JP7219462B2 - zinc secondary battery - Google Patents

zinc secondary battery Download PDF

Info

Publication number
JP7219462B2
JP7219462B2 JP2019058868A JP2019058868A JP7219462B2 JP 7219462 B2 JP7219462 B2 JP 7219462B2 JP 2019058868 A JP2019058868 A JP 2019058868A JP 2019058868 A JP2019058868 A JP 2019058868A JP 7219462 B2 JP7219462 B2 JP 7219462B2
Authority
JP
Japan
Prior art keywords
zinc
secondary battery
electrolyte
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019058868A
Other languages
Japanese (ja)
Other versions
JP2020161308A (en
Inventor
致堯 陳
啓吾 窪田
一彦 松本
理加 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019058868A priority Critical patent/JP7219462B2/en
Publication of JP2020161308A publication Critical patent/JP2020161308A/en
Application granted granted Critical
Publication of JP7219462B2 publication Critical patent/JP7219462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、亜鉛二次電池に関する。 The present invention relates to zinc secondary batteries.

亜鉛は資源的に豊富であり、高い理論容量を持ち、安全性に優れた水溶液系電解液と組み合わせて利用できるため、経済性とエネルギー密度を両立した一次電池として広く用いられる。近年では充電可能な亜鉛二次電池が注目されており、特に大気中から酸素を取り込んで反応する空気正極を備える亜鉛空気二次電池は、大容量電池として研究開発が進められている(非特許文献1)。 Zinc is an abundant resource, has a high theoretical capacity, and can be used in combination with a highly safe aqueous electrolyte. Therefore, it is widely used as a primary battery that achieves both economy and energy density. In recent years, rechargeable zinc secondary batteries have attracted attention. In particular, zinc-air secondary batteries equipped with an air positive electrode that takes in oxygen from the atmosphere and reacts with it are being researched and developed as large-capacity batteries (non-patented). Reference 1).

亜鉛空気二次電池に用いられる電解液は、正極触媒材料との相性及び充電時の水素発生を抑制するため、現状では、水酸化カリウム等のアルカリ性電解液に限定されている。しかし、アルカリ性電解液を用いる場合には、亜鉛デンドライトの形成、大気中の二酸化炭素との反応による電解液中の炭酸カリウム形成、溶媒のドライアウトによる電池抵抗の増大、及び保存時の亜鉛腐食等の課題がある(非特許文献2)。そのため、亜鉛空気二次電池の高性能化のためには、電解液の改善が必要である。 Electrolytes used in zinc-air secondary batteries are currently limited to alkaline electrolytes such as potassium hydroxide because of compatibility with the positive electrode catalyst material and suppression of hydrogen generation during charging. However, when an alkaline electrolyte is used, formation of zinc dendrite, formation of potassium carbonate in the electrolyte due to reaction with carbon dioxide in the atmosphere, increase in battery resistance due to drying out of the solvent, zinc corrosion during storage, etc. (Non-Patent Document 2). Therefore, in order to improve the performance of the zinc-air secondary battery, it is necessary to improve the electrolytic solution.

亜鉛空気二次電池に用いられる電解液の候補として、例えば、亜鉛イオン濃度が1mol/L以下の弱酸性又は中性水溶液が挙げられるが、これらの水溶液には、亜鉛腐食と充電時水素発生という問題等がある。また、二次電池に必要な連続的亜鉛析出溶解の検討が不十分であり、電解液の循環についても検討が必要である(非特許文献3,特許文献1)。 Candidates for electrolytes used in zinc-air secondary batteries include, for example, weakly acidic or neutral aqueous solutions with a zinc ion concentration of 1 mol/L or less. There are problems. In addition, studies on continuous zinc deposition and dissolution required for secondary batteries are insufficient, and studies on electrolyte circulation are also necessary (Non-Patent Document 3, Patent Document 1).

高濃度塩化亜鉛水溶液のデンドライトフリーな電析が報告されているが(非特許文献4,特許文献1)、使用した電解液(30 mol/L, 水対塩化亜鉛のモル比が1.8)の融点が室温に近く、連続電析や二次電池への応用が困難である。 Dendrite-free electrodeposition of a high-concentration zinc chloride aqueous solution has been reported (Non-Patent Document 4, Patent Document 1), but the electrolytic solution used (30 mol/L, the molar ratio of water to zinc chloride is 1.8) has a melting point close to room temperature, making it difficult to apply to continuous electrodeposition and secondary batteries.

米国特許第4,220,690号明細書U.S. Pat. No. 4,220,690

J. Fu et al. Adv. Mater. 2017, 29, 1604685.J. Fu et al. Adv. Mater. 2017, 29, 1604685. A.R. Mainar et al. J. Energy Storage 2018, 15, 304.A.R. Mainar et al. J. Energy Storage 2018, 15, 304. J. Jindra et al. J. Appl. Electrochem. 1973, 3, 297.J. Jindra et al. J. Appl. Electrochem. 1973, 3, 297. C. Zhang et al. Chem. Commun. 2018, 54, 14097.C. Zhang et al. Chem. Commun. 2018, 54, 14097.

本開示は、デンドライトフリーな亜鉛電析を実現した上で、充放電効率、サイクル特性及び耐久性に優れた亜鉛二次電池を提供することを目的とする。 An object of the present disclosure is to realize dendrite-free zinc electrodeposition and to provide a zinc secondary battery that is excellent in charge-discharge efficiency, cycle characteristics, and durability.

本開示は、正極、亜鉛を含む負極及び電解液を備える亜鉛二次電池であって、前記電解液は、pHが7未満であり、亜鉛金属塩及び水を含有し、前記亜鉛金属塩に対する前記水の含有量がモル比で2以上6以下の範囲である、亜鉛二次電池に関する。 The present disclosure is a zinc secondary battery comprising a positive electrode, a negative electrode containing zinc and an electrolyte, wherein the electrolyte has a pH of less than 7 and contains a zinc metal salt and water, wherein the zinc metal salt It relates to a zinc secondary battery in which the molar ratio of water is in the range of 2 or more and 6 or less.

前記亜鉛二次電池において、前記亜鉛金属塩が、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、及び硝酸亜鉛からなる群より選ばれる少なくとも一種以上であることが好ましい。 In the zinc secondary battery, the zinc metal salt is preferably at least one selected from the group consisting of zinc chloride, zinc bromide, zinc iodide, and zinc nitrate.

前記亜鉛二次電池において、前記正極が、正極活物質として、酸素、又は金属イオンを挿入脱離可能な金属酸化物、硫化物、若しくはポリアニオン系化合物を含有することが好ましい。 In the zinc secondary battery, the positive electrode preferably contains, as a positive electrode active material, oxygen or a metal oxide, sulfide, or polyanion compound capable of intercalating and deintercalating metal ions.

前記亜鉛二次電池において、前記負極が、負極活物質として、亜鉛、亜鉛合金、又は亜鉛酸化物を含有することが好ましい。 In the zinc secondary battery, the negative electrode preferably contains zinc, a zinc alloy, or zinc oxide as a negative electrode active material.

前記亜鉛二次電池において、前記電解液が、アルカリ金属塩又はアルカリ土類金属塩を含有することが好ましい。 In the zinc secondary battery, the electrolyte preferably contains an alkali metal salt or an alkaline earth metal salt.

前記亜鉛二次電池において、前記電解液が、非水溶媒を含有することが好ましい。 In the zinc secondary battery, the electrolytic solution preferably contains a non-aqueous solvent.

前記亜鉛二次電池において、前記非水溶媒が、非プロトン性溶媒であることが好ましい。 In the zinc secondary battery, the non-aqueous solvent is preferably an aprotic solvent.

前記亜鉛二次電池において、前記電解液が、マトリクスポリマー又は無機粒子を含有し、ゲル又は固体状であることが好ましい。 In the zinc secondary battery, the electrolytic solution preferably contains a matrix polymer or inorganic particles and is gel or solid.

デンドライトフリーな亜鉛電析を実現した上で、充放電効率、サイクル特性及び耐久性に優れた亜鉛二次電池を提供することができる。 After achieving dendrite-free zinc electrodeposition, it is possible to provide a zinc secondary battery that is excellent in charge-discharge efficiency, cycle characteristics, and durability.

タングステン電極における析出溶解挙動を示すグラフである(試験1)。It is a graph which shows the precipitation dissolution behavior in a tungsten electrode (test 1). タングステン電極におけるクーロン効率(C.E.%)を示すグラフである(試験1)。1 is a graph showing coulombic efficiency (C.E.%) in tungsten electrodes (Test 1). 亜鉛電析物の形態を示す電子顕微鏡写真である(試験2)。1 is an electron micrograph showing the morphology of a zinc electrodeposit (Test 2). 各種電解液中で亜鉛を連続して析出及び溶解した際の電圧変動を示すグラフである(試験3)。4 is a graph showing voltage fluctuations when zinc is continuously deposited and dissolved in various electrolytic solutions (Test 3). 各種電解液中で保存した後の亜鉛表面の状態を示す電子顕微鏡写真である(試験4)。4 is an electron micrograph showing the state of the zinc surface after storage in various electrolytic solutions (Test 4). 亜鉛二次電池の一実施例を説明する図面である(試験5)。It is drawing explaining one Example of a zinc secondary battery (Test 5). 亜鉛二次電池の充放電曲線及び容量変化を示すグラフである(試験5)。4 is a graph showing charge/discharge curves and capacity changes of a zinc secondary battery (Test 5). 亜鉛二次電池の充放電曲線を示すグラフである(試験6)。4 is a graph showing charge/discharge curves of a zinc secondary battery (Test 6). 亜鉛二次電池の容量変化を示すグラフである(試験6)。4 is a graph showing changes in capacity of a zinc secondary battery (Test 6). 亜鉛二次電池の充放電試験後の空気極のX線回折分析(XRD)の結果を示すグラフである(試験7)。7 is a graph showing the results of X-ray diffraction analysis (XRD) of an air electrode after a charge-discharge test of a zinc secondary battery (test 7). 各種電解液の水の含有量の経時変化を示すグラフである(試験8)。10 is a graph showing changes over time in the water content of various electrolytic solutions (Test 8). 各種電解液の体積変化を示す図面である(試験9)。It is drawing which shows the volume change of various electrolyte solutions (Test 9).

[亜鉛二次電池]
本開示の亜鉛二次電池は、正極、亜鉛を含む負極及び電解液を備える亜鉛二次電池であって、前記電解液は、pHが7未満であり、亜鉛金属塩及び水を含有し、前記亜鉛金属塩に対する前記水の含有量がモル比で2以上6以下の範囲である。
[Zinc secondary battery]
A zinc secondary battery of the present disclosure is a zinc secondary battery comprising a positive electrode, a negative electrode containing zinc, and an electrolytic solution, wherein the electrolytic solution has a pH of less than 7 and contains a zinc metal salt and water, and the The molar ratio of the water content to the zinc metal salt is in the range of 2 or more and 6 or less.

(正極)
本開示の亜鉛二次電池の正極としては、当該技術分野において既知の電極構成を採用できる。例えば、正極材料及び正極集電体を有してよい。
(positive electrode)
Electrode configurations known in the art can be employed for the positive electrode of the zinc secondary battery of the present disclosure. For example, it may have a cathode material and a cathode current collector.

正極材料は、正極活物質を有する。また、正極材料は、必要に応じて、導電性材料及び結着剤等を含有してよい。 The cathode material has a cathode active material. Moreover, the positive electrode material may contain a conductive material, a binder, and the like, if necessary.

正極活物質は、正極において、充電反応及び放電反応に直接寄与する物質である。正極活物質としては、特に限定されるものではなく、当該技術分野において既知の正極活物質を採用できる。正極活物質としては、酸素;又は金属イオンを挿入脱離可能な金属酸化物、硫化物、若しくはポリアニオン系化合物等が好ましい。これらの中でも、酸素がより好ましい。なお、酸素の供給源としては、空気又は酸素ガスであってよい。 A positive electrode active material is a material that directly contributes to the charging reaction and the discharging reaction in the positive electrode. The positive electrode active material is not particularly limited, and positive electrode active materials known in the art can be used. As the positive electrode active material, oxygen; or metal oxides, sulfides, or polyanion compounds capable of intercalating and deintercalating metal ions are preferable. Among these, oxygen is more preferable. The oxygen supply source may be air or oxygen gas.

導電性材料は、正極の導電性を高めるため正極材料に添加できる。導電材料としては、導電性を有する材料であれば特に限定されず、当該技術分野において既知の導電材料を採用できる。例えば、カーボンブラック、グラファイト、及び炭素繊維等のカーボン;金属繊維等の導電性繊維、ニッケル及びアルミニウム等の金属粉末、並びにポリフェニレン誘導体等の有機導電性材料が挙げられる。これらは一種を単独で又は二種以上を組み合わせて用いることができる。 A conductive material can be added to the cathode material to increase the conductivity of the cathode. The conductive material is not particularly limited as long as it is a material having conductivity, and any conductive material known in the art can be used. Examples include carbon such as carbon black, graphite, and carbon fibers; conductive fibers such as metal fibers; metal powders such as nickel and aluminum; and organic conductive materials such as polyphenylene derivatives. These can be used individually by 1 type or in combination of 2 or more types.

結着剤は、正極材料及び正極集電体の形状保持のため正極材料に添加できる。結着剤としては、特に限定されるものではなく、当該技術分野において既知の結着剤を採用できる。例えば、ポリエチレン等のオレフィン樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂;スチレン・ブタジエンゴム(SBRゴム)等のゴム系樹脂;並びにナフィオン(登録商標)等のパーフルオロスルホン酸高分子等が挙げられる。これらは一種を単独で又は二種以上を組み合わせて用いることができる。 A binder can be added to the positive electrode material to maintain the shape of the positive electrode material and the positive electrode current collector. The binder is not particularly limited, and any binder known in the art can be used. For example, olefin resins such as polyethylene; fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); rubber resins such as styrene-butadiene rubber (SBR rubber); perfluorosulfonic acid polymer and the like. These can be used individually by 1 type or in combination of 2 or more types.

正極活物質が酸素である場合、正極は、酸素の酸化還元触媒を含むことが好ましい。これにより、正極での酸化還元反応をより効率よく行うことができる。酸素の酸化還元触媒としては、黒鉛等の酸化還元触媒機能を有するカーボン系材料;白金、パラジウム、ニッケル、コバルト、イリジウム、ルテニウム、及び鉄等の金属並びにこれらの金属を含有する合金;二酸化マンガン及び四酸化三コバルト等の金属酸化物;並びにペロブスカイト型酸化物等が挙げられる。 When the positive electrode active material is oxygen, the positive electrode preferably contains an oxygen redox catalyst. Thereby, the oxidation-reduction reaction at the positive electrode can be performed more efficiently. Examples of redox catalysts for oxygen include carbon-based materials having a redox catalytic function such as graphite; metals such as platinum, palladium, nickel, cobalt, iridium, ruthenium, and iron, and alloys containing these metals; manganese dioxide and metal oxides such as tricobalt tetroxide; and perovskite oxides.

また、正極集電体としては、ステンレス鋼、ニッケル、モリブデン、アルミニウム、銅、チタン、及びタングステン等の金属、並びにカーボンシートを用いることができる。形状としては、酸素の拡散を速やかに行わせるため、網状やメッシュ状等の多孔を有する形状が好ましい。 As the positive electrode current collector, metals such as stainless steel, nickel, molybdenum, aluminum, copper, titanium, and tungsten, and carbon sheets can be used. As for the shape, a shape having pores such as a net shape or a mesh shape is preferable in order to facilitate the diffusion of oxygen.

正極は、正極活物質、及び、必要に応じて、酸化還元触媒、導電性材料及び結着剤等を混合して、正極合剤を成形することにより製造できる。正極が正極集電体を有する場合は、正極集電体に正極合剤を塗布、乾燥、及び/又はプレス成形してよい。正極合剤の混合方法としては、例えば、溶媒を混合する湿式混合、又は乾式混合が挙げられる。 The positive electrode can be produced by mixing a positive electrode active material and, if necessary, a redox catalyst, a conductive material, a binder, and the like, and molding a positive electrode mixture. When the positive electrode has a positive electrode current collector, the positive electrode mixture may be applied to the positive electrode current collector, dried, and/or press-molded. Examples of the method for mixing the positive electrode mixture include wet mixing in which solvents are mixed and dry mixing.

(亜鉛を含む負極)
本開示の亜鉛二次電池の負極としては、亜鉛を含むものであれば特に限定されず、当該技術分野において既知の電極構成を採用できる。例えば、負極材料及び負極集電体を有してよい。
(negative electrode containing zinc)
The negative electrode of the zinc secondary battery of the present disclosure is not particularly limited as long as it contains zinc, and an electrode configuration known in the art can be adopted. For example, it may have a negative electrode material and a negative current collector.

負極材料は、負極活物質を有する。また、負極材料は、必要に応じて、導電性材料及び結着剤等を含有してよい。 The negative electrode material has a negative electrode active material. Moreover, the negative electrode material may contain a conductive material, a binder, and the like, if necessary.

負極活物質は、負極において、充電反応及び放電反応に直接寄与する物質である。亜鉛は負極活物質として含まれてよい。このような亜鉛としては、亜鉛(亜鉛金属)、亜鉛合金、又は亜鉛酸化物等が好ましい。これらの中でも、亜鉛がより好ましい。 A negative electrode active material is a material that directly contributes to the charging reaction and the discharging reaction in the negative electrode. Zinc may be included as a negative electrode active material. As such zinc, zinc (zinc metal), zinc alloy, zinc oxide, or the like is preferable. Among these, zinc is more preferable.

導電性材料及び結着剤は、それぞれ正極材料に含有してよいものとして列挙した上記と同じものを採用できる。 As the conductive material and the binder, the same materials as those enumerated above as those that may be contained in the positive electrode material can be employed.

また、負極集電体としては、ステンレス鋼、ニッケル、モリブデン、アルミニウム、銅、チタン、及びタングステン等の金属、並びにカーボンシートを用いることができる。また、負極は、正極と同様に、負極活物質、及び、必要に応じて、導電性材料及び結着剤等を混合して、負極合剤を成形することにより製造できる。負極が負極集電体を有する場合は、負極集電体に負極合剤を塗布、乾燥、及び/又はプレス成形してよい。負極合剤の混合方法としては、例えば、溶媒を混合する湿式混合、又は乾式混合が挙げられる。 As the negative electrode current collector, metals such as stainless steel, nickel, molybdenum, aluminum, copper, titanium, and tungsten, and carbon sheets can be used. Also, the negative electrode can be produced by mixing a negative electrode active material, and, if necessary, a conductive material, a binder, and the like, similarly to the positive electrode, and forming a negative electrode mixture. When the negative electrode has a negative electrode current collector, the negative electrode mixture may be applied to the negative electrode current collector, dried, and/or press-molded. Examples of the method for mixing the negative electrode mixture include wet mixing in which a solvent is mixed, and dry mixing.

(電解液)
本開示の亜鉛二次電池の電解液は、pHが7未満であるところ、pHは6未満、5未満、又は4未満であってよく、2以上又は3以上であってよい。pHが7以上であると、得られる亜鉛二次電池は、充放電効率(クーロン効率)及びサイクル特性に劣る。
(Electrolyte)
Where the electrolyte of the zinc secondary battery of the present disclosure has a pH of less than 7, the pH may be less than 6, less than 5, or less than 4, and may be 2 or more or 3 or more. If the pH is 7 or more, the resulting zinc secondary battery is inferior in charge/discharge efficiency (coulombic efficiency) and cycle characteristics.

また、本開示の亜鉛二次電池の電解液は、亜鉛金属塩に対する水の含有量がモル比で2以上6以下である。亜鉛金属塩に対する水の含有量は、モル比で2以上5以下が好ましく、2以上4以下がより好ましく、2以上3以下がさらに好ましく、2以上2.33以下が最も好ましい。充放電効率(クーロン効率)に優れるためである。 In addition, in the electrolytic solution of the zinc secondary battery of the present disclosure, the molar ratio of water to zinc metal salt is 2 or more and 6 or less. The molar ratio of water to the zinc metal salt is preferably from 2 to 5, more preferably from 2 to 4, even more preferably from 2 to 3, and most preferably from 2 to 2.33. This is because the charging and discharging efficiency (coulomb efficiency) is excellent.

電解液の亜鉛金属塩の種類は、特に限定されるものではない。例えば、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、及び硝酸亜鉛からなる群より選ばれる少なくとも一種以上であってよい。これらの中でも、水溶性が高くコストが低いことから塩化亜鉛が好ましい。 The type of zinc metal salt in the electrolytic solution is not particularly limited. For example, it may be at least one selected from the group consisting of zinc chloride, zinc bromide, zinc iodide, and zinc nitrate. Among these, zinc chloride is preferred because of its high water solubility and low cost.

本開示の電解液が亜鉛金属塩及び水によって構成される場合、亜鉛金属塩が水和した状態となるため、電解液中の水が揮発しにくく、亜鉛二次電池のサイクル特性や耐久性に優れる。また、亜鉛金属塩及び水はいずれも安価であることから、コスト面で優れる。なお、本開示において、亜鉛二次電池の耐久性に優れることは、多数回繰り返し充放電しても安定的に使用できることと言い換えることができる。 When the electrolytic solution of the present disclosure is composed of a zinc metal salt and water, the zinc metal salt is in a hydrated state, so the water in the electrolytic solution is difficult to volatilize, and the cycle characteristics and durability of the zinc secondary battery are improved. Excellent. Moreover, since zinc metal salt and water are both inexpensive, it is excellent in terms of cost. In the present disclosure, the excellent durability of the zinc secondary battery can be rephrased as being able to be used stably even after repeated charging and discharging many times.

本開示の電解液は、亜鉛金属塩及び水以外の任意成分を含有してよい。電解液中の水の揮発を抑制する成分、亜鉛金属塩の水和構造に関与しない成分、及び電解液の流動性を抑制する成分等が挙げられる。 The electrolyte of the present disclosure may contain optional ingredients other than the zinc metal salt and water. Examples include a component that suppresses volatilization of water in the electrolyte, a component that does not participate in the hydration structure of the zinc metal salt, and a component that suppresses the fluidity of the electrolyte.

本開示の電解液の任意成分としては、例えば、第一に、溶媒である水の活性を下げ、電解液中の水の揮発を抑制することができる亜鉛金属塩以外の卑金属塩が挙げられる。亜鉛金属塩以外の卑金属塩としては、例えば、アルカリ金属塩及びアルカリ土類金属塩等が挙げられる。このような亜鉛金属塩以外の卑金属塩を含有することにより、本開示の亜鉛二次電池の耐久性をより優れたものとできる。 Optional components of the electrolytic solution of the present disclosure include, for example, base metal salts other than zinc metal salts that can lower the activity of water as a solvent and suppress volatilization of water in the electrolytic solution. Examples of base metal salts other than zinc metal salts include alkali metal salts and alkaline earth metal salts. By containing a base metal salt other than such a zinc metal salt, the durability of the zinc secondary battery of the present disclosure can be further improved.

電解液における亜鉛金属塩以外の卑金属塩の含有量は、特に限定されるものではないが、例えば、1mol/L以上20mol/L以下であってよい。 The content of the base metal salt other than the zinc metal salt in the electrolytic solution is not particularly limited, but may be, for example, 1 mol/L or more and 20 mol/L or less.

亜鉛金属塩以外の卑金属塩の具体例としては、特に限定されないが、例えば、アルカリ金属やアルカリ土類の塩化物、フッ化物、臭化物、ヨウ化物、アミド塩、イミド塩、スルホン酸塩、ヘキサフルオロリン酸塩、テトラフルオロホウ酸塩、過塩素酸塩、塩素酸塩、硝酸塩、硫酸塩、リン酸塩、酢酸塩、炭酸塩、酸化物、及び水酸化物等が挙げられる。これらは一種を単独で又は二種以上を組み合わせて用いることができる。 Specific examples of base metal salts other than zinc metal salts are not particularly limited, but examples include chlorides, fluorides, bromides, iodides, amide salts, imide salts, sulfonates, and hexafluoro Phosphate, tetrafluoroborate, perchlorate, chlorate, nitrate, sulfate, phosphate, acetate, carbonate, oxide, hydroxide and the like. These can be used individually by 1 type or in combination of 2 or more types.

第二に、非水溶媒が挙げられる。非水溶媒は、溶媒である水の活性を下げると共に、亜鉛金属塩の水和構造に関与しない非水溶媒が好ましい。このような非水溶媒を含有することにより、電解液の蒸気圧を下げることができ、より保水性を向上し、本開示の亜鉛二次電池の耐久性をより優れたものにできる。 Secondly, non-aqueous solvents are mentioned. The non-aqueous solvent is preferably a non-aqueous solvent that lowers the activity of water as the solvent and does not participate in the hydration structure of the zinc metal salt. By containing such a non-aqueous solvent, the vapor pressure of the electrolytic solution can be lowered, the water retention can be further improved, and the durability of the zinc secondary battery of the present disclosure can be improved.

電解液における非水溶媒の含有量は、特に限定されるものではないが、例えば、1vol%以上50vol%以下であってよい。 The content of the non-aqueous solvent in the electrolytic solution is not particularly limited, but may be, for example, 1 vol % or more and 50 vol % or less.

非水溶媒の具体例としては、特に限定されないが、非プロトン性溶媒が挙げられる。また、非プロトン性溶媒としては、例えば、エチレンカーボネート等の環状カーボネート;テトラヒドロフラン等の環状エーテル;スルホラン等の環状スルホン;ジメチルカーボネート等の鎖状カーボネート;アセトニトリル等のニトリル;テトラエチレングリコールジメチルエーテル等のグライム;ジメチルエーテル等のエーテル;及びジメトキシエタン等の鎖状エーテルカーボネート等が挙げられる。また、これらの非水溶媒は、フッ素置換体等のハロゲン化物や硫黄元素で置換したものを用いてもよい。これらは一種を単独で又は二種以上を組み合わせて用いることができる。 Specific examples of non-aqueous solvents include, but are not limited to, aprotic solvents. Examples of aprotic solvents include cyclic carbonates such as ethylene carbonate; cyclic ethers such as tetrahydrofuran; cyclic sulfones such as sulfolane; chain carbonates such as dimethyl carbonate; nitriles such as acetonitrile; ethers such as dimethyl ether; and chain ether carbonates such as dimethoxyethane. In addition, these non-aqueous solvents may be substituted with halides such as fluorine-substituted compounds or sulfur elements. These can be used individually by 1 type or in combination of 2 or more types.

第三に、マトリクスポリマー又は無機粒子が挙げられる。電解液をゲル化及び/又は固体化して、流動性及び揮発性を抑制することができるため、本開示の亜鉛二次電池から電解液が漏れにくくなり、耐久性をより優れたものとできる。 Thirdly, there are matrix polymers or inorganic particles. Since the electrolytic solution can be gelled and/or solidified to suppress fluidity and volatility, the electrolytic solution is less likely to leak from the zinc secondary battery of the present disclosure, and durability can be improved.

電解液におけるマトリクスポリマー又は無機粒子の含有量は、電解液をゲル化及び/又は固体化できれば、特に限定されるものではないが、例えば、1wt%以上50wt%以下であってよい。 The content of the matrix polymer or the inorganic particles in the electrolytic solution is not particularly limited as long as the electrolytic solution can be gelled and/or solidified.

マトリクスポリマーの具体例としては、特に限定されないが、ポリエーテル系ポリマー、フッ素系ポリマー、ポリアクリル系ポリマー、ポリアクリロニトリル、ポリシロキサン、及びポリホスファゼン等が挙げられる。無機粒子の具体例としても、特に限定されないが、シリカ、アルミナ、ジルコニア、及び酸化チタン等が例示できる。マトリクスポリマー及び無機粒子は、一種を単独で又は二種以上を組み合わせて用いることができる。 Specific examples of matrix polymers include, but are not limited to, polyether polymers, fluorine polymers, polyacrylic polymers, polyacrylonitrile, polysiloxane, and polyphosphazenes. Specific examples of inorganic particles are not particularly limited, but silica, alumina, zirconia, titanium oxide, and the like can be exemplified. A matrix polymer and an inorganic particle can be used individually by 1 type or in combination of 2 or more types.

(セパレータ)
本開示の亜鉛二次電池は、セパレータを有してよく、セパレータを介して対向する正極及び負極によって構成されてよい。
(separator)
The zinc secondary battery of the present disclosure may have a separator, and may be composed of a positive electrode and a negative electrode facing each other with the separator interposed therebetween.

セパレータは、正極及び負極間を電気的に絶縁し、イオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば、特に限定されるものではなく、当該技術分野において既知のセパレータを採用できる。セパレータとしては、ポリエチレン等のオレフィン樹脂等が挙げられる。 The separator is not particularly limited as long as it electrically insulates between the positive electrode and the negative electrode, has ion permeability, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side. , any separator known in the art can be employed. Examples of separators include olefin resins such as polyethylene.

(電解液の調製)
電解液A:塩化亜鉛(II)1mol部に対し、水4mol部の比となるように、これらを混合して塩化亜鉛水溶液を調製した。pHは7以下であった。この塩化亜鉛水溶液をZnCl・4HOと称する場合がある。
電解液B:塩化亜鉛(II)1mol部に対し、水3mol部の比になるように、これらを混合して塩化亜鉛水溶液を調製した。pHは7以下であった。この塩化亜鉛水溶液をZnCl・3HOと称する場合がある。
電解液C:塩化亜鉛(II)1mol部に対し、水2.33mol部の比になるように、これらを混合して塩化亜鉛水溶液を調製した。pHは7以下であった。この塩化亜鉛水溶液をZnCl・2.33HOと称する場合がある。
電解液D:水酸化カリウム6mol/L、及び塩化亜鉛(II)0.2mol/Lの組成になるように、水酸化カリウム-塩化亜鉛(II)水溶液を調製した。pHは14以上であった。この水酸化カリウム-塩化亜鉛(II)水溶液を6M KOH-0.2M ZnClと称する場合がある。
(Preparation of electrolytic solution)
Electrolyte A: A zinc chloride aqueous solution was prepared by mixing 1 mol part of zinc (II) chloride and 4 mol parts of water. The pH was 7 or less. This zinc chloride aqueous solution may be referred to as ZnCl 2 .4H 2 O.
Electrolyte B: An aqueous solution of zinc chloride was prepared by mixing 1 mol part of zinc (II) chloride and 3 mol parts of water. The pH was 7 or less. This zinc chloride aqueous solution may be referred to as ZnCl 2 .3H 2 O.
Electrolyte C: 1 mol part of zinc (II) chloride and 2.33 mol parts of water were mixed to prepare an aqueous solution of zinc chloride. The pH was 7 or less. This zinc chloride aqueous solution may be referred to as ZnCl 2 ·2.33H 2 O.
Electrolyte D: A potassium hydroxide-zinc (II) chloride aqueous solution was prepared so as to have a composition of 6 mol/L of potassium hydroxide and 0.2 mol/L of zinc (II) chloride. The pH was 14 or higher. This potassium hydroxide-zinc (II) chloride aqueous solution is sometimes referred to as 6M KOH-0.2M ZnCl 2 .

(試験1)
電解液A、B、C及びDをそれぞれ用いた場合における、タングステン電極上における亜鉛の電析量、及び電析した亜鉛の保持性を調べるため、以下の条件で、サイクリックボルタンメトリーによる亜鉛の析出・再溶解挙動の測定を行った。作用電極としてタングステン電極、参照電極としてZn/Zn2+、及び対極として亜鉛電極を用いた。各電解液を入れた測定セルを、30℃、1気圧の恒温槽にて0.5時間静置し、測定セル内の雰囲気を乾燥空気で置換した。30℃、乾燥空気、1気圧の条件下で、走査電位範囲を-0.5~1.5V v.s.Zn/Zn2+とし、走査速度10mVs-1でサイクリックボルタンメトリー(CV)測定を5回サイクル行った。電解液Dを用いた場合におけるサイクリックボルタンメトリー(CV)測定は、30℃、大気、1気圧の条件下で行った。
(Test 1)
In order to examine the amount of zinc deposited on the tungsten electrode and the retention of the deposited zinc when using electrolytes A, B, C and D, respectively, zinc deposition was performed by cyclic voltammetry under the following conditions.・Remelting behavior was measured. A tungsten electrode was used as the working electrode, a Zn/Zn 2+ electrode as the reference electrode, and a zinc electrode as the counter electrode. The measurement cell containing each electrolytic solution was allowed to stand in a constant temperature bath at 30° C. and 1 atm for 0.5 hours, and the atmosphere in the measurement cell was replaced with dry air. Under the conditions of 30° C., dry air, and 1 atm, the scanning potential range is −0.5 to 1.5 V v. s. Five cycles of cyclic voltammetry (CV) measurements were performed with Zn/Zn 2+ and a scan rate of 10 mVs −1 . Cyclic voltammetry (CV) measurement in the case of using electrolyte solution D was performed under the conditions of 30° C., atmospheric air, and 1 atm.

1サイクル目の卑な方向へ掃引して、-0.5Vから折り返し逆方向へ掃引した時の走査電位と電流密度との関係を図1に示す。図2は、1から5サイクル目におけるクーロン効率(C.E.%)である。クーロン効率は、亜鉛の析出溶解効率(言い換えれば、正の電気量/負の電気量、さらに言い換えれば、電析した亜鉛の再溶解量/亜鉛の電析量)を示すものであり、サイクリックボルタンメトリー(CV)測定の結果に基づいて算出した。 FIG. 1 shows the relationship between the scanning potential and the current density when sweeping in the negative direction in the first cycle and then sweeping back from -0.5 V in the reverse direction. FIG. 2 is the coulombic efficiency (C.E.%) at the 1st to 5th cycles. The coulombic efficiency indicates the deposition and dissolution efficiency of zinc (in other words, the amount of positive charge/the amount of negative charge, further in other words, the amount of redissolved zinc that has been deposited/the amount of zinc that has been deposited). It was calculated based on the results of voltammetry (CV) measurements.

電解液D(6M KOH-0.2M ZnCl)では、亜鉛の電析量(還元反応の電気量)は電解液A、B及びC(ZnCl・nHO系)よりも多いが(図1参照)、析出した亜鉛が30%程しか再溶解しない、つまりクーロン効率が30%程度であった(図2右参照)。これに対し、電解液A、B及びCは析出した亜鉛の98%以上が再溶解し、クーロン効率が98%以上であった(図2左参照)。 In electrolyte D (6M KOH-0.2M ZnCl 2 ), the amount of zinc deposited (the amount of electricity in the reduction reaction) is greater than in electrolytes A, B and C (ZnCl 2 ·nH 2 O system) (Fig. 1), only about 30% of the precipitated zinc was redissolved, that is, the coulombic efficiency was about 30% (see the right side of FIG. 2). On the other hand, in the electrolytic solutions A, B and C, 98% or more of the precipitated zinc was redissolved, and the coulombic efficiency was 98% or more (see the left side of FIG. 2).

電解液Dを用いた場合にクーロン効率に劣る原因としては、亜鉛が樹脂状に析出した(デンドライトを形成した)ため(図3(4)参照)、電極から亜鉛が剥離しやすいこと;亜鉛が電解液Dと接触していると腐食しやすいこと(図5(3)参照);及び電解液D中の水の活性が高い(言い換えれば、電気分解しやすい)ために、亜鉛が析出する電位で水素発生が同時に起こっていることが挙げられる。 The reason why the Coulombic efficiency is inferior when electrolyte solution D is used is that zinc is deposited in a resinous form (dendrites are formed) (see FIG. 3 (4)), and zinc is easily peeled off from the electrode; Corrosion is likely to occur when in contact with the electrolyte solution D (see FIG. 5 (3)); hydrogen generation is occurring at the same time.

一方で、電解液A、B及びC(ZnCl・nHO系)は、優れたクーロン効率を有し、充放電効率に優れることが示された。これらの中でも、最も水の含有量が少ない電解液C(ZnCl・2.33HO)が、特に高いクーロン効率を示しているため、以降の試験ではZnCl・nHO系の電解液の代表としてこの組成を使用する。 On the other hand, electrolyte solutions A, B and C (ZnCl 2 ·nH 2 O system) were shown to have excellent coulombic efficiency and excellent charge-discharge efficiency. Among these, the electrolytic solution C (ZnCl 2 ·2.33H 2 O), which has the lowest water content, exhibits a particularly high coulombic efficiency. This composition is used as representative of

(試験2)
電解液A、B、C及びDをそれぞれ用いた場合における、タングステン電極上に電析した亜鉛の形態を調べた。電析の条件は以下のとおりである。亜鉛を析出させる電位(Deposition potential)を-0.2V vs.Zn/Zn2+とし、継続して析出させる時間(Deposition time)を1時間とした以外は、試験1と同じ条件で、電圧を印加した。そして、電析した亜鉛の形態を電子顕微鏡で観察した。結果は図3に示す。
(Test 2)
The morphology of zinc electrodeposited on a tungsten electrode was investigated in the case of using electrolytes A, B, C and D, respectively. The conditions for electrodeposition are as follows. The potential for depositing zinc (Deposition potential) was -0.2 V vs. A voltage was applied under the same conditions as in Test 1 except that Zn/Zn 2+ was used and the deposition time was set to 1 hour. Then, the morphology of the electrodeposited zinc was observed with an electron microscope. Results are shown in FIG.

電解液D(6M KOH-0.2M ZnCl)では、デンドライト状の亜鉛が観察された。一方、電解液A、B及びC(ZnCl・nHO系)では、よりは大きく、かつ平滑なブロック状の亜鉛が観察された。従って、電解液A、B及びC(ZnCl・nHO系)では、デンドライトが抑制でき、デンドライトフリーな亜鉛電析ができることが示された。 In electrolyte D (6M KOH-0.2M ZnCl 2 ), dendritic zinc was observed. On the other hand, in electrolytes A, B and C (ZnCl 2 ·nH 2 O system), larger and smoother blocks of zinc were observed. Therefore, it was shown that the electrolytes A, B and C (ZnCl 2 ·nH 2 O system) can suppress dendrites and allow dendrite-free zinc electrodeposition.

(試験3)
亜鉛二次電池として繰り返し亜鉛負極を使用できるかどうかを調べるため、電解液C及びDをそれぞれ用い、両極とも亜鉛金属を用いた亜鉛対称セルを構成し、両亜鉛極に交互に繰り返しプラス・マイナス電流を連続して流して、亜鉛金属を析出及び溶解させ、その際の電圧変動を計測した。電流密度は1mAcm-2、電気量を1mAhcm-2、測定温度は30℃とし、電圧変動の計測を行った。電解液C及びDを用いた場合の時間(h)と電圧との関係を、それぞれ図4の上及び下に示す。
(Test 3)
In order to investigate whether the zinc negative electrode can be repeatedly used as a zinc secondary battery, electrolytes C and D were used, respectively, and a zinc symmetrical cell was constructed using zinc metal for both electrodes, and positive and negative were alternately repeated on both zinc electrodes. A current was applied continuously to deposit and dissolve zinc metal, and the voltage fluctuation at that time was measured. The voltage fluctuation was measured at a current density of 1 mAcm -2 , an electric quantity of 1 mAhcm -2 and a measurement temperature of 30°C. The relationship between time (h) and voltage when electrolytes C and D are used are shown in the top and bottom of FIG. 4, respectively.

図4の上に示すように、電解液C(ZnCl・2.33HO)は、1000時間(500サイクル目)サイクルを繰り返しても100mV程度までしか増大しない。一方、電解液D(6M KOH-0.2M ZnCl)では、図4の下に示すように、150時間(1時間ごとにプラス・マイナス電流を交互に流すため、約75サイクル目となる)で電圧が1.5V以上になった。 As shown in the upper part of FIG. 4, the electrolytic solution C (ZnCl 2 .2.33H 2 O) increases only up to about 100 mV even after repeating cycles for 1000 hours (500th cycle). On the other hand, in electrolyte solution D (6M KOH-0.2M ZnCl 2 ), as shown in the bottom of FIG. 4, 150 hours (about 75 cycles because positive and negative currents alternately flow every hour). The voltage became 1.5V or higher.

電解液Dを用いた場合に過電圧が増大する原因としては、亜鉛が電解液Dと接触していると速やかに腐食しやすいこと(図5(3)参照);又は、酸化亜鉛の不働態被膜を形成して電解液と亜鉛電極間の界面の抵抗が増大することが挙げられる。 The reason for the increase in overvoltage when electrolyte D is used is that zinc tends to corrode quickly when it is in contact with electrolyte D (see FIG. 5 (3)); or a passive film of zinc oxide. is formed to increase the resistance at the interface between the electrolyte and the zinc electrode.

一方、電解液Cを用いた場合に過電圧が増大しにくい理由としては、亜鉛が電解液Cと接触する場合は、比較的腐食や酸化物が形成しにくく(図5(2)参照)、電解液と亜鉛電極との界面の抵抗が増大しにくいことが挙げられる。従って、電解液C(ZnCl・2.33HO)を用いた亜鉛二次電池は、亜鉛電極の安定性に優れ、繰り返し充放電しても、亜鉛負極の過電圧が増大しにくく、電池の電圧が低下しにくく、亜鉛の析出溶解可逆性に優れ、サイクル特性に優れることが示された。 On the other hand, the reason why the overvoltage is less likely to increase when electrolyte C is used is that when zinc is in contact with electrolyte C, corrosion and oxide formation are relatively difficult (see FIG. 5 (2)). One reason for this is that the resistance at the interface between the liquid and the zinc electrode is less likely to increase. Therefore, the zinc secondary battery using the electrolyte solution C (ZnCl 2 2.33H 2 O) has excellent zinc electrode stability, and even after repeated charging and discharging, the overvoltage of the zinc negative electrode is unlikely to increase, and the battery is stable. It was shown that the voltage is less likely to drop, the reversibility of zinc deposition and dissolution is excellent, and the cycle characteristics are excellent.

(試験4)
亜鉛が電解液に接触した状態での電極(負極)の保存性を評価するため、30日間(およそ1か月間)、室温で、亜鉛と電解液C及びDのそれぞれとを接触させ、その後の亜鉛表面を電子顕微鏡で観察した。結果は図5に示す。
(Test 4)
In order to evaluate the storage stability of the electrode (negative electrode) with zinc in contact with the electrolyte, zinc was brought into contact with each of the electrolytes C and D at room temperature for 30 days (about one month). The zinc surface was observed with an electron microscope. Results are shown in FIG.

電解液Dを用いた場合は、図5(1)及び(3)の比較から分かるように、電解液と接触する前の状態と比較して、電解液中の水酸化物イオンや水により亜鉛が腐食し、亜鉛化合物(酸化亜鉛や水酸化亜鉛等)の被膜に覆われており、さらに被膜が破れて元の亜鉛(クレーター部分)が見えていることが確認できた。 As can be seen from the comparison between FIGS. 5(1) and 5(3), when the electrolyte solution D is used, compared to the state before contact with the electrolyte solution, the hydroxide ions and water in the electrolyte solution contribute to zinc was corroded and covered with a coating of zinc compounds (zinc oxide, zinc hydroxide, etc.), and the coating was torn to reveal the original zinc (crater part).

一方、電解液Cを用いた場合は、図5(1)及び(2)の比較から分かるように電解液と接触する前の亜鉛の状態と大きな差がなく、負極の保存性が高い。これは、電解液C(ZnCl・2.33HO)は、電解液中に、水酸化物イオンが存在せず、電解液中の水も全て亜鉛イオンに配位(水和)して、活性が低い(言い換えれば、自由な水分子がないために、融点が高く揮発しにくい)ため、亜鉛金属の腐食が抑制されていることによると考えられる。従って、電解液Cを用いた亜鉛二次電池は、多数回繰り返し充放電しても安定的に使用でき、長期間使用できることがわかる。 On the other hand, when electrolyte C is used, as can be seen from the comparison of FIGS. 5(1) and 5(2), there is no significant difference in the state of zinc from before contact with the electrolyte, and the storage stability of the negative electrode is high. This is because the electrolyte solution C (ZnCl 2 2.33H 2 O) has no hydroxide ions in the electrolyte solution, and all the water in the electrolyte solution is coordinated (hydrated) to the zinc ions. , is low in activity (in other words, it has a high melting point and is difficult to volatilize due to the lack of free water molecules), which suppresses the corrosion of zinc metal. Therefore, it can be seen that the zinc secondary battery using the electrolyte solution C can be stably used even after being repeatedly charged and discharged many times, and can be used for a long period of time.

(試験5)
負極として亜鉛プレート、空気正極として空気電池及び燃料電池分野で一般的な空気極である白金触媒を担持した炭素極(白金量は、白金及び炭素の重量に対して50重量%であり、単位面あたりの白金の担持量は0.50mgcm-2である)、及び電解液として電解液C(ZnCl・2.33HO)を用いて、亜鉛二次電池を組み立てた。詳細は、図6に示すとおりである。
(Test 5)
A zinc plate as the negative electrode, a carbon electrode supporting a platinum catalyst, which is a common air electrode in the field of air batteries and fuel cells as the air positive electrode (the amount of platinum is 50% by weight with respect to the weight of platinum and carbon, and the unit area A zinc secondary battery was assembled using an electrolyte solution C (ZnCl 2 · 2.33H 2 O) as an electrolyte solution. Details are as shown in FIG.

図6は、亜鉛二次電池の一実施例を説明する図面である。亜鉛二次電池1は、電解液室(Electrolyte chamber)4の両側に正極2と負極3とを備え、亜鉛二次電池1は外側のフレーム5により一体になるよう固定される。正極2は、正極集電体6及び白金触媒を担持した炭素極(炭素シート)により構成され、正極活物質として酸素を用いる。正極集電体6はメッシュ状のモリブデンである。負極3は、負極集電体7を有し、負極活物質として亜鉛を用いる。負極集電体7は、プレート状のモリブデンである。電解液室4には、電解液が充填され、内容物である電解液が漏れないように、正極2側及び負極3側の両側に設けられた封止材8により密閉されている。正極2と負極3との隔離のため、正極2と封止材8との間、及び負極3と封止材8との間にそれぞれセパレータ9が設けられている。正極2及び負極3への通電は、正極集電体6及び負極集電体7を通して行う。 FIG. 6 is a diagram illustrating an example of a zinc secondary battery. A zinc secondary battery 1 includes a positive electrode 2 and a negative electrode 3 on both sides of an electrolyte chamber 4, and the zinc secondary battery 1 is fixed by an outer frame 5 so as to be integrated. The positive electrode 2 is composed of a positive electrode current collector 6 and a carbon electrode (carbon sheet) supporting a platinum catalyst, and oxygen is used as a positive electrode active material. The positive electrode current collector 6 is made of mesh-like molybdenum. The negative electrode 3 has a negative electrode current collector 7 and uses zinc as a negative electrode active material. The negative electrode current collector 7 is plate-shaped molybdenum. The electrolytic solution chamber 4 is filled with an electrolytic solution, and is sealed by sealing materials 8 provided on both sides of the positive electrode 2 side and the negative electrode 3 side so that the electrolytic solution as the contents does not leak. Separators 9 are provided between the positive electrode 2 and the sealing material 8 and between the negative electrode 3 and the sealing material 8 to separate the positive electrode 2 and the negative electrode 3 from each other. Electricity is supplied to the positive electrode 2 and the negative electrode 3 through the positive electrode current collector 6 and the negative electrode current collector 7 .

組み立てた亜鉛二次電池について、充放電試験を繰り返し40回行った。充放電試験の条件としては、30℃、酸素雰囲気にて、単位白金量(g)あたり500mAとなる電流量を流して、充放電曲線を作成した。放電と充電との間は10分あけた。容量(mAh・g-1:g-1は、触媒の単位重量を示す)と電圧との関係を図7の左に示す。また、充放電試験の回数と容量(mAh・g-1)との関係を図7の右に示す。 A charging/discharging test was repeated 40 times for the assembled zinc secondary battery. As the conditions for the charge/discharge test, a charge/discharge curve was created by flowing a current of 500 mA per unit amount of platinum (g) in an oxygen atmosphere at 30°C. There was an interval of 10 minutes between discharging and charging. The relationship between capacity (mAh·g −1 :g −1 represents the unit weight of the catalyst) and voltage is shown on the left side of FIG. Also, the relationship between the number of charge/discharge tests and the capacity (mAh·g −1 ) is shown on the right side of FIG.

図7に示すように、電解液C(ZnCl・2.33HO)を用いた亜鉛二次電池は、先行文献を基にした亜鉛空気電池のテストの容量として十分な容量である1000mAh・g-1(g-1は、触媒の単位重量を示す)で繰り返し40回、放電電圧1V以上を維持して充放電することが確認できた。従って、電解液C(ZnCl・2.33HO)は、亜鉛二次電池の電解液として使用可能であり、これを用いた亜鉛二次電池は、優れた充放電効率、サイクル特性及び耐久性を有することが示された。 As shown in FIG. 7, the zinc secondary battery using electrolyte solution C (ZnCl 2 .2.33H 2 O) has a capacity of 1000 mAh. It was confirmed that charging and discharging were repeated 40 times at g −1 (g −1 represents the unit weight of the catalyst) while maintaining a discharge voltage of 1 V or higher. Therefore, electrolyte solution C (ZnCl 2 .2.33H 2 O) can be used as an electrolyte solution for zinc secondary batteries, and zinc secondary batteries using this have excellent charge/discharge efficiency, cycle characteristics and durability. It was shown to have sex.

(試験6)
電解液の充放電のサイクル安定性を調べるため、試験5と同様にして、電解液C及びDのそれぞれを用いた亜鉛二次電池を組み立て、充放電試験を乾燥空気中で行った。容量(mAh・g-1:g-1は、触媒の単位重量を示す)と電圧との関係を図8に示す。充放電試験の回数と容量(mAh・g-1)との関係を図9に示す。
(Test 6)
In order to examine the charge-discharge cycle stability of the electrolyte, zinc secondary batteries using each of the electrolytes C and D were assembled in the same manner as in Test 5, and a charge-discharge test was performed in dry air. FIG. 8 shows the relationship between capacity (mAh·g −1 : g −1 represents the unit weight of the catalyst) and voltage. FIG. 9 shows the relationship between the number of charge/discharge tests and the capacity (mAh·g −1 ).

図8及び9の右に示すように、電解液D(6M KOH-0.2M ZnCl)は4又は5サイクル目で電圧が大幅に低下し、5サイクル目以降は200mAh・g-1以下になった。電解液Dを用いた場合に少ないサイクルで電圧が低下する原因としては、試験2で述べたように、負極で亜鉛が樹脂状に析出した(デンドライトを形成した)こと(図3(4)参照);試験4で述べたように、亜鉛が腐食し、亜鉛化合物の被膜に覆われたことにより、抵抗が増大し、過電圧上昇したこと;電解液がKOHを含むため、空気流通により二酸化炭素を吸収し、空気極(正極)が劣化(図10参照)したこと、並びに空気流通により電解液が乾燥したこと(図11及び図12参照)が挙げられる。 As shown on the right side of FIGS. 8 and 9, the voltage of electrolytic solution D (6M KOH-0.2M ZnCl 2 ) drops significantly in the 4th or 5th cycle, and drops to 200 mAh·g −1 or less after the 5th cycle. became. The cause of the voltage drop in a small number of cycles when electrolyte solution D is used is that, as described in Test 2, zinc was deposited in a resinous form (dendrites were formed) at the negative electrode (see FIG. 3 (4)). ); As described in Test 4, the zinc corroded and was covered with a zinc compound film, which increased the resistance and increased the overvoltage; The air electrode (positive electrode) deteriorated due to absorption (see FIG. 10), and the electrolytic solution dried due to air circulation (see FIGS. 11 and 12).

これに対し、図8及び9の左に示すように、電解液C(ZnCl・2.33HO)を用いた場合には、試験5の結果(図7)と同様に10サイクル目でも安定している。電解液Cによれば、試験2で述べたように、デンドライトが抑制できたこと(図3(3));試験4で述べたように、亜鉛金属の腐食が抑制されたこと(図5(2));後述するように、空気極(正極)の劣化が抑制されたこと;並びに電解液の乾燥が抑制され、保水性に優れること(図11及び図12参照)が挙げられる。 On the other hand, as shown on the left side of FIGS. 8 and 9, when electrolyte solution C (ZnCl 2.2.33H 2 O) was used, even at the 10th cycle, similar to the result of Test 5 (FIG. 7) stable. According to the electrolyte C, as described in Test 2, dendrites were suppressed (Fig. 3 (3)); as described in Test 4, corrosion of zinc metal was suppressed (Fig. 5 ( 2)); as will be described later, the deterioration of the air electrode (positive electrode) is suppressed;

(試験7)
試験6で行った、電解液D(6M KOH-0.2M ZnCl)を用いた亜鉛二次電池の充放電試験後(放電後)の空気極の状態を調べるためX線回折分析(XRD)を行った。X線としてCu-Kα線を用いた粉末法を用いた。結果は図10に示す。図10中、*はモリブデンを示すピーク、△は不明なピークである。
(Test 7)
X-ray diffraction analysis (XRD) to examine the state of the air electrode after the charge-discharge test (after discharge) of the zinc secondary battery using electrolyte solution D (6M KOH-0.2M ZnCl 2 ) performed in test 6 did A powder method using Cu-Kα rays as X-rays was used. Results are shown in FIG. In FIG. 10, * is a peak indicating molybdenum, and Δ is an unknown peak.

図10に示すように、電解液Dに試験開始当初から含まれていたKOH(水酸化カリウム)及びZnCl(塩化亜鉛)に加えて、KCO(炭酸カリウム)及びKHCO(炭酸水素カリウム)が検出された。これは、電解液Dが、空気中の二酸化炭素を吸収し、それにより生じた炭酸カリウム等が空気極(正極)に付着したためである考えられる。このため、空気極(正極)酸素反応を阻害し、少ないサイクルで容量が劣化したと言える。 As shown in FIG. 10, in addition to KOH (potassium hydroxide) and ZnCl 2 (zinc chloride) contained in the electrolytic solution D from the beginning of the test, K 2 CO 3 (potassium carbonate) and KHCO 3 (hydrogen carbonate potassium) was detected. This is presumably because the electrolytic solution D absorbed carbon dioxide in the air, and the resulting potassium carbonate and the like adhered to the air electrode (positive electrode). Therefore, it can be said that the oxygen reaction of the air electrode (positive electrode) was inhibited, and the capacity deteriorated in a small number of cycles.

(試験8)
電解液の保水性を調べるため、それぞれ1mLの電解液C及びDに対し、21℃、フロー速度200mlmin-1にて、窒素ガスを流し、電解液の重量の経時変化を測定した。電解液の重量に基づき、水の含有量を算出した。時間(h)と水の含有量(重量%)との関係を図11に示す。
(Test 8)
In order to examine the water retention of the electrolytes, nitrogen gas was flowed at 21° C. and a flow rate of 200 mlmin −1 to 1 mL of electrolytes C and D, respectively, and changes in the weight of the electrolytes over time were measured. The water content was calculated based on the weight of the electrolyte. FIG. 11 shows the relationship between time (h) and water content (% by weight).

それぞれの元の水の含有量を100重量%として、電解液D(6M KOH-0.2M ZnCl)は、4時間後には、40重量%まで減少するのに対し、電解液C(ZnCl・2.33HO)は15時間、85重量%以上を維持した。従って、電解液Cは乾燥しにくく、保水性に優れることが示された。 Taking the original water content of each as 100% by weight, electrolyte D (6M KOH-0.2M ZnCl 2 ) decreases to 40% by weight after 4 hours, while electrolyte C (ZnCl 2 2.33 H 2 O) maintained at least 85% by weight for 15 hours. Therefore, it was shown that the electrolytic solution C is difficult to dry and has excellent water retention.

(試験9)
電解液の保水性を調べるため、それぞれ1mLの電解液C及びDに対し、乾燥空気をバブリングして体積変化を測定した。バブリング開始時の電解液量はいずれも1mlとし、バブリングは、ドライチャンバー内、室温、及びフロー速度20mlmin-1の条件にて行った。結果は、図12に示す。
(Test 9)
In order to examine the water holding capacity of the electrolytic solutions, dry air was bubbled through each of 1 mL of electrolytic solutions C and D, and the change in volume was measured. The amount of the electrolytic solution at the start of bubbling was 1 ml in each case, and the bubbling was carried out in a dry chamber at room temperature and at a flow rate of 20 mlmin −1 . Results are shown in FIG.

電解液D(6M KOH-0.2M ZnCl)は、水分が蒸発して体積が0.7ml程度になったのに対し、電解液C(ZnCl・2.33HO)はほとんど体積変化がない。従って、電解液Cを用いた亜鉛二次電池は、充放電による空気流通を長時間続けても、電解液が枯渇しにくく、保水性に優れるため、保存性に優れ、寿命が長いことが示された。 Electrolyte D (6M KOH-0.2M ZnCl 2 ) had a volume of about 0.7 ml due to the evaporation of moisture, while electrolyte C (ZnCl 2 2.33H 2 O) hardly changed in volume. There is no Therefore, it is shown that the zinc secondary battery using the electrolyte solution C has excellent storage stability and a long life because the electrolyte solution is less likely to be depleted even if air circulation is continued for a long time due to charging and discharging, and it has excellent water retention. was done.

また、バブリング後の電解液C及び電解液Dの元素分析を行ったところ、電解液Cには0.10重量%未満の炭素、電解液Dにはおよそ0.61重量%の炭素が含まれていることが確認できた。これは、電解液Dが、バブリングした乾燥空気中の二酸炭素を吸収して、この二酸化炭素により酸化されて炭酸塩を生成したのに対し、電解液Cは、二酸化炭素をほとんど吸収しなかったことによる。 Elemental analysis of electrolyte solution C and electrolyte solution D after bubbling revealed that electrolyte solution C contained less than 0.10% by weight of carbon and electrolyte solution D contained approximately 0.61% by weight of carbon. It was confirmed that This is because electrolyte solution D absorbed carbon dioxide in bubbling dry air and was oxidized by this carbon dioxide to produce carbonate, whereas electrolyte solution C hardly absorbed carbon dioxide. It depends.

(試験10)
電解液A、B、C及びDの調製と同様に、塩化亜鉛(II)1mol部に対し、それぞれ水50mol部、水10mol部、及び1.8mol部の比となるように、塩化亜鉛(II)及び水を混合して塩化亜鉛水溶液を調製した。図11では、それぞれZnCl・50HO、ZnCl・10HO、及びZnCl・1.80HOと称する。
(Test 10)
In the same manner as in the preparation of electrolyte solutions A, B, C and D, zinc chloride (II ) and water to prepare an aqueous solution of zinc chloride. In FIG. 11 they are referred to as ZnCl 2 .50H 2 O, ZnCl 2 .10H 2 O, and ZnCl 2 .1.80H 2 O, respectively.

電解液A、B、C及びD、並びに、ZnCl・50HO、ZnCl・10HO、及びZnCl・1.80HOの融点(言い換えれば、完全に液体になる温度)を、示差走査熱量分析により測定した。結果は表1に示す。なお、表1中のnは、ZnCl・nHOのnの値である。 The melting points (in other words, the temperature at which they become completely liquid) of electrolytes A, B, C and D, and ZnCl 2 .50H 2 O, ZnCl 2 .10H 2 O, and ZnCl 2 .1.80H 2 O are Measured by differential scanning calorimetry. Results are shown in Table 1. In addition, n in Table 1 is the value of n of ZnCl2.nH2O .

Figure 0007219462000001
Figure 0007219462000001

ZnCl・1.8HOは塩化亜鉛濃度が高く、電解液としての保水性に優れるが、融点は28.2℃であるため、液体状態を常に維持しつつ室温で取り扱うのは難しい。一方、電解液C(ZnCl・2.33HO)は塩化亜鉛濃度が高く、電解液としての保水性に優れ、かつ室温以下で、液体状態を維持でき電解液としての使用に好適である。
ZnCl 2 .1.8H 2 O has a high concentration of zinc chloride and is excellent in water retention as an electrolytic solution, but since it has a melting point of 28.2° C., it is difficult to handle it at room temperature while always maintaining its liquid state. On the other hand, electrolyte C (ZnCl 2 2.33H 2 O) has a high concentration of zinc chloride, is excellent in water retention as an electrolyte, and can maintain a liquid state at room temperature or lower, making it suitable for use as an electrolyte. .

Claims (7)

正極、亜鉛を含む負極及び電解液を備える亜鉛二次電池であって、
前記電解液は、pHが7未満であり、亜鉛金属塩及び水を含有し、
前記亜鉛金属塩に対する前記水の含有量がモル比で2以上6以下の範囲であり、
前記亜鉛金属塩が塩化亜鉛であり、
前記正極が、正極活物質として、酸素、又は金属イオンを挿入脱離可能な金属酸化物、硫化物、若しくはポリアニオン系化合物を含有する、亜鉛二次電池。
A zinc secondary battery comprising a positive electrode, a negative electrode containing zinc, and an electrolytic solution,
the electrolyte has a pH of less than 7 and contains a zinc metal salt and water;
The content of the water to the zinc metal salt is in the range of 2 or more and 6 or less in molar ratio,
the zinc metal salt is zinc chloride;
A zinc secondary battery, wherein the positive electrode contains, as a positive electrode active material, oxygen or a metal oxide, sulfide, or polyanion compound capable of intercalating and deintercalating metal ions.
前記負極が、負極活物質として、亜鉛、亜鉛合金、又は亜鉛酸化物を含有する、請求項に記載の亜鉛二次電池。 The zinc secondary battery according to claim 1 , wherein the negative electrode contains zinc, a zinc alloy, or zinc oxide as a negative electrode active material. 前記電解液における、前記亜鉛金属塩に対する前記水の含有量がモル比で2以上4以下の範囲である、請求項1又は2に記載の亜鉛二次電池。 The zinc secondary battery according to claim 1 or 2 , wherein the content of said water in said electrolytic solution is in the range of 2 or more and 4 or less in molar ratio with respect to said zinc metal salt. 前記電解液が、アルカリ金属塩又はアルカリ土類金属塩を含有する、請求項1~のいずれか一項に記載の亜鉛二次電池。 The zinc secondary battery according to any one of claims 1 to 3 , wherein the electrolyte contains an alkali metal salt or an alkaline earth metal salt. 前記電解液が、非水溶媒を含有する、請求項1~のいずれか一項に記載の亜鉛二次電池。 The zinc secondary battery according to any one of claims 1 to 4 , wherein the electrolyte contains a non-aqueous solvent. 前記非水溶媒が、非プロトン性溶媒である、請求項に記載の亜鉛二次電池。 The zinc secondary battery according to claim 5 , wherein said non-aqueous solvent is an aprotic solvent. 前記電解液が、マトリクスポリマー又は無機粒子を含有し、
ゲル又は固体状である、請求項1~のいずれか一項に記載の亜鉛二次電池。
the electrolytic solution contains a matrix polymer or inorganic particles,
The zinc secondary battery according to any one of claims 1 to 6 , which is gel or solid.
JP2019058868A 2019-03-26 2019-03-26 zinc secondary battery Active JP7219462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019058868A JP7219462B2 (en) 2019-03-26 2019-03-26 zinc secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019058868A JP7219462B2 (en) 2019-03-26 2019-03-26 zinc secondary battery

Publications (2)

Publication Number Publication Date
JP2020161308A JP2020161308A (en) 2020-10-01
JP7219462B2 true JP7219462B2 (en) 2023-02-08

Family

ID=72639697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019058868A Active JP7219462B2 (en) 2019-03-26 2019-03-26 zinc secondary battery

Country Status (1)

Country Link
JP (1) JP7219462B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11152619B2 (en) * 2019-06-28 2021-10-19 City University Of Hong Kong Energy storage device and an electrode for an energy storage device
CN114039108B (en) * 2021-11-10 2024-03-26 湖北大学 High Wen Shuiji-resistant zinc ion battery electrolyte and preparation method and application thereof
CN115020706B (en) * 2022-05-30 2023-06-09 西南科技大学 Water-based zinc ion battery, rolled hectorite@zinc anode material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535045A (en) 2014-10-06 2017-11-24 エオス エナジー ストレージ, エルエルシー Electrolytes for rechargeable electrochemical cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482614A (en) * 1982-11-15 1984-11-13 Gel, Inc. Zinc-bromine battery with long term stability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535045A (en) 2014-10-06 2017-11-24 エオス エナジー ストレージ, エルエルシー Electrolytes for rechargeable electrochemical cells

Also Published As

Publication number Publication date
JP2020161308A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
Walter et al. Challenges and benefits of post-lithium-ion batteries
Zhang et al. Aqueous lithium/air rechargeable batteries
US9525197B2 (en) Stable non-aqueous electrolyte promoting ideal reaction process in rechargeable lithium-air batteries
JP7219462B2 (en) zinc secondary battery
JP7449600B2 (en) Ultra-stable rechargeable manganese battery with solid-liquid-gas reaction
CN103384929A (en) Alkali metal-air flow batteries
JP6859317B2 (en) Semi-solid flow Li / O2 battery
JPWO2018221309A1 (en) Secondary battery and device including secondary battery
JP2020024819A (en) Positive active material for aqueous zinc ion battery
JP5256649B2 (en) Water-based lithium secondary battery
US9799919B2 (en) In-situ magnesium-metal generated rechargeable magnesium battery
JP5556618B2 (en) Lithium air battery
JP2008269824A (en) Electrochemical cell
JP2007214027A (en) Aqueous lithium secondary battery
US20240047714A1 (en) Rechargeable flow battery
JP2012009322A (en) Aqueous lithium ion secondary battery
JP7243617B2 (en) Aqueous battery
Song et al. Solvation structure regulation of deep eutectic solvents: stabilization of the zinc anode in rechargeable zinc–air batteries
CN109980226B (en) Zinc cathode with polyamide brightener layer and preparation method and application thereof
CN108063271A (en) A kind of half flow battery
US8877025B2 (en) Combinatorial material screening method for an electrochemical cell
Tan et al. Materials and Technologies of Al-Air Batteries
JP2020030997A (en) Positive electrode for zinc ion battery
JP7111937B2 (en) Magnesium secondary battery and negative electrode for magnesium secondary battery with inorganic material
JPH0821430B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230120

R150 Certificate of patent or registration of utility model

Ref document number: 7219462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150