JP2006012425A - Operation method of redox flow battery - Google Patents

Operation method of redox flow battery Download PDF

Info

Publication number
JP2006012425A
JP2006012425A JP2004183340A JP2004183340A JP2006012425A JP 2006012425 A JP2006012425 A JP 2006012425A JP 2004183340 A JP2004183340 A JP 2004183340A JP 2004183340 A JP2004183340 A JP 2004183340A JP 2006012425 A JP2006012425 A JP 2006012425A
Authority
JP
Japan
Prior art keywords
cell
electrolyte
pump
redox flow
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004183340A
Other languages
Japanese (ja)
Inventor
Takefumi Itou
岳文 伊藤
Yoshiteru Kageyama
芳輝 景山
Nobuyuki Tokuda
信幸 徳田
Masaki Kato
正樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2004183340A priority Critical patent/JP2006012425A/en
Publication of JP2006012425A publication Critical patent/JP2006012425A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method of a redox flow battery minimizing reduction in circuit voltage thereof even for long-term use. <P>SOLUTION: In this operation method of the redox flow battery including a cell circulating electrolyte in a tank by a pump, a cell storing the electrolyte as the cell even in stopping the pump is used. During standby where instantaneous drop resistance operation of discharging electricity to a load in case of instantaneous drop or short-time service interruption is not performed, auxiliary charge is performed while circulating the electrolyte by intermittently starting the pump, without performing float charging, to keep a predetermined circuit voltage. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、瞬時電圧低下対策用や短時間停電対応用に好適なレドックスフロー電池の運転方法に関するものである。特に、電解液を循環させるポンプの効率がよく、長期の使用に亘って回路電圧の低下を低減することが可能なレドックスフロー電池の運転方法に関するものである。   The present invention relates to an operation method of a redox flow battery suitable for measures against instantaneous voltage drop and short-time power failure. In particular, the present invention relates to a method for operating a redox flow battery in which the efficiency of a pump that circulates an electrolytic solution is high and the decrease in circuit voltage can be reduced over a long period of use.

図1はレドックスフロー電池の動作原理を示す説明図である。この電池は、イオン交換膜からなる隔膜103で正極セル100Aと負極セル100Bとに分離されたセル100を具える。正極セル100Aと負極セル100Bの各々には正極電極104と負極電極105とを内蔵している。正極セル100Aには正極電解液を供給/排出するための正極用タンク101が導管106、107を介して接続されている。負極セル100Bにも負極電解液を導入/排出する負極用タンク102が同様に導管109、110を介して接続されている。各電解液にはバナジウムイオンなど原子価が変化するイオンの水溶液を用い、ポンプ108、111でセル100に循環させながら、正負極電極104、105におけるイオンの価数変化反応に伴って充放電を行う。例えば、バナジウムイオンを含む電解液を用いた場合、セル内で充放電時に生じる反応は次のとおりである。
正極:V4+→V5++e-(充電) V4+←V5++e-(放電)
負極:V3++e-→V2+(充電) V3++e-←V2+(放電)
FIG. 1 is an explanatory diagram showing the operating principle of a redox flow battery. This battery includes a cell 100 separated into a positive electrode cell 100A and a negative electrode cell 100B by a diaphragm 103 made of an ion exchange membrane. Each of the positive electrode cell 100A and the negative electrode cell 100B incorporates a positive electrode 104 and a negative electrode 105. A positive electrode tank 101 for supplying / discharging the positive electrode electrolyte is connected to the positive electrode cell 100A via conduits 106 and 107. Similarly, a negative electrode tank 102 for introducing / discharging the negative electrode electrolyte is also connected to the negative electrode cell 100B via conduits 109 and 110. Each electrolyte solution uses an aqueous solution of ions such as vanadium ions that change in valence, and is circulated to the cell 100 with pumps 108 and 111, and charged and discharged along with the valence change reaction of the ions at the positive and negative electrodes 104 and 105. Do. For example, when an electrolytic solution containing vanadium ions is used, the reaction that occurs during charging and discharging in the cell is as follows.
The positive electrode: V 4+ → V 5+ + e - ( charging) V 4+ ← V 5+ + e - ( discharge)
The negative electrode: V 3+ + e - → V 2+ ( charging) V 3+ + e - ← V 2+ ( discharge)

図2は、上記の電池に用いるセルスタックの概略構成図である。通常、上記の電池には、複数のセルが積層されたサブスタック201を更に複数積層させたセルスタック200と呼ばれる構成が利用される。セルスタック200は、直流/交流変換器(インバータ)を介して発電設備や需要家(負荷)などの系統に接続され、充放電を行う(図1参照)。   FIG. 2 is a schematic configuration diagram of a cell stack used in the above battery. Usually, the above-described battery uses a configuration called a cell stack 200 in which a plurality of sub-stacks 201 in which a plurality of cells are stacked are further stacked. The cell stack 200 is connected to a system such as a power generation facility or a consumer (load) via a DC / AC converter (inverter), and performs charging / discharging (see FIG. 1).

各セルは、上記のように隔膜103の両側にカーボンフェルト製の正極電極104および負極電極105を具える。そして、正極電極104と負極電極105の各々の外側には、プラスチックカーボン製の双極板211と、その外周に形成されるフレーム枠212とを具えるセルフレーム210が配置される。フレーム枠212には、多数のセルを積層することで電解液の流路となるマニホールド(孔)を複数具えており、この電解液の流路は、図1における導管106、107、109、110へとつながっている。なお、図2において、電極104、105に示す垂直方向の矢印は、電解液の流れる方向を示し、隔膜103や双極板211に示す水平方向の矢印は、電流の流れる方向を示す。   Each cell includes the positive electrode 104 and the negative electrode 105 made of carbon felt on both sides of the diaphragm 103 as described above. A cell frame 210 including a plastic carbon bipolar plate 211 and a frame frame 212 formed on the outer periphery thereof is disposed outside each of the positive electrode 104 and the negative electrode 105. The frame 212 includes a plurality of manifolds (holes) that serve as electrolyte flow paths by stacking a large number of cells. The flow paths of the electrolyte solutions are the conduits 106, 107, 109, 110 in FIG. Is connected to In FIG. 2, the vertical arrows shown in the electrodes 104 and 105 indicate the direction in which the electrolyte flows, and the horizontal arrows in the diaphragm 103 and the bipolar plate 211 indicate the direction in which the current flows.

上記セルスタックは、ポンプ動作により、セルフレーム下辺のマニホールドから電解液を供給し、セルフレーム上辺のマニホールドから排出する構成である。そのため、ポンプを停止すると、自重によりセルフレーム内の電解液が下がり、電極に電解液が含浸された状態を保持できない。従って、上記のレドックスフロー電池を瞬時電圧低下や短時間停電対応に用いるためにフロート充電を行う場合、電極に電解液を含浸させるべく常時ポンプを起動してセルに電解液を流通させる必要がある。このため、ポンプの動力損失が大きくなったり、マニホールド内の電解液を介してシャント電流が流れて損失が生じることで、総合的に電池効率が低下する。なお、フロート充電とは、電源にレドックスフロー電池と負荷とを並列に接続し、電池に常に一定の電圧を加えて充電状態にしておき、停電時や負荷変動時に無遮断又は短時間の停電で電池から負荷に電力を供給する方式である。   The cell stack is configured to supply an electrolyte from a manifold on the lower side of the cell frame and to discharge from the manifold on the upper side of the cell frame by a pump operation. For this reason, when the pump is stopped, the electrolyte in the cell frame is lowered by its own weight, and the electrode cannot be maintained in an impregnated state. Therefore, when the above-mentioned redox flow battery is used for float charging in order to use for instantaneous voltage drop or short-time power failure, it is necessary to start the pump at all times so that the electrode is impregnated with the electrolyte and to distribute the electrolyte to the cell. . For this reason, the power loss of the pump becomes large, or the shunt current flows through the electrolytic solution in the manifold to cause the loss, so that the battery efficiency is lowered overall. Float charging means that a redox flow battery and a load are connected in parallel to the power supply, and a constant voltage is always applied to the battery so that it is in a charged state. In this method, power is supplied from a battery to a load.

そこで、特許文献1や2に記載されるように、瞬低時に負荷に放電する瞬低対応動作を行わない待機中において、ポンプを停止しても電極(セル)に電解液が含浸された状態を保持することができるレドックスフロー電池が提案されている。このレドックスフロー電池は、セルフレーム上辺に電解液供給用及び排出用マニホールドを具えているため、ポンプを停止してもセル内の電解液が抜けることがない。従って、上記待機中、ポンプを停止させた状態でフロート充電が可能であり、ポンプロスの低減を実現すると共に、ポンプ停止中にマニホールド内に電解液が残留せず、シャント電流による損失の抑制をも実現する。また、特許文献2記載の技術では、上記待機中、間歇的にポンプを起動して電解液を循環させることで、効率的にフロート充電を行っている。   Therefore, as described in Patent Documents 1 and 2, the standby state in which the operation corresponding to the voltage drop that discharges to the load at the time of voltage drop is not performed, and the electrode (cell) is impregnated with the electrolyte even when the pump is stopped The redox flow battery which can hold | maintain is proposed. Since this redox flow battery includes an electrolyte supply manifold and a discharge manifold on the upper side of the cell frame, the electrolyte solution in the cell does not escape even when the pump is stopped. Therefore, it is possible to perform float charging while the pump is stopped during the above-described standby period, and it is possible to reduce the pump loss and to prevent the electrolyte from remaining in the manifold while the pump is stopped and to suppress the loss due to the shunt current. Realize. Further, in the technique described in Patent Document 2, float charging is efficiently performed by intermittently starting the pump and circulating the electrolyte during the standby.

特開2002-175822号公報JP 2002-175822 A 特開2003-100337号公報JP2003-100337

上記のように従来のレドックスフロー電池は、瞬低対応動作を行わない待機中において、フロート充電を行うと共に、間歇的に電解液を循環させることで十分な容量を保持することができ、瞬時電圧低下や短時間停電に対応することができる。しかし、本発明者らが調べたところ、上記従来のレドックスフロー電池は、長期の使用に亘ると、回路電圧が低下する場合があることがわかった。   As described above, the conventional redox flow battery is capable of maintaining a sufficient capacity by performing the float charging and intermittently circulating the electrolyte solution during standby without performing the sag operation. It can cope with declines and short-time power outages. However, as a result of investigations by the present inventors, it has been found that the circuit voltage of the conventional redox flow battery may decrease over a long period of use.

従って、本発明の主目的は、長期の使用においても、回路電圧の低下が少ないレドックスフロー電池の運転方法を提供することにある。   Therefore, a main object of the present invention is to provide a method for operating a redox flow battery in which a decrease in circuit voltage is small even in long-term use.

本発明は、瞬低対応動作を行わない待機中において、フロート充電を行うのではなく、電解液を循環させながら低下した容量を補うための補充電を行うことで上記の目的を達成する。   The present invention achieves the above-mentioned object by performing supplementary charging to compensate for the reduced capacity while circulating the electrolyte, instead of performing float charging during standby without performing an operation for dealing with instantaneous voltage drop.

即ち、本発明は、ポンプによりタンク内の電解液を循環可能なセルを具えるレドックスフロー電池の運転方法であって、前記セルとして、ポンプの停止時でも電解液の貯留が可能な構成のセルを用いる。そして、瞬低対応動作を行わない待機中は、ポンプを間歇的に起動して電解液を循環させながら補充電して、所定の回路電圧を維持することを特徴とする。   That is, the present invention is a method for operating a redox flow battery including a cell capable of circulating an electrolyte in a tank by a pump, and the cell is configured to store an electrolyte even when the pump is stopped. Is used. Then, during the standby time when the operation for dealing with the voltage sag is not performed, the pump is intermittently started and supplementary charging is performed while circulating the electrolytic solution to maintain a predetermined circuit voltage.

本発明は、まず、ポンプを起動させることなく、即ち、ポンプを停止していても電解液を貯留できるセルを用いることで、ポンプ動力を省力化して電池効率を高めることができる。そして、本発明は、瞬低時や短時間停電時などに負荷に放電を行う瞬低対応動作を行わない待機中において、従来のように電池に常に一定の電圧を加えるフロート充電ではなく、電解液を循環させながら低下した容量を補うための補充電を間歇的に行うことで、長期使用において回路電圧の低下を低減することができる。   In the present invention, the pump power can be saved and the battery efficiency can be increased without using the pump, that is, by using a cell that can store the electrolyte even when the pump is stopped. And, the present invention is not a float charge that always applies a constant voltage to the battery during the standby without performing a voltage sag response operation that discharges the load at the time of a voltage sag or a short time power failure. By intermittently performing supplementary charging to compensate for the reduced capacity while circulating the liquid, it is possible to reduce a decrease in circuit voltage in long-term use.

レドックスフロー電池は、通常、発電設備などの系統からの充電を十分に行っていても、充電を停止してそのままの状態でおいておくと、時間の経過に伴い、隔膜を介した自己放電により電解液の充電深度や電池容量などが低下して、回路電圧が低下する。従来は、この低下分を補うべく、瞬低対応動作を行わない待機中、フロート充電を行っていた。しかし、本発明者らは、待機中にフロート充電を行う場合、電解液を間歇的に循環させていても、回路電圧(電解液の充電深度、電池容量など)が低下することがあるとの知見から、待機中、フロート充電を行わないことを検討した。具体的には、瞬低対応動作を行わない待機中、回路電圧の低下分を補うための補充電を間歇的に行ってみた。このとき、ポンプロスをより低減するべく、電解液を循環させることなく、即ち、セル内の電解液のみ補充電を行ってみた。すると、電池容量の低下が非常に大きく、瞬時電圧低下や短時間停電に対応可能な容量が十分に得られないとの知見を得た。この知見に基づき、本発明では、瞬低対応動作を行わない待機中、電解液を循環させながら補充電を行うことを規定する。   Redox flow batteries are usually charged sufficiently from the power generation facilities and other systems, but if they are stopped and left in their original state, over time, self-discharge occurs through the diaphragm. The depth of charge of the electrolytic solution, the battery capacity, and the like are lowered, and the circuit voltage is lowered. Conventionally, in order to compensate for this decrease, float charging has been performed during standby in which the operation corresponding to the instantaneous drop is not performed. However, the inventors have stated that when performing float charging during standby, circuit voltage (electrolyte charging depth, battery capacity, etc.) may decrease even when the electrolyte is intermittently circulated. Based on the knowledge, we examined not performing float charging during standby. Specifically, during the standby time when the operation corresponding to the instantaneous voltage drop is not performed, the supplementary charge for compensating for the decrease in the circuit voltage was intermittently performed. At this time, in order to further reduce the pump loss, supplementary charging was performed without circulating the electrolytic solution, that is, only the electrolytic solution in the cell. As a result, the battery capacity was greatly reduced, and it was found that sufficient capacity could not be obtained in response to instantaneous voltage drop or short-time power outage. Based on this knowledge, in the present invention, it is defined that supplementary charging is performed while circulating the electrolytic solution during standby in which the operation for dealing with an instantaneous drop is not performed.

本発明で用いるセルは、ポンプを停止しても電解液を貯留できるものであればどのような構成でもよい。一般には、セルフレームの上辺に電解液の供給側及び排出側マニホールドを形成することで、セル内に電解液を貯留できる。特許文献2に記載のセルを用いてもよい。そして、このようなセルを複数積層させてセルスタックを構成して利用することが好適である。また、セル自体の構成に工夫を施して電解液を貯留する他、セルスタックにつながる電解液の導管途中に排水トラップを設けることでも、セルスタック内に電解液を貯留することができる。   The cell used in the present invention may have any configuration as long as the electrolyte can be stored even when the pump is stopped. In general, the electrolyte solution can be stored in the cell by forming an electrolyte solution supply side and discharge side manifold on the upper side of the cell frame. The cell described in Patent Document 2 may be used. It is preferable to use a cell stack by stacking a plurality of such cells. In addition to storing the electrolytic solution by devising the configuration of the cell itself, the electrolytic solution can be stored in the cell stack by providing a drain trap in the middle of the electrolytic solution conduit connected to the cell stack.

本発明では、上記のようにポンプを停止しても電解液の貯留が可能なセルを用いるため、待機中は、基本的にポンプを停止しておく。しかし、ポンプを停止して電解液を循環させず、セルに貯留されている電解液のみに補充電を行うと、次第に回路電圧が低下してしまうことがある。そこで、本発明では、補充電を行う際、ポンプを起動して電解液を循環させながら行うものとする。   In the present invention, since the cell capable of storing the electrolytic solution even when the pump is stopped as described above is used, the pump is basically stopped during standby. However, if the pump is stopped and the electrolytic solution is not circulated and only the electrolytic solution stored in the cell is subjected to supplementary charging, the circuit voltage may gradually decrease. Therefore, in the present invention, when supplementary charging is performed, the pump is started and the electrolytic solution is circulated.

上記補充電は、電解液の回路電圧(セルスタック電圧)を測定しておき、回路電圧が少なくとも設定下限値を満たすように行う。より具体的には、所定の回路電圧となるように、自己放電などにより低下した分を補うように行う。そして、加電圧による水分解をできるだけ小さくするために、回路電圧付近の印加電圧にて補充電を行うことが好ましい。回路電圧は、系統に充放電を行わないモニターセルを別途設けて、このモニターセルにて測定してもよいが、本発明において回路電圧の測定が行われる待機中は、系統に充放電を行う電池運転を行っていないため、回路電圧を常に測定することができる。従って、特にモニターセルを設けなくてもよい。なお、本発明は、上記のように回路電圧に基づき充電を行うことを目的とするが、例えば、充電深度が設定よりも大きくなりすぎた場合などでは適宜放電を行ってもよい。   The auxiliary charging is performed so that the circuit voltage (cell stack voltage) of the electrolytic solution is measured and the circuit voltage satisfies at least the set lower limit value. More specifically, it is performed so as to compensate for a decrease caused by self-discharge or the like so that a predetermined circuit voltage is obtained. And in order to make the water decomposition by applied voltage as small as possible, it is preferable to perform supplementary charging with an applied voltage near the circuit voltage. The circuit voltage may be measured by separately providing a monitor cell that is not charged / discharged in the system, and charging / discharging is performed on the system during the standby time when the circuit voltage is measured in the present invention. Since the battery is not operated, the circuit voltage can always be measured. Therefore, it is not necessary to provide a monitor cell. In addition, although this invention aims at charging based on a circuit voltage as mentioned above, for example, when a charge depth becomes larger than a setting, you may discharge suitably.

また、補充電は、回路電圧を測定しておき、回路電圧が設定下限値を低下したときに行うようにしてもよいし、所定の間隔で定期的に行うようにしてもよい。そして、補充電を開始すると同時に、ポンプを動作させて電解液の循環を行う。即ち、本発明では、回路電圧に基づいて、補充電の制御と、ポンプ動作の制御との双方を制御する。なお、ポンプを停止する際は、系統に接続される直流/交流変換器も停止モード(或いは待機モード)させ、ポンプを起動して充放電を行う際は、直流/交流変換器も充電モード又は放電モードにする。   Further, the auxiliary charging may be performed when the circuit voltage is measured and the circuit voltage drops below the set lower limit value, or may be performed periodically at a predetermined interval. Then, at the same time as the auxiliary charging is started, the pump is operated to circulate the electrolytic solution. In other words, according to the present invention, both the auxiliary charging control and the pump operation control are controlled based on the circuit voltage. When stopping the pump, the DC / AC converter connected to the grid is also in the stop mode (or standby mode), and when charging and discharging the pump, the DC / AC converter is also in the charging mode or Set to discharge mode.

瞬低対応動作を行わない待機中は、上記補充電を行い、発電設備などの電力供給側に瞬時電圧低下や短時間停電が起こった場合、セルより放電して負荷側に電力供給を行うとよい。本発明においてセルは、間歇的に行う補充電により充電状態とされているため、瞬時電圧低下や短時間停電に十分対応できる放電を行うことができる。   When standby operation is not performed, the above-mentioned supplementary charging is performed, and if an instantaneous voltage drop or short-time power failure occurs on the power supply side of a power generation facility, etc., discharging from the cell and supplying power to the load side Good. In the present invention, since the cell is in a charged state by intermittent charging performed intermittently, it is possible to perform discharge that can sufficiently cope with an instantaneous voltage drop and a short-time power failure.

セルから系統への放電は、電解液の循環供給をしてもしなくても構わない。電解液を循環して放電を行った方が、タンク内の電解液も利用でき、放電時間を長くすることができる。   The discharge from the cell to the system may or may not be performed by circulating the electrolyte solution. When discharging by circulating the electrolytic solution, the electrolytic solution in the tank can also be used, and the discharge time can be extended.

本発明に用いる電解液は、活物質がバナジウムイオンであるものが好適である。   The electrolyte solution used in the present invention is preferably one in which the active material is vanadium ions.

以上説明したように、本発明運転方法によれば、電解液を貯留できるセルスタックを用いることで、ポンプを常時運転する必要がなく、ポンプ電力損失を抑制することができる。また、瞬低対応動作を行わない待機中、回路電圧の低下分を補充電することで、十分な充電状態を維持することができるため、瞬時電圧低下や短時間停電に確実に対応することができる。特に、電解液を循環させながら補充電を行うため、長期の使用に亘っても、回路電圧の低下を低減することができる。   As described above, according to the operation method of the present invention, by using the cell stack that can store the electrolyte, it is not necessary to always operate the pump, and pump power loss can be suppressed. In addition, it is possible to maintain a sufficiently charged state by supplementary charging for the decrease in circuit voltage during standby when the operation for dealing with instantaneous voltage drop is not performed. it can. In particular, since supplementary charging is performed while circulating the electrolytic solution, a decrease in circuit voltage can be reduced even over a long period of use.

以下、本発明の実施の形態を説明する。
(試験例)
瞬低対応動作を行わない待機中において、フロート充電を行うと共に定期的にポンプを起動して電解液を循環する運転(パターン1)と、定期的にポンプを起動して電解液を循環しながら補充電を行う運転(パターン2)という二つの運転方法において、電池性能の変化を調べてみた。
Embodiments of the present invention will be described below.
(Test example)
While waiting for the operation to respond to the voltage sag, perform float charging and periodically start the pump to circulate the electrolyte (pattern 1) and periodically start the pump and circulate the electrolyte We examined changes in battery performance in two driving methods called supplementary charging (Pattern 2).

本試験では、特許文献2に記載される構成のもの、即ち、セル内に電解液の貯留が可能なレドックスフロー電池を用いた。具体的には、セルフレームに電極を重ねたセル構造をもち、このセル構造に電解液のタンクとポンプとが接続され、タンク内の電解液をポンプで送ることで電極に電解液を供給し、電極を通った電解液が再度タンクに戻される循環流路を形成する構成のものを用いた。   In this test, a configuration described in Patent Document 2, that is, a redox flow battery capable of storing an electrolytic solution in a cell was used. Specifically, it has a cell structure in which electrodes are stacked on a cell frame, and an electrolyte tank and pump are connected to this cell structure, and the electrolyte is supplied to the electrodes by pumping the electrolyte in the tank. In addition, a configuration in which a circulation flow path is formed in which the electrolytic solution that has passed through the electrode is returned to the tank again.

セルフレームは、プラスチック製のフレーム枠と、その枠内に固定された導電性プラスチック製の双極板とからなり、双極板の一面側に正極電極が、他面側に負極電極が配置される。そして、このセルフレームと正負極電極を重ね合わせたものをイオン交換膜からなる隔膜を介して多数積層することでセルスタックを構成した。   The cell frame includes a plastic frame frame and a conductive plastic bipolar plate fixed in the frame, and a positive electrode is disposed on one side of the bipolar plate and a negative electrode is disposed on the other side. A cell stack was constructed by laminating a large number of these cell frames and positive and negative electrodes overlapped through a diaphragm made of an ion exchange membrane.

上記セルフレームにおいて電極の配置面よりも上部(上辺)に、給液用と排液用の各マニホールドを形成しており、このマニホールドは、セルフレームを積層することで、積層方向に延びる電解液の流路を構成する。   In the cell frame, manifolds for supplying and discharging liquid are formed above (on the upper side) of the electrode arrangement surface, and this manifold is an electrolyte that extends in the stacking direction by stacking the cell frames. The flow path is configured.

各マニホールドの下方には、マニホールドと電極との間を連通する電解液のガイドとなるスリットがそれぞれ延びており、これらスリットは、各マニホールドと電極上縁側とを接続している。また、ポンプを停止して電解液の流通を停止した際には、電解液面がスリット内に位置してマニホールド内にまで達することを防ぐ。本試験で用いたものでは、セルフレームの表裏面に溝を形成することでスリットを構成した。   Under each manifold, slits that serve as electrolyte guides communicating between the manifold and the electrodes extend, and these slits connect each manifold and the upper edge side of the electrode. Further, when the flow of the electrolytic solution is stopped by stopping the pump, the electrolytic solution surface is prevented from reaching the manifold within the slit. In what was used by this test, the slit was comprised by forming a groove | channel in the front and back of a cell frame.

更に、本試験では、各スリットの下方に電解液の液溜まりを形成したものを用いた。この液溜まりより、マニホールドとスリットを通って供給された電解液は、電極に供給する前に一旦セルフレーム内に貯えられ、電極の側縁沿いに電解液を満たして電極の供給側/排出側の電解液圧を均等に保ち、電極内に均一に電解液を流すことができる。液溜まりはフレーム枠の表面と裏面に形成した凹部で、電極の側縁に沿って構成した。なお、本試験では、電解液として、活物質がバナジウムイオンであるものを用いた。   Further, in this test, an electrolytic solution pool was formed below each slit. The electrolyte supplied from the reservoir through the manifold and slit is temporarily stored in the cell frame before being supplied to the electrode, and the electrolyte is filled along the side edge of the electrode to supply / discharge the electrode. The electrolyte solution pressure can be kept uniform, and the electrolyte solution can flow uniformly in the electrode. The liquid reservoir was a recess formed on the front and back surfaces of the frame frame, and was formed along the side edge of the electrode. In this test, an electrolytic solution in which the active material is vanadium ion was used.

上記構成を具えるレドックスフロー電池は、ポンプが起動しないと、電解液が循環しないため、セル内に電解液が残留した状態となる。電解液の液面は丁度スリットの途中に位置してマニホールドに達しないように、タンクへの電解液の戻りを調整した。これにより、マニホールド内に電解液が残留せず、シャント電流による損失を抑制することができる。   In a redox flow battery having the above-described configuration, if the pump is not started, the electrolyte does not circulate, so that the electrolyte remains in the cell. The return of the electrolyte to the tank was adjusted so that the electrolyte level was just in the middle of the slit and did not reach the manifold. Thereby, electrolyte does not remain in the manifold, and loss due to shunt current can be suppressed.

電解液の戻りの調整は、セル内のマニホールドをタンクの電解液面より上方に位置させ、タンクからセルまでの電解液供給流路の途中を分岐してタンクの気中部につながる戻り流路を設けることなどで行った。この戻り流路にはバルブを設けた。電解液流通時、バルブを閉じてセル内に電解液を供給し、ポンプ停止時、バルブを開け、戻り流路を介してマニホールド内の余剰の電解液をタンクに戻す。   To adjust the return of the electrolyte, the manifold in the cell is positioned above the tank electrolyte surface, and the return channel that branches from the tank to the cell in the middle of the electrolyte supply channel and leads to the air in the tank It was done by providing. A valve was provided in the return channel. When the electrolyte is flowing, the valve is closed and the electrolyte is supplied into the cell. When the pump is stopped, the valve is opened, and the excess electrolyte in the manifold is returned to the tank via the return channel.

(パターン1)
上記構成を具えるレドックスフロー電池を複数用意して、各電池において、ポンプを起動して電解液をセルスタックに循環しながら一定の充電深度(例えば90%)になるまで充電を行い、充電が終了した後、ポンプを停止して電解液をセル内に溜めた状態でフロート充電を行った。フロート充電を行っている間、ポンプを間歇的に起動して電解液を循環させ、セルスタック内の電解液の入れ替えを行った。具体的には、20分間ポンプを停止した後、5分間ポンプを起動させた。この条件で各電池の性能変化を評価した。その結果、約6ヶ月後において、電池容量が10%程度低下する電池があった。
(pattern 1)
Prepare multiple redox flow batteries with the above-mentioned configuration, and charge each battery until it reaches a certain charging depth (for example, 90%) while starting the pump and circulating the electrolyte through the cell stack. After the completion, the pump was stopped and the float charging was performed in a state where the electrolyte was stored in the cell. During the float charging, the pump was intermittently started to circulate the electrolyte solution, and the electrolyte solution in the cell stack was replaced. Specifically, after stopping the pump for 20 minutes, the pump was started for 5 minutes. Under these conditions, the performance change of each battery was evaluated. As a result, there was a battery whose battery capacity decreased by about 10% after about 6 months.

(パターン2)
上記構成を具えるレドックスフロー電池を複数用意して、各電池において、ポンプを起動して電解液をセルスタックに循環しながら一定の充電深度(例えば90%)になるまで充電を行い、充電が終了した後、ポンプを停止して電解液をセル内に溜めた状態にした。そして、ポンプを間歇的に起動して電解液を循環させながら、回路電圧が少なくとも設定下限値を満たすように補充電を行った。具体的には、2時間に1回10分間ポンプを起動させて電解液を循環させると共に、ポンプ起動前においてセルスタックの回路電圧を測定し、回路電圧が設定下限値よりも低下している分を補うように補充電を行った。なお、ポンプを停止した際は、同時に直流/交流変換器も停止し、補充電を行う際は、直流/交流変換器を充電モードとした。この条件で各電池の性能変化を評価した。その結果、いずれの電池においても、約6ヶ月後の電池容量の低下は3%程度と非常に少なかった。
(Pattern 2)
Prepare multiple redox flow batteries with the above-mentioned configuration, and charge each battery until it reaches a certain charging depth (for example, 90%) while starting the pump and circulating the electrolyte through the cell stack. After completion, the pump was stopped and the electrolyte was stored in the cell. Then, supplementary charging was performed so that the circuit voltage satisfied at least the set lower limit value while intermittently starting the pump and circulating the electrolyte. Specifically, the pump is started once every two hours for 10 minutes to circulate the electrolyte, and the circuit voltage of the cell stack is measured before the pump is started, and the circuit voltage is lower than the set lower limit value. A supplementary charge was made to compensate. When the pump was stopped, the DC / AC converter was also stopped at the same time, and when performing supplementary charging, the DC / AC converter was set to the charging mode. Under these conditions, the performance change of each battery was evaluated. As a result, in all the batteries, the decrease in battery capacity after about 6 months was very small, about 3%.

上記試験結果より、瞬低対応動作を行わない待機中において、回路電圧が設定下限値を満たすように電解液を循環させながら補充電を行うことで、長期の使用に亘っても、回路電圧の低下を低減できることがわかる。即ち、待機中において、セルに常に一定の電圧を加えるようにフロート充電を行うよりも、電解液を循環させながら補充電を間歇的に行う方が、より電池効率を向上させることができることがわかる。また、上記補充電を行うことで、従来のフロート充電を行っていたレドックスフロー電池と同様に、セルを十分な充電状態に維持することができるため、瞬時電圧低下や短時間停電が起こった際、セルからの放電により適切に対応することができる。   From the above test results, during standby that does not perform the instantaneous voltage drop operation, by performing supplementary charging while circulating the electrolyte so that the circuit voltage satisfies the set lower limit value, the circuit voltage can be maintained over a long period of use. It can be seen that the decrease can be reduced. That is, it can be seen that the battery efficiency can be further improved by intermittently performing the auxiliary charging while circulating the electrolytic solution, rather than performing the float charging so that a constant voltage is constantly applied to the cell during standby. . In addition, by performing the above-mentioned supplementary charging, the cell can be maintained in a sufficiently charged state, as in the case of a redox flow battery that has been performing conventional float charging. It is possible to appropriately cope with the discharge from the cell.

なお、上記放電の際は、ポンプを起動しなくても起動してもいずれでもよい。ポンプを起動しなければ、その動力損失を低減でき、ポンプを起動すれば、タンクの電解液も利用して長時間の放電が可能となる。   In addition, in the case of the said discharge, it may be started even if it does not start a pump. If the pump is not started, the power loss can be reduced. If the pump is started, long-time discharge is possible using the electrolyte in the tank.

本発明は、瞬時電圧低下や短時間停電対応に利用することが適する。   The present invention is suitable to be used for instantaneous voltage drop and short-time power failure response.

レドックスフロー電池の基本原理図である。It is a basic principle figure of a redox flow battery. セルスタックの構成図である。It is a block diagram of a cell stack.

符号の説明Explanation of symbols

100 セル 100A 正極セル 100B 負極セル 101 正極用タンク
102 負極用タンク 103 隔膜 104 正極電極
105 負極電極 106,107 導管 108,111 ポンプ 109,110 導管
200 セルスタック 201 サブスタック
210 セルフレーム 211 双極板 212 フレーム枠
100 cell 100A positive electrode cell 100B negative electrode cell 101 positive electrode tank
102 Tank for negative electrode 103 Diaphragm 104 Positive electrode
105 Negative electrode 106,107 Conduit 108,111 Pump 109,110 Conduit
200 cell stack 201 sub stack
210 Cell frame 211 Bipolar plate 212 Frame frame

Claims (2)

ポンプによりタンク内の電解液を循環可能なセルを具えるレドックスフロー電池の運転方法であって、
前記セルとして、ポンプの停止時でも電解液の貯留が可能な構成のセルを用い、
瞬低対応動作を行わない待機中は、ポンプを間歇的に起動して電解液を循環させながら補充電して、所定の回路電圧を維持することを特徴とするレドックスフロー電池の運転方法。
A method of operating a redox flow battery comprising a cell capable of circulating an electrolyte in a tank by a pump,
As the cell, a cell having a configuration capable of storing the electrolyte even when the pump is stopped,
A redox flow battery operating method characterized by maintaining a predetermined circuit voltage by intermittently starting a pump and performing supplementary charging while circulating an electrolytic solution during standby without performing an operation corresponding to a voltage drop.
電解液の活物質がバナジウムイオンであることを特徴とする請求項1に記載のレドックスフロー電池の運転方法。   2. The operating method of the redox flow battery according to claim 1, wherein the active material of the electrolytic solution is vanadium ion.
JP2004183340A 2004-06-22 2004-06-22 Operation method of redox flow battery Pending JP2006012425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183340A JP2006012425A (en) 2004-06-22 2004-06-22 Operation method of redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004183340A JP2006012425A (en) 2004-06-22 2004-06-22 Operation method of redox flow battery

Publications (1)

Publication Number Publication Date
JP2006012425A true JP2006012425A (en) 2006-01-12

Family

ID=35779446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183340A Pending JP2006012425A (en) 2004-06-22 2004-06-22 Operation method of redox flow battery

Country Status (1)

Country Link
JP (1) JP2006012425A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
WO2018201079A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and system for a battery
CN110785884A (en) * 2017-06-20 2020-02-11 住友电气工业株式会社 Redox flow battery system and method of operating a redox flow battery system
JP2021022500A (en) * 2019-07-29 2021-02-18 株式会社岐阜多田精機 Redox flow cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
JP2011104585A (en) * 2009-10-20 2011-06-02 Metawater Co Ltd Wastewater treatment method and wastewater treatment apparatus
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
JP7189887B2 (en) 2017-04-28 2022-12-14 イーエスエス テック インコーポレーテッド Battery system and method
CN110582881B (en) * 2017-04-28 2023-04-25 Ess技术有限公司 Method and system for a battery
JP2020518114A (en) * 2017-04-28 2020-06-18 イーエスエス テック インコーポレーテッドESS Tech,Inc. Battery system and method
CN110582881A (en) * 2017-04-28 2019-12-17 Ess技术有限公司 Method and system for battery
US11233257B2 (en) * 2017-04-28 2022-01-25 Ess Tech, Inc. Methods and system for a battery
WO2018201079A1 (en) * 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and system for a battery
CN110785884A (en) * 2017-06-20 2020-02-11 住友电气工业株式会社 Redox flow battery system and method of operating a redox flow battery system
KR20200020688A (en) * 2017-06-20 2020-02-26 스미토모덴키고교가부시키가이샤 Redox flow battery system and operating method of redox flow battery system
EP3644424A4 (en) * 2017-06-20 2020-09-02 Sumitomo Electric Industries, Ltd. Redox flow battery system and method for operating redox flow battery system
US11764378B2 (en) 2017-06-20 2023-09-19 Sumitomo Electric Industries, Ltd. Redox flow battery system and method for operating redox flow battery system
CN110785884B (en) * 2017-06-20 2022-07-01 住友电气工业株式会社 Redox flow battery system and method of operating a redox flow battery system
AU2018290052B2 (en) * 2017-06-20 2023-08-17 Sumitomo Electric Industries, Ltd. Redox flow battery system and method for operating redox flow battery system
KR102491410B1 (en) 2017-06-20 2023-01-20 스미토모덴키고교가부시키가이샤 Redox flow battery system and operation method of redox flow battery system
JP2021044252A (en) * 2019-07-29 2021-03-18 株式会社岐阜多田精機 Redox flow battery
JP7161231B2 (en) 2019-07-29 2022-10-26 株式会社岐阜多田精機 redox flow battery
JP2021022500A (en) * 2019-07-29 2021-02-18 株式会社岐阜多田精機 Redox flow cell

Similar Documents

Publication Publication Date Title
JP4140691B2 (en) Operating method of redox flow battery
TW575972B (en) Secondary battery and running method thereof
JP6117373B2 (en) Flow battery with voltage limiting device
PT2320504E (en) Method of operating a fuel cell/battery passive hybrid power supply
WO2014045337A1 (en) Redox flow battery
KR20200127076A (en) A reliable electrolyser system
JP2006147374A (en) Method of operating vanadium redox flow battery system
KR102357651B1 (en) Module system of redox flow battery
KR20170132005A (en) Redox flow battery
JP2007059120A (en) Fuel battery system
JP6423377B2 (en) Power control method for fuel cell system
JP2006012425A (en) Operation method of redox flow battery
TW201911635A (en) Redox flow battery operation method and redox flow battery
JP3507818B2 (en) Operating Redox Flow Battery
JP2003100337A (en) Intermittent circulation type redox flow cell
JP2004055174A (en) Driving method of intermittent redox flow battery
TWI774801B (en) Operation method of redox flow battery
JP2021007066A (en) Redox flow battery system
JP6987360B2 (en) Redox flow battery system and how to operate the redox flow battery system
TWI726516B (en) Flow battery system and control method of the same
JP6654321B2 (en) Electrode material life test apparatus and electrode material life test method for redox flow battery
KR102283441B1 (en) A Battery Cell for Redox flow battery having a mixed serial and parallel structure
JP2021026825A (en) Redox flow type secondary cell
WO2019026634A1 (en) Redox flow battery system, and method for operating redox flow battery system
KR20220096867A (en) Redox flow battery system with DC pump