JPS61269867A - Redox flow cell - Google Patents

Redox flow cell

Info

Publication number
JPS61269867A
JPS61269867A JP60111159A JP11115985A JPS61269867A JP S61269867 A JPS61269867 A JP S61269867A JP 60111159 A JP60111159 A JP 60111159A JP 11115985 A JP11115985 A JP 11115985A JP S61269867 A JPS61269867 A JP S61269867A
Authority
JP
Japan
Prior art keywords
negative electrode
redox flow
positive electrode
redox
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60111159A
Other languages
Japanese (ja)
Inventor
Toshio Shigematsu
敏夫 重松
Mamoru Kondo
守 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60111159A priority Critical patent/JPS61269867A/en
Publication of JPS61269867A publication Critical patent/JPS61269867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a cell having good voltage efficiency and energy efficiency by using electrolyte containing specified additives. CONSTITUTION:An electrolyte contains one or more additives selected from Co, Pt, Pb, Sn, Cd, and Bi. By using this electrolyte, the oxidation and reduction reaction in a negative electrode, for example, Cr<3+>/Cr<2+> reaction is activated. Of these addives, Bi increases short term performance in the initial stage and Sn improves long term performance. Therefore, by jointly using Bi and Sn, the oxidation and reduction reaction in the negative electrode is activated from the initial stage for a long period of time.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、正極と負極とを隔膜により分離し、多極に
、それぞれ、正極活物質および負極活物質を含む電解液
を供給し充放電を行なうレドックスフロー電池の改良に
関し、特に電解液が改良されたレドックス70−電池に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention separates a positive electrode and a negative electrode by a diaphragm, and supplies an electrolytic solution containing a positive electrode active material and a negative electrode active material to each of the multiple electrodes for charging and discharging. The present invention relates to improvements in redox flow batteries, and particularly to redox 70-batteries with improved electrolytes.

[従来の技術] 従来より、揚水発電に代わる新しい電力貯蔵技術の1つ
として、たとえば特公昭59−13153号に示されて
いるようにレドックスフロー電池の開発が進められてい
る。
[Prior Art] Redox flow batteries have been developed as a new power storage technology to replace pumped storage power generation, for example, as shown in Japanese Patent Publication No. 13153/1983.

添付の図面は従来のレドックスフロー電池の一例を示す
概略構成図である。このレドックスフロー電池1は、セ
ル2および正極液タンク3および負極液タンク4を備え
、2個のタンク3.4を用いるものであるため2タンク
方式で呼ばれているものである。セル2内は、たとえば
イオン交換膜からなる隔115により仕切られており、
一方側が正極セル2a、他方側が負極セル2bを構成す
る。
The accompanying drawing is a schematic configuration diagram showing an example of a conventional redox flow battery. This redox flow battery 1 includes a cell 2, a positive electrode liquid tank 3, and a negative electrode liquid tank 4, and is called a two-tank system because it uses two tanks 3.4. The inside of the cell 2 is partitioned by a partition 115 made of, for example, an ion exchange membrane.
One side constitutes a positive electrode cell 2a, and the other side constitutes a negative electrode cell 2b.

正極セル2aおよび負極セル2b内には、それぞれ、電
極として正極6および負極7が配置されている。
A positive electrode 6 and a negative electrode 7 are arranged as electrodes in the positive electrode cell 2a and the negative electrode cell 2b, respectively.

図面に示したレドックス70−電池1では、たとえば鉄
イオン、クロムイオンのような原子価が変化するイオン
の水溶液をタンク3.4に貯蔵し、これをポンプP、、
p2で流通型電解セル2に送液し、酸化還元反応により
充放電を行なう。たとえば、正極液としてFe 3+/
Fe ’十塩酸溶液、負極液としてCr 2 + / 
Cr 3+塩酸溶液を用いると、各酸化還元系の両極6
,7における電池反応は、次式のようになり起電力は約
1Vである。
In the redox 70-battery 1 shown in the drawing, an aqueous solution of ions with varying valences, such as iron ions and chromium ions, is stored in a tank 3.4, and pumps P, .
At p2, the liquid is sent to the flow-through electrolytic cell 2, and charging and discharging are performed by an oxidation-reduction reaction. For example, Fe 3+ /
Fe' decahydrochloric acid solution, Cr 2 + / as negative electrode liquid
When using Cr 3+ hydrochloric acid solution, both poles 6 of each redox system
, 7 is as shown in the following equation, and the electromotive force is about 1V.

正極:  F e ’ ” ≠F e ’ ” +e負
極:  Cr3 + 、、4Or2 + −(3上述し
たような従来のレドックス70−電池1における正極液
および負極液としては、上記のもののほか、下記の表に
示す正極活物質および負極活物質を含む電解液が、それ
ぞれ、正極液および負極液として用いられている。
Positive electrode: Fe''' ≠ Fe ''' +e Negative electrode: Cr3 + , 4Or2 + - (3 In addition to the above, the positive and negative electrode solutions in the conventional redox 70-battery 1 include the following: Electrolytes containing the positive electrode active material and negative electrode active material shown in the table are used as the positive electrode solution and the negative electrode solution, respectively.

(林千余壇) [発明が解決しようとする問題点] レドックス70−電池のエネルギ効率は、放電電力量/
充電電力量で表わされ、またエネルギ効率は、電流効率
(−放電電気量/充電電気りと電圧効率(−放電電圧/
充電電圧)との積で表わされる。しかしながら、従来の
レドックスフロー電池では、負極側における負極活物質
の酸化還元反応が特に不活性であるため、セル抵抗が大
きく電圧効率が低く、その結果充放電ロスが大きいため
エネルギ効率が低いという問題があった。
(Hayashi Chiyodan) [Problems to be solved by the invention] Redox 70 - The energy efficiency of a battery is calculated by the amount of discharged power /
Energy efficiency is expressed as charging energy, and energy efficiency is expressed as current efficiency (-discharged electricity/charging electricity) and voltage efficiency (-discharge voltage/
(charging voltage). However, in conventional redox flow batteries, the redox reaction of the negative electrode active material on the negative electrode side is particularly inert, resulting in high cell resistance and low voltage efficiency, resulting in large charge/discharge losses and low energy efficiency. was there.

もっとも、アメリカ合衆国特許第4.270゜984号
には、負極における酸化還元反応を活性化する触媒とし
て、塩化鉛が開示されている。しかしながら、アメリカ
合衆国特許第4.270゜984号に開示された触媒は
活性化能の点で未だ十分なものではなかった。
However, US Pat. No. 4,270.984 discloses lead chloride as a catalyst for activating the redox reaction at the negative electrode. However, the catalyst disclosed in US Pat. No. 4,270.984 was still insufficient in terms of activation ability.

それゆえに、この発明の目的は、電圧効率およびエネル
ギ効率に優れたレドックスフロー電池を提供することに
ある。
Therefore, an object of the present invention is to provide a redox flow battery with excellent voltage efficiency and energy efficiency.

[問題点を解決するための手段] 本願発明者達は、種々の実験の結果、CO,Pt、Pb
、Sn、Cdおよび3iなどを添加物として電解液に混
入すればレドックスフロー電池の特に負極における酸化
還元反応をより活性化し得ることを見出した。すなわち
、この発明は、正極と負極とを隔膜により分離し、正極
および負極に、それぞれ、正極活物質および負極活物質
を含む電解液を供給し、充放電を行なうレドックス70
−電池において、電解液として、co、pt、pb。
[Means for solving the problem] As a result of various experiments, the inventors of the present application found that CO, Pt, Pb
, Sn, Cd, 3i, and the like are mixed into the electrolytic solution as additives to further activate the redox reaction, particularly at the negative electrode of a redox flow battery. That is, the present invention provides a redox 70 system in which a positive electrode and a negative electrode are separated by a diaphragm, and an electrolytic solution containing a positive electrode active material and a negative electrode active material is supplied to the positive electrode and the negative electrode, respectively, for charging and discharging.
- In batteries, as electrolyte: co, pt, pb.

Sn、CdおよびBiからなる群から選択される1種以
上の添加物を含むものを用いることを特徴とするもので
ある。
It is characterized by using one or more additives selected from the group consisting of Sn, Cd and Bi.

本願発明者達の実験によれば、上記添加物のうち、特に
3iは初期の短期間の性能向上に寄与し、S、、nは長
期性能を改善することが確められた。したがって、Bi
 と3nとを併用すれば、初期より長期間にわたり負極
における酸化還元反応を活性化することができる。
According to experiments conducted by the inventors of the present application, it has been confirmed that among the above additives, 3i in particular contributes to improving the initial short-term performance, and S, , n improve the long-term performance. Therefore, Bi
If and 3n are used together, the redox reaction at the negative electrode can be activated for a long period of time from the initial stage.

なお、添加物の添加里としては、1mモル程度加えれば
十分であり、特にその量を問うものではない。
It should be noted that it is sufficient to add about 1 mmol of the additive, and the amount is not particularly limited.

[作用] この発明では、電解液中にco、pt、pb。[Effect] In this invention, co, pt, and pb are contained in the electrolyte.

3n、cdおよびBiなどが含まれているため、特に負
極における酸化還元反応たとえばCr3+/Cr2+が
活性化される。
Since it contains 3n, cd, Bi, etc., redox reactions, such as Cr3+/Cr2+, are particularly activated at the negative electrode.

[実施例の説明コ 電極面積lX10cm’の小形の電池により充放電実験
(40mA/cm2定電流放電)を行なった。
[Description of Examples Charging and discharging experiments (constant current discharge of 40 mA/cm2) were conducted using a small battery with a co-electrode area of 1 x 10 cm'.

電極としては、厚み約Q、5mmのカーボンクロスから
なるものを用い、正極および負極として、それぞれ2枚
用いた。また隔膜としては、陽イオン交換膜を用いた。
The electrodes were made of carbon cloth with a thickness of about Q and 5 mm, and two sheets each were used as the positive electrode and the negative electrode. Moreover, a cation exchange membrane was used as the diaphragm.

さらに、集電極として、厚み31111のグラファイト
板(樹脂含浸量)を、正極および負極につきそれぞれ1
枚使用した。
Furthermore, as a collector electrode, a graphite plate (resin impregnated amount) with a thickness of 31111 was used for each of the positive and negative electrodes.
I used one.

なお、電解液としては、正極液および負極液とも、充電
前の組成r1MFe CJ12 1MCr C11、−
2N  )−101を用いた。
In addition, as for the electrolytic solution, both the positive electrode solution and the negative electrode solution have a composition r1MFe CJ12 1MCr C11, - before charging.
2N)-101 was used.

上記電池構造において、1111モルの3tC見sを電
解液に添加したものを実施例とし、比較例としてB+ 
Cisを添加しないものを用いて、それぞれ、電圧効率
を測定した。その結果、実施例では、比較例に比べて電
圧効率が10%以上上昇し、エネルギ効率(放電平均電
圧と充電平均電圧の比)においても10%以上向上する
ことが認められた。
In the above battery structure, an example in which 1111 moles of 3tC is added to the electrolyte, and a comparative example as B+
The voltage efficiency was measured using those to which no Cis was added. As a result, it was found that in the example, the voltage efficiency increased by 10% or more compared to the comparative example, and the energy efficiency (ratio of average discharge voltage to average charge voltage) also improved by 10% or more.

さらに他の添加物についても、少なくとも3%以上効率
を上昇させることが認められた。
Furthermore, other additives were also found to increase efficiency by at least 3%.

また、電解液にBi Cm、と3nCuzの2者を添加
したところ、相乗効果が認められ、長期サイクル経過後
においても、電圧効率およびエネルギ効率の改善効果を
維持し得ることが確認された。
Furthermore, when Bi Cm and 3nCuz were added to the electrolytic solution, a synergistic effect was observed, and it was confirmed that the effects of improving voltage efficiency and energy efficiency could be maintained even after long-term cycles.

[発明の効果] 上述のように、この発明によれば、電解液がCo 、P
t 、Pb 、Sn 、Cdおよび13iからなる群か
ら選択される1種以上の添加物を含むため、特に負極に
おける酸化還元反応を活性化することができ、したがっ
てレドックスフロー電池の電圧効率の向上、ひいては充
放電ロスの減少によりエネルギ効率を大きく改善するこ
とが可能となる。
[Effects of the Invention] As described above, according to the present invention, the electrolyte contains Co, P
Since it contains one or more additives selected from the group consisting of t, Pb, Sn, Cd and 13i, it is possible to activate the redox reaction especially in the negative electrode, thus improving the voltage efficiency of the redox flow battery. In turn, it becomes possible to greatly improve energy efficiency by reducing charging and discharging losses.

また、水素過電圧が大きくなるため水素が発生しにくく
なり、したがって負極において充電時に発生する水素ガ
スの量を低減することができ、電流効率を向上すること
ができ、その結果充放電損失の減少によりエネルギ効率
がより一層改善される。
In addition, as the hydrogen overvoltage becomes larger, hydrogen is less likely to be generated, and therefore the amount of hydrogen gas generated at the negative electrode during charging can be reduced, and the current efficiency can be improved, resulting in a reduction in charging and discharging losses. Energy efficiency is further improved.

さらに、エネルギ効率が改善されるため、電流密度を上
げることができ、その結果発電量に対する必要容積およ
び使用材料の量を低減することができ、システム全体を
小形かつ安価にすることが可能となる。
Additionally, energy efficiency is improved, allowing higher current densities, which in turn reduces the volume and material used for power generation, making the overall system smaller and cheaper. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、レドックスフロー電池の一例を示す概略構成図
である。 図において、1はレドックス70−電池、2はセル、5
は隔膜、6は正極、7は負極を示す。
The drawing is a schematic configuration diagram showing an example of a redox flow battery. In the figure, 1 is a redox 70-battery, 2 is a cell, and 5
indicates a diaphragm, 6 indicates a positive electrode, and 7 indicates a negative electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)正極と負極とを隔膜により分離し正極および負極
に、それぞれ、正極活物質および負極活物質を含む電解
液を供給し、充放電を行なうレドックスフロー電池にお
いて、 前記電解液が、Co、Pt、Pb、Sn、CdおよびB
iからなる群から選択される1種以上の添加物を含むこ
とを特徴とする、レドックスフロー電池。
(1) A redox flow battery in which a positive electrode and a negative electrode are separated by a diaphragm, and an electrolytic solution containing a positive electrode active material and a negative electrode active material is supplied to the positive electrode and the negative electrode, respectively, for charging and discharging, wherein the electrolytic solution includes Co, Pt, Pb, Sn, Cd and B
A redox flow battery comprising one or more additives selected from the group consisting of i.
(2)前記添加物として、BiおよびSnが併用されて
いる、特許請求の範囲第1項記載のレドックスフロー電
池。
(2) The redox flow battery according to claim 1, wherein Bi and Sn are used together as the additives.
JP60111159A 1985-05-23 1985-05-23 Redox flow cell Pending JPS61269867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111159A JPS61269867A (en) 1985-05-23 1985-05-23 Redox flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111159A JPS61269867A (en) 1985-05-23 1985-05-23 Redox flow cell

Publications (1)

Publication Number Publication Date
JPS61269867A true JPS61269867A (en) 1986-11-29

Family

ID=14553972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111159A Pending JPS61269867A (en) 1985-05-23 1985-05-23 Redox flow cell

Country Status (1)

Country Link
JP (1) JPS61269867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139788B1 (en) 2010-02-10 2012-04-26 한국과학기술연구원 Sn OR Ce ION-ADDED ELECTROLYTES FOR SOLUBLE LEAD ACID REDOX FLOW BATTERY AND BATTERIES COMPRISING THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139788B1 (en) 2010-02-10 2012-04-26 한국과학기술연구원 Sn OR Ce ION-ADDED ELECTROLYTES FOR SOLUBLE LEAD ACID REDOX FLOW BATTERY AND BATTERIES COMPRISING THE SAME

Similar Documents

Publication Publication Date Title
EP1425807B1 (en) Vanadium / polyhalide redox flow battery
EP0517217B1 (en) Redox battery
CN110311147B (en) Flow battery electrolyte balance strategy
AU2002328660A1 (en) Vanadium / polyhalide redox flow battery
JPH0437551B2 (en)
EP2436080A2 (en) Electrolyte compositions
JPH06188005A (en) Redox battery
CA1233875A (en) Electrolyte for zinc-bromine batteries
US20050202290A1 (en) Integrated hybrid electrochemical device
JPH0419966A (en) Redox battery
JPH05242905A (en) Redox cell
JPH1012260A (en) Redox flow battery
JPH0534784B2 (en)
JPS61269867A (en) Redox flow cell
US20140038000A1 (en) Flow-Through Metal Battery with Ion Exchange Membrane
JP3272075B2 (en) Air-hydride batteries
CN109075367A (en) Redox flow batteries
JPS62226580A (en) Redox flow battery
US11769895B2 (en) Redox flow battery and method for operating a redox flow battery
JPH0546063B2 (en)
US20220407102A1 (en) Zinc-bromine flow battery including conductive interlayer
CN110071317A (en) A kind of tin bromine flow battery
JPH07101615B2 (en) Redox type secondary battery
JPH0534785B2 (en)
CN106876829B (en) Battery with a variety of charge modes