JPS63164172A - Shunt current erasing device for redox flow battery - Google Patents

Shunt current erasing device for redox flow battery

Info

Publication number
JPS63164172A
JPS63164172A JP61308188A JP30818886A JPS63164172A JP S63164172 A JPS63164172 A JP S63164172A JP 61308188 A JP61308188 A JP 61308188A JP 30818886 A JP30818886 A JP 30818886A JP S63164172 A JPS63164172 A JP S63164172A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
positive
shunt current
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61308188A
Other languages
Japanese (ja)
Inventor
Haruhito Okamoto
晴仁 岡本
Daizaburo Tsutsumi
堤 大三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61308188A priority Critical patent/JPS63164172A/en
Publication of JPS63164172A publication Critical patent/JPS63164172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent the increasing pressure loss of a pump to circulate the positive and the negative electrolytes, by furnishing cutoffs to send the electrolytes intermittently to passages to feed them to cells, and to prevent a shunt current from flowing through the negative and the positive electrolytes. CONSTITUTION:Cutoffs 6 are furnished respectively at passages to feed the negative and the positive electrolytes to negative and positive electrodes, and prevent to form electric circuits by the feeding passages of the negative and the positive electrolytes, and cells 3, by feeding the negative and the positive electrolytes to the cells 3 intermittently. In this case, the cutoffs 6 are composed of dripping devices to send the negative and the positive electrolytes fed from the negative side tank 1 and the positive side tank 2 intermittently, and, although they are delivered to the cells 3, no shunt current i flows because the negative electrodes and the positive electrodes in the cells 3 are cut off electrically.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレドックス金フロー電池のシャントカレントを
消去するレドックス・フロー電池のシャントカレント消
去装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a shunt current eliminating device for a redox flow battery that eliminates shunt current in a redox gold flow battery.

[従来の技術] 電力貯蔵設備は発電設備の有効利用、電力の安定供給上
重要である。現在新型電池の開発が積極的に進められお
り、その一つにレドックス・フロー電池がある。
[Background Art] Power storage equipment is important for effective use of power generation equipment and stable supply of power. Currently, new types of batteries are being actively developed, and one of them is the redox flow battery.

レドックス・フロー電池はクロムイオン又は鉄イオン等
のように原子価が変化し得るイオン(レドックス・イオ
ン)の溶液をタンクに貯蔵しておき、これをポンプで電
解槽に供給して、充電及び放電を行なうものである。
In a redox flow battery, a solution of ions (redox ions) whose valence can change, such as chromium ions or iron ions, is stored in a tank, and this is supplied to an electrolytic cell using a pump for charging and discharging. This is what we do.

第5図は従来のレドックス・フロー電池の概略図である
。第5図において、1はクロムイオンCr”+の溶液が
貯蔵されている負極側タンク、2は鉄イオンFe3+の
溶液が貯蔵されている正極側タンク、3はクロムイオン
Cr2+の溶液及び鉄イオンFe3“の溶液が反応する
セル、4はセル3にクロムイオンCr2+の溶液を供給
するポンプ、5はセル3に鉄イオンFe3+の溶液を供
給するポンプである。
FIG. 5 is a schematic diagram of a conventional redox flow battery. In Fig. 5, 1 is a negative electrode side tank in which a solution of chromium ions Cr''+ is stored, 2 is a positive electrode side tank in which a solution of iron ions Fe3+ is stored, and 3 is a tank in which a solution of chromium ions Cr2+ and iron ions Fe3 are stored. 4 is a pump that supplies a solution of chromium ions Cr2+ to the cell 3, and 5 is a pump that supplies a solution of iron ions Fe3+ to the cell 3.

なお、セル3の負極でクロムイオンCr2+(7)溶液
から放出される電子は図示しない外部回路を介してセル
3の正極に送られる。
Note that electrons released from the chromium ion Cr2+(7) solution at the negative electrode of the cell 3 are sent to the positive electrode of the cell 3 via an external circuit (not shown).

次に、従来のレドックス・フロー電池の放電時の動作に
ついて説明する。ポンプ4及び5はそれぞれタンク1及
び2に貯蔵されているクロムイオンCr2”(7)溶液
及び鉄イオンPe3+の溶液をセル3の負極及び正極に
それぞれ供給する。負極に供給されたクロムイオンCr
2+の溶液は電子を放出してクロムイオンC「3+に酸
化される。酸化したクロムイオンCr3+の溶液は負極
側タンク1に戻る。又、正極に供給された秋イオンFe
””(7)溶液は電子を得て鉄イオンFe2+に還元さ
れる。還元された鉄イオンPc””O溶液は正極側タン
ク2に戻る。この反応で過剰になった塩素C1−はイオ
ン交換膜を介して負極に移動し、負極での塩素C1−の
不足を補う。
Next, the operation of the conventional redox flow battery during discharging will be explained. Pumps 4 and 5 supply the chromium ion Cr2''(7) solution and the iron ion Pe3+ solution stored in tanks 1 and 2, respectively, to the negative and positive electrodes of the cell 3.The chromium ion Cr supplied to the negative electrode
The 2+ solution emits electrons and is oxidized to chromium ion C (3+).The oxidized chromium ion Cr3+ solution returns to the negative electrode side tank 1.In addition, the fall ion Fe supplied to the positive electrode
``''(7) The solution gains electrons and is reduced to iron ions Fe2+. The reduced iron ion Pc""O solution returns to the positive electrode side tank 2. Excessive chlorine C1- in this reaction moves to the negative electrode via the ion exchange membrane and compensates for the lack of chlorine C1- at the negative electrode.

次に、第6図は第5図に示したセル3の原理図である。Next, FIG. 6 is a diagram showing the principle of the cell 3 shown in FIG.

第6図において、10はイオン交換膜、11は負極側の
カーボンファイバ電極、12は負極側のバイポーラ板、
13は正極側のカーボンファイバ電極、14は正極側の
カーボンファイバ電極である。
In FIG. 6, 10 is an ion exchange membrane, 11 is a carbon fiber electrode on the negative electrode side, 12 is a bipolar plate on the negative electrode side,
13 is a carbon fiber electrode on the positive electrode side, and 14 is a carbon fiber electrode on the positive electrode side.

セル3内での充電反応及び放電反応は以下のようになる
The charging reaction and discharging reaction within the cell 3 are as follows.

(1)放電反応 正極 FO”+ e    −=Fe2”負極 CI”
”      −Cr”+ e全体 Fe3++ Cr
2”   −= Pe2”+ Or3+(2〉充電反応 正極 Pe3+十e    +Fe” 負極 Cr2+=Or”+ e 全体 Pa  + Cr    −Fe”+ Cr3”
3+    2+ ところで、一般に電池の効率は電池の充電電気口に対す
る放電電気量の比であり、この比が高いことが重要であ
る。レドックス・フロー電池の場合、電池本体の内部抵
抗及び電解液の運転のための圧損がこの効率を低下させ
る要因になる。
(1) Discharge reaction positive electrode FO”+ e −=Fe2” negative electrode CI”
"-Cr"+ e whole Fe3++ Cr
2” −= Pe2”+ Or3+ (2> Charging reaction positive electrode Pe3+10e + Fe” negative electrode Cr2+=Or”+ e Overall Pa + Cr −Fe”+ Cr3”
3+ 2+ Generally, the efficiency of a battery is the ratio of the amount of electricity discharged to the charging port of the battery, and it is important that this ratio is high. In the case of a redox flow battery, the internal resistance of the battery body and the pressure drop due to operation of the electrolyte are factors that reduce this efficiency.

第7図は第5図に示した従来のレドックス・フロー電池
の電圧分布を示す図である。放電反応によって生じた起
電力から電流を取り出す場合、第7図(a)に示すよう
に電流■が流れ、電圧は第7図(b)に示すように分布
する。このとき、正極液及び負極液の供給流路にシャン
トカレント電流iが流れる。このシャントカレント電流
りは、充電、放電及び停電時に生じるもので、正極液に
接している正極及び負極液に接している負極の各電極間
に電位差かあるため、正極液及び負極液の供給流路Jp
、びにセル3によって電気回路が形成されることが原因
になっている。充電時及び放電時のシャントカレントロ
スは効率の低下に、又停電時のシャントカレントロスは
充電されたセル3内の正極液、負極液の放電をもたらし
、次の起動時に停電前の連続運転状態における電圧、電
流状態に達するまでの時間を長くしてしまう。
FIG. 7 is a diagram showing the voltage distribution of the conventional redox flow battery shown in FIG. When a current is extracted from the electromotive force generated by the discharge reaction, a current ■ flows as shown in FIG. 7(a), and the voltage is distributed as shown in FIG. 7(b). At this time, a shunt current i flows through the supply channels of the positive and negative electrode liquids. This shunt current occurs during charging, discharging, and power outages, and because there is a potential difference between the positive electrode that is in contact with the positive electrode liquid and the negative electrode that is in contact with the negative electrode liquid, the supply flow of the positive and negative electrode liquids is Road JP
This is due to the fact that an electric circuit is formed by the cells 3 and 3. Shunt current loss during charging and discharging causes a decrease in efficiency, and shunt current loss during power outage causes discharge of the positive and negative electrolyte in the charged cell 3, and the continuous operation state before the power outage occurs at the next startup. This increases the time it takes to reach the voltage and current conditions at .

[発明が解決しようとする問題点] このシャントカレントロスを減少させるには、正極液、
負極液の流路の電気抵抗を大きくすればよい。即ち、正
極液、負極液の流路を長くしたり、流路の断面積を小さ
くすればよいことになる。
[Problems to be solved by the invention] In order to reduce this shunt current loss, positive electrode liquid,
What is necessary is to increase the electrical resistance of the negative electrode liquid flow path. That is, it is sufficient to lengthen the flow paths of the positive and negative electrode liquids or to reduce the cross-sectional area of the flow paths.

しかし、流路を長くしたり、流路の断面積を小さくする
と、正極液、負極液を循環させるポンプ4.5の圧損が
大きくなってしまうという問題があった。現在、このよ
うな相反する現象を考慮して、シャントカレントロスを
最小とするレドックス・フロー電池の正極液、負極液の
流路を設計している。
However, when the flow path is lengthened or the cross-sectional area of the flow path is reduced, there is a problem in that the pressure loss of the pump 4.5 that circulates the positive and negative electrode liquids becomes large. Currently, in consideration of these contradictory phenomena, we are designing the channels for the positive and negative electrolytes in redox flow batteries that minimize shunt current loss.

又、このようなレドックス・フロー電池を瞬停用に用い
た場合、充電後に充電された状態の正極液、負極液は上
述した電気回路により電力が消費され、セル3内の正極
液、負極液は放電状態になる。このような状態でポンプ
4.5を起動させると、充電状態にある正極液、負極液
はセル3内に送り込まれ、定常状態の起電力を発生させ
るのに第8図に示すように時間がかかるという問題があ
った。
In addition, when such a redox flow battery is used for instantaneous power outages, power is consumed by the above-mentioned electric circuit for the positive and negative electrode liquids in the charged state after charging, and the positive and negative electrode liquids in the cell 3 are becomes a discharge state. When the pump 4.5 is started in this state, the charged positive and negative electrode liquids are pumped into the cell 3, and it takes time to generate a steady-state electromotive force as shown in Figure 8. There was a problem that it took a while.

本発明は上記問題点を解決するためになされたもので、
効率、停止状態から起動時の特性を改良したレドックス
・フロー電池のシャントカレントロスの消去装置を提供
することを目的とする。
The present invention has been made to solve the above problems,
The object of the present invention is to provide a device for eliminating shunt current loss in a redox flow battery, which has improved efficiency and characteristics when starting from a stopped state.

[問題点を解決するための手段] そこで、本発明ではイオン交換膜を挟んで設けられた負
極及び正極から構成されるセルに原子価の変化し得る負
極液及び正極液をそれぞれ供給する流路に、正極液及び
負極液を断続的にセルに送り負極液及び正極液を介して
シャントカレントが流れないようにする遮断装置を設け
たレドックス・フロー電池のシャントカレントロスの消
去装置を構成する。
[Means for Solving the Problems] Therefore, in the present invention, a flow channel is provided for supplying a negative electrode liquid and a positive electrode liquid whose valences can be changed to a cell composed of a negative electrode and a positive electrode provided with an ion exchange membrane in between. A device for eliminating shunt current loss in a redox flow battery is constructed, which is provided with a shutoff device that intermittently sends a positive electrode liquid and a negative electrode liquid to the cell and prevents a shunt current from flowing through the negative electrode liquid and positive electrode liquid.

C作 用] 上記構成のレドックス・フロー電池のシャントカレント
ロスの消去装置は、遮断装置を介して負極液及び正極液
をセルに断続的に送り、負極液及び正極液を介してシャ
ントカレントが流れるのを防ぐ。
C action] The shunt current loss elimination device of the redox flow battery configured as described above intermittently sends the negative electrode liquid and the positive electrode liquid to the cell via the cutoff device, and causes the shunt current to flow through the negative electrode liquid and the positive electrode liquid. prevent

[実施例] 以下、本発明の一実施例を添付図面を参照して詳細に説
明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明に係るレドックス・フロー電池のシャン
トカレント消去装置の概略図である。第1図において、
1はクロムイオンCr2+の溶液が貯蔵されている負極
側タンク、2は鉄イオンFe3+の溶液が貯蔵されてい
る正極側タンク、3はクロムイオンC「2+の溶液及び
鉄イオンFe3+の溶液が反応するセル、4はセル3に
クロムイオンC「2+の溶液を供給するポンプ、5はセ
ル3に鉄イオンFe3+の溶液を供給するポンプ、6は
負極液及び正極液を負極及び正極に供給する流路にそれ
ぞれ設けられており、セル3に負極液及び正極液を断続
的に送ることによって、正極液及び負極液の供給流路並
びにセル3によって電気回路が形成されないようにする
遮断装置である。
FIG. 1 is a schematic diagram of a shunt current eliminating device for a redox flow battery according to the present invention. In Figure 1,
1 is a tank on the negative side where a solution of chromium ions Cr2+ is stored, 2 is a tank on the positive side where a solution of iron ions Fe3+ is stored, and 3 is a tank where a solution of chromium ions C2+ and a solution of iron ions Fe3+ react. A cell, 4 is a pump that supplies a solution of chromium ion C2+ to the cell 3, 5 is a pump that supplies a solution of iron ions Fe3+ to the cell 3, 6 is a flow path that supplies the negative electrode liquid and the positive electrode liquid to the negative electrode and the positive electrode This is a cutoff device that prevents an electric circuit from being formed by the supply channels for the cathode liquid and the anode liquid and the cells 3 by intermittently sending the anode liquid and the cathode liquid to the cells 3.

遮断装置6は第2図に示すように負極側タンク1及び正
極側タンクから供給される負極液及び正極液を断続的に
送る点滴装置によって構成されている。従って、負極液
及び正極液はセル3に送られるが、セル3の負極及び正
極はそれぞれ電気的に遮断されているので上述したシャ
ントカレント電流iは流れない。
As shown in FIG. 2, the shutoff device 6 is constituted by a drip device that intermittently sends the negative electrode liquid and positive electrode liquid supplied from the negative electrode side tank 1 and the positive electrode side tank. Therefore, the negative electrode liquid and the positive electrode liquid are sent to the cell 3, but since the negative electrode and the positive electrode of the cell 3 are electrically cut off, the above-mentioned shunt current i does not flow.

なお、本実施例では点滴装置によって遮断装置を構成し
たが、これに限るものではなく、例えば第3図に示すよ
うな羽根車によって構成してもよい。この羽根車を第4
図に示すように各セル毎に設けることにより、シャント
カレント電流iが流れるのを防止できる。即ち、羽根車
により負極液及び正極液が遮断される(空間ができる)
ため、シャントカレント電流iが流れるのを防止できる
のである。
In this embodiment, the cutoff device is configured by a drip device, but it is not limited to this, and may be configured by an impeller as shown in FIG. 3, for example. This impeller is the fourth
By providing each cell as shown in the figure, it is possible to prevent the shunt current i from flowing. In other words, the impeller blocks the negative and positive electrode fluids (a space is created).
Therefore, it is possible to prevent the shunt current i from flowing.

[発明の効果] 以上説明したように本発明によれば、負極液及び正極液
をセルに送る流路に負極液及び正極液を断続的に送り、
負極液及び正極液を介してシャントカレント電流が流れ
ないようにする遮断装置を設けることにより、正極液、
負極液を循環させるポンプの圧損が大きくならないレド
ックス・フロー電池のシャントカレント消去装置が得ら
れる。
[Effects of the Invention] As explained above, according to the present invention, the anode solution and the cathode solution are intermittently sent to the channel that sends the anode solution and the cathode solution to the cell,
By providing a cutoff device that prevents shunt current from flowing through the negative and positive electrode liquids, the positive and negative electrode liquids can be
A shunt current eliminating device for a redox flow battery in which the pressure drop of a pump that circulates the negative electrode liquid does not become large can be obtained.

又、シャントカレント電流が流れないので、充電された
状態の正極液、負極液が放電状態にならず、定常状態の
起電力を短時間で発生させることができるレドックス・
フロー電池のシャントカレント消去装置が得られるとい
う効果を奏する。
In addition, since no shunt current flows, the charged catholyte and anode solution do not become discharged, and redox electromotive force can be generated in a short time in a steady state.
This has the effect of providing a shunt current erasing device for a flow battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るレドックス・フロー電池のシャン
トカレント消去装置の概略図、第2図、第3図及び第4
図は第1図に示した遮断装置の説明図、第5図は従来の
レドックス・フロー電池の概略図、第6図は第5図に示
したセル3の原理図、第7図はシャントカレント電流発
生の説明図、第8図はシャントカレント電流による悪影
響の説明図である。 1・・・負極側タンク、2・・・正極側タンク、3・・
・セル、4.5・・・ポンプ、6・・・遮断装置。
FIG. 1 is a schematic diagram of a shunt current elimination device for a redox flow battery according to the present invention, FIGS. 2, 3, and 4.
The figure is an explanatory diagram of the disconnection device shown in Fig. 1, Fig. 5 is a schematic diagram of a conventional redox flow battery, Fig. 6 is a principle diagram of the cell 3 shown in Fig. 5, and Fig. 7 is a shunt current diagram. FIG. 8 is an explanatory diagram of current generation, and is an explanatory diagram of the adverse effects caused by shunt current. 1... Negative electrode side tank, 2... Positive electrode side tank, 3...
・Cell, 4.5... Pump, 6... Shutoff device.

Claims (4)

【特許請求の範囲】[Claims] (1)イオン交換膜と、該イオン交換膜を挟んで設けら
れた負極及び正極から構成されているセルに原子価の変
化し得る負極液及び正極液をそれぞれ供給するとともに
、充電時には前記負極及び正極に所定の電圧を印加して
、前記負極液及び正極液に充電反応を生じさせ、放電時
には該充電反応を生じさせた負極液及び正極液に放電反
応を生じさせ、該負極と正極との間に発生する電圧を出
力するレドックス・フロー電池のシャントカレント消去
装置において、前記負極液及び正極液をそれぞれ前記負
極及び正極に供給する流路に、前記負極液及び正極液を
断続的に送り、該負極液及び正極液を介してシャントカ
レント電流が流れないようにする遮断装置を備えたこと
を特徴とするレドックス・フロー電池のシャントカレン
ト消去装置。
(1) A cell consisting of an ion exchange membrane and a negative electrode and a positive electrode provided with the ion exchange membrane sandwiched therebetween is supplied with a negative electrode liquid and a positive electrode liquid whose valences can change, and when charging, the negative electrode and the positive electrode liquid are supplied. A predetermined voltage is applied to the positive electrode to cause a charging reaction in the negative electrode liquid and the positive electrode liquid, and during discharging, a discharge reaction is caused in the negative electrode liquid and the positive electrode liquid that caused the charging reaction, and the negative electrode and the positive electrode are connected. In a shunt current erasing device for a redox flow battery that outputs a voltage generated between the two, the negative electrode liquid and the positive electrode liquid are intermittently sent to the flow paths that supply the negative electrode liquid and the positive electrode liquid to the negative electrode and the positive electrode, respectively, A shunt current erasing device for a redox flow battery, comprising a shutoff device that prevents a shunt current from flowing through the negative electrode liquid and the positive electrode liquid.
(2)セルは、複数個接続されている特許請求の範囲第
1項記載のレドックス・フロー電池のシャントカレント
消去装置。
(2) A shunt current erasing device for a redox flow battery according to claim 1, wherein a plurality of cells are connected.
(3)遮断装置は、点滴装置である特許請求の範囲第1
項記載のレドックス・フロー電池のシャントカレント消
去装置。
(3) The blocking device is a drip device.
A shunt current elimination device for a redox flow battery as described in .
(4)遮断装置は、羽根車である特許請求の範囲第1項
記載のレドックス・フロー電池のシャントカレント消去
装置。
(4) A shunt current erasing device for a redox flow battery according to claim 1, wherein the shutoff device is an impeller.
JP61308188A 1986-12-26 1986-12-26 Shunt current erasing device for redox flow battery Pending JPS63164172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61308188A JPS63164172A (en) 1986-12-26 1986-12-26 Shunt current erasing device for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61308188A JPS63164172A (en) 1986-12-26 1986-12-26 Shunt current erasing device for redox flow battery

Publications (1)

Publication Number Publication Date
JPS63164172A true JPS63164172A (en) 1988-07-07

Family

ID=17977969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308188A Pending JPS63164172A (en) 1986-12-26 1986-12-26 Shunt current erasing device for redox flow battery

Country Status (1)

Country Link
JP (1) JPS63164172A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213964A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Operating method for redox battery
US5733153A (en) * 1994-07-28 1998-03-31 Mitsubishi Denki Kabushiki Kaisha Safety connector
WO2001076000A1 (en) * 2000-03-31 2001-10-11 Squirrel Holdings Ltd. Redox flow battery and method of operating it
AT502979B1 (en) * 2006-05-15 2007-06-15 Funktionswerkstoffe Forschungs Electrochemical flow module e.g. vanadium redox-flow battery, has flowable device in which electrically nonconducting phase with thickness different from that of electrolyte fluid is given, which increases electrical resistance in circuit
JP2008103360A (en) * 2008-01-15 2008-05-01 Idec Corp Discrete type terminal board
CN102403519A (en) * 2011-08-19 2012-04-04 中国电力科学研究院 Redox flow cell integrated system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01213964A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Operating method for redox battery
US5733153A (en) * 1994-07-28 1998-03-31 Mitsubishi Denki Kabushiki Kaisha Safety connector
US5823810A (en) * 1994-07-28 1998-10-20 Mitsubishi Denki Kabushiki Kaisha Safety connector
WO2001076000A1 (en) * 2000-03-31 2001-10-11 Squirrel Holdings Ltd. Redox flow battery and method of operating it
US6692862B1 (en) 2000-03-31 2004-02-17 Squirrel Holdings Ltd. Redox flow battery and method of operating it
AT502979B1 (en) * 2006-05-15 2007-06-15 Funktionswerkstoffe Forschungs Electrochemical flow module e.g. vanadium redox-flow battery, has flowable device in which electrically nonconducting phase with thickness different from that of electrolyte fluid is given, which increases electrical resistance in circuit
WO2007131250A1 (en) * 2006-05-15 2007-11-22 Cellstrom Gmbh Electrochemical flow module with a device for suppressing an electrical shunt current
JP2008103360A (en) * 2008-01-15 2008-05-01 Idec Corp Discrete type terminal board
CN102403519A (en) * 2011-08-19 2012-04-04 中国电力科学研究院 Redox flow cell integrated system

Similar Documents

Publication Publication Date Title
US4197169A (en) Shunt current elimination and device
US9153832B2 (en) Electrochemical cell stack having a protective flow channel
ATE204100T1 (en) REDOX FLOW BATTERY SYSTEM AND CELL STACK
JP2002175822A (en) Redox flow battery and its operating method
US20200075969A1 (en) Redox-flow electrochemical cell with decreased shunt
KR102379200B1 (en) Zinc-bromide flow battery comprising conductive interlayer
US4277317A (en) Shunt current elimination and device employing tunneled protective current
CN108598543B (en) Flow battery
JPS63164172A (en) Shunt current erasing device for redox flow battery
CN104769748B (en) Electrochemical appliance and method for control corrosion rate
RU2015106675A (en) ELECTROCHEMICAL SYSTEMS AND METHODS FOR ENERGY ACCUMULATION CHARACTERIZED BY LARGE NEGATIVE HALF-POTENTIALS
CN110710041A (en) Multi-point electrolyte flow field embodiments for vanadium redox flow batteries
CN103988352B (en) There is the flow battery strengthening durability
US20200411893A1 (en) Redox Flow Battery and Method for Producing a Guide Structure of an Electrode Element of a Redox Flow Battery
US20220238904A1 (en) Redox flow battery
JP2006012425A (en) Operation method of redox flow battery
KR102091449B1 (en) Redox flow cell system with cross electrolyte tanks.
JP6804332B2 (en) Electrochemical devices and methods of controlling corrosion
JP2020119831A (en) Rebalancing system of redox flow secondary battery
KR102283441B1 (en) A Battery Cell for Redox flow battery having a mixed serial and parallel structure
JP2019160469A (en) Electrolytic solution for redox flow battery, and redox flow battery
US20220407102A1 (en) Zinc-bromine flow battery including conductive interlayer
EP4280323A1 (en) Iron redox flow battery
JP2931650B2 (en) Electrolyte circulation type secondary battery
JP2001325983A (en) Redox flow cell