JP2014170715A - Cell - Google Patents
Cell Download PDFInfo
- Publication number
- JP2014170715A JP2014170715A JP2013043288A JP2013043288A JP2014170715A JP 2014170715 A JP2014170715 A JP 2014170715A JP 2013043288 A JP2013043288 A JP 2013043288A JP 2013043288 A JP2013043288 A JP 2013043288A JP 2014170715 A JP2014170715 A JP 2014170715A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- aqueous electrolyte
- battery
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、電池に関し、より詳しくは、水系電解液を流通させて充放電を行う電池に関する。 The present invention relates to a battery, and more particularly to a battery that charges and discharges by circulating an aqueous electrolyte.
二次電池の一種であるレドックス・フロー電池は、電解液中に溶解した活物質の酸化還元反応を溶液の循環によって進行させて、充電と放電とを行う流動電池である。バナジウム系、ZnBr、ZnCr電池などが実用化されている。このうち、バナジウム系の電池では、高サイクル特性等の特徴を有するが、原料が希少であり、より豊富に存在する原料を用いることが望まれている。ZnBr電池やZnCr電池は、原料資源が自然界に比較的豊富であるが、Zn極におけるデンドライト生成の問題があり、その防止のため、定期的にフル放電を行うという操作が必要である。硫化ナトリウムなどの硫化物イオンを活物質として用いる電池は、原料資源が自然界に豊富にあり、製造のしやすさ、低コスト化といった観点で有望である。硫化物イオンを負極活物質として用いる系として、硫化ナトリウム−臭素電池が実証プラントとして検討されている。その他、フェロシアン化ナトリウム正極と組み合わせたフロー電池の報告もある。一方、硫化物イオンを正極活物質として用い、たとえば亜鉛を負極として用いた電池も原料資源の豊富さや低コスト化など有望な電池系である。 A redox flow battery, which is a type of secondary battery, is a fluid battery that performs charging and discharging by causing an oxidation-reduction reaction of an active material dissolved in an electrolytic solution to proceed by circulating the solution. Vanadium-based, ZnBr, ZnCr batteries and the like have been put into practical use. Among these, vanadium-based batteries have characteristics such as high cycle characteristics, but the raw materials are scarce and it is desired to use raw materials that are more abundant. Although ZnBr batteries and ZnCr batteries have relatively abundant raw material resources in nature, there is a problem of dendrite generation at the Zn electrode, and in order to prevent this, an operation of regularly performing full discharge is necessary. A battery using sulfide ions such as sodium sulfide as an active material has abundant raw material resources in nature, and is promising in terms of ease of manufacture and cost reduction. As a system using sulfide ions as a negative electrode active material, a sodium sulfide-bromine battery has been studied as a demonstration plant. There are also reports of flow batteries combined with sodium ferrocyanide cathodes. On the other hand, batteries using sulfide ions as the positive electrode active material, for example, zinc as the negative electrode, are also promising battery systems such as abundant raw material resources and cost reduction.
例えば、硫化ナトリウムなど水溶性硫化物を正極活物質として溶解した水系電解液を例に説明すると、充放電を行うと硫黄の酸化状態によって二段の放電特性を示す。このうち、低酸化状態における充放電で非常に大きな分極が発生し、充放電のエネルギー効率が低下してしまうという問題があった。例えば、これに対し、カーボンにコバルトを触媒として担持することにより過電圧を低減するものが提案されている(例えば、非特許文献1参照)。 For example, an aqueous electrolyte solution in which a water-soluble sulfide such as sodium sulfide is dissolved as a positive electrode active material will be described as an example. When charging / discharging, a two-stage discharge characteristic is exhibited depending on the oxidation state of sulfur. Among them, there is a problem that very large polarization occurs in charge and discharge in a low oxidation state, and energy efficiency of charge and discharge is lowered. For example, on the other hand, what reduces overvoltage by carrying | supporting cobalt on carbon as a catalyst is proposed (for example, refer nonpatent literature 1).
しかしながら、上述の非特許文献1の電池では、カーボンにコバルトを触媒として担持することにより、過電圧を低減するが、コバルトは資源量が豊富ではなくコストがかかり、触媒劣化もあるため、より根本的な解決法が必要であった。即ち、充放電のエネルギー効率の低下をより抑制することが望まれていた。なお、水溶性硫化物を正極活物質に用いる電池を例としたが、水溶性硫化物を負極活物質に用いる電池においても、上記放電時の現象が充電時におきるだけであり、本質的な差異はない。 However, in the battery of Non-Patent Document 1 described above, cobalt is supported on carbon as a catalyst to reduce overvoltage. However, cobalt is not abundant in resources, is costly, and has catalyst degradation. Needed a solution. That is, it has been desired to further suppress a decrease in energy efficiency of charge / discharge. In addition, although the battery using a water-soluble sulfide as a positive electrode active material was taken as an example, even in a battery using a water-soluble sulfide as a negative electrode active material, the phenomenon at the time of discharging only occurs at the time of charging, which is an essential difference. There is no.
本発明は、このような課題に鑑みなされたものであり、エネルギー効率の低下をより抑制することができる電池を提供することを主目的とする。 This invention is made | formed in view of such a subject, and it aims at providing the battery which can suppress the fall of energy efficiency more.
上述した目的を達成するために鋭意研究したところ、本発明者らは、水溶性硫化物を溶解した水系電解液を用いる電池において、電解液中の硫黄濃度を高めることにより、最も還元された状態、例えば正極として使用時には放電時、負極として使用時には充電時においても高酸化状態を維持することができ、分極を大幅に低減させ、エネルギー効率の低下をより抑制することができることを見いだし、本発明を完成するに至った。 As a result of diligent research to achieve the above-described object, the inventors of the present invention have found that in a battery using an aqueous electrolyte solution in which a water-soluble sulfide is dissolved, the most reduced state is obtained by increasing the sulfur concentration in the electrolyte solution. For example, it has been found that a high oxidation state can be maintained even during charging when used as a positive electrode and during charging when used as a negative electrode, polarization can be greatly reduced, and a decrease in energy efficiency can be further suppressed. It came to complete.
即ち、本発明の電池は、正極と、負極と、充電又は放電により最も還元された状態の組成式M2Sy(但しMはアルカリ金属)においてy≧3であるアルカリ金属多硫化物を活物質として溶解している水系電解液と、を備えたものである。 That is, the battery of the present invention activates a positive electrode, a negative electrode, and an alkali metal polysulfide in which y ≧ 3 in the composition formula M 2 S y (where M is an alkali metal) in the most reduced state by charging or discharging. And an aqueous electrolyte solution dissolved as a substance.
本発明の電池は、エネルギー効率の低下をより抑制することができる。このような効果が得られる理由は、以下のように推測される。例えば、硫化物電池では、その硫黄の酸化状態によって分極が大きく変化する。例えば、ナトリウム硫化物を正極活物質として水系電解液に溶解した電池では、Na2S4以上の高酸化状態(低還元状態)では高電圧、Na2S3−Na2Sの低酸化状態(高還元状態)では低電圧になるという、硫黄の酸化状態によって2段の放電特性を示す。ここで、高酸化状態でのみ使用することができれば、分極低減につながる。例えば、還元が進むと、還元によって発生する硫化物アニオンの対イオンが必要となるため、対イオンであるアルカリ金属イオンの量を制限することによって、硫黄の酸化状態を制御することができる。あるいは、対極の活物質量を制限し、ポリ硫化物の硫黄酸化状態が最も還元された状態においても高酸化状態になるように制御することができる。ここでは、最も還元された状態の組成式M2SyにおいてY≧3に制限することにより、分極を大幅に低減させ、エネルギー効率を向上させることができる。 The battery of the present invention can further suppress a decrease in energy efficiency. The reason why such an effect is obtained is presumed as follows. For example, in a sulfide battery, the polarization changes greatly depending on the oxidation state of sulfur. For example, in a battery in which sodium sulfide is dissolved in a water-based electrolyte as a positive electrode active material, a high voltage is applied in a high oxidation state (low reduction state) of Na 2 S 4 or more, and a low oxidation state of Na 2 S 3 -Na 2 S ( In the high reduction state), it exhibits a two-stage discharge characteristic depending on the oxidation state of sulfur, which is a low voltage. Here, if it can be used only in a highly oxidized state, it leads to a reduction in polarization. For example, as the reduction proceeds, a counterion of a sulfide anion generated by the reduction is required. Therefore, the oxidation state of sulfur can be controlled by limiting the amount of alkali metal ions that are counterions. Alternatively, the amount of active material at the counter electrode can be limited, and control can be performed so that the sulfur oxidation state of the polysulfide is in a highly oxidized state even in the most reduced state. Here, by limiting the Y ≧ 3 in the most reduced composition formula M 2 S y states, polarization greatly reduced, thereby improving the energy efficiency.
本発明の電池は、正極と、負極と、水系電解液と、を備えている。この水系電解液は、充電又は放電により最も還元された状態の組成式M2Sy(但しMはアルカリ金属)においてy≧3であるアルカリ金属多硫化物を活物質として溶解している。本発明の電池は、正極及び/又は負極に電解液を用いるレドックスフロー電池としてもよい。この電池は、例えば、ケースを正極と負極とに分離するセパレータと、正極又は負極を収容する電極室と、電極室に接続された送液部と、を備え、水系電解液は、電極室に収容され、送液部により流通されるものとしてもよい。このとき、水系電解液は、正極に接触した状態で正極室に収容され、送液部により流通されるものとしてもよい。あるいは、水系電解液は、負極に接触した状態で負極室に収容され、送液部により流通されるものとしてもよい。ここでいう正極、負極は、2種の電極の電位差で決まるものであり、本発明の水系電解液を用いる電極が対極に対し貴な電位であれば正極、卑な電位であれば負極となる。例えば、前者の例が、亜鉛−硫化ナトリウム電池であり、後者の例が硫化ナトリウム−臭素電池である。以下、レドックスフロー電池について具体的に説明する。 The battery of the present invention includes a positive electrode, a negative electrode, and an aqueous electrolyte. This aqueous electrolytic solution dissolves, as an active material, an alkali metal polysulfide in which y ≧ 3 in the composition formula M 2 S y (where M is an alkali metal) in the most reduced state by charging or discharging. The battery of the present invention may be a redox flow battery using an electrolyte for the positive electrode and / or the negative electrode. The battery includes, for example, a separator that separates the case into a positive electrode and a negative electrode, an electrode chamber that houses the positive electrode or the negative electrode, and a liquid feeding unit connected to the electrode chamber. It is good also as what is accommodated and distribute | circulated by the liquid feeding part. At this time, the aqueous electrolyte may be accommodated in the positive electrode chamber in contact with the positive electrode and distributed through the liquid feeding unit. Alternatively, the aqueous electrolyte may be accommodated in the negative electrode chamber in contact with the negative electrode and distributed through the liquid feeding unit. The positive electrode and the negative electrode here are determined by the potential difference between the two types of electrodes. If the electrode using the aqueous electrolyte of the present invention has a noble potential with respect to the counter electrode, the positive electrode will be a negative electrode. . For example, the former example is a zinc-sodium sulfide battery, and the latter example is a sodium sulfide-bromine battery. Hereinafter, the redox flow battery will be specifically described.
本発明の電池において、水系電解液は、充電又は放電により最も還元された状態の組成式M2Sy(但しMはアルカリ金属)においてy≧3であるアルカリ金属多硫化物を活物質として溶解している。ここでいう放電とはポリ硫化物を正極活物質として用いた場合であり、充電とは負極として用いた場合である。なお、正極負極の区別は対極との電位差で決まるため、正極として用いるか負極として用いるかに、本質的な差異はない。この水系電解液は、上記組成式でy≧3.3であるアルカリ金属多硫化物を溶解していることがより好ましくy≧3.5であることが更に好ましい。y≧3.3の範囲では、エネルギー効率を更に高めることができる。また、エネルギー密度の観点からは、y≦5であることが好ましい。アルカリ金属多硫化物に含まれるアルカリ金属としては、例えば、ナトリウム、リチウム、カリウムなどが挙げられ、このうち資源的に豊富なナトリウムがより好ましい。 In the battery of the present invention, the aqueous electrolyte is dissolved by using, as an active material, an alkali metal polysulfide in which y ≧ 3 in the composition formula M 2 S y (where M is an alkali metal) in the most reduced state by charging or discharging. doing. Discharge here is a case where polysulfide is used as a positive electrode active material, and charging is a case where it is used as a negative electrode. In addition, since the distinction between the positive electrode and the negative electrode is determined by the potential difference from the counter electrode, there is no essential difference between using as the positive electrode or the negative electrode. This aqueous electrolyte solution is more preferably dissolved in an alkali metal polysulfide having y ≧ 3.3 in the above composition formula, and more preferably y ≧ 3.5. In the range of y ≧ 3.3, energy efficiency can be further increased. From the viewpoint of energy density, y ≦ 5 is preferable. Examples of the alkali metal contained in the alkali metal polysulfide include sodium, lithium, potassium, and the like. Among these, sodium rich in resources is more preferable.
本発明の電池において、活物質としてのアルカリ金属及び硫黄が、組成式M2Sxにおいてx>4の範囲で含まれるよう水系電解液が作製されているものとしてもよい。こうすれば、最も還元された状態の組成式M2Syにおいてy≧3としやすく、エネルギー効率の低下をより抑制することができる。この組成式M2Sxにおいて、x≧5であることが好ましく、x≧6であることがより好ましい。なお、「組成式M2Sxにおいてx>4の範囲で水系電解液が作製されている」とは、本発明の水系電解液でのアルカリ金属と硫黄とのいわゆる仕込み量を意味する。このとき、不要な硫黄を用いないという観点から、この組成式においてx≦10であることが好ましい。なお、対極の水系電解液にもアルカリ金属が含まれることがあるから、仕込み組成M2Sxと、最還元時の組成式M2Syとでは、x≧yの関係となる。 In the battery of the present invention, the aqueous electrolyte solution may be prepared so that alkali metals and sulfur as active materials are included in the range of x> 4 in the composition formula M 2 S x . This way, easily and y ≧ 3 in the most reduced composition formula M 2 S y states, it is possible to further suppress a decrease in energy efficiency. In this composition formula M 2 S x , x ≧ 5 is preferable, and x ≧ 6 is more preferable. “The aqueous electrolyte is prepared in the range of x> 4 in the composition formula M 2 S x ” means a so-called charge amount of alkali metal and sulfur in the aqueous electrolyte of the present invention. At this time, from the viewpoint of not using unnecessary sulfur, it is preferable that x ≦ 10 in this composition formula. In addition, since the alkali metal may be contained in the aqueous electrolyte solution of the counter electrode, the relationship of x ≧ y is established between the charged composition M 2 S x and the composition formula M 2 S y at the time of the most reduction.
アルカリ金属多硫化物は、組成式M2Sx(Mはアルカリ金属)であり、硫化物イオンがポリ硫化物イオンの形である、ポリ硫化ナトリウム、ポリ硫化リチウム、ポリ硫化カリウムなどである。アルカリ金属多硫化物は、硫化ナトリウム、硫化リチウム、硫化カリウムなどのアルカリ金属硫化物に硫黄を添加することによって、容易に、xの値を調整することができる。水系電解液のアルカリ金属多硫化物の溶解量は、特に限定されないが、水系電解液に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることが更に好ましい。この水系電解液は、アルカリ金属多硫化物を溶解するものであるが、硫化物活物質のすべてを溶解している必要はなく、飽和状態で一部析出した状態であってもよい。 The alkali metal polysulfide has a composition formula M 2 S x (M is an alkali metal), and includes sodium sulfide, lithium polysulfide, and potassium potassium sulfide in which sulfide ions are in the form of polysulfide ions. In the alkali metal polysulfide, the value of x can be easily adjusted by adding sulfur to an alkali metal sulfide such as sodium sulfide, lithium sulfide, or potassium sulfide. The amount of alkali metal polysulfide dissolved in the aqueous electrolyte is not particularly limited, but is preferably 5% by mass or more, more preferably 10% by mass or more, and more preferably 15% by mass or more with respect to the aqueous electrolyte. More preferably. This aqueous electrolytic solution dissolves alkali metal polysulfides, but does not need to dissolve all of the sulfide active material, and may be in a partially precipitated state in a saturated state.
本発明の電池において、水系電解液は、中性及びアルカリ性であることが好ましく、水酸化ナトリウム、水酸化カリウムなどを溶解したアルカリ溶液としてもよいし、緩衝剤を用いてpHを中性からアルカリ域に制御した緩衝溶液としてもよい。水系電解液が酸性であると、硫化水素の発生が懸念されるため、好ましくない。この水系電解液のpHは、9以上の範囲であることが好ましい。水系電解液は、例えば、0.1N以上4N以下の水酸化アルカリ溶液とすることが好ましい。 In the battery of the present invention, the aqueous electrolyte is preferably neutral and alkaline, and may be an alkaline solution in which sodium hydroxide, potassium hydroxide, etc. are dissolved, or the pH is adjusted from neutral to alkaline using a buffer. It is good also as the buffer solution controlled to the area. It is not preferable that the aqueous electrolyte is acidic because generation of hydrogen sulfide is a concern. The aqueous electrolyte solution preferably has a pH of 9 or more. The aqueous electrolyte is preferably an alkali hydroxide solution of 0.1 N or more and 4 N or less, for example.
本発明の電池において、電極は、水系電解液に接触する電極集電体を備えている。電極集電体としては、活物質(アルカリ金属多硫化物)と電子の授受が可能であれば特に限定されないが、例えば、ケッチェンブラックやアセチレンブラック等のカーボンブラック類、鱗片状黒鉛のような天然黒鉛や人造黒鉛、膨張黒鉛などのグラファイト類、炭素繊維や金属繊維などの導電性繊維類を含むものとしてもよい。また、電極集電体は、白金、銅や銀、ニッケル、アルミニウムなどの金属類でもよいし、ポリフェニレン誘導体などの有機導電性材料などとしてもよい。また、電極集電体に水系電解液を透過可能な孔を設け、この孔を介して電極集電体と水系電解液との間で電子の授受が行われるようにしてもよい。 In the battery of the present invention, the electrode includes an electrode current collector that contacts the aqueous electrolyte. The electrode current collector is not particularly limited as long as it can exchange electrons with an active material (alkali metal polysulfide). For example, carbon blacks such as ketjen black and acetylene black, and scaly graphite It may include graphite such as natural graphite, artificial graphite, and expanded graphite, and conductive fibers such as carbon fiber and metal fiber. The electrode current collector may be a metal such as platinum, copper, silver, nickel, or aluminum, or may be an organic conductive material such as a polyphenylene derivative. Alternatively, a hole through which the aqueous electrolyte solution can permeate may be provided in the electrode current collector, and electrons may be exchanged between the electrode current collector and the aqueous electrolyte solution through this hole.
本発明の電池において、アルカリ金属多硫化物を溶解した水系電解液を正極に用いる場合の負極は、使用する負極活物質が充放電するときの電位範囲において電気化学的に安定な材質を用いることが好ましく、例えば、亜鉛の金属板などが挙げられる。このとき、負極の水系電解液は、負極の材質に応じた水溶液とすることができ、例えば、ジンケートイオンなどの亜鉛イオンが含まれるものとしてもよく、酸化亜鉛を懸濁し飽和したものとしてもよい。負極や負極の水系電解液は、電池の性能を考慮して適宜、選択するものとしてもよい。 In the battery of the present invention, the negative electrode in the case where an aqueous electrolyte solution in which an alkali metal polysulfide is dissolved is used for the positive electrode, a material that is electrochemically stable in the potential range when the negative electrode active material to be used is charged and discharged is used. Are preferable, for example, a metal plate of zinc. At this time, the aqueous electrolyte solution of the negative electrode can be an aqueous solution according to the material of the negative electrode. For example, the aqueous electrolyte solution may contain zinc ions such as zincate ions, or may be suspended and saturated with zinc oxide. . The negative electrode and the aqueous electrolyte solution for the negative electrode may be appropriately selected in consideration of battery performance.
本発明の電池において、アルカリ金属多硫化物を溶解した水系電解液を負極に用いる場合の正極は、例えば、アルカリ金属臭化物を溶解した水系電解液や、フェロシアン化アルカリ金属を溶解した水系電解液などを正極電解液に用いることができる。アルカリ金属臭化物は、例えば、臭化リチウム、臭化ナトリウム及び臭化カリウムなどが挙げられる。フェロシアン化アルカリ金属としては、例えば、フェロシアン化リチウム、フェロシアン化ナトリウム及びフェロシアン化カリウムなどが挙げられる。これらのアルカリは、負極電解液に応じて適宜選択すればよい。 In the battery of the present invention, the positive electrode in the case where an aqueous electrolytic solution in which alkali metal polysulfide is dissolved is used as the negative electrode is, for example, an aqueous electrolytic solution in which alkali metal bromide is dissolved or an aqueous electrolytic solution in which ferrocyanide alkali metal is dissolved. Etc. can be used for the positive electrode electrolyte. Examples of the alkali metal bromide include lithium bromide, sodium bromide, and potassium bromide. Examples of the alkali metal ferrocyanide include lithium ferrocyanide, sodium ferrocyanide, and potassium ferrocyanide. What is necessary is just to select these alkalis suitably according to a negative electrode electrolyte solution.
本発明の電池において、セパレータは、この電池の使用条件に耐えうる組成であれば特に限定されないが、例えば、イオンを伝導可能なイオン伝導性高分子膜や、イオン伝導性固体電解質膜とすることができる。イオン伝導性高分子膜としては、例えば、炭素-フッ素からなる疎水性テトラフルオロエチレン骨格とスルホン酸基を持つパーフルオロ側鎖から構成されるパーフルオロカーボン材料(テトラフルオロエチレン−パーフルオロビニル共重合体)などが挙げられる。また、イオン伝導性固体電解質膜としては、例えば、カチオン伝導性ガラス(酸化物系ガラス)が挙げられる。 In the battery of the present invention, the separator is not particularly limited as long as it has a composition that can withstand the use conditions of the battery. For example, an ion conductive polymer film that can conduct ions or an ion conductive solid electrolyte film is used. Can do. Examples of the ion conductive polymer membrane include a perfluorocarbon material (tetrafluoroethylene-perfluorovinyl copolymer) composed of a hydrophobic tetrafluoroethylene skeleton composed of carbon-fluorine and a perfluoro side chain having a sulfonic acid group. ) And the like. Examples of the ion conductive solid electrolyte membrane include cation conductive glass (oxide glass).
本発明の電池において、送液部は例えば、送液ポンプとしてもよい。正極及び又は負極の水系電解液は、送液ポンプを用いて所定量、流通させればよく、その所定流量は、電池スケールにあわせて適宜設定することができる。また、送液部は、正極室、送液ポンプ、電解液タンクに接続された循環経路を備え、正極の水系電解液を循環させるものとしてもよい。また、送液部は、負極室、送液ポンプ、電解液タンクに接続された循環経路を備え、負極の水系電解液を循環させるものとしてもよい。 In the battery of the present invention, the liquid feeding unit may be a liquid feeding pump, for example. The aqueous electrolyte solution for the positive electrode and / or the negative electrode may be circulated in a predetermined amount using a liquid feed pump, and the predetermined flow rate can be appropriately set according to the battery scale. In addition, the liquid feeding unit may include a circulation path connected to the positive electrode chamber, the liquid feeding pump, and the electrolytic solution tank, and circulate the positive aqueous electrolyte solution. In addition, the liquid feeding unit may include a circulation path connected to the negative electrode chamber, the liquid feeding pump, and the electrolyte tank, and circulate the aqueous electrolyte solution of the negative electrode.
図1は、レドックスフロー電池10の構成の概要を示す説明図である。レドックスフロー電池10は、ケース12と、このケース12の内部を正極室14と負極室16とに分離するセパレータ18と、正極室14に配置された正極集電板20と、負極室16に配置された負極集電板22とを備えたものとした。このレドックスフロー電池10では、正極室14と正極の水系電解液を貯蔵する正極水系電解液タンク24との間に正極側循環経路26を設け、この正極側循環経路26の途中に正極側循環ポンプ28が取り付けられている。一方、負極室16と負極の水系電解液を貯蔵する負極水系電解液タンク30との間に負極側循環経路32を設け、この負極側循環経路32の途中に負極側循環ポンプ34が取り付けられている。このレドックスフロー電池10で、アルカリ金属ポリ硫化物を溶解した水系電解液を正極に用いる場合を例にとって説明すれば、正極の水系電解液には、最も還元された状態の組成式M2Sy(但しMはアルカリ金属)においてy≧3であるアルカリ金属多硫化物が活物質として含まれている。そして、正極側循環ポンプ28により正極の水系電解液を循環すると共に、負極側循環ポンプ34により負極の水系電解液を循環しながら、充放電を行う。なお、臭素系電解液を用いるなど、より貴な電極と組み合わせる場合は、本発明の水系電解液を負極電解液とした、同様の構成のレドックスフロー電池とすることができる。 FIG. 1 is an explanatory diagram showing an outline of the configuration of the redox flow battery 10. The redox flow battery 10 includes a case 12, a separator 18 that separates the inside of the case 12 into a positive electrode chamber 14 and a negative electrode chamber 16, a positive current collector 20 disposed in the positive electrode chamber 14, and a negative electrode chamber 16. The negative electrode current collector plate 22 was provided. In the redox flow battery 10, a positive electrode side circulation path 26 is provided between the positive electrode chamber 14 and a positive electrode aqueous electrolyte tank 24 that stores the positive electrode aqueous electrolyte, and a positive electrode side circulation pump is provided in the middle of the positive electrode side circulation path 26. 28 is attached. On the other hand, a negative electrode side circulation path 32 is provided between the negative electrode chamber 16 and the negative electrode aqueous electrolyte solution tank 30 for storing the negative electrode aqueous electrolyte solution, and a negative electrode side circulation pump 34 is attached in the middle of the negative electrode side circulation path 32. Yes. In the redox flow battery 10, a case where an aqueous electrolyte solution in which an alkali metal polysulfide is dissolved is used as a positive electrode will be described as an example. The positive aqueous electrolyte solution contains a composition formula M 2 S y in the most reduced state. (Wherein M is an alkali metal), an alkali metal polysulfide satisfying y ≧ 3 is contained as an active material. The positive electrode-side circulation pump 28 circulates the positive electrode aqueous electrolyte and the negative electrode-side circulation pump 34 circulates the negative electrode aqueous electrolyte so that charging and discharging are performed. In addition, when combining with a more noble electrode such as using a bromine-based electrolytic solution, a redox flow battery having the same configuration in which the aqueous electrolytic solution of the present invention is used as a negative-electrode electrolytic solution can be obtained.
以上詳述した本発明の電池では、最も還元された状態の組成式M2Sy(但しMはアルカリ金属)においてy≧3であるアルカリ金属多硫化物を溶解している水系電解液を備えるため、エネルギー効率をより高めることができる。このような効果が得られる理由は、例えば、アルカリ金属多硫化物の還元が進むと還元によって発生する硫化物アニオンの対イオンが必要となるが、対イオンであるアルカリ金属イオンの量が制限されている。このため、硫黄の酸化状態を制御することができ、例えば、2段の放電特性のうち分極の少ない高酸化状態でのみ使用することができるため、エネルギー効率の低下をより抑制することができる。 The battery of the present invention described in detail above includes an aqueous electrolyte solution in which an alkali metal polysulfide having y ≧ 3 in the composition formula M 2 S y in the most reduced state (where M is an alkali metal) is dissolved. Therefore, energy efficiency can be further increased. The reason why such an effect is obtained is that, for example, when the reduction of the alkali metal polysulfide proceeds, a counterion of a sulfide anion generated by the reduction is required, but the amount of the alkali metal ion that is a counterion is limited. ing. For this reason, the oxidation state of sulfur can be controlled. For example, since it can be used only in the high oxidation state with little polarization among the two-stage discharge characteristics, the reduction in energy efficiency can be further suppressed.
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
例えば上述した実施形態では、レドックスフロー電池として説明したが、特にこれに限定されず、電解液を流通させないものとしてもよい。こうしても、水系電解液には、活物質である硫黄化合物と、水溶性化合物とを含むため、エネルギー効率をより高めることができる。 For example, in the above-described embodiment, the redox flow battery has been described. However, the present invention is not particularly limited thereto, and the electrolytic solution may not be circulated. Even in this case, since the aqueous electrolyte contains a sulfur compound that is an active material and a water-soluble compound, energy efficiency can be further improved.
上述した実施形態では、本発明の水系電解液を有する電極の対極についても他の水系電解液を流通させるものとしたが、特にこれに限定されず、対極については水系電解液を流通しない構成としてもよい。 In the above-described embodiment, the other aqueous electrolyte solution is made to circulate also for the counter electrode of the electrode having the aqueous electrolyte solution of the present invention. However, the present invention is not particularly limited thereto, and the counter electrode is configured not to circulate the aqueous electrolyte solution. Also good.
以下には、本発明の電池を具体的に作製した例を実施例として説明する。 Hereinafter, an example in which the battery of the present invention was specifically manufactured will be described as an example.
[評価セル]
図1に示すレドックスフロー電池を作製した。セルの構成を以下説明する。負極として亜鉛金属板、負極の水系電解液として酸化亜鉛を懸濁し飽和した0.5Nの水酸化ナトリウム水溶液を用いた。正極集電体としてカーボン含浸カーボンフェルトを用い、正極の水系電解液として所定濃度の硫化ナトリウムを含む0.5Nの水酸化ナトリウム水溶液を用いた。電極は2.5cm角とした。正極の水系電解液と負極の水系電解液を隔てる隔膜には、陽イオン交換膜ナフィオンN324(登録商標)を用いた。図1のレドックスフロー電池を用い、正負極電解液をそれぞれローラーポンプを用いて3.3ml/分の速さで流しながら、電流を200mAとし、所定時間充電、休止30秒、所定時間放電の充放電操作を行い、次に、電流を50mAとして同様の充放電操作を行う測定を、200mA、50mA、20mA、10mA、5mA、2mA、1mAの順に行い、充電および放電波形を測定した。なお、M2Sy(但しMはアルカリ金属)の使用時のyの値の効果を検討するため、負極は電位が一定となるよう亜鉛金属板を用い評価したが、それ以外の負極を用いることができる。更に、対極として、アルカリ金属臭化物水溶液やフェロシアン化ナトリウム水溶液などを正極電解液に用いた正極とし、アルカリ金属多硫化物を含む水系電解液を負極電解液とする構成にすることもできる。以下、比較例、実施例にて詳細を説明する。
[Evaluation cell]
A redox flow battery shown in FIG. 1 was produced. The configuration of the cell will be described below. A zinc metal plate was used as the negative electrode, and a 0.5N sodium hydroxide aqueous solution in which zinc oxide was suspended and saturated was used as the aqueous electrolyte solution for the negative electrode. A carbon-impregnated carbon felt was used as the positive electrode current collector, and a 0.5 N sodium hydroxide aqueous solution containing a predetermined concentration of sodium sulfide was used as the aqueous electrolyte solution of the positive electrode. The electrode was 2.5 cm square. A cation exchange membrane Nafion N324 (registered trademark) was used as a diaphragm separating the aqueous electrolyte solution of the positive electrode and the aqueous electrolyte solution of the negative electrode. Using the redox flow battery of FIG. 1, the positive and negative electrode electrolytes are each fed at a rate of 3.3 ml / min using a roller pump, the current is 200 mA, charging for a predetermined time, resting for 30 seconds, charging for a predetermined time discharge. The discharge operation was performed, and then the same charge / discharge operation was performed at a current of 50 mA, in the order of 200 mA, 50 mA, 20 mA, 10 mA, 5 mA, 2 mA, 1 mA, and the charge and discharge waveforms were measured. In order to examine the effect of the value of y when using M 2 S y (where M is an alkali metal), the negative electrode was evaluated using a zinc metal plate so that the potential was constant, but other negative electrodes were used. be able to. Further, as the counter electrode, an alkaline metal bromide aqueous solution, a sodium ferrocyanide aqueous solution, or the like can be used as the positive electrode electrolyte, and an aqueous electrolyte containing an alkali metal polysulfide can be used as the negative electrode electrolyte. Hereinafter, details will be described in comparative examples and examples.
[比較例1]
2質量%の硫化ナトリウム(Na2S)を含む0.5N水酸化ナトリウム水溶液を用いた電池を比較例1とした。図2は、充電時の上限電圧を1.2V、放電時の下限電圧を0.1Vとして充放電を行った充放電測定結果である。図2に示すように、放電時では2段の波形を示した。充電を十分に行ったあと、高酸化状態(例えば図2での0.8V以上の高電圧域)で電流を変えながら充放電を10分間繰り返した結果を図3に、低酸化状態(例えば図2での0.8V未満の低電圧域)で充放電を繰り返した結果を図4に示した。高電流の場合、10分いないに電圧が上昇もしくは下降するため、高電圧域での充放電では、充電時の上限電圧を1.3V、放電時の下限電圧を0.6Vとして充放電を行った。また、低電圧域での充放電では、充電時の上限電圧を1.1V、放電時の下限電圧を0.3Vとして充放電を行った。図3に示すように、高電圧域での充放電では、電流値が20mAの高電流で充放電を行うときを除き、分極が小さいことがわかった。また、図4に示すように、低電圧域での充放電では、いずれの電流でも分極が大きいことがわかった。また、図3、4から求めた充放電電圧差の電流依存性を図5に示した。図5に示すように、高電圧域では分極が小さいが、低電圧域では分極が増大することがわかった。
[Comparative Example 1]
A battery using a 0.5N sodium hydroxide aqueous solution containing 2 % by mass of sodium sulfide (Na 2 S) was defined as Comparative Example 1. FIG. 2 shows the charge / discharge measurement results when charging / discharging was performed with the upper limit voltage during charging being 1.2V and the lower limit voltage during discharging being 0.1V. As shown in FIG. 2, a two-stage waveform was shown during discharge. FIG. 3 shows the result of repeated charging and discharging for 10 minutes while changing the current in a high oxidation state (for example, a high voltage region of 0.8 V or higher in FIG. 2) after fully charged. FIG. 4 shows the result of repeated charge and discharge in a low voltage range of less than 0.8 V at 2). In the case of high current, the voltage rises or falls within 10 minutes. Therefore, in charge / discharge in the high voltage range, charge / discharge is performed with the upper limit voltage during charging being 1.3 V and the lower limit voltage during discharging being 0.6 V. It was. Moreover, in charging / discharging in a low voltage region, charging / discharging was performed by setting the upper limit voltage during charging to 1.1V and the lower limit voltage during discharging to 0.3V. As shown in FIG. 3, it was found that the charge and discharge in the high voltage region has a small polarization except when the charge and discharge is performed at a high current of 20 mA. Further, as shown in FIG. 4, it was found that in any charge / discharge in the low voltage region, the polarization is large at any current. FIG. 5 shows the current dependency of the charge / discharge voltage difference obtained from FIGS. As shown in FIG. 5, it was found that the polarization is small in the high voltage range, but the polarization increases in the low voltage range.
[比較例2]
10質量%の硫化ナトリウムを含む0.5N水酸化ナトリウム水溶液を用いた電池を比較例2とした。電流を変えながら、低電圧域で充放電を行った結果を図6に示した。硫化ナトリウムを高濃度にしても分極が大きい結果であった。なお、図5には、充放電電圧差の電流依存性を示した。図5に示すように、低電圧域での充放電では、いずれの電流でも分極が大きいことがわかった。
[Comparative Example 2]
A battery using a 0.5N sodium hydroxide aqueous solution containing 10% by mass of sodium sulfide was defined as Comparative Example 2. FIG. 6 shows the result of charging / discharging in the low voltage region while changing the current. Even when the concentration of sodium sulfide was high, the polarization was large. FIG. 5 shows the current dependency of the charge / discharge voltage difference. As shown in FIG. 5, it was found that polarization was large at any current during charge / discharge in the low voltage range.
[実施例1]
Na2S6の仕込み組成(Na2Sxのx=6)になるよう、硫化ナトリウムに硫黄を混ぜ、これを0.5N水酸化ナトリウム水溶液に溶解し、10質量%のNa2S6を含む0.5N水酸化ナトリウム水溶液を用いた以外は比較例1と同様に電池を作製し、これを実施例1とした。この実施例1の電池を用い、初期状態から10分間、5mAで定電流充電放電を行った。次に、1.2Vまで50mAで充電後、50mAで0.1Vまで放電を行った。また、0.1Vまで放電後、電流を50mA、20mA、10mA、5mA、2mA及び1mAのそれぞれの電流に変更し10分間、充放電を行う作業を繰り返した。図7は、実施例1の各電流における充放電測定結果である。また、図5には、実施例1の充放電電圧差の電流依存性を示した。図7、図5に示すように、実施例1では、放電後であっても比較例1のNa2Sを含む電池の高電圧域と同じ、小さな分極を示した。即ち、充放電のエネルギー効率の低下をより抑制することができることがわかった。
[Example 1]
Sulfur was mixed with sodium sulfide so as to have a charged composition of Na 2 S 6 (Na 2 S x x = 6), and this was dissolved in a 0.5N aqueous sodium hydroxide solution, and 10% by mass of Na 2 S 6 was added. A battery was produced in the same manner as in Comparative Example 1 except that the 0.5N aqueous sodium hydroxide solution was used. Using the battery of Example 1, constant current charging / discharging was performed at 5 mA for 10 minutes from the initial state. Next, the battery was charged to 1.2 V at 50 mA and then discharged to 50 V at 0.1 V. Further, after discharging to 0.1 V, the current was changed to respective currents of 50 mA, 20 mA, 10 mA, 5 mA, 2 mA and 1 mA, and the work of charging and discharging was repeated for 10 minutes. FIG. 7 shows the results of charge / discharge measurement at each current in Example 1. FIG. 5 shows the current dependency of the charge / discharge voltage difference of Example 1. As shown in FIGS. 7 and 5, Example 1 showed the same small polarization as in the high voltage range of the battery containing Na 2 S of Comparative Example 1 even after discharge. That is, it has been found that the reduction in energy efficiency of charge / discharge can be further suppressed.
[実施例2]
仕込み組成がNa2S5(Na2Sxのx=5)である水溶液を用いた以外は実施例1と同様に作製した電池を実施例2とした。
[Example 2]
A battery produced in the same manner as in Example 1 except that an aqueous solution having a charged composition of Na 2 S 5 (Na 2 S x x = 5) was used was designated as Example 2.
[実施例3]
仕込み濃度が20質量%である水溶液を用いた以外は実施例1と同様に作製した電池を実施例3とした。この水系電解液では、20質量%の高濃度では全量は溶解せず、一部固体が析出した状態であった。
[Example 3]
A battery produced in the same manner as in Example 1 except that an aqueous solution having a preparation concentration of 20% by mass was used was designated as Example 3. In this aqueous electrolyte solution, the whole amount was not dissolved at a high concentration of 20% by mass, and a part of solid was precipitated.
[比較例3〜6]
仕込み組成をそれぞれNa2S4、Na2S3.5、Na2S3及びNa2S2とし、その濃度を10質量%とした水溶液を用いた以外は実施例1と同様に作製した電池をそれぞれ比較例3〜6とした。これらの電池を用い、初期状態での10分間を5mAで定電流充電放電する測定、1.2Vまで50mAで充電したあと50mAで0.1Vまで放電する測定、および放電後の10分間を5mAで定電流充電放電する測定を行った。
[Comparative Examples 3 to 6]
Batteries prepared in the same manner as in Example 1 except that the charged composition was Na 2 S 4 , Na 2 S 3.5 , Na 2 S 3 and Na 2 S 2 , respectively, and an aqueous solution having a concentration of 10% by mass was used. It was set as Comparative Examples 3-6. Using these batteries, measurement of charging and discharging at a constant current of 5 mA for 10 minutes in the initial state, measurement of charging at 50 mA to 1.2 V and discharging to 0.1 V at 50 mA, and 10 minutes after discharging at 5 mA Measurements were performed with constant current charging and discharging.
(結果と考察)
実施例1、2および比較例3〜6の、最も硫黄の還元が進んだ状態の組成比を、正極のポリ硫化物濃度と、負極電解液中のナトリウムイオン濃度から求め、表1に示した。また、表1には、実施例1、2および比較例3〜6の電流5mAで測定した充放電電圧差の初期値及び0.1Vまで50mAで放電したあと(放電後)の電流5mAで測定した値も示した。表1に示すように、比較例3〜6では、0.1Vまで50mAで放電した後の充放電電圧差が大きな値を示した。これに対し、実施例1、2は、初期状態および0.1Vまで50mAで放電した後も、小さな充放電電圧差を保っており、分極がより低減していることがわかった。実施例1のように、仕込み組成がNa2Sx(x>4)であるNa2S6では、Na2S4以上の高酸化状態(低還元状態)では高電圧、Na2S3−Na2Sの低酸化状態(高還元状態)では、低電圧となる2段の充放電特性を示すものと思われる(比較例1参照)。この実施例1、2では、低酸化状態まで移行しない最還元状態の組成Na2Syであるため、低酸化状態で生じうる分極が発生しないことが明らかとなった。なお、比較例3のみ初期状態の電圧差が他の比較例に比べ半分程度と小さかった。このことから、比較的良好な比較例3と実施例2との間に好適な組成の境界があるものと推察された。以上のことから、仕込み組成がNa2S4である比較例3が境界であり、最還元状態でNa2Syのyが2.8以上、更にはyが3以上であることが分極低減に有効であることがわかった。
(Results and discussion)
The composition ratios of Examples 1 and 2 and Comparative Examples 3 to 6 with the most advanced sulfur reduction were determined from the polysulfide concentration of the positive electrode and the sodium ion concentration in the negative electrode electrolyte, and are shown in Table 1. . Table 1 also shows the initial value of the charge / discharge voltage difference measured at a current of 5 mA in Examples 1 and 2 and Comparative Examples 3 to 6 and a current of 5 mA after discharging at 50 mA to 0.1 V (after discharge). The values were also shown. As shown in Table 1, in Comparative Examples 3 to 6, the charge / discharge voltage difference after discharging to 0.1 V at 50 mA showed a large value. On the other hand, in Examples 1 and 2, even after discharging at 50 mA to the initial state and 0.1 V, it was found that the small charge / discharge voltage difference was maintained, and the polarization was further reduced. As in Example 1, Na 2 S 6 having a charged composition of Na 2 S x (x> 4) has a high voltage in a high oxidation state (low reduction state) of Na 2 S 4 or higher, and Na 2 S 3 − In the low oxidation state (high reduction state) of Na 2 S, it is considered that a two-stage charge / discharge characteristic with a low voltage is exhibited (see Comparative Example 1). In Examples 1 and 2, since it was the composition Na 2 S y in the most reduced state that did not shift to the low oxidation state, it became clear that polarization that could occur in the low oxidation state did not occur. In Comparative Example 3, the voltage difference in the initial state was as small as about half compared to the other comparative examples. From this, it was inferred that there was a suitable composition boundary between Comparative Example 3 and Example 2 which were relatively good. From the above, Comparative Example 3 in which the feed composition is Na 2 S 4 is the boundary, and in the most reduced state, Na 2 S y has y of 2.8 or more, and further y is 3 or more. It was found to be effective.
図8は、実施例1、比較例2,5の放電容量を1に規格化した規格化容量に対する放電電圧の関係図である。図8に示した放電波形を比較すると、実施例1では0.7V付近の高い電圧でプラトー(電圧平坦部)を保ち、その後、下限電圧まで電圧が低下する1段波形を示した。比較例5ではその中間で初期に0.7V付近と高いものの、その後0.5V付近に低下する図2に近い2段の放電挙動を示した。比較例2では、更に低電圧まで放電状態が続いた。このように、実施例1では、放電時に高電圧、即ち分極が小さい状態を、ほぼすべての放電領域で示すのに対し、Na2Syのyがより小さい比較例では、放電が進むと低電圧域の放電、即ち大きな分極状態を示した。したがって、比較例ではエネルギー効率の低下につながる。本実施例で示したように、最も硫黄の還元が進んだ状態でM2Sy(Mはアルカリ金属)のyが3以上であれば、外部からの制御がなくとも高電圧域(高酸化状態)に維持できることがわかった。 FIG. 8 is a relationship diagram of the discharge voltage with respect to the normalized capacity obtained by normalizing the discharge capacity of Example 1 and Comparative Examples 2 and 5 to 1. When the discharge waveforms shown in FIG. 8 are compared, Example 1 shows a one-stage waveform in which the plateau (voltage flat portion) is maintained at a high voltage around 0.7 V, and then the voltage drops to the lower limit voltage. Comparative Example 5 showed a two-stage discharge behavior similar to that of FIG. 2, which was high at about 0.7 V in the middle and then decreased to about 0.5 V. In Comparative Example 2, the discharge state continued to a lower voltage. As described above, in Example 1, a high voltage, that is, a state in which the polarization is small is shown in almost all discharge regions, whereas in the comparative example in which y of Na 2 Sy is small, the discharge becomes low as the discharge proceeds. The discharge in the voltage range, that is, a large polarization state was shown. Therefore, the comparative example leads to a decrease in energy efficiency. As shown in this example, if y of M 2 S y (M is an alkali metal) is 3 or more with the most advanced sulfur reduction, a high voltage range (high oxidation) can be obtained without external control. It was found that the state can be maintained.
実施例3の電池を用い、50mAで充放電を行った結果を図9に示した。図9に示すように、放電時に2段波形にはならないことがわかり、均一溶液でない、硫黄を過剰に加え析出した状態であっても、実施例1と同様の結果が得られることがわかった。 The results of charging and discharging at 50 mA using the battery of Example 3 are shown in FIG. As shown in FIG. 9, it was found that the two-stage waveform was not formed during discharge, and it was found that the same result as in Example 1 was obtained even in a state where the solution was not a uniform solution and excessive sulfur was added. .
本実施例では、最も還元が進んだ状態は、負極側のナトリウム量と正極側のポリ硫化物の硫黄濃度と酸化状態で決定されている。したがって、対イオンのナトリウム不足の結果、これ以上硫黄の還元が進まず、最も硫黄の還元が進んだ状態においてもM2S3以上の高酸化状態にとどまる結果、放電が進行しても分極が小さくなるものと考えられる。本実施例では、負極として大過剰の亜鉛を用いたため、負極側電解液中のナトリウム量と正極側の硫黄の量およびその酸化還元状態とによって、最還元時のポリ硫化物の酸化状態が決定されたが、亜鉛量が限定されていれば、ナトリウムではなく亜鉛の量によって最還元時のポリ硫化物の酸化状態は決定される。また、例えば、Na2S−臭素ポリ硫化物電解液を正極に用い、ポリ硫化物を負極に用いる場合には、正極電解液中の臭素量と負極電解液中の硫黄の量およびその酸化還元状態によって最還元時のポリ硫化物の酸化状態が決定されることになる。このように、正極、負極のいずれとしてアルカリ金属多硫化物を含む水系電解液を用いる場合でも、最還元状態のポリ硫化物組成M2Syのyが3以上にとどまるように電池系を組めば、駆動電圧制限などの外部からの制御がなくとも高電圧域(高酸化状態)に維持できる。その方法は、アルカリ金属多硫化物の濃度、量、その酸化状態とともに、対極の活物質量、もしくは、対極電解液中のアルカリ金属イオン量を規定することによって実現することができることが明らかである。 In this example, the state in which the reduction is most advanced is determined by the amount of sodium on the negative electrode side, the sulfur concentration of the polysulfide on the positive electrode side, and the oxidation state. Therefore, as a result of the shortage of sodium in the counter ion, the reduction of sulfur does not proceed any more, and even in the state where the reduction of sulfur is the most advanced, it remains in a highly oxidized state of M 2 S 3 or more, and as a result, even if the discharge proceeds It is thought to be smaller. In this example, since a large excess of zinc was used as the negative electrode, the oxidation state of the polysulfide during the most reduction was determined by the amount of sodium in the negative electrode side electrolyte, the amount of sulfur on the positive electrode side, and its redox state. However, if the amount of zinc is limited, the oxidation state of the polysulfide at the time of reduction is determined by the amount of zinc, not sodium. Further, for example, when Na 2 S-bromine polysulfide electrolyte is used for the positive electrode and polysulfide is used for the negative electrode, the amount of bromine in the positive electrode electrolyte, the amount of sulfur in the negative electrode electrolyte, and the oxidation-reduction thereof Depending on the state, the oxidation state of the polysulfide at the time of reduction is determined. In this way, the battery system is assembled so that the y of the polysulfide composition M 2 S y in the most reduced state remains 3 or more when using an aqueous electrolyte containing an alkali metal polysulfide as either the positive electrode or the negative electrode. For example, the high voltage region (high oxidation state) can be maintained without external control such as drive voltage limitation. It is clear that the method can be realized by defining the amount of active material of the counter electrode or the amount of alkali metal ions in the counter electrode electrolyte, together with the concentration, amount and oxidation state of the alkali metal polysulfide. .
本発明は、電池産業に利用可能である。 The present invention is applicable to the battery industry.
10 レドックスフロー電池、12 ケース、14 正極室、16 負極室、18 セパレータ、20 正極集電板、22 負極集電板、24 正極水系電解液タンク、26 正極側循環経路、28 正極側循環ポンプ、30 負極水系電解液タンク、32 負極側循環経路、34 負極側循環ポンプ。 10 redox flow battery, 12 case, 14 positive electrode chamber, 16 negative electrode chamber, 18 separator, 20 positive electrode current collector plate, 22 negative electrode current collector plate, 24 positive electrode aqueous electrolyte tank, 26 positive electrode side circulation path, 28 positive electrode side circulation pump, 30 negative electrode aqueous electrolyte tank, 32 negative electrode side circulation path, 34 negative electrode side circulation pump.
Claims (4)
負極と、
充電又は放電により最も還元された状態の組成式M2Sy(但しMはアルカリ金属)においてy≧3であるアルカリ金属多硫化物を活物質として溶解している水系電解液と、
を備えた電池。 A positive electrode;
A negative electrode,
An aqueous electrolyte solution in which an alkali metal polysulfide having y ≧ 3 in the composition formula M 2 S y (where M is an alkali metal) in the most reduced state by charging or discharging is dissolved as an active material;
With battery.
前記正極と前記負極とを分離するセパレータと、
前記正極又は前記負極を収容する電極室と、
前記電極室に接続された送液部と、を備え、
前記水系電解液は、前記電極室に収容され、前記送液部により流通される、電池。 The battery according to any one of claims 1 to 3,
A separator for separating the positive electrode and the negative electrode;
An electrode chamber containing the positive electrode or the negative electrode;
A liquid feeding part connected to the electrode chamber,
The battery in which the aqueous electrolyte is accommodated in the electrode chamber and is distributed by the liquid feeding unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013043288A JP2014170715A (en) | 2013-03-05 | 2013-03-05 | Cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013043288A JP2014170715A (en) | 2013-03-05 | 2013-03-05 | Cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014170715A true JP2014170715A (en) | 2014-09-18 |
Family
ID=51692946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013043288A Pending JP2014170715A (en) | 2013-03-05 | 2013-03-05 | Cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014170715A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019506700A (en) * | 2015-12-08 | 2019-03-07 | ザ チャイニーズ ユニバーシティー オブ ホンコン | High energy density and low cost flow electrochemical equipment |
US10461375B2 (en) | 2017-03-17 | 2019-10-29 | Kabushiki Kaisha Toshiba | Secondary battery, battery pack, and vehicle |
CN111551610A (en) * | 2020-04-07 | 2020-08-18 | 上海电气集团股份有限公司 | Vanadium electrolyte concentration testing method, miniature vanadium battery and vanadium electrolyte concentration testing device |
KR20220046765A (en) * | 2020-10-08 | 2022-04-15 | 탑에코에너지주식회사 | Redox flow battery |
-
2013
- 2013-03-05 JP JP2013043288A patent/JP2014170715A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019506700A (en) * | 2015-12-08 | 2019-03-07 | ザ チャイニーズ ユニバーシティー オブ ホンコン | High energy density and low cost flow electrochemical equipment |
US10461375B2 (en) | 2017-03-17 | 2019-10-29 | Kabushiki Kaisha Toshiba | Secondary battery, battery pack, and vehicle |
CN111551610A (en) * | 2020-04-07 | 2020-08-18 | 上海电气集团股份有限公司 | Vanadium electrolyte concentration testing method, miniature vanadium battery and vanadium electrolyte concentration testing device |
KR20220046765A (en) * | 2020-10-08 | 2022-04-15 | 탑에코에너지주식회사 | Redox flow battery |
KR102486285B1 (en) | 2020-10-08 | 2023-01-10 | 탑에코에너지주식회사 | Redox flow battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102479968B (en) | Zinc / polyhalide energy storage cell | |
CN105742656B (en) | A kind of zinc iodine solution galvanic battery | |
WO2016078491A1 (en) | Zinc-bromine flow battery having extended service life | |
US10411286B2 (en) | Alkali/oxidant battery | |
JP6160087B2 (en) | battery | |
KR101976906B1 (en) | Redox flow battery and Electrolyte Solution for The Same | |
JP2019505967A (en) | Redox flow battery electrolyte and redox flow battery | |
JP2014170715A (en) | Cell | |
JP2017147045A (en) | Flow battery, storage battery, and power supply system | |
JP2014229519A (en) | Electrolyte-circulation type secondary battery | |
CN108390110B (en) | Lead-manganese secondary battery | |
JP2018152167A (en) | Negative electrode electrolyte and flow battery | |
JP2020161308A (en) | Zinc secondary battery | |
WO2017084374A1 (en) | New-generation high-capacity dual-electrolyte aluminum air battery | |
CN114665165A (en) | High-voltage aqueous battery with three-function metal diaphragm | |
WO2015079689A1 (en) | High capacity alkali/oxidant battery | |
US20140038000A1 (en) | Flow-Through Metal Battery with Ion Exchange Membrane | |
KR20190058136A (en) | Electrolyte for redox flow battery and redox flow battery comprising the same | |
US20240047714A1 (en) | Rechargeable flow battery | |
WO2016078492A1 (en) | Quinone polyhalide flow battery | |
JP2010092635A (en) | Storage battery | |
CN109755621A (en) | A kind of zinc-nickel single flow battery | |
CN113948798A (en) | Alkaline tin air battery | |
KR20210147005A (en) | Electrolytic batteries for high voltage and scalable energy storage | |
JP6813016B2 (en) | Alkaline batteries and electrolytes for alkaline batteries |