に接する必要があり、表面積の大きな多孔性の負極(多孔質状の表面部分を有する鉄又は酸化鉄)を用いる利点が大きい。   However, when iron or iron oxide is used as a negative electrode material for a metal-air secondary battery, this iron or iron oxide does not elute unlike zinc or magnesium, so that iron or iron oxide is efficiently used for redox reaction. The contributing region is limited to the vicinity of the surface of iron or iron oxide (for example, about 100 nm from the surface). Therefore, in order to increase the rate of contribution to the battery reaction, it is necessary to contact the electrolyte up to the inside of iron or iron oxide, and a porous negative electrode (iron or iron oxide having a porous surface portion) having a large surface area is required. The advantage to use is great.

鉄又は酸化鉄の表面部分は多孔質状である。この多孔質状とは、液体電解質又は固体電解質が、孔内部に侵入することが可能な程度の大きさの多数の孔を有する形状をいう。鉄又は酸化鉄の表面がこのような形状を有する場合、金属−空気二次電池において、負極材料(金属極)と電解質との接触面積が広がるため反応効率が高まり、また酸化還元反応により生じた電子を速やかに運ぶことができる。従って、これにより電気化学特性が高まり、効率的な充電及び放電が可能となる。   The surface portion of iron or iron oxide is porous. The porous shape refers to a shape having a large number of pores with such a size that a liquid electrolyte or a solid electrolyte can penetrate into the pores. When the surface of iron or iron oxide has such a shape, in the metal-air secondary battery, the contact area between the negative electrode material (metal electrode) and the electrolyte is widened, so that the reaction efficiency is increased, and it is caused by the redox reaction It can carry electrons quickly. Therefore, this enhances the electrochemical characteristics and enables efficient charging and discharging.

鉄又は酸化鉄(負極材料)は、少なくとも表面部分が多孔質状であればよく、内部はバルク状であってもよいし、多孔質状であってもよい。すなわち、集電体には貫通孔が形成されていてもよい。一部が酸化する場合には集電体をかねることができる。全部酸化させると負極の利用効率がよくなる。この場合は別途集電体を設ける。多孔質状の表面部分は、好ましくは膜状に存在する。多孔質状である表面部分の平均厚さの下限としては、例えば0.1μmであり、1μmが好ましく、3μmがより好ましく、5μmがさらに好ましい。多孔質状の表面部分の平均厚さ(領域)を上記下限以上とすることにより表面積を効率的に拡大することができる。この平均厚さの上限としては特に限定されず、例えば20μmとすることができ、10μmが好ましい。   Iron or iron oxide (negative electrode material) may be porous at least on the surface, and the inside may be bulk or porous. That is, a through hole may be formed in the current collector. In the case where a part is oxidized, it can serve as a current collector. When all are oxidized, the utilization efficiency of the negative electrode is improved. In this case, a separate current collector is provided. The porous surface portion is preferably present in the form of a film. The lower limit of the average thickness of the porous surface portion is, for example, 0.1 μm, preferably 1 μm, more preferably 3 μm, and even more preferably 5 μm. By setting the average thickness (region) of the porous surface portion to the above lower limit or more, the surface area can be efficiently expanded. The upper limit of the average thickness is not particularly limited, and can be, for example, 20 μm, and preferably 10 μm.

多孔質状の表面部分に存在する孔の平均径の上限としては、100nmが好ましく、60nmがより好ましい。一方、この下限としては、例えば10nmとすることができ、20nmが好ましい。孔の平均径は、SEM(走査型電子顕微鏡)画像で確認できる任意の5個の孔の開口部分の直径の平均値とする。なお、開口部分の直径とは、この開口部分と等面積の真円の直径とする。また、表面部分における隣接する孔同士の平均距離の上限としては、500nmが好ましく、200nmがより好ましい。一方、この下限としては、例えば10nmであり、20nmが好ましい。隣接する孔同士の平均距離は、SEM画像で確認できる任意の5組の隣接する孔間における開口部分の重心間距離の平均値とする。孔の平均径及び平均距離を上記範囲とすることで、十分に表面積を広げ、充放電性能を高めることができる。   The upper limit of the average diameter of the pores existing in the porous surface portion is preferably 100 nm, and more preferably 60 nm. On the other hand, as this lower limit, it can be 10 nm, for example, and 20 nm is preferable. Let the average diameter of a hole be the average value of the diameter of the opening part of arbitrary five holes which can be confirmed with a SEM (scanning electron microscope) image. The diameter of the opening is a diameter of a perfect circle having the same area as the opening. Moreover, as an upper limit of the average distance of the adjacent holes in the surface portion, 500 nm is preferable, and 200 nm is more preferable. On the other hand, the lower limit is, for example, 10 nm, and preferably 20 nm. The average distance between adjacent holes is the average value of the distances between the centers of gravity of the opening portions between any five sets of adjacent holes that can be confirmed by SEM images. By setting the average diameter and average distance of the holes in the above ranges, the surface area can be sufficiently expanded and the charge / discharge performance can be enhanced.

多孔質状の表面部分の形成方法は特に限定されないが、鉄の陽極酸化により形成することが好ましい。鉄の陽極酸化により、好ましいサイズの孔等を有する多孔質状の表面部分(多孔質酸化鉄膜)を効率的に形成することができる。   The method for forming the porous surface portion is not particularly limited, but it is preferably formed by iron anodization. By porous anodization of iron, a porous surface portion (porous iron oxide film) having pores having a preferred size can be efficiently formed.

鉄の陽極酸化は、電解質溶液中に鉄を浸漬し、この鉄を陽極(正極)として通電することにより行うことができる。このときの陰極(負極)としては、例えば白金等が用いられる。鉄の陽極酸化においては、鉄が酸化されて鉄イオンとなると共に、この鉄イオンが電解質中の水等が有する酸素原子と結合として酸化鉄となり、この酸化鉄が陽極である鉄表面に析出する。このとき、酸化鉄皮膜形成の進行と、皮膜中の鉄の溶出とが並行して起きることなどにより、皮膜が多孔質状となる。多孔質部分(皮膜)の厚さや孔径などは、陽極酸化処理における電圧、温度、電解質濃度、電解質種類等を変更することなどにより制御することができる。   Anodization of iron can be performed by immersing iron in an electrolyte solution and energizing the iron as an anode (positive electrode). For example, platinum or the like is used as the cathode (negative electrode) at this time. In the anodic oxidation of iron, iron is oxidized to iron ions, and these iron ions are combined with oxygen atoms of water in the electrolyte to form iron oxide, which is deposited on the surface of the iron as the anode. . At this time, the film becomes porous due to the progress of the formation of the iron oxide film and the elution of iron in the film in parallel. The thickness, pore diameter, etc. of the porous portion (film) can be controlled by changing the voltage, temperature, electrolyte concentration, electrolyte type, etc. in the anodizing treatment.

この鉄の陽極酸化の際の電解質溶液としては、例えば水、エチレングリコール及びNHFの混合溶液などを用いることができる。また、陽極酸化の際の電圧としては、例えば30V以上100V以下とすることができる。 As the electrolyte solution for the anodic oxidation of iron, for example, water, a mixed solution of ethylene glycol and NH 4 F, or the like can be used. Moreover, as a voltage at the time of anodizing, it is 30 V or more and 100 V or less, for example.

陽極酸化により多孔質皮膜を形成した後に、加熱(アニール)処理を行うことが好ましい。この加熱処理により、例えば電解質溶液中のNHFにより生成したフッ化鉄を酸化鉄にすることができるなど、鉄の酸化を十分に進行させることができる。この際の加熱温度としては、例えば300℃以上600℃以下とすることができる。また、加熱時間としては、例えば1時間以上5時間以下とすることができる。 It is preferable to perform a heating (annealing) treatment after forming the porous film by anodic oxidation. By this heat treatment, for example, iron fluoride generated by NH 4 F in the electrolyte solution can be converted to iron oxide, and iron oxidation can be sufficiently advanced. The heating temperature at this time can be, for example, 300 ° C. or more and 600 ° C. or less. Moreover, as heating time, it can be set as 1 hour or more and 5 hours or less, for example.

負極材料(鉄又は酸化鉄)の形状は、特に限定されず、板状、粒子状、線状などとすることができる。鉄ワイヤ等の線状の集電体の場合、例えば(a)鉄ワイヤが規則的に配列するメッシュ構造、(b)鉄ワイヤがランダムに配列する不織布構造(スチールウール状構造)、(c)三次元網目構造(スポンジ構造)、(d)これらの構造が組み合わされた構造のものなどを採用することができる。   The shape of the negative electrode material (iron or iron oxide) is not particularly limited, and may be a plate shape, a particle shape, a linear shape, or the like. In the case of a linear current collector such as an iron wire, for example, (a) a mesh structure in which iron wires are regularly arranged, (b) a non-woven fabric structure (steel wool-like structure) in which iron wires are randomly arranged, (c) A three-dimensional network structure (sponge structure), (d) a structure in which these structures are combined, or the like can be adopted.

負極材料の形状は、集電体を含めてシート状とすることができる。シート状の集電体とは、鉄箔の他、例えば鉄ワイヤ等を用いて形成されたメッシュ構造やスポンジ構造を有するシート状の集電体も含む。集電体(負極材料)をシート状とすることで、正極、電解質及び負極が層状に構成される金属−空気二次電池を容易に形成することができる。シート状の集電体の平均厚さとしては特に制限されないが、下限は例えば0.01mmであり、0.1mmが好ましい。一方、この上限は例えば10mmであり、3mmが好ましく、1mmがより好ましい。このような厚さとすることにより、負極としてより十分な機能を発揮させることができる。   The shape of the negative electrode material can be a sheet including the current collector. The sheet-shaped current collector includes, in addition to iron foil, a sheet-shaped current collector having a mesh structure or a sponge structure formed using, for example, an iron wire. By making the current collector (negative electrode material) into a sheet shape, a metal-air secondary battery in which the positive electrode, the electrolyte, and the negative electrode are formed in layers can be easily formed. The average thickness of the sheet-like current collector is not particularly limited, but the lower limit is, for example, 0.01 mm, and preferably 0.1 mm. On the other hand, the upper limit is, for example, 10 mm, preferably 3 mm, and more preferably 1 mm. By setting it as such thickness, a more sufficient function as a negative electrode can be exhibited.

集電体(鉄又は酸化鉄)全体の空隙率の下限としては、例えば1体積%であり、10体積%が好ましく、20体積%がより好ましい。この上限としては例えば80体積%である。集電体全体の空隙率を上記下限以上とすることで、表面積を広げ、充放電効率を高めることができる。なお、集電体をメッシュ構造、不織布構造、三次元網目構造等とすることにより、集電体全体の空隙率を効果的に高めることができる。空隙率とは、集電体全体の見かけの体積に対する空孔の総体積の割合を意味する。   The lower limit of the porosity of the entire current collector (iron or iron oxide) is, for example, 1% by volume, preferably 10% by volume, and more preferably 20% by volume. The upper limit is, for example, 80% by volume. By setting the porosity of the entire current collector to the above lower limit or more, the surface area can be expanded and the charge / discharge efficiency can be increased. In addition, the porosity of the whole electrical power collector can be effectively raised by making a collector into a mesh structure, a nonwoven fabric structure, a three-dimensional network structure, etc. The porosity means the ratio of the total volume of pores to the apparent volume of the entire current collector.

当該金属−空気二次電池用負極材料は、鉄又は酸化鉄に接触するように配設される固体電解質(第1の固体電解質)をさらに備えることができる。この固体電解質の配設は、例えばシート状の集電体(表面部分が多孔質状である鉄又は酸化鉄)の片面又は両面への固体電解質溶液の塗布、固体電解質溶液中への集電体の浸漬等により行うことができる。塗布又は浸漬後に乾燥させることにより、固体電解質が集電体の孔部等に含浸したシート体(負極材料)が得られる。固体電解質としては特に限定されず、後述する金属−空気二次電池に用いられるものとして例示するものと同様である。このように固体電解質が複合された負極材料によれば、正極(空気極)と組み合わせることで容易に金属−空気二次電池を製造することができる。   The negative electrode material for a metal-air secondary battery can further include a solid electrolyte (first solid electrolyte) disposed so as to be in contact with iron or iron oxide. The arrangement of the solid electrolyte is, for example, by applying a solid electrolyte solution to one or both sides of a sheet-like current collector (iron or iron oxide having a porous surface portion), or a current collector in the solid electrolyte solution. It can be performed by dipping. By drying after coating or dipping, a sheet body (negative electrode material) in which the solid electrolyte is impregnated in the pores and the like of the current collector is obtained. It does not specifically limit as a solid electrolyte, It is the same as that of what is illustrated as what is used for the metal-air secondary battery mentioned later. Thus, according to the negative electrode material in which the solid electrolyte is combined, a metal-air secondary battery can be easily manufactured by combining with the positive electrode (air electrode).

当該金属−空気二次電池用負極材料は、鉄又は酸化鉄に接触するように配設される電子伝導性を有する粉末(電子伝導性粉末)をさらに備えることができる。この電子伝導性粉末としては、カーボンブラック、金属粉等を例示することができる。負極材料の全部を酸化させる場合において、特に効果が顕著である。電子伝導性粉末は、例えば集電体(鉄又は酸化鉄)がメッシュ構造やスポンジ構造の場合、この構造の空間内に充填又は埋め込まれていてもよいし、多孔質状の表面部分の内部(孔内)に充填又は埋め込まれていてもよい。また、集電体の表面に電子伝導性粉末が積層されていてもよい。このように、鉄又は酸化鉄に電子伝導性粉末が複合化されていることにより、負極材料の表面積をさらに増大させることができる。なお、この電子電導性粉末は、例えば固体電解質等と混合されて配設されていてもよい。   The negative electrode material for a metal-air secondary battery may further include a powder having electron conductivity (electron conductive powder) disposed so as to be in contact with iron or iron oxide. Examples of the electron conductive powder include carbon black and metal powder. The effect is particularly remarkable when all of the negative electrode material is oxidized. For example, when the current collector (iron or iron oxide) has a mesh structure or a sponge structure, the electron conductive powder may be filled or embedded in the space of this structure, or inside the porous surface portion ( It may be filled or embedded in the hole). Moreover, the electron conductive powder may be laminated on the surface of the current collector. Thus, the surface area of the negative electrode material can be further increased by combining the electron conductive powder with iron or iron oxide. In addition, this electronically conductive powder may be mixed with a solid electrolyte, for example, and disposed.

当該金属−空気二次電池用負極材料によれば、集電体(鉄又は酸化鉄)が、電子伝導性と、液体又は固体電解質が孔内部に接触可能な多孔性とを有し、金属−空気二次電池の充放電性能を向上させることができる。これにより、放電曲線にプラトー領域(電位平坦部)を示す金属−空気二次電池を得ることもできる。   According to the negative electrode material for a metal-air secondary battery, the current collector (iron or iron oxide) has electronic conductivity and porosity that allows a liquid or solid electrolyte to come into contact with the inside of the hole. The charge / discharge performance of the air secondary battery can be improved. Thereby, the metal-air secondary battery which shows a plateau area | region (potential flat part) on a discharge curve can also be obtained.

[金属−空気二次電池]
本発明の一実施形態に係る金属−空気二次電池は、当該金属−空気二次電池用負極材料を金属極として備える。当該金属−空気二次電池の他の構成は、一般的な金属−空気二次電池と同様とすることができる。つまり、当該金属−空気二次電池は、上記金属極に加え、空気極、及び金属極と空気極との間に介在する電解質を備える。正極と負極との間にセパレータが設けられていてもよい。
[Metal-air secondary battery]
The metal-air secondary battery which concerns on one Embodiment of this invention is equipped with the said negative electrode material for metal-air secondary batteries as a metal electrode. Other configurations of the metal-air secondary battery can be the same as those of a general metal-air secondary battery. That is, the metal-air secondary battery includes an air electrode and an electrolyte interposed between the metal electrode and the air electrode in addition to the metal electrode. A separator may be provided between the positive electrode and the negative electrode.

空気極は、金属−空気二次電池の正極として作用するものである。空気極では、下記式(1)の反応が生じる。空気極には、通常の金属−空気二次電池に用いられるものを用いることができるが、炭素及び酸素還元触媒を含むことが好ましい。空気極は、シート状のものを用いることができ、触媒付きカーボン層を用いることが好ましい。
+2HO+4e→4OH ・・・(1)
The air electrode functions as a positive electrode of the metal-air secondary battery. In the air electrode, the reaction of the following formula (1) occurs. Although what is used for a normal metal-air secondary battery can be used for an air electrode, it is preferable that a carbon and an oxygen reduction catalyst are included. A sheet-like thing can be used for an air electrode, and it is preferable to use a carbon layer with a catalyst.
O 2 + 2H 2 O + 4e → 4OH (1)

触媒(酸素還元触媒)としては、例えばPtやMnO等を挙げることができる。触媒付きカーボン層を構成するカーボン層(カーボンシート)の形態は、例えば炭素粉末の圧粉体やカーボンペーパーなどを用いることができる。 Examples of the catalyst (oxygen reduction catalyst) include Pt and MnO 2 . As the form of the carbon layer (carbon sheet) constituting the catalyst-attached carbon layer, for example, a green powder compact or carbon paper can be used.

空気極の平均厚さの下限としては、0.05mmが好ましく、0.1mmがより好ましい。空気極の平均厚さを上記下限以上とすることで、十分な反応を生じさせることなどができる。一方、この上限としては、例えば0.3mmであり、0.2mmが好ましい。空気極が厚くなりすぎると、電解質、触媒及び空気の三相の界面を効率良く形成することが困難となる傾向がある。   The lower limit of the average thickness of the air electrode is preferably 0.05 mm, and more preferably 0.1 mm. By setting the average thickness of the air electrode to the above lower limit or more, a sufficient reaction can be caused. On the other hand, the upper limit is, for example, 0.3 mm, and preferably 0.2 mm. If the air electrode becomes too thick, it tends to be difficult to efficiently form a three-phase interface of electrolyte, catalyst, and air.

電解質は、液体電解質や固体電解質(第2の固体電解質)など、金属−空気二次電池に通常用いられるものを用いることができる。複数種の電解質を用いてもよいし、複数の電解質を多層にして用いてもよい。   As the electrolyte, those usually used for metal-air secondary batteries, such as a liquid electrolyte and a solid electrolyte (second solid electrolyte), can be used. A plurality of types of electrolytes may be used, and a plurality of electrolytes may be used in multiple layers.

液体電解質としては、塩を溶液に溶解させた溶液状のものや、イオン液体が挙げられる。溶液状の液体電解質としては、水酸化カリウム水溶液や水酸化ナトリウム水溶液等のアルカリ水溶液などを挙げることができる。   Examples of the liquid electrolyte include a solution in which a salt is dissolved in a solution and an ionic liquid. Examples of the solution liquid electrolyte include alkaline aqueous solutions such as an aqueous potassium hydroxide solution and an aqueous sodium hydroxide solution.

電解質として固体電解質を用いる場合、当該金属−空気二次電池は、通常、金属極の層、固体電解質の層及び空気極の層を有する層構造体の金属−空気全固体二次電池として構成される。   When a solid electrolyte is used as the electrolyte, the metal-air secondary battery is usually configured as a metal-air all-solid secondary battery having a layer structure including a metal electrode layer, a solid electrolyte layer, and an air electrode layer. The

固体電解質とは、流動性を有さない電解質をいい、塩基性水酸化物等の塩をゲルに保持させたゲル体のものなどを挙げることができる。ゲル体の固体電解質における塩としては、水酸化カリウムや水酸化ナトリウム等の塩基性水酸化物などを挙げることができ、ゲルとしては、ジルコニアゲル等を挙げることができる。固体電解質には、ポリフッ化ビニリデン(PVdF)等のバインダーが混合されていてもよい。   The solid electrolyte refers to an electrolyte having no fluidity, and examples thereof include a gel body in which a salt such as a basic hydroxide is held in a gel. Examples of the salt in the gel solid electrolyte include basic hydroxides such as potassium hydroxide and sodium hydroxide, and examples of the gel include zirconia gel. A binder such as polyvinylidene fluoride (PVdF) may be mixed in the solid electrolyte.

固体電解質が層状である場合、水酸化物イオンを伝導するという作用を十分に発揮させ、かつ短絡を防ぐため、平均膜厚を0.05mm以上とすることが好ましい。但し、厚くなりすぎると実抵抗(電池内部抵抗)が大きくなるため、平均膜厚を例えば0.3mm以下とすることが好ましい。   When the solid electrolyte is layered, it is preferable that the average film thickness be 0.05 mm or more in order to sufficiently exhibit the action of conducting hydroxide ions and to prevent short circuit. However, since the actual resistance (battery internal resistance) increases when the thickness is too large, the average film thickness is preferably set to 0.3 mm or less, for example.

なお、金属−空気全固体二次電池の一態様として、上述した固体電解質(第1の固体電解質)が集電体の孔部等に含浸した負極材料を用いることができる。このような負極材料と空気極とにより金属−空気全固体二次電池が構成される。この金属−空気全固体二次電池の場合、固体電解質は負極の集電体である鉄又は酸化鉄と広く接し、かつ空気極で発生した水酸化物イオンの連続的な負極側への供給を可能とする。なお、このような負極材料を用いる場合、負極材料(金属極)と空気極との間にさらに第2の固体電解質や液体電解質を配置しなくてもよいが、配置してもよい。   In addition, as one mode of the metal-air all-solid secondary battery, a negative electrode material in which the above-described solid electrolyte (first solid electrolyte) is impregnated in a hole portion or the like of the current collector can be used. Such a negative electrode material and an air electrode constitute a metal-air all-solid secondary battery. In the case of this metal-air all-solid secondary battery, the solid electrolyte is in wide contact with iron or iron oxide which is the current collector of the negative electrode, and hydroxide ions generated at the air electrode are continuously supplied to the negative electrode side. Make it possible. In addition, when using such a negative electrode material, it is not necessary to arrange | position a 2nd solid electrolyte and a liquid electrolyte further between a negative electrode material (metal electrode) and an air electrode, but you may arrange | position.

以下、実施例を挙げて本発明をより具体的に説明する。但し、本発明は以下の実施例によって制限されず、本発明の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and can be implemented with modifications within a range that can be adapted to the gist of the present invention, all of which are included in the technical scope of the present invention. .

[実施例1]
以下の手順で、鉄の陽極酸化処理を行い、金属−空気二次電池用負極材料を作製した。エチレングリコール、水及びNHFを混合し、室温で1時間撹拌して陽極酸化処理用の電解液とした。負極(陰極)として白金棒を用い、正極(陽極)として鉄板(ニラコ社製、0.2mm×10mm×10mm)を用いた。60Vで陽極酸化処理後、450℃で3時間加熱(アニール)処理を行った。得られた負極材料の表面部分(酸化鉄多孔質皮膜)の構造をSEMで観測し、また、水酸化カリウム水溶液中でサイクリックボルタンメトリー(CV)法により酸化還元挙動を評価した。得られた負極材料を用いて金属−空気二次電池を構築し、充放電試験を行った。なお、この金属−空気二次電池(充放電試験セル)の負極には陽極酸化処理により得られた上記負極材料、電解質には8M水酸化カリウム水溶液、空気極には酸化還元触媒である電解二酸化マンガン(MnO)を塗布し、触媒層を形成した撥水性カーボンペーパーを用いた。充電レート及び放電レートはそれぞれ1mA/cm及び0.2mA/cmで充放電試験を行った。
[Example 1]
In the following procedure, anodization of iron was performed to produce a negative electrode material for a metal-air secondary battery. Ethylene glycol, water and NH 4 F were mixed and stirred at room temperature for 1 hour to obtain an electrolytic solution for anodizing treatment. A platinum rod was used as the negative electrode (cathode), and an iron plate (manufactured by Nilaco Corporation, 0.2 mm × 10 mm × 10 mm) was used as the positive electrode (anode). After anodizing at 60 V, heating (annealing) was performed at 450 ° C. for 3 hours. The structure of the surface portion (iron oxide porous film) of the obtained negative electrode material was observed by SEM, and the oxidation-reduction behavior was evaluated by a cyclic voltammetry (CV) method in an aqueous potassium hydroxide solution. A metal-air secondary battery was constructed using the obtained negative electrode material, and a charge / discharge test was performed. The negative electrode of the metal-air secondary battery (charge / discharge test cell) is the negative electrode material obtained by anodic oxidation, the electrolyte is an 8M aqueous potassium hydroxide solution, and the air electrode is an electrolytic dioxide that is a redox catalyst. Water-repellent carbon paper coated with manganese (MnO 2 ) to form a catalyst layer was used. The charge / discharge test was conducted at a charge rate and a discharge rate of 1 mA / cm 2 and 0.2 mA / cm 2 , respectively.

得られた負極材料の表面SEM画像を図1に示す。図1のSEM画像より、多孔質状の酸化鉄膜が形成されていることが確認された。また、酸化鉄膜の孔の平均径は46nm、膜厚は2.5μmであった。   The surface SEM image of the obtained negative electrode material is shown in FIG. From the SEM image of FIG. 1, it was confirmed that a porous iron oxide film was formed. The average diameter of the holes in the iron oxide film was 46 nm, and the film thickness was 2.5 μm.

金属−空気二次電池の充放電結果を図2に示す。2サイクル目で最大放電容量5.94mAhg−1(Fe)が得られ、10回目の放電容量は約2.3mAhg−1(Fe)となった。鉄の陽極酸化処理により得られた負極材料は、表面積の増加により効率が向上し大きな放電容量が得られた。 The charge / discharge results of the metal-air secondary battery are shown in FIG. The maximum discharge capacity of 5.94 mAhg −1 (Fe) was obtained at the second cycle, and the discharge capacity at the 10th time was about 2.3 mAhg −1 (Fe). The negative electrode material obtained by the anodizing treatment of iron was improved in efficiency by increasing the surface area, and a large discharge capacity was obtained.

[実施例2]
以下の手順で、鉄の陽極酸化処理を行い、金属−空気二次電池用負極材料を作製した。
エチレングリコール(98.2ml)、水(0.9ml)及びNHF(1M)を混合し、室温で1時間撹拌して陽極酸化処理用の電解液とした。負極(陰極)として白金棒を用い、正極(陽極)として鉄板(ニラコ社製、0.2mm×10mm×10mm)を用いた。50Vで陽極酸化処理後、450℃で3時間加熱(アニール)処理を行った。得られた負極材料の表面部分(酸化鉄多孔質皮膜)の構造をSEMで観測した。得られた負極材料を用いて金属−空気二次電池を構築し、充放電試験を行った。なお、電解質及び空気極の構成、並びに充電レート及び放電レートは実施例1と同様とした。
[Example 2]
In the following procedure, anodization of iron was performed to produce a negative electrode material for a metal-air secondary battery.
Ethylene glycol (98.2 ml), water (0.9 ml) and NH 4 F (1M) were mixed and stirred at room temperature for 1 hour to obtain an electrolytic solution for anodizing treatment. A platinum rod was used as the negative electrode (cathode), and an iron plate (manufactured by Nilaco Corporation, 0.2 mm × 10 mm × 10 mm) was used as the positive electrode (anode). After anodizing at 50 V, heating (annealing) was performed at 450 ° C. for 3 hours. The structure of the surface portion (iron oxide porous film) of the obtained negative electrode material was observed by SEM. A metal-air secondary battery was constructed using the obtained negative electrode material, and a charge / discharge test was performed. The configuration of the electrolyte and air electrode, and the charge rate and discharge rate were the same as in Example 1.

得られた負極材料の表面SEM画像を図3に示す。図3のSEM画像より、多孔質状の酸化鉄膜が形成されていることが確認された。また、酸化鉄膜の孔の平均径は45nm、膜厚は5.5μmであった。   The surface SEM image of the obtained negative electrode material is shown in FIG. From the SEM image of FIG. 3, it was confirmed that a porous iron oxide film was formed. Moreover, the average diameter of the holes of the iron oxide film was 45 nm and the film thickness was 5.5 μm.

金属−空気二次電池の充放電結果を図4に示す。10サイクル目で放電容量6.7mAhg−1(Fe)が得られた。鉄の陽極酸化処理により得られた負極材料は、多孔質状の酸化鉄膜の膜厚の増加により効率が向上し大きな放電容量が得られ、また酸化膜厚を5.5μmまで厚くすることによって特性が向上することが明らかとなった。 The charge / discharge results of the metal-air secondary battery are shown in FIG. A discharge capacity of 6.7 mAhg −1 (Fe) was obtained in the 10th cycle. The negative electrode material obtained by the anodizing treatment of iron improves the efficiency by increasing the film thickness of the porous iron oxide film, provides a large discharge capacity, and increases the oxide film thickness to 5.5 μm. It was revealed that the characteristics were improved.

本発明の金属−空気二次電池用負極材料は、金属−空気二次電池の金属極(負極)として好適に用いることができる。
The negative electrode material for a metal-air secondary battery of the present invention can be suitably used as a metal electrode (negative electrode) of a metal-air secondary battery.

Claims (5)

金属−空気二次電池に用いられる負極材料であって、
多孔質状の表面部分を有する鉄又は酸化鉄を備え
上記多孔質状の表面部分が、膜状で表面からの平均厚さが0.1μm以上の領域であり、上記多孔質状の表面部分に存在する孔の平均径が100nm以下であり、隣接する孔同士の平均距離が500nm以下であり、
上記多孔質状の表面部分が、鉄の陽極酸化被膜であることを特徴とする金属−空気二次電池用負極材料。
A negative electrode material used for a metal-air secondary battery,
Comprising iron or iron oxide having a porous surface portion ;
The porous surface portion is a film-like region having an average thickness of 0.1 μm or more from the surface, and the average diameter of pores existing in the porous surface portion is 100 nm or less, and is adjacent to the porous surface portion. The average distance between the holes is 500 nm or less,
The porous surface portion, the metal and wherein the anodic oxide coating der Rukoto iron - anode material for air secondary battery.
上記鉄又は酸化鉄に接触するように配設される第1の固体電解質をさらに備える請求項1に記載の金属−空気二次電池用負極材料。 2. The negative electrode material for a metal-air secondary battery according to claim 1, further comprising a first solid electrolyte disposed in contact with the iron or iron oxide. 請求項1又は請求項2に記載の金属−空気二次電池用負極材料を金属極として備える金属−空気二次電池。 A metal-air secondary battery comprising the metal-air secondary battery negative electrode material according to claim 1 or 2 as a metal electrode. 炭素及び酸素還元触媒を含む空気極と、
この空気極及び上記金属極間に介在する液体電解質と
をさらに備える請求項に記載の金属−空気二次電池。
An air electrode containing carbon and oxygen reduction catalysts;
The metal-air secondary battery according to claim 3 , further comprising: a liquid electrolyte interposed between the air electrode and the metal electrode.
炭素及び酸素還元触媒を含む空気極と、
この空気極及び上記金属極間に介在する第2の固体電解質と
をさらに備える請求項に記載の金属−空気二次電池。
An air electrode containing carbon and oxygen reduction catalysts;
The metal-air secondary battery according to claim 3 , further comprising: a second solid electrolyte interposed between the air electrode and the metal electrode.
JP2014247411A 2014-12-05 2014-12-05 Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same Active JP6234917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014247411A JP6234917B2 (en) 2014-12-05 2014-12-05 Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247411A JP6234917B2 (en) 2014-12-05 2014-12-05 Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same

Publications (2)

Publication Number Publication Date
JP2016110846A JP2016110846A (en) 2016-06-20
JP6234917B2 true JP6234917B2 (en) 2017-11-22

Family

ID=56124539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247411A Active JP6234917B2 (en) 2014-12-05 2014-12-05 Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same

Country Status (1)

Country Link
JP (1) JP6234917B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11394035B2 (en) 2017-04-06 2022-07-19 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US11552290B2 (en) 2018-07-27 2023-01-10 Form Energy, Inc. Negative electrodes for electrochemical cells
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
US11664547B2 (en) 2016-07-22 2023-05-30 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells
US11949129B2 (en) 2019-10-04 2024-04-02 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US11973254B2 (en) 2019-06-28 2024-04-30 Form Energy, Inc. Aqueous polysulfide-based electrochemical cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6893779B2 (en) * 2016-12-14 2021-06-23 エヌ・イーケムキャット株式会社 Method for Producing Inorganic Oxide Particle-Supported Structure Carrier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936738A (en) * 1972-08-10 1974-04-05
JPS54121934A (en) * 1978-03-15 1979-09-21 Matsushita Electric Ind Co Ltd Ferrooalkaline storage battery
JP5952540B2 (en) * 2010-09-02 2016-07-13 株式会社神戸製鋼所 Solid electrolyte material and metal-air all-solid secondary battery using the same
JP2014150056A (en) * 2013-01-08 2014-08-21 Kobe Steel Ltd Composite negative electrode material for metal-air all-solid-state secondary battery, and metal-air all-solid-state secondary battery including the same
JP5981953B2 (en) * 2014-03-10 2016-08-31 国立大学法人東北大学 Porous metal, method for producing the same, and electrode for battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11664547B2 (en) 2016-07-22 2023-05-30 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells
US11394035B2 (en) 2017-04-06 2022-07-19 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
US11552290B2 (en) 2018-07-27 2023-01-10 Form Energy, Inc. Negative electrodes for electrochemical cells
US11973254B2 (en) 2019-06-28 2024-04-30 Form Energy, Inc. Aqueous polysulfide-based electrochemical cell
US11949129B2 (en) 2019-10-04 2024-04-02 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof

Also Published As

Publication number Publication date
JP2016110846A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
JP6234917B2 (en) Negative electrode material for metal-air secondary battery and metal-air secondary battery provided with the same
KR102166391B1 (en) Secondary zinc-manganese dioxide batteries for high power applications
JP6070671B2 (en) Air battery
JP6352884B2 (en) Anode material for metal-air secondary battery, metal-air secondary battery comprising the same, and method for producing anode material for metal-air secondary battery
JP4788560B2 (en) Power storage device
US20150162571A1 (en) Concave cell design for an alkaline battery with a comb spacer
WO2018128742A1 (en) Battery with coated active material
JP2018147738A (en) Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
JP2014150056A (en) Composite negative electrode material for metal-air all-solid-state secondary battery, and metal-air all-solid-state secondary battery including the same
US9397345B2 (en) Cathodes for lithium-air battery cells with acid electrolytes
JP6203139B2 (en) Composition, electrode having porous layer containing the composition, and metal-air secondary battery having the electrode
US20150162601A1 (en) Cell design for an alkaline battery with channels in electrodes to remove gas
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP6385368B2 (en) Coated iron electrode and method for producing the iron electrode
JP6631833B2 (en) Nickel-based secondary battery
JP6259300B2 (en) Metal air battery
JP5096910B2 (en) Alkaline storage battery
JP7105525B2 (en) zinc battery
JP6383396B2 (en) Composition, electrode having porous layer containing the composition, and metal-air secondary battery having the electrode
JP6523658B2 (en) Intermediate layer material composition for capacitor air battery, electrode having intermediate layer containing the material composition, and capacitor air battery provided with the electrode
JP2019216059A (en) Porous membrane, battery member, and zinc battery
US20150162570A1 (en) Beveled cell design for an alkaline battery to remove gas
JP6619481B2 (en) Composition, electrode having porous layer containing the composition, and metal-air secondary battery having the electrode
JP7010553B2 (en) Zinc negative electrode secondary battery
KR20230161882A (en) Zinc secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6234917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250