JP6211800B2 - Electrolyte flow type secondary battery - Google Patents

Electrolyte flow type secondary battery Download PDF

Info

Publication number
JP6211800B2
JP6211800B2 JP2013109120A JP2013109120A JP6211800B2 JP 6211800 B2 JP6211800 B2 JP 6211800B2 JP 2013109120 A JP2013109120 A JP 2013109120A JP 2013109120 A JP2013109120 A JP 2013109120A JP 6211800 B2 JP6211800 B2 JP 6211800B2
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electrolyte
particles
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013109120A
Other languages
Japanese (ja)
Other versions
JP2014229519A (en
Inventor
裕人 飯塚
裕人 飯塚
扇谷 聡
聡 扇谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2013109120A priority Critical patent/JP6211800B2/en
Publication of JP2014229519A publication Critical patent/JP2014229519A/en
Application granted granted Critical
Publication of JP6211800B2 publication Critical patent/JP6211800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は電解液流通型二次電池に関する。   The present invention relates to an electrolyte flow type secondary battery.

大容量の蓄電池の一つに、レドックスフロー電池や亜鉛ハロゲン電池などの電解液流通型二次電池がある。レドックスフロー電池は、隔膜と、隔膜を介して対向する正極電極及び負極電極からなるセルに、正極電解液及び負極電解液をそれぞれ供給して充放電を行う。電解液には、酸化還元により価数が変化する金属イオンを活物質として含有する水溶液が一般的に使用されている。レドックスフロー電池としては、例えば、正極電解液に鉄イオン水溶液、負極電解液にクロムイオン水溶液を用いた鉄−クロム系レドックスフロー電池の他、特許文献1に記載されているような、正負極の電解液にバナジウムイオン水溶液を用いたバナジウム系レドックスフロー電池がよく知られている。
一方、亜鉛ハロゲン電池は、負極活物質に亜鉛、正極活物質に臭素または塩素が一般的に使用されている。正極活物質に塩素を用いた亜鉛−塩素電池は、負極材は亜鉛、正極材はカーボンからなり、負極では亜鉛の析出、溶解が起こる。すなわち、充電時には電解液中の亜鉛イオンが金属亜鉛となって亜鉛電極上に析出し、放電時には再び亜鉛イオンとなって溶解する。一方、正極では充電時には電解液中の塩素イオンが正極の電子の放出により塩素ガスとなって発生し、これは反応系外へ出て塩素水和物として水和物槽に冷却固化して貯蔵される。放電時は水和物槽を加熱して、貯蔵していた塩素水和物を塩素ガスに戻して正極に送り、正極で塩素イオンとなり、負極から溶解する亜鉛イオンと塩化亜鉛を形成する。亜鉛−塩素電池は、亜鉛と塩素ガスを隔離するための隔膜を必要としないことが特徴である。
One type of large-capacity storage battery is an electrolyte solution secondary battery such as a redox flow battery or a zinc halogen battery. A redox flow battery performs charge / discharge by supplying a positive electrode electrolyte and a negative electrode electrolyte to a diaphragm and a cell composed of a positive electrode and a negative electrode facing each other through the diaphragm. An aqueous solution containing, as an active material, a metal ion whose valence changes by oxidation-reduction is generally used for the electrolytic solution. As a redox flow battery, for example, an iron-chromium redox flow battery using an iron ion aqueous solution as a positive electrode electrolyte and a chromium ion aqueous solution as a negative electrode electrolyte, and a positive and negative electrode as described in Patent Document 1 are used. A vanadium redox flow battery using a vanadium ion aqueous solution as an electrolyte is well known.
On the other hand, zinc halogen batteries generally use zinc as a negative electrode active material and bromine or chlorine as a positive electrode active material. In a zinc-chlorine battery using chlorine as the positive electrode active material, the negative electrode material is zinc and the positive electrode material is carbon, and precipitation and dissolution of zinc occur in the negative electrode. That is, zinc ions in the electrolytic solution become metallic zinc during charging and are deposited on the zinc electrode, and are dissolved again as zinc ions during discharging. On the other hand, at the time of charging, chlorine ions in the electrolyte are generated as chlorine gas due to the release of electrons from the positive electrode during charging, and this goes out of the reaction system and is cooled and solidified in the hydrate tank as chlorine hydrate and stored. Is done. At the time of discharge, the hydrate tank is heated, and the stored chlorine hydrate is returned to the chlorine gas and sent to the positive electrode, where it becomes chlorine ions and forms zinc ions and zinc chloride dissolved from the negative electrode. A zinc-chlorine battery is characterized by not requiring a diaphragm for isolating zinc and chlorine gas.

特許文献2に記載されているような、正極活物質に臭素を用いた亜鉛−臭素電池は、亜鉛と臭素を隔離するための隔膜を用いること以外は亜鉛−塩素電池によく似ている。電池反応としては、負極では亜鉛−塩素電池と同じ亜鉛の析出−溶解が起こる。一方、正極では充電時に臭素イオンが電子を放出して臭素となり、錯化合物としてタンクに貯蔵される。放電時には錯化合物から正極に供給される臭素が電子を受け取り臭素イオンとなり、負極から溶解する亜鉛イオンと臭化亜鉛を形成する。
これらの電解液流通型二次電池は、電気出力(W)は電池セル数に、充放電時間(h)はタンクに貯蔵する活物質量に比例するので、任意の電力貯蔵量(Wh)が選定可能であり、電池材料はカーボン・プラスチック系が多く、これらは比較的安価であることから、大型の電力貯蔵システムに適している。
A zinc-bromine battery using bromine as a positive electrode active material as described in Patent Document 2 is very similar to a zinc-chlorine battery except that a diaphragm for isolating zinc and bromine is used. As a battery reaction, the same precipitation and dissolution of zinc as in the zinc-chlorine battery occurs in the negative electrode. On the other hand, in the positive electrode, bromine ions release electrons during charging to become bromine and are stored in the tank as a complex compound. During discharge, bromine supplied from the complex compound to the positive electrode receives electrons and becomes bromine ions, forming zinc ions and zinc bromide dissolved from the negative electrode.
In these electrolyte circulation type secondary batteries, the electrical output (W) is proportional to the number of battery cells, and the charge / discharge time (h) is proportional to the amount of active material stored in the tank. The battery materials are mostly carbon plastics, and these are relatively inexpensive, so they are suitable for large power storage systems.

特開平6−188005号公報JP-A-6-188005 特開昭59−87782号公報JP 59-87782 A

しかしながら、上記の電解液流通型二次電池には、以下のような課題がある。
レドックスフロー電池は、エネルギー密度が低く、小型化に適していない。例えば、バナジウム系レドックスフロー電池のエネルギー密度は、リチウムイオン二次電池と比較すると約1/10、亜鉛−臭素電池と比較すると約1/4である。
一方、亜鉛ハロゲン電池は比較的エネルギー密度が高いものの、リチウムイオン二次電池と比較すると、なお改良の余地を有するものである。例えば、亜鉛ハロゲン電池のように、充放電に伴い金属の溶解、析出が起こる場合、金属のデンドライド析出ならびにそれに伴う充放電サイクル寿命の低下が見られる。
本発明は上記の問題点に鑑みてなされたものであり、その目的は、エネルギー密度が高く、かつサイクル寿命が長い、電解液流通型二次電池を提供することにある。
However, the above-described electrolyte circulation type secondary battery has the following problems.
Redox flow batteries have low energy density and are not suitable for miniaturization. For example, the energy density of a vanadium redox flow battery is about 1/10 compared to a lithium ion secondary battery and about 1/4 compared to a zinc-bromine battery.
On the other hand, although the zinc halogen battery has a relatively high energy density, it still has room for improvement as compared with the lithium ion secondary battery. For example, when a metal melts and precipitates with charge and discharge as in the case of a zinc halogen battery, metal dendrite deposition and a corresponding decrease in charge and discharge cycle life are observed.
The present invention has been made in view of the above problems, and an object of the present invention is to provide an electrolyte flow type secondary battery having a high energy density and a long cycle life.

本発明者らは、上記目的を達成するために鋭意検討した結果、正極活物質と負極活物質のどちらか一方または両方を粒子とし、該粒子を特定の条件で流動化させることによって、上記目的を達成することができることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have made either one or both of a positive electrode active material and a negative electrode active material particles, and by fluidizing the particles under specific conditions, And the present invention has been completed.

すなわち、本発明は、下記のとおりである。
〔1〕
正極と負極とを備えたセルに、電解液を流通させる電解液流通型二次電池であって、
正極活物質と負極活物質のどちらか一方または両方が、固体の活物質粒子と、電解液に溶解した活物質イオンとの両方の状態を有しており、
前記活物質粒子が電解液によって流動化され、流動化されている前記活物質粒子の層の体積が、流動化していない前記活物質粒子の層の体積に対して1.05〜3.00倍であり、
充電または放電に伴い、前記活物質粒子が、イオン化されて前記電解液中に溶解する、または、前記電解液中に溶解していた前記活物質イオンが粒子状の固体として析出する、電解液流通型二次電池。
〔2〕
放電に伴い、固体の負極活物質粒子がイオン化されて電解液中に溶解し、充電に伴い、電解液中に溶解していた負極活物質イオンが粒子状の固体として析出する、前項〔1〕記載の電解液流通型二次電池。
〔3〕
前記負極活物質粒子/前記負極活物質イオンの組み合わせが、Li/Li、K/K、Ca/Ca2+、Na/Na、Mg/Mg2+、Al/Al3+、Mn/Mn3+、Zn/Zn2+、Zn/ZnO 2−、Cr/Cr2+、Fe/Fe2+、Cd/Cd2+、Co/Co2+、Ni/Ni2+、Sn/Sn2+、Pb/Pb2+からなる群から選ばれる1種以上の金属/金属イオンの組み合わせである、前項〔2〕記載の電解液流通型二次電池。
〔4〕
前記活物質イオンを含む電解液を蓄えるタンクを備える、前項〔1〕〜〔3〕のいずれか1項記載の電解液流通型二次電池。
That is, the present invention is as follows.
[1]
An electrolyte solution-type secondary battery that distributes an electrolyte solution to a cell including a positive electrode and a negative electrode,
Either one or both of the positive electrode active material and the negative electrode active material have a state of both solid active material particles and active material ions dissolved in the electrolyte solution,
The volume of the layer of the active material particles in which the active material particles are fluidized by the electrolytic solution is 1.05 to 3.00 times the volume of the layer of the active material particles that is not fluidized And
As the charge or discharge is performed, the active material particles are ionized and dissolved in the electrolytic solution, or the active material ions dissolved in the electrolytic solution are precipitated as particulate solids. Type secondary battery.
[2]
The solid negative electrode active material particles are ionized and dissolved in the electrolytic solution along with the discharge, and the negative electrode active material ions dissolved in the electrolytic solution are precipitated as a particulate solid along with the charge, the preceding item [1] The electrolyte solution circulation type secondary battery described.
[3]
The combination of the negative electrode active material particles / the negative electrode active material ions is Li / Li + , K / K + , Ca / Ca 2+ , Na / Na + , Mg / Mg 2+ , Al / Al 3+ , Mn / Mn 3+ , Zn / Zn 2+, Zn / ZnO 2 2-, Cr / Cr 2+, Fe / Fe 2+, Cd / Cd 2+, Co / Co 2+, Ni / Ni 2+, Sn / Sn 2+, from the group consisting of Pb / Pb 2+ The electrolyte flow type secondary battery according to [2] above, which is a combination of at least one metal / metal ion selected.
[4]
The electrolyte flow type secondary battery according to any one of [1] to [3] above, comprising a tank for storing an electrolyte containing the active material ions.

本発明によると、エネルギー密度が高く、かつサイクル寿命が長い、電解液流通型二次電池を提供することができる。   According to the present invention, it is possible to provide an electrolyte flow type secondary battery having a high energy density and a long cycle life.

実施例における電解液流通型二次電池の概略図を示す。The schematic of the electrolyte solution circulation type secondary battery in an Example is shown.

以下、本発明を実施するための形態(以下「本実施形態」とも言う。)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施形態における電解液流通型二次電池は、
正極と負極とを備えたセルに、電解液を流通させる電解液流通型二次電池であって、
正極活物質と負極活物質のどちらか一方または両方が、固体の活物質粒子と、電解液に溶解した活物質イオンとの両方の状態を有しており、
前記活物質粒子が電解液によって流動化され、流動化されている前記活物質粒子の層の体積が、流動化していない前記活物質粒子の層の体積に対して1.05〜3.00倍であり、
充電または放電に伴い、前記活物質粒子が、イオン化されて前記電解液中に溶解する、または、前記電解液中に溶解していた前記活物質イオンが粒子状の固体として析出する。
The electrolyte flow type secondary battery in this embodiment is
An electrolyte solution-type secondary battery that distributes an electrolyte solution to a cell including a positive electrode and a negative electrode,
Either one or both of the positive electrode active material and the negative electrode active material have a state of both solid active material particles and active material ions dissolved in the electrolyte solution,
The volume of the layer of the active material particles in which the active material particles are fluidized by the electrolytic solution is 1.05 to 3.00 times the volume of the layer of the active material particles that is not fluidized And
As the battery is charged or discharged, the active material particles are ionized and dissolved in the electrolytic solution, or the active material ions dissolved in the electrolytic solution are deposited as a particulate solid.

本実施形態における電解液流通型二次電池は、粒子状の正極活物質または負極活物質を備える。一般的に二次電池はエネルギー密度(Wh/kg)とサイクル寿命によりその性能を比較する。エネルギー密度は、エネルギー容量(Wh)/電池重量(kg)で表され、エネルギー容量は、電気出力(W)×充放電時間(h)で表される。電気出力(W)は、電流(A)×電圧(V)で表される。エネルギー密度を高くするためには、エネルギー容量を高くする必要があり、そのためには、電流を大きくする、電圧を大きくする、または充放電時間を長くする必要がある。   The electrolyte flow type secondary battery in the present embodiment includes a particulate positive electrode active material or negative electrode active material. In general, the performance of secondary batteries is compared based on energy density (Wh / kg) and cycle life. The energy density is represented by energy capacity (Wh) / battery weight (kg), and the energy capacity is represented by electric output (W) × charge / discharge time (h). The electrical output (W) is expressed as current (A) × voltage (V). In order to increase the energy density, it is necessary to increase the energy capacity. For this purpose, it is necessary to increase the current, increase the voltage, or increase the charge / discharge time.

電池を流れる電流は、電極の表面積に比例している。そこで活物質を粒子状にして電池を作ると表面積が増えて、電流を飛躍的に大きくすることができる。その結果、エネルギー密度を大きくする効果がある。   The current flowing through the battery is proportional to the electrode surface area. Therefore, when the battery is made by making the active material into particles, the surface area is increased, and the current can be greatly increased. As a result, there is an effect of increasing the energy density.

本実施形態における負極活物質について、固体の活物質粒子(以下、単に「粒子」とも言う。)と、電解液に溶解した活物質イオン(以下、単に「イオン」とも言う。)との組み合わせは、特に限定されないが、大きい起電力を有する電池を得る観点から、標準水素電極に対して酸化還元電位が0V以下であるような組み合わせが好ましい。例えば、Li/Li、K/K、Ca/Ca2+、Na/Na、Mg/Mg2+、Al/Al3+、Mn/Mn3+、Zn/Zn2+、Zn/ZnO 2−、Cr/Cr2+、Fe/Fe2+、Cd/Cd2+、Co/Co2+、Ni/Ni2+、Sn/Sn2+、Pb/Pb2+などの金属/金属イオンの組み合わせが挙げられる。 Regarding the negative electrode active material in the present embodiment, a combination of solid active material particles (hereinafter also simply referred to as “particles”) and active material ions dissolved in an electrolytic solution (hereinafter also simply referred to as “ions”) Although not particularly limited, from the viewpoint of obtaining a battery having a large electromotive force, a combination such that the oxidation-reduction potential is 0 V or less with respect to the standard hydrogen electrode is preferable. For example, Li / Li + , K / K + , Ca / Ca 2+ , Na / Na + , Mg / Mg 2+ , Al / Al 3+ , Mn / Mn 3+ , Zn / Zn 2+ , Zn / ZnO 2 2− , Cr Examples include metal / metal ion combinations such as / Cr 2+ , Fe / Fe 2+ , Cd / Cd 2+ , Co / Co 2+ , Ni / Ni 2+ , Sn / Sn 2+ , and Pb / Pb 2+ .

本実施形態における正極活物質について、粒子と、電解液に溶解したイオンとの組み合わせは、特に限定されないが、大きい起電力を有する電池を得る観点から、標準水素電極に対して酸化還元電位が0V以上であるような組み合わせが好ましい。例えば、Cu/Cu2+、Hg/Hg、Ag/Ag、Pt/Pt2+などの金属/金属イオンの組み合わせが挙げられる。 Regarding the positive electrode active material in the present embodiment, the combination of particles and ions dissolved in the electrolytic solution is not particularly limited, but from the viewpoint of obtaining a battery having a large electromotive force, the oxidation-reduction potential is 0 V with respect to the standard hydrogen electrode. A combination as described above is preferable. For example, combinations of metals / metal ions such as Cu / Cu 2+ , Hg / Hg + , Ag / Ag + , and Pt / Pt 2+ can be given.

上記正極活物質粒子および/または負極活物質粒子は、電解液によって流動化されている。流動化させる方法としては特に限定されないが、例えば、電解液の強制対流によって行うことができる。本実施形態における電解液流通型二次電池において、流動化されている上記粒子の層(以下、「流動層」とも言う。)の体積は、流動化していない(沈殿している)上記粒子の層(以下、「固定層」とも言う。)の体積に対して1.05〜3.00倍であり、より好ましくは1.05〜2.50倍、さらに好ましくは1.05〜2.00倍である。上記層の体積比率(以下、「体積膨張率」とも言う。)を1.05倍以上にすることによって、粒子を対流させることができる。また、層の体積比率を3.00倍以下にすることによって、粒子間の接触、または粒子と集電装置の接触抵抗を小さくすることができる。
ここで、体積膨張率は、電解液が循環していない時の、固定層の体積と、電解液を循環している時の流動層の体積を測定することにより測定することができる。
The positive electrode active material particles and / or the negative electrode active material particles are fluidized by an electrolytic solution. Although it does not specifically limit as a fluidizing method, For example, it can carry out by forced convection of electrolyte solution. In the electrolyte flow type secondary battery according to the present embodiment, the volume of the fluidized particle layer (hereinafter also referred to as “fluidized bed”) is the volume of the non-fluidized (precipitated) particles. It is 1.05-3.00 times with respect to the volume of a layer (henceforth "fixed layer"), More preferably, it is 1.05-2.50 times, More preferably, it is 1.05-2.00. Is double. By making the volume ratio (hereinafter also referred to as “volume expansion coefficient”) of the above layer 1.05 times or more, particles can be convected. In addition, by setting the volume ratio of the layer to 3.00 times or less, the contact between the particles or the contact resistance between the particles and the current collector can be reduced.
Here, the volume expansion coefficient can be measured by measuring the volume of the fixed bed when the electrolyte is not circulated and the volume of the fluidized bed when the electrolyte is circulated.

上記正極活物質粒子または負極活物質粒子の粒径は、特に限定されないが、好ましくは10μm〜3mmであり、より好ましくは30μm〜2mmである。粒径を3mm以下にすることにより、酸化還元反応に付される活物質の表面積が大きくなり、より多くの電流を流すことができる傾向にある。また、粒径が10μm以上であることにより、適切な流動化状態を保った粒子層を形成することができる傾向にある。
ここで、活物質粒子の粒径は、例えば電子顕微鏡により測定することができる。
The particle diameter of the positive electrode active material particles or the negative electrode active material particles is not particularly limited, but is preferably 10 μm to 3 mm, and more preferably 30 μm to 2 mm. By setting the particle size to 3 mm or less, the surface area of the active material subjected to the oxidation-reduction reaction is increased, and more current tends to flow. Moreover, when the particle size is 10 μm or more, there is a tendency that a particle layer maintaining an appropriate fluidized state can be formed.
Here, the particle diameter of the active material particles can be measured by, for example, an electron microscope.

上記正極活物質粒子または負極活物質粒子は、それ自身が粒子状であっても、また他の導電性粒子に、これらの活物質がコーティングされた複合粒子であってもよい。導電性粒子としては、表面が導電性を有する粒子であれば特に限定されず、例えば、金属粒子、酸化インジウムスズ粒子、金属メッキガラス粒子、金属メッキ樹脂粒子などが挙げられる。   The positive electrode active material particles or the negative electrode active material particles may be in the form of particles themselves, or may be composite particles obtained by coating other active particles with these active materials. The conductive particles are not particularly limited as long as the surface has conductivity, and examples thereof include metal particles, indium tin oxide particles, metal-plated glass particles, and metal-plated resin particles.

本実施形態において、負極活物質が、粒子と、電解液に溶解したイオンの両方の状態を有する場合、正極活物質は、粒子の状態を有さなくてもよい。その場合の正極活物質は、特に限定されないが、大きい起電力を有する電池を得る観点から、標準水素電極に対して酸化還元電位が0V以上であるような活物質が好ましい。そのような活物質としては、例えば、2Br/Br、2Cl/Clなどのハロゲン、Ce3+/Ce4+、Fe2+/Fe3+、V3+/VO2+、Mn2+/Mn3+、Co2+/Co3+、Cr4+/Cr5+などの金属イオンが挙げられる。 In the present embodiment, when the negative electrode active material has both the state of particles and ions dissolved in the electrolytic solution, the positive electrode active material may not have the state of particles. The positive electrode active material in that case is not particularly limited, but an active material having an oxidation-reduction potential of 0 V or more with respect to the standard hydrogen electrode is preferable from the viewpoint of obtaining a battery having a large electromotive force. Examples of such active materials include halogens such as 2Br / Br 2 , 2Cl / Cl 2 , Ce 3+ / Ce 4+ , Fe 2+ / Fe 3+ , V 3+ / VO 2+ , Mn 2+ / Mn 3+ , Co Examples include metal ions such as 2 + / Co 3+ and Cr 4+ / Cr 5+ .

本実施形態において、負極活物質が、粒子と、電解液に溶解したイオンの両方の状態を有する場合、正極活物質は、電解液に溶解したイオンの状態を有さなくてもよい。その場合の正極活物質は、特に限定されないが、大きい起電力を有する電池を得る観点から、標準水素電極に対して酸化還元電位が0V以上あるような活物質が好ましい。そのような活物質としては、例えば、Ni(OH)/NiOOH、MnOOH/MnO、PbSO/PbO、Ag/AgOなどの固体無機化合物が挙げられる。 In this embodiment, when the negative electrode active material has both states of particles and ions dissolved in the electrolytic solution, the positive electrode active material may not have the state of ions dissolved in the electrolytic solution. The positive electrode active material in that case is not particularly limited, but an active material having an oxidation-reduction potential of 0 V or more with respect to the standard hydrogen electrode is preferable from the viewpoint of obtaining a battery having a large electromotive force. Examples of such an active material include solid inorganic compounds such as Ni (OH) 2 / NiOOH, MnOOH / MnO 2 , PbSO 4 / PbO 2 , and Ag / AgO.

本実施形態において、正極活物質が、粒子と、電解液に溶解したイオンの両方の状態を有する場合、負極活物質は、粒子の状態を有さなくてもよい。その場合の負極活物質は、特に限定されないが、大きい起電力を有する電池を得る観点から、標準水素電極に対して酸化還元電位が0V以下あるような活物質が好ましい。そのような活物質としては、例えば、Ti2+/Ti3+、Cr2+/Cr3+、V2+/V3+などの金属イオンが挙げられる。 In this embodiment, when the positive electrode active material has a state of both particles and ions dissolved in the electrolytic solution, the negative electrode active material may not have a state of particles. The negative electrode active material in that case is not particularly limited, but an active material having an oxidation-reduction potential of 0 V or less with respect to the standard hydrogen electrode is preferable from the viewpoint of obtaining a battery having a large electromotive force. Examples of such an active material include metal ions such as Ti 2+ / Ti 3+ , Cr 2+ / Cr 3+ , and V 2+ / V 3+ .

本実施形態において、正極活物質が、粒子と、電解液に溶解したイオンの両方の状態を有する場合、負極活物質は、溶解したイオンの状態を有さなくてもよい。その場合の負極活物質は、特に限定されないが、大きい起電力を有する電池を得る観点から、標準水素電極に対して酸化還元電位が0V以下あるような活物質が好ましい。そのような活物質としては、例えば、MH(M=LaNi、CaCu、MgNi、FeTiなど)の水素貯蔵合金粒子や、Pb/PbSO、Cd/Cd(OH)などの固体無機化合物が挙げられる。 In the present embodiment, when the positive electrode active material has both the state of particles and ions dissolved in the electrolytic solution, the negative electrode active material may not have the state of dissolved ions. The negative electrode active material in that case is not particularly limited, but an active material having an oxidation-reduction potential of 0 V or less with respect to the standard hydrogen electrode is preferable from the viewpoint of obtaining a battery having a large electromotive force. Examples of such active materials include hydrogen storage alloy particles such as MH (M = LaNi 5 , CaCu 5 , Mg 2 Ni, FeTi, etc.), and solid inorganic materials such as Pb / PbSO 4 , Cd / Cd (OH) 2. Compounds.

本実施形態における電解液流通型二次電池においては、充電または放電に伴い、前記活物質粒子が、イオン化されて前記電解液中に溶解する、または、前記電解液中に溶解していた前記活物質イオンが粒子状の固体として析出する。特に、放電に伴い、固体の負極活物質粒子がイオン化されて電解液中に溶解し、充電に伴い、電解液中に溶解していた負極活物質イオンが粒子状の固体として析出することが好ましい。   In the electrolytic solution circulation type secondary battery according to the present embodiment, the active material particles are ionized and dissolved in the electrolytic solution or are dissolved in the electrolytic solution with charge or discharge. Material ions are deposited as particulate solids. In particular, it is preferable that the solid negative electrode active material particles are ionized and dissolved in the electrolytic solution with discharge, and the negative electrode active material ions dissolved in the electrolytic solution are deposited as a particulate solid with charging. .

本実施形態の電解液流通型二次電池において、固体の粒子である正極活物質または負極活物質と接触する集電体は、公知の構造を有することができる。集電体の構造は、特に限定されないが、粒子状の活物質との間の接触抵抗が小さいものが好ましく、棒状、板状、筒状、メッシュ状のいずれかの構造であることが好ましい。   In the electrolyte flow type secondary battery of the present embodiment, the current collector that is in contact with the positive electrode active material or the negative electrode active material, which are solid particles, can have a known structure. The structure of the current collector is not particularly limited, but preferably has a small contact resistance with the particulate active material, and preferably has a rod-like, plate-like, cylindrical, or mesh-like structure.

また、上記集電体は、公知の材質を使用することができる。集電体の材質は、特に限定されないが、粒子との間の接触抵抗が小さいもの、及び析出する金属が強固に密着するものが好ましく、カーボン、ニッケル、銅、チタン、タンタルのいずれかの材質であることが好ましい。   In addition, a known material can be used for the current collector. The material of the current collector is not particularly limited, but preferably a material having a small contact resistance between the particles and a material in which the deposited metal is firmly adhered, and any material of carbon, nickel, copper, titanium, and tantalum It is preferable that

本実施形態における電解液流通型二次電池においては、正極活物質と、負極活物質の接触を避けるために、公知の隔膜を用いることができる。隔膜は、正極−負極間に電荷を運ぶ電荷キャリアであるイオンを選択的に通すための膜で、粒子は通過しないことが好ましい。隔膜としては、アニオン交換膜、カチオン交換膜、バイポーラ膜などのイオン交換膜や、多孔質膜を使用することができ、電荷キャリア、活物質、電解液などの種類によって適切な材料が選ばれる。   In the electrolyte flow type secondary battery in the present embodiment, a known diaphragm can be used in order to avoid contact between the positive electrode active material and the negative electrode active material. A diaphragm is a film | membrane for selectively passing the ion which is a charge carrier which conveys an electric charge between a positive electrode and a negative electrode, It is preferable that a particle | grain does not pass. As the diaphragm, an ion exchange membrane such as an anion exchange membrane, a cation exchange membrane, or a bipolar membrane, or a porous membrane can be used, and an appropriate material is selected depending on the type of charge carrier, active material, electrolytic solution, and the like.

本実施形態における電解液流通型二次電池のセルには、電解液が循環される。電解液は、水溶液、有機溶媒、イオン液体のいずれかであることが好ましく、正極活物質および/または負極活物質が溶解している。電解液中の活物質濃度としては、任意に調整することができる。また、良好なイオン伝導度を保つために、公知の無機酸、有機酸、無機塩基、有機塩基、または支持電解質を含有していてもよい。   The electrolytic solution is circulated in the cell of the electrolytic solution circulation type secondary battery in the present embodiment. The electrolytic solution is preferably an aqueous solution, an organic solvent, or an ionic liquid, and the positive electrode active material and / or the negative electrode active material are dissolved. The active material concentration in the electrolytic solution can be arbitrarily adjusted. Further, in order to maintain good ionic conductivity, a known inorganic acid, organic acid, inorganic base, organic base, or supporting electrolyte may be contained.

本実施形態における電解液流通型二次電池は、大容量の電力を貯蔵する観点から、活物質イオンを含む電解液を蓄えるタンクを備えることが好ましい。上記タンクは、公知の材質および構造を有するものを用いることができる。タンクの大きさは充放電時間と比例し、用途によって任意に選定することができる。   The electrolyte flow type secondary battery in the present embodiment preferably includes a tank for storing an electrolyte containing active material ions from the viewpoint of storing a large amount of power. A tank having a known material and structure can be used as the tank. The size of the tank is proportional to the charge / discharge time and can be arbitrarily selected depending on the application.

本実施形態における電解液流通型二次電池は、電解液を流動させるためのポンプを備えることができる。上記ポンプは、公知のポンプを用いることができる。ポンプの種類は、適切な体積膨張率を保つような送液流量によって任意に選定することができる。   The electrolyte flow type secondary battery in the present embodiment can include a pump for causing the electrolyte to flow. A known pump can be used as the pump. The type of the pump can be arbitrarily selected depending on the liquid flow rate so as to maintain an appropriate volume expansion rate.

以下、本実施形態を実施例に基づいて具体的に説明するが、本実施形態は下記実施例に制限されるものではない。   Hereinafter, although this embodiment is concretely demonstrated based on an Example, this embodiment is not restrict | limited to the following Example.

(1)体積膨張率
活物質粒子の体積膨張率は以下の方法により測定した。縦3.0cm、横3.0cm、厚み2mmの透明アクリル容器に、活物質粒子と水を注いだ。透明アクリル容器内に沈殿した活物質粒子の層(固定層)の高さを測定した。透明アクリル容器の下部から上部に向けて、300mL/minで水を流通させた。この時、流動化した活物質粒子の層(流動層)が、透明アクリル容器の高さ3.0cmまで膨張することを確認し、流動層の高さを3.0cmとした。固定層の高さに対する流動層の高さの比率を体積膨張率とした。
(1) Volume expansion coefficient The volume expansion coefficient of the active material particles was measured by the following method. Active material particles and water were poured into a transparent acrylic container having a length of 3.0 cm, a width of 3.0 cm, and a thickness of 2 mm. The height of the layer of active material particles (fixed layer) precipitated in the transparent acrylic container was measured. Water was circulated at 300 mL / min from the bottom to the top of the transparent acrylic container. At this time, it was confirmed that the fluidized active material particle layer (fluidized bed) expanded to a height of 3.0 cm of the transparent acrylic container, and the height of the fluidized bed was set to 3.0 cm. The ratio of the height of the fluidized bed to the height of the fixed bed was defined as the volume expansion coefficient.

(2)平均粒径
活物質粒子の平均粒径は以下の方法により測定した。走査型電子顕微鏡により亜鉛粒子を観察し、任意の100個の亜鉛粒子の大きさを測定し、その平均を算出した。
(2) Average particle diameter The average particle diameter of the active material particles was measured by the following method. The zinc particles were observed with a scanning electron microscope, the size of 100 arbitrary zinc particles was measured, and the average was calculated.

(実施例1)
図1に示すような電気化学測定セル11を用いて、電池特性の評価を行った。上記電気化学測定セルは、隔膜として電解質膜1(デュポン社製、Nafion212CS)が配置され、その一方側に負極集電体2、他方側に正極3を備えていた。電解質膜1と負極集電体2との間隔、および電解質膜1と正極3との間隔は共に2mmとした。有効セル面積は3.0cm×3.0cmとした。また負極側の底面には、平均ポアサイズ10μmのPPフィルター4を備えていた。負極活物質粒子5には平均粒径100μmの亜鉛末(堺化学工業(株)製、♯4)、負極集電体2および正極3にはカーボングラファイト板(東洋炭素(株)製、ISEM−3)を用いた。負極活物質粒子5の体積膨張率が1.50倍になるよう、亜鉛末をセルの2/3の高さに到達するまで充填した。電気化学測定セル内を循環させる負極電解液6には3MZnBr溶液50mL、正極電解液7には3MZnBr+0.2MBr水溶液50mLを用いた。また、負極電解液6および正極電解液7を蓄えた負極タンク8および正極タンク9から、電解液流路10を通じて各電解液を循環させた。
電解液の流量は正極、負極共に300mL/minとし、負極活物質粒子5を流動化させて流動層を形成させた。負極活物質粒子5の流動層の体積は、固定層の体積に対して1.50倍であった。
ポテンシオガルバノスタット((株)東陽テクニカ製、1280B型)を用いて、50mA/cm定電流にて2時間充電した後、セル電圧1.5V時の放電電流を測定したところ、40mA/cmであった。また、50mA/cm定電流にて2時間の充電と2時間の放電を5サイクル繰り返し、充放電サイクル試験を行った。充放電サイクル試験においても顕著な亜鉛デンドライドは確認されず、充放電サイクル試験後のセル電圧1.5V時の放電電流を測定したところ、38mA/cmであった。その結果を表1に示す。
Example 1
The battery characteristics were evaluated using an electrochemical measurement cell 11 as shown in FIG. The electrochemical measurement cell was provided with an electrolyte membrane 1 (Nafion 212CS, manufactured by DuPont) as a diaphragm, and provided with a negative electrode current collector 2 on one side and a positive electrode 3 on the other side. The distance between the electrolyte membrane 1 and the negative electrode current collector 2 and the distance between the electrolyte membrane 1 and the positive electrode 3 were both 2 mm. The effective cell area was 3.0 cm × 3.0 cm. Further, a PP filter 4 having an average pore size of 10 μm was provided on the bottom surface on the negative electrode side. The negative electrode active material particles 5 are zinc powder having an average particle size of 100 μm (manufactured by Sakai Chemical Industry Co., Ltd., # 4), and the negative electrode current collector 2 and the positive electrode 3 are carbon graphite plates (manufactured by Toyo Tanso Co., Ltd., ISEM- 3) was used. Zinc powder was filled until the volume of the negative electrode active material particles 5 increased to 1.50 times until reaching the height of 2/3 of the cell. 50 mL of 3MZnBr 2 solution was used for the negative electrode electrolyte 6 circulating in the electrochemical measurement cell, and 50 mL of 3M ZnBr 2 +0.2 MBr 2 aqueous solution was used for the positive electrode electrolyte 7. Further, each electrolyte solution was circulated through the electrolyte channel 10 from the negative electrode tank 8 and the positive electrode tank 9 in which the negative electrode electrolyte 6 and the positive electrode electrolyte 7 were stored.
The flow rate of the electrolyte was 300 mL / min for both the positive electrode and the negative electrode, and the negative electrode active material particles 5 were fluidized to form a fluidized bed. The volume of the fluidized bed of the negative electrode active material particles 5 was 1.50 times the volume of the fixed layer.
Using a potentiogalvanostat (Toyo Technica Co., Ltd., 1280B type), after charging for 2 hours at a constant current of 50 mA / cm 2 , the discharge current at a cell voltage of 1.5 V was measured to find 40 mA / cm. 2 . In addition, a charge / discharge cycle test was performed by repeating 2 hours of charge and 2 hours of discharge at 50 mA / cm 2 constant current for 5 cycles. In the charge / discharge cycle test, no significant zinc dendride was confirmed, and the discharge current at a cell voltage of 1.5 V after the charge / discharge cycle test was measured and found to be 38 mA / cm 2 . The results are shown in Table 1.

(実施例2)
体積膨張率が1.11倍になるよう、亜鉛末をセルの9/10の高さに到達するまで充填したこと以外は、実施例1と同様の方法で放電電流を測定したところ、35mA/cmであった。充放電サイクル試験においても顕著な亜鉛デンドライドは確認されず、充放電サイクル試験後のセル電圧1.5V時の放電電流は32mA/cmであった。その結果を表1に示す。
(Example 2)
The discharge current was measured by the same method as in Example 1 except that zinc powder was filled until the volume reached 9/10 so that the volume expansion coefficient was 1.11 times. cm 2 . In the charge / discharge cycle test, no significant zinc dendride was confirmed, and the discharge current at the cell voltage of 1.5 V after the charge / discharge cycle test was 32 mA / cm 2 . The results are shown in Table 1.

(実施例3)
体積膨張率が2.00倍になるよう、亜鉛末をセルの1/2の高さに到達するまで充填したこと以外は、実施例1と同様の方法で放電電流を測定したところ、32mA/cmであった。充放電サイクル試験においても顕著な亜鉛デンドライドは確認されず、充放電サイクル試験後のセル電圧1.5V時の放電電流は32mA/cmであった。その結果を表1に示す。
(Example 3)
The discharge current was measured by the same method as in Example 1 except that the zinc powder was filled until the volume reached 1/2 the height of the cell so that the volume expansion rate was 2.00 times. cm 2 . In the charge / discharge cycle test, no significant zinc dendride was confirmed, and the discharge current at the cell voltage of 1.5 V after the charge / discharge cycle test was 32 mA / cm 2 . The results are shown in Table 1.

(比較例1)
体積膨張率が1.00倍になるよう、セルの最上部まで亜鉛末を充填したこと以外は、実施例1と同様の方法で放電電流を測定したところ、28mA/cmであった。充放電サイクル試験においても顕著な亜鉛デンドライドは確認されず、充放電サイクル試験後のセル電圧1.5V時の放電電流は27mA/cmであった。その結果を表1に示す。
(Comparative Example 1)
The discharge current was measured by the same method as in Example 1 except that the uppermost part of the cell was filled with zinc powder so that the volume expansion coefficient was 1.00 times, and it was 28 mA / cm 2 . In the charge / discharge cycle test, no significant zinc dendriide was confirmed, and the discharge current at a cell voltage of 1.5 V after the charge / discharge cycle test was 27 mA / cm 2 . The results are shown in Table 1.

(比較例2)
負極活物質に亜鉛板((株)ニラコ製、ZN−483384)を用い、前記亜鉛板を負極集電体として用いたこと以外は、実施例1と同様の方法で放電電流を測定したところ、20mA/cmであった。充放電サイクル試験においても、1サイクル目の放電で亜鉛デンドライドを確認し、3サイクル目で亜鉛デンドライドが電解質膜を突き刺し、サイクル試験を続行することは困難となったため、充放電サイクル試験後の放電電流を測定することができなかった。その結果を表1に示す。
(Comparative Example 2)
A discharge current was measured in the same manner as in Example 1 except that a zinc plate (manufactured by Nilaco Co., Ltd., ZN-48384) was used as the negative electrode active material, and the zinc plate was used as a negative electrode current collector. It was 20 mA / cm 2 . Also in the charge / discharge cycle test, the zinc dendride was confirmed by the first cycle discharge, and it became difficult for the zinc dendride to pierce the electrolyte membrane and continue the cycle test in the third cycle. The current could not be measured. The results are shown in Table 1.

表1に示す実施例1〜3及び比較例1、2の結果から明らかなように、活物質を粒子状とし、特定の体積膨張率で流動化させることによって、放電時により大きな電流を取り出すことができ、また亜鉛デンドライドの析出を抑制できることが確認された。   As is clear from the results of Examples 1 to 3 and Comparative Examples 1 and 2 shown in Table 1, the active material is made into particles and fluidized at a specific volume expansion rate to extract a larger current during discharge. In addition, it was confirmed that the precipitation of zinc dendriide can be suppressed.

本発明の電解液流通型二次電池は、活物質を粒子状とし、特定の体積膨張率で流動化させることにより、大電流を得ることができ、高エネルギー密度の電解液流通型二次電池を提供することができる。また、析出時のデンドライドが抑制され、サイクル寿命の長い電解液流通型二次電池を提供することができる。   The electrolytic solution circulation type secondary battery of the present invention can obtain a large current by making the active material into particles and fluidizing at a specific volume expansion rate, and an electrolytic solution circulation type secondary battery having a high energy density. Can be provided. In addition, an electrolyte solution secondary battery having a long cycle life can be provided because dendrid during deposition is suppressed.

1 電解質膜
2 負極集電体
3 正極
4 フィルター
5 負極活物質粒子
6 負極電解液
7 正極電解液
8 負極タンク
9 正極タンク
10 電解液流路
11 電気化学測定セル
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Negative electrode collector 3 Positive electrode 4 Filter 5 Negative electrode active material particle 6 Negative electrode electrolyte 7 Positive electrode electrolyte 8 Negative electrode tank 9 Positive electrode tank 10 Electrolyte flow path 11 Electrochemical measurement cell 11

Claims (4)

正極と負極とを備えたセルに、電解液を流通させる電解液流通型二次電池であって、
正極活物質と負極活物質のどちらか一方または両方が、固体の活物質粒子と、電解液に溶解した活物質イオンとの両方の状態を有しており、
前記活物質粒子が電解液によって流動化され、流動化されている前記活物質粒子の層の体積が、前記電解液が循環していない時沈殿している前記活物質粒子の層の体積に対して1.05〜3.00倍であり、
充電または放電に伴い、前記活物質粒子が、イオン化されて前記電解液中に溶解する、または、前記電解液中に溶解していた前記活物質イオンが粒子状の固体として析出する、電解液流通型二次電池。
An electrolyte solution-type secondary battery that distributes an electrolyte solution to a cell including a positive electrode and a negative electrode,
Either one or both of the positive electrode active material and the negative electrode active material have a state of both solid active material particles and active material ions dissolved in the electrolyte solution,
The active material particles are fluidized by an electrolyte , and the volume of the layer of the active material particles that is fluidized is larger than the volume of the layer of the active material particles that is precipitated when the electrolyte is not circulated. 1.05-3.00 times,
As the charge or discharge is performed, the active material particles are ionized and dissolved in the electrolytic solution, or the active material ions dissolved in the electrolytic solution are precipitated as particulate solids. Type secondary battery.
放電に伴い、固体の負極活物質粒子がイオン化されて電解液中に溶解し、充電に伴い、電解液中に溶解していた負極活物質イオンが粒子状の固体として析出する、請求項1記載の電解液流通型二次電池。   The solid negative electrode active material particles are ionized and dissolved in the electrolytic solution with discharge, and the negative electrode active material ions dissolved in the electrolytic solution are deposited as a particulate solid with charging. Electrolyte flow type secondary battery. 前記負極活物質粒子/前記負極活物質イオンの組み合わせが、Li/Li+、K/K+、Ca/Ca2+、Na/Na+、Mg/Mg2+、Al/Al3+、Mn/Mn3+、Zn/Zn2+、Zn/ZnO2 2-、Cr/Cr2+、Fe/Fe2+、Cd/Cd2+、Co/Co2+、Ni/Ni2+、Sn/Sn2+、Pb/Pb2+からなる群から選ばれる1種以上の金属/金属イオンの組み合わせである、請求項2記載の電解液流通型二次電池。 The combination of the negative electrode active material particles / the negative electrode active material ions is Li / Li + , K / K + , Ca / Ca 2+ , Na / Na + , Mg / Mg 2+ , Al / Al 3+ , Mn / Mn 3+ , Zn / Zn 2+ , Zn / ZnO 2 2− , Cr / Cr 2+ , Fe / Fe 2+ , Cd / Cd 2+ , Co / Co 2+ , Ni / Ni 2+ , Sn / Sn 3. The electrolyte flow type secondary battery according to claim 2, which is a combination of at least one metal / metal ion selected from the group consisting of 2+ and Pb / Pb 2+ . 前記活物質イオンを含む電解液を蓄えるタンクを備える、請求項1〜3のいずれか1項記載の電解液流通型二次電池。

The electrolytic solution circulation type secondary battery according to any one of claims 1 to 3, further comprising a tank that stores an electrolytic solution containing the active material ions.

JP2013109120A 2013-05-23 2013-05-23 Electrolyte flow type secondary battery Active JP6211800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109120A JP6211800B2 (en) 2013-05-23 2013-05-23 Electrolyte flow type secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109120A JP6211800B2 (en) 2013-05-23 2013-05-23 Electrolyte flow type secondary battery

Publications (2)

Publication Number Publication Date
JP2014229519A JP2014229519A (en) 2014-12-08
JP6211800B2 true JP6211800B2 (en) 2017-10-11

Family

ID=52129187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109120A Active JP6211800B2 (en) 2013-05-23 2013-05-23 Electrolyte flow type secondary battery

Country Status (1)

Country Link
JP (1) JP6211800B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101719685B1 (en) * 2015-08-12 2017-03-24 롯데케미칼 주식회사 Method for charge and discharge of redox flow battery
JP6694955B2 (en) * 2016-05-31 2020-05-20 京セラ株式会社 Zinc battery and zinc flow battery
IL246694A0 (en) 2016-07-10 2016-09-29 Technion Res & Dev Foundation Fluidized bed and hybrid suspension electrodes for energy storage and water desalination systems
EP3644425A4 (en) * 2017-06-21 2020-09-23 Sumitomo Electric Industries, Ltd. Redox flow battery
CN114300723B (en) * 2021-12-31 2024-03-15 常州大学 Aqueous organic flow battery based on mixed energy storage of insoluble phenazine-based negative electrode and soluble phenazine-based negative electrode electrolyte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1223559A (en) * 1967-03-16 1971-02-24 Nat Res Dev Improvements in and relating to electrochemical cells
US3663298A (en) * 1970-03-03 1972-05-16 North American Rockwell Rotatable electrode structure with conductive particle bed
JPS60207258A (en) * 1984-03-31 1985-10-18 Mitsui Eng & Shipbuild Co Ltd Secondary battery
NL8800500A (en) * 1988-02-26 1989-09-18 Stork Screens Bv ELECTRODE MATERIAL FOR APPLICATION IN A SUSPENSION ACCUMULATOR SEMI-CELL, ACCUMULATOR SEMI-CELL WITH AN ELECTRODE OF SUCH MATERIAL AND SUCH ACCUMULATOR SEMI-CELL CONTAINING BATTERY.

Also Published As

Publication number Publication date
JP2014229519A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
US10910674B2 (en) Additive for increasing lifespan of rechargeable zinc-anode batteries
Bockelmann et al. Electrically rechargeable zinc-oxygen flow battery with high power density
JP6013463B2 (en) Iron-based fluid battery
Khezri et al. Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries
JP5801957B2 (en) Active material for rechargeable batteries
US20140087274A1 (en) Zinc-air battery
JP6211800B2 (en) Electrolyte flow type secondary battery
US9748564B2 (en) Electrode compositions and related energy storage devices
JP5864563B2 (en) Magnesium battery
JP2017532735A (en) Copper flow battery
JP5740357B2 (en) Large capacity storage device
CN105990582A (en) Battery
CN104752681A (en) Battery
CN102324579A (en) A kind of Zinc ion battery
JP7219462B2 (en) zinc secondary battery
JP2019071193A (en) Aqueous secondary battery and power generating system
WO2019103371A1 (en) Electrolyte for redox flow battery and redox flow battery comprising same
WO2015079689A1 (en) High capacity alkali/oxidant battery
JP2015198059A (en) Flow type storage battery
CN109119635A (en) battery
JP2014170715A (en) Cell
US10211464B2 (en) Electrochemical cell aluminum-manganese
US20140038000A1 (en) Flow-Through Metal Battery with Ion Exchange Membrane
JP2019153467A (en) Flow battery and flow battery system
US20160104890A1 (en) Electrode compositions and related energy storage devices

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170914

R150 Certificate of patent or registration of utility model

Ref document number: 6211800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350