JPS60207258A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS60207258A
JPS60207258A JP59062206A JP6220684A JPS60207258A JP S60207258 A JPS60207258 A JP S60207258A JP 59062206 A JP59062206 A JP 59062206A JP 6220684 A JP6220684 A JP 6220684A JP S60207258 A JPS60207258 A JP S60207258A
Authority
JP
Japan
Prior art keywords
positive
battery
halogen
negative
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59062206A
Other languages
Japanese (ja)
Inventor
Masami Yoshitake
吉竹 正実
Masaatsu Takahata
高畠 正温
Zenji Kamio
神尾 善二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59062206A priority Critical patent/JPS60207258A/en
Publication of JPS60207258A publication Critical patent/JPS60207258A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To achieve increased charge-and-discharge coulomb efficiency of a secondary battery, having electrodes to which solutions are supplied, without causing any side reaction by using an acid halogen solution of iron, copper, tin, nickel or a halogen as electrolyte of the positive and the negative active materials. CONSTITUTION:A secondary battery is constituted of an electrolytic cell 1 consisting of liquid-transmitting positive and negative electrodes 2 and 3 and bipolar partition plates 4, diaphragms 5 each installed between two adjacent positive and negative electrodes 2 and 3, an anolyte and a catholyte line 6 and 7 and liquid supply pumps 10 and 11 for supplying anolyte and catholyte to the positive and the negative electrodes 2 and 3 respectively, and tanks 8 and 9 in which the above anolyte and catholyte are stored. In this battery, when an acid halide solution of iron, copper, nickel or a halide is used as a positive or a negative active material, no side reaction occurs during positive and negative reactions. Therefore, high charge-and-discharge coulomb efficiency of the battery is achieved. Particularly in a zinc-halogen battery, any dentrite does not occur.

Description

【発明の詳細な説明】 極を用いた二次電池に関するものである。[Detailed description of the invention] It relates to secondary batteries using electrodes.

ハロゲンを正極活物質とする二次電池の負極活物質は主
に亜鉛が用いられている。亜鉛−臭素電池や亜鉛−塩素
電池はこの例であり、亜鉛の岸側に大きな電極電位とハ
ロゲンの責側に大きな電極電位とによって、単セルにお
いて1vを大き(越える起電力を得ることができる。し
かし、これらの電池は、充電時にデンドライト(亜鉛の
ひげ状結晶)が生成し、セルの短絡を起こしやすいとい
う大きな欠陥を有している。このデンドライト生成を抑
制するために界面活剤などの添加剤を加える方法が開発
されているが、問題になる。一方、クロム−鉄電池に代
表される塩酸酸性溶液を活物質溶液とする電池は、クロ
ムの電極反応に問題があり、例えばクロムは充電時に水
素が発生する副反応を起こし、また速度論的にも触媒の
使用を考慮しなければならず、さらに自己放電を起こし
やすいという欠陥もある。これらが充放電効率を下げ、
また製造コストをひき上げる原因になってい一鉄電池等
の欠点を解消し、副反応充放電クーロ電解セル(電池率
(本))′に電解液を流通させ、充放電後の電解液をそ
れぞれ正極液タンクおよび負極液タンクに貯蔵した後、
前記電解セルに再循環させる二次電池において、鉄、銅
、スズ、ニッケルまたはハロゲンのハロゲン酸性溶液を
正、負極活物質の電解液とすること、を特徴とする。
Zinc is mainly used as the negative electrode active material of secondary batteries that use halogen as the positive electrode active material. Zinc-bromine batteries and zinc-chlorine batteries are examples of this, and by having a large electrode potential on the zinc side and a large electrode potential on the halogen side, it is possible to obtain an electromotive force greater than 1V in a single cell. However, these batteries have a major defect in that dendrites (zinc whisker-like crystals) are generated during charging, which tends to cause cell short circuits.To suppress the formation of dendrites, surfactants and other substances are used. A method of adding additives has been developed, but this poses a problem.On the other hand, batteries that use hydrochloric acid as the active material solution, such as chromium-iron batteries, have problems with the electrode reaction of chromium. There is a side reaction that generates hydrogen during charging, and the use of a catalyst must be taken into account from a kinetic point of view.Additionally, it has the disadvantage of being prone to self-discharge.These factors reduce the charging and discharging efficiency.
In addition, we have solved the drawbacks of single-iron batteries, etc., which are the cause of increased manufacturing costs. After storing in the positive and negative electrolyte tanks,
The secondary battery that is recycled to the electrolytic cell is characterized in that a halogen acidic solution of iron, copper, tin, nickel, or halogen is used as the electrolytic solution for the positive and negative electrode active materials.

本発明の構成内容をまず鉄−塩素電池を例にとって説明
する。この場合め電池の正極反応は(1゜+2e−−2
CJ″″、負極反応はFe(If)−=Fe (III
) +e−となる。電池活物質である電解液は、塩酸酸
性塩化鉄水溶液で両極とも共通であり、第一鉄塩または
金属鉄を塩酸に溶解して調製すれば放電状態の電解液と
して得られる。この電池の充電後の液は正極側が塩素水
であり、負極側が第二鉄溶液となる:正極側において高
い濃度の塩素を貯蔵する場合には、腐食を避けるために
、その温度を15℃以下、さらに好ましくは5℃以下と
することが好ましい。
The configuration of the present invention will first be explained by taking an iron-chlorine battery as an example. In this case, the positive electrode reaction of the battery is (1°+2e--2
CJ″″, the negative electrode reaction is Fe(If)−=Fe(III
) becomes +e-. The electrolytic solution, which is a battery active material, is a hydrochloric acid acidic iron chloride aqueous solution, which is common to both electrodes, and can be obtained as an electrolytic solution in a discharged state by dissolving ferrous salt or metallic iron in hydrochloric acid. The solution after charging this battery is chlorine water on the positive electrode side, and ferric iron solution on the negative electrode side: When storing high concentration chlorine on the positive electrode side, the temperature should be kept below 15 degrees Celsius to avoid corrosion. The temperature is more preferably 5°C or lower.

第1図は、本発明における二次電池の装置構成の典型例
を示したもので、この装置は、液透過型電極である正極
2および負極3と、これらを区画する複極仕切板(端部
に装置する場合は端子板)4からなる電解セル(電池本
体) lと、正極2および負極3の間に設けられた隔膜
5と、正極2および負極3へそれぞれ極液を供給する正
極液ライン6、負極液ライン7および送液ポンプ10.
11と、該正極液および負極液を貯留するタンク8およ
び9とからなる。
FIG. 1 shows a typical example of the device configuration of a secondary battery according to the present invention. An electrolytic cell (battery main body) consisting of an electrolytic cell (battery body) 4 (if installed in a terminal plate), a diaphragm 5 provided between the positive electrode 2 and the negative electrode 3, and a positive electrode liquid that supplies electrode liquid to the positive electrode 2 and negative electrode 3, respectively. line 6, negative electrode liquid line 7, and liquid pump 10.
11, and tanks 8 and 9 for storing the positive and negative electrode liquids.

上記構成において、例えば鉄−塩素電池を例にとれば、
充電状態では2価の鉄イオン(Fe”)の水溶液と塩素
水(CJ2)がそれぞれ別のタンク9および8に貯えら
れ、これを流通型電解槽10に流すと、正極2では塩素
分子が電子2個を受け取って、塩素イオンCj!−とな
り、負極2″eはp e2+が電子を1個失い3価のF
e12となる。負極2と正極3で授受された電子は、例
えば外部回路を通って仕事をし、電力を放出する。充放
電反応を行う電解セル本体1は、特に正極側において、
塩素を発生するので、複極仕切板、電極、隔膜ともに耐
塩素性の大きい材料によって構成する必要がある。
In the above configuration, taking an iron-chlorine battery as an example,
In the charged state, an aqueous solution of divalent iron ions (Fe") and chlorine water (CJ2) are stored in separate tanks 9 and 8, respectively. When these are flowed into the flow-through electrolytic cell 10, chlorine molecules become electrons at the positive electrode 2. It receives two ions and becomes chlorine ion Cj!−, and the negative electrode 2″e is p e2+ which loses one electron and becomes trivalent F
It becomes e12. The electrons exchanged between the negative electrode 2 and the positive electrode 3 perform work through an external circuit, for example, and emit power. The electrolytic cell body 1 that performs charge/discharge reactions has, especially on the positive electrode side,
Since chlorine is generated, the bipolar partition plate, electrodes, and diaphragm must all be constructed of materials with high chlorine resistance.

上記電池によれば、下記のような効果が達成される。According to the above battery, the following effects are achieved.

(1)負極反応は、きわめて反応速度の大きい鉄2価、
3価の電極反応となるため、電池の設計、製作が容易で
ある。
(1) The negative electrode reaction uses divalent iron, which has an extremely high reaction rate.
Since this is a trivalent electrode reaction, battery design and manufacture are easy.

(2)正、負極反応ともに副反応がなく、そのため、電
池の充放電クーロン効率が高い(亜鉛系電池は水素発生
の副反応がある)。
(2) There are no side reactions in both the positive and negative electrode reactions, so the charge/discharge coulombic efficiency of the battery is high (zinc-based batteries have a side reaction of hydrogen generation).

(3)正、負極ともに溶液流通型電極等を使用し、電池
反応を行わないときは、活物質液は全量セルからタンク
に落として貯蔵する。このため自己放電はない。
(3) Both the positive and negative electrodes use solution flow type electrodes, and when a battery reaction is not performed, the entire active material liquid is dropped from the cell into a tank and stored. Therefore, there is no self-discharge.

(4)亜鉛−ハロゲン電池に対しては、デンドライト生
成の問題がない。また、クロムハロゲン電池に対しては
、クロムの電極反応(Cr (II) −Cr (I[
) +e−)の悪くなる(電極反応速度の小さくなる)
問題がない。
(4) For zinc-halogen batteries, there is no problem of dendrite formation. In addition, for chromium-halogen batteries, the electrode reaction of chromium (Cr(II)-Cr(I[
) +e-) worsens (electrode reaction rate decreases)
there is no problem.

以上の長所のほとんどは、銅、スズ、ニッケル、ハロゲ
ン対ハロゲン電池についてもいえることである。これら
の電池の主たる正極反応と負極反応を示せば下表の通り
である。
Most of the above advantages also apply to copper, tin, nickel, and halogen versus halogen batteries. The main positive electrode reactions and negative electrode reactions of these batteries are shown in the table below.

以下余白 第1表 本電池の活物質溶液は水溶液に限定されず、四塩化炭素
やプロトン性、非プロトン性の極性溶媒などであっても
、構成の上で特に問題はない。また本発明にいうハロゲ
ンとはフッ素、塩素、臭素、ヨウ素のいずれを選択して
もよく、これは起電力等を配慮して決定される。
The active material solution of the present battery is not limited to an aqueous solution, and may be carbon tetrachloride, a protic or aprotic polar solvent, etc. without any particular problem in terms of the structure. Further, the halogen referred to in the present invention may be selected from fluorine, chlorine, bromine, and iodine, and this is determined by taking into consideration electromotive force and the like.

なお、鉄、銅、スズ、ハロゲン、ニッケルのハロゲン酸
性ハロゲン化物溶液を正、負極活物質とする二次電池、
例えば、塩酸酸性塩化鉄溶液を用いた二次電池では起電
力は0.6V程度しか得られないが、これはセル直列積
層数を多くすることより解決することができる。本発明
に用いるセルはきわめて安価であり、しかも構造が簡単
で積層するのが容易なため、単セルの起電力の低下は問
題にならない。
In addition, secondary batteries that use halogen acid halide solutions of iron, copper, tin, halogen, and nickel as positive and negative electrode active materials,
For example, in a secondary battery using a hydrochloric acid acidic iron chloride solution, an electromotive force of only about 0.6 V can be obtained, but this can be solved by increasing the number of cells stacked in series. The cells used in the present invention are extremely inexpensive, have a simple structure, and are easy to stack, so a reduction in the electromotive force of a single cell is not a problem.

(発明の背景) 以上、本発明によれば、特定の元素のハロゲン酸性溶液
と正、負極活物質の電解液として選択することにより、
副反応がなく、高い充放電クーロン効率を有する二次電
池を提供することができる。
(Background of the Invention) As described above, according to the present invention, by selecting a halogen acidic solution of a specific element and an electrolyte of positive and negative electrode active materials,
A secondary battery having no side reactions and high charge/discharge coulombic efficiency can be provided.

(発明の実施例) 実施例1 6規定塩酸酸性2モル/l塩化第一鉄水溶液を用いて第
1図に示す電池にて充放電実験を行った。
(Examples of the Invention) Example 1 A charging/discharging experiment was conducted using a battery shown in FIG. 1 using a 6N hydrochloric acid acidic 2 mol/l ferrous chloride aqueous solution.

電解セル本体の構成は塩ビ結着炭素粉をシート状にした
複極仕切板、ピッチ系炭素繊維フェルトの液透過型電極
、塩ビ多孔質膜の隔膜とし、30セル直列積層とした。
The electrolytic cell body was composed of a bipolar partition plate made of a sheet of PVC-bound carbon powder, a liquid-permeable electrode made of pitch-based carbon fiber felt, and a diaphragm made of a porous PVC membrane, and 30 cells were stacked in series.

動作時の電解セル温度15℃における充放電試験の結果
は次の通りであった。
The results of a charge/discharge test at an operating electrolytic cell temperature of 15° C. were as follows.

負極液充電深度(FeII/Fe1II比) 95%を
基準にした充放電クーロン効率 平均電圧効率 76% (電流密度30mA/cIA) 平均放電電圧 0.65V 実施例2 6規定塩酸酸性2モル/l塩化第二銅水溶液、約12規
定塩酸酸性2モル/!塩化第一スズ水溶液、6規定塩酸
酸性2モル/β塩化ニッケル水溶液、6規定握酸酸性1
モル/lヨウ素水溶液をそれぞれ電解液として、実施例
1における装置を用いて同様に検討した。結果を第2表
に示す。
Depth of charge of negative electrode liquid (FeII/Fe1II ratio) Charging/discharging coulombic efficiency based on 95% Average voltage efficiency 76% (Current density 30 mA/cIA) Average discharge voltage 0.65 V Example 2 6N Hydrochloric acid acidity 2 mol/l chloride Cupric aqueous solution, about 12 N hydrochloric acid acidic 2 mol/! Stannous chloride aqueous solution, 6N hydrochloric acid acidic 2 mol/β nickel chloride aqueous solution, 6N hydrochloric acid acidic 1
A similar study was conducted using the apparatus in Example 1 using a mol/l aqueous iodine solution as the electrolyte. The results are shown in Table 2.

第2表 実施例1.2ともにクーロン効率95%が上限% 二な
ったのは、電解セル本体のシャント電流による損失(各
電極室への送液管を流れる漏洩電流による損失)が5%
あり、95%という値は全く副反応、自己放電による損
失のないことを示している。
Table 2 Examples 1 and 2 both have a Coulombic efficiency of 95% as the upper limit.The second reason is that the loss due to shunt current in the electrolytic cell body (loss due to leakage current flowing through the liquid feed pipe to each electrode chamber) is 5%.
A value of 95% indicates that there is no loss due to side reactions or self-discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の典型的な実施例を示す二次電池の説
明図である。 1・・・電解セル(電池本体)、2・・・正極(液透過
型電極)、3・・・負極(液透過型電極)、4・・・複
極仕切板もしくは端子板、5・・・隔膜、6・・・正極
液ライン、7・・・負極液ライン、8・・・正極液タン
ク、9・・・負極液タンク、10.11・・・送液ポン
プ。 代理人 弁理士 川 北 武 長
FIG. 1 is an explanatory diagram of a secondary battery showing a typical embodiment of the present invention. 1... Electrolytic cell (battery body), 2... Positive electrode (liquid permeable electrode), 3... Negative electrode (liquid permeable electrode), 4... Multipolar partition plate or terminal plate, 5... - Diaphragm, 6... Positive electrode liquid line, 7... Negative electrode liquid line, 8... Positive electrode liquid tank, 9... Negative electrode liquid tank, 10.11... Liquid sending pump. Agent Patent Attorney Takenaga Kawakita

Claims (1)

【特許請求の範囲】[Claims] (1)i9液流通型電極を正、負極に有する電解セル(
電池本体)に電解液を流通させ、充放電後の電解液をそ
れぞれ正極液タンクおよび負極液タンクに貯蔵した後、
前記電解セルに再循環させる二次電池において、鉄、銅
、スズ、ニッケルまたはハロゲンのハロゲン酸性溶液−
を正、負極活物質の電解液とすることを特徴とする二次
電池。
(1) Electrolytic cell with i9 liquid flow type electrodes on the positive and negative electrodes (
After flowing the electrolyte through the battery body and storing the electrolyte after charging and discharging in the positive and negative electrolyte tanks,
In the secondary battery to be recycled to the electrolytic cell, a halogen acidic solution of iron, copper, tin, nickel or halogen -
A secondary battery characterized in that the electrolyte of the positive and negative electrode active materials is used as an electrolyte.
JP59062206A 1984-03-31 1984-03-31 Secondary battery Pending JPS60207258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062206A JPS60207258A (en) 1984-03-31 1984-03-31 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062206A JPS60207258A (en) 1984-03-31 1984-03-31 Secondary battery

Publications (1)

Publication Number Publication Date
JPS60207258A true JPS60207258A (en) 1985-10-18

Family

ID=13193436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062206A Pending JPS60207258A (en) 1984-03-31 1984-03-31 Secondary battery

Country Status (1)

Country Link
JP (1) JPS60207258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229519A (en) * 2013-05-23 2014-12-08 旭化成イーマテリアルズ株式会社 Electrolyte-circulation type secondary battery
WO2018198252A1 (en) * 2017-04-26 2018-11-01 日立化成株式会社 Secondary battery, secondary battery system, and electricity-generating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229519A (en) * 2013-05-23 2014-12-08 旭化成イーマテリアルズ株式会社 Electrolyte-circulation type secondary battery
WO2018198252A1 (en) * 2017-04-26 2018-11-01 日立化成株式会社 Secondary battery, secondary battery system, and electricity-generating system

Similar Documents

Publication Publication Date Title
US4180623A (en) Electrically rechargeable battery
US5650239A (en) Method of electrode reconditioning
US20160248109A1 (en) Driven electrochemical cell for electrolyte state of charge balance in energy storage devices
GB2030349A (en) Process and Accumulator, for Storing and Releasing Electrical Energy
JPH0864223A (en) Electrolyte for vanadium redox flow type battery
US20170214077A1 (en) Electrolyte System For Rechargeable Flow Battery
JPH0419966A (en) Redox battery
KR102379200B1 (en) Zinc-bromide flow battery comprising conductive interlayer
JPH0227667A (en) Redox flow battery with electrolyte regenerator and its battery capacity maintaining method
JPH01320776A (en) Redox flow type battery
JPH0574909B2 (en)
JPH0821415B2 (en) Fuel cell for rebalancing device for secondary battery
JPH03192662A (en) Cell capacity recovery method for redox-flow cell
JPS60207258A (en) Secondary battery
JPH0546063B2 (en)
JPS63164172A (en) Shunt current erasing device for redox flow battery
CN111180777A (en) Positive electrode electrolyte for zinc-bromine single flow battery
US20220407102A1 (en) Zinc-bromine flow battery including conductive interlayer
JP3396892B2 (en) Operating method of electrolyte flowing battery
JPH02195650A (en) Electrode for redox flow battery
CN117613335A (en) Separated flow battery energy storage system and charging and discharging method thereof
JPS60207250A (en) Electrode plate of zinc-bromine cell
JP2809936B2 (en) Battery device for power storage
JPS61269867A (en) Redox flow cell
Mahmoud et al. A Newly Designed Fixed Bed Redox Flow Battery Based on Zinc/Nickel System