WO2015025991A1 - Electrolytic bath for preparing acidic water and method for using acidic water - Google Patents

Electrolytic bath for preparing acidic water and method for using acidic water Download PDF

Info

Publication number
WO2015025991A1
WO2015025991A1 PCT/KR2013/007441 KR2013007441W WO2015025991A1 WO 2015025991 A1 WO2015025991 A1 WO 2015025991A1 KR 2013007441 W KR2013007441 W KR 2013007441W WO 2015025991 A1 WO2015025991 A1 WO 2015025991A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
acidic
electrode
electrolytic cell
ion exchange
Prior art date
Application number
PCT/KR2013/007441
Other languages
French (fr)
Korean (ko)
Inventor
이재용
Original Assignee
주식회사 심스바이오닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 심스바이오닉스 filed Critical 주식회사 심스바이오닉스
Priority to PCT/KR2013/007441 priority Critical patent/WO2015025991A1/en
Publication of WO2015025991A1 publication Critical patent/WO2015025991A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing

Definitions

  • the present invention relates to an acidic electrolyzer and a method of using the acidic water, and more particularly, to a high concentration of acid-reduced water or acid by electrolyzing not only tap water but also pure water (RO) or ultrapure water (DI) without using an ion exchange resin.
  • the present invention relates to an acidic electrolytic cell which can obtain oxidized water and a method of using the acidic water.
  • the present applicant has been filed and registered for the Korean Patent No. 10-0660609, the electrolytic cell for producing alkaline reduced water.
  • the area of the cathode electrode in contact with the electrolyte is formed to be larger than the area of the anode electrode in contact with the electrolyte, and the anode electrode is seated in the anode chamber in which the top is open, and the cathode chamber in which the cathode electrode is seated is
  • the outlet formed continuously in the side of the anode chamber and formed in the anode chamber is formed in communication with the inlet of the adjacent cathode chamber, and the outlet of the n-1 th cathode chamber arranged in succession is the nth cathode adjacent thereto.
  • the generated alkaline reduced water is useful for cleaning surface particles such as semiconductor wafers and photomasks, and since only pure water or pure water is used as raw material water, it has the effect of solving pattern damage and preventing oxidation of the surface. It can be reused at low cost, which can reduce the environmental problems.
  • electrolysis causes decomposition reactions at the electrode surfaces of the cathode and anode.
  • the conventional electrolytic cell has a problem in that the electrolytic efficiency is lowered in the portion that is not in direct contact with the electrode surface.
  • the present invention has been made in view of the above-mentioned, acidic water electrolyzer which can electrolyze pure water or ultrapure water as well as tap water by securing sufficient conductivity without using a separate catalyst or ion exchange resin even in pure water or ultrapure water.
  • the purpose is to provide a method of using acidic water.
  • the electrolytic cell when the electrolytic cell is electrolyzed using a catalyst, it is possible to obtain the acidic and oxidizing power on the anode side and the alkalinity and reducing power on the cathode side. It is another object of the present invention to provide an acidic electrolyzer and a method of using the acidic water to obtain water (acidic reducing water) having an acid and an acidic and oxidizing power (acidic oxidation water) on the anode side.
  • the acidic water electrolytic cell according to the present invention for achieving the above object is provided with at least two filling chambers centered on at least one ion exchange membrane, each filling chamber has a inlet and outlet respectively formed; A first electrode installed in the filling chamber; A second electrode disposed in the remaining filling chamber close to the ion exchange membrane and having a different polarity than the first electrode; And a third electrode in each of the filling chambers having the same polarity as the second electrode and spaced apart from the second electrode by a predetermined interval.
  • the ion exchange membrane and the first electrode is installed 0.1 to 2.0mm apart from each other characterized in that it is used as a filling space so that raw water can pass through.
  • the second electrode and the third electrode is characterized in that the space is installed between 0.1 ⁇ 100.0mm to use between the filling space so that the raw water can pass through.
  • An ion tank is provided between the inlet and the outlet of the filling chamber in which the third electrode is not provided.
  • the ion exchange membrane is characterized in that the fluorine-based catch-on membrane.
  • the first to third electrodes may be perforated platinum electrodes or mesh platinum electrodes.
  • the water electrolyzed from the acidic water electrolytic cell according to the present invention is characterized in that the dissolved hydrogen concentration (DH) is 200ppb ⁇ 1500ppb.
  • the acidic water electrolytic cell according to the present invention delivers raw water (water) having a conductivity of 50 uS / cm or less from the cathode side of the electrolytic cell, and has a reducing power (ORP -100 kPa--650) while being acidic (pH 4 -pH 6.9) at the cathode side. It is characterized by obtaining the acidic reduced water having i).
  • acidic reduced water includes raw water for sulfated agent, drinking water or beverage, raw water for microbial growth, drinking water for cell proliferation, growth promotion, and use for preventing browning or cosmetic raw water such as vegetables and fruits.
  • the acidic water electrolytic cell electrolyzes raw water (water) having a conductivity of 50 uS / cm or less from the anode side of the electrolytic cell, and has an acidic power (ORP +700 kPa) while being acidic (pH 3.5 to pH 6.0) at the anode side. It is characterized by obtaining an acidic oxidation water having ⁇ + 1,200 Hz).
  • the acidic oxidation water thus obtained is characterized in that it is used as sterilizing water, microbial growth, drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw material water such as vegetables or fruits.
  • the acidified or acidified water thus obtained can be used as various raw waters depending on its characteristics.
  • the raw water flows between cathode electrodes provided spaced at predetermined intervals, so that a reaction occurs on the surface of the cathode to generate a high concentration of hydrogen water (acidic water).
  • FIG. 1 is a cross-sectional view schematically showing the configuration of an acidic electrolytic cell according to a first embodiment of the present invention.
  • Figure 2 is a cross-sectional view schematically showing the configuration of an acidic water electrolytic cell according to a second embodiment of the present invention.
  • FIG 3 is a cross-sectional view schematically showing the configuration of an acidic water electrolytic cell according to a third embodiment of the present invention.
  • Figure 4 is a cross-sectional view schematically showing the configuration of the acidic water electrolytic cell according to a fourth embodiment of the present invention.
  • the acidic water electrolytic cell according to the first embodiment of the present invention is installed in the housing 100, the housing 100, the electrolysis is made of a material having a different polarity to supply power for electrolysis Having the same electrode as the first electrode 200 and the second electrode 300, and any one of these electrodes to increase the potential difference to obtain the acidic oxidation water or acidic reduced water.
  • the acidic water electrolytic cell configures the filling chambers 110a and 110b by using the ion exchange membrane 111 inside the housing 100 so that the electrolyzed ions can be filled in a predetermined space.
  • the housing 100 is an electrolytic cell body for causing electrolysis by receiving a certain amount of water (raw water) therein.
  • the housing 100 is formed in a hollow hollow shape, and is provided with an ion exchange membrane 111 to separate the electrolyzed ions.
  • the ion exchange membrane 111 partitions the inside of the housing 100 into at least two filling chambers 110a and 110b. In the preferred embodiment of the present invention is described as being separated into two, but may be configured to be separated more than this. In a preferred embodiment of the present invention, such an ion exchange membrane may be used a fluorine-based catchon exchange membrane (Dupont Nafion 117).
  • inlets 112a and 113a for receiving raw water (water) for electrolysis and outlets 112b and 113b for discharging the electrolyzed acidic water to the outside are formed. do.
  • the filling chambers 110a and 110b are described as being composed of two, but a plurality of compartments are divided by the ion exchange membrane 111 and may be configured in a form connected in parallel.
  • the first electrode 200 is installed in any one of the filling chambers 110a. In this case, the first electrode 200 secures a filling space having a predetermined size between the ion exchange membrane 111.
  • the first electrode 200 is installed in the filling chamber 110a such that the gap W1 with the ion exchange membrane 111 is 0.1 to 2.0 mm. This is because if the gap W1 becomes wider than this, the electrical resolution with the second electrode 300, which will be described later, is reduced.
  • the first electrode 200 when the first electrode 200 is mounted in the housing 100 having two or more filling chambers, the first electrode 200 is mounted in the filling chamber provided at the outermost side.
  • the second electrode 300 has a different polarity from that of the first electrode 200 and is installed in the other filling chamber 110b to be adjacent to the ion exchange membrane 111.
  • the third electrode 300 ′ has the same polarity as the second electrode 300 and is installed in the filling chamber 110b in which the second electrode 300 is installed.
  • the third electrode 300 ' is spaced apart from the second electrode 300 by a predetermined gap W2.
  • the gap W2 is formed to be 0.1 to 100.0 mm, and the gap W2 is used as a space for filling ions therebetween.
  • the above-described first to third electrodes 200, 300, and 300 ' may use a porous platinum electrode or a mesh platinum electrode.
  • raw water is supplied to the housing 100 through the inlets 112a and 113a.
  • the raw water may be supplied through only one of the two inlets 112a and 113a.
  • an anode (+) is applied to the first electrode 200, and a cathode ( ⁇ ) is applied to the second electrode 300 and the third electrode 300 ′. Accordingly, as the electrolysis of raw water occurs, OH ⁇ is filled in the filling chamber 110a to which the anode is applied by the ion exchange membrane 111, and H + is filled in the other filling chamber 110b.
  • the high potential difference resulting from the filling of ions can be useful for electrolyzing not only tap water but also electroconductive pure water (RO) or ultrapure water (DI) with low conductivity.
  • RO electroconductive pure water
  • DI ultrapure water
  • the acidic water obtained in the cathode side that is, the filling chamber 110b described above, was tested as follows to obtain a change in physical properties according to the change of the gap W2. Was performed.
  • Raw water Water (conductivity 10uS / cm or less, pH7.0, ORP + 230mV, temperature 25.5 °C)
  • the electrolyzed water obtained by the present invention is generally acidic, and in particular, the narrower the gap W2 is, the stronger the acidity becomes, and the redox potential difference (ORP) is also the gap (W2). It can be seen that as the size increases. As a result, it can be seen that the electrolytic water thus obtained is acidic reduced water.
  • the result of measuring the change in the oxidizing power according to the current change in the filling chamber equipped with the anode of the oxidation water electrolytic cell according to the present invention is as follows.
  • Raw water Water (conductivity 10uS / cm or less, pH7.0, ORP + 230mV, 25.5 °C)
  • IR Retinal ischemia-reperfusion
  • IOP intraocular pressure
  • IOP was raised for 60 minutes in mice to induce ischemia.
  • saline eye drops saturated with hydrogen gas of acidic hydrogen water according to the present invention were continuously administered.
  • mice ingested with hydrogen water 1.0 ppm of hydrogen obtained from the cathode side of the acidic water electrolytic cell of the present invention.
  • mice Four-week-old male ICR mice were acclimated for one week, followed by free feeding of feed and hydrogen water for 15 days, and the control group consumed tap water. Hydrogen water was replaced three times a day to prevent concentration decrease. After the end of the sample, mice were anesthetized with ether and blood was collected from the heart. The collected blood was isolated from the plasma containing anticoagulant.
  • Plasma total antioxidant activity was measured using a kit for measuring total antioxdant status of Randox Inc. (U. K.).
  • the immobility time was measured during 6 minutes of forced swimming to investigate the effects of physical fitness. This measurement was performed by filling a circular cylinder (height: 25cm, diameter: 10cm) with 10cm depth of water at 23 ⁇ 25 °C, and floating the mouse in a floating position with no head motion and floating for 4 minutes before the end. The time was measured.
  • mice were anesthetized with ether and blood was collected from the heart. The collected blood was centrifuged for 10 minutes at 3000 rpm at 4 °C to obtain a serum.
  • Serum blood urea nitrogen, creatin kinase, lactic dehydrogrnase, glucose and total protein was measured. The measurements were analyzed by Student's t-test and expressed in M ⁇ SEM.
  • Oxygen is an essential element for organisms in organic respiration, but active oxygen, which occurs when energy is incompletely reduced during metabolism, denatures and destroys macromolecules in the cell, destroying homeostasis and killing cells. Free radicals are produced by factors such as tobacco and soot, which damages biological components such as proteins, DNA, enzymes, and T-cells, causing various diseases, and especially attacking unsaturated fatty acids, which are components of biological membranes, to produce lipid peroxide. It is known to cause aging and adult disease.
  • the total antioxidant power of the hydrogen water intake group was significantly increased by 18% compared to the control group ingesting tap water (P ⁇ 0.05).
  • the total antioxidant power of plasma can be considered as a representative value of the antioxidant power in the body, and the increase of total plasma antioxidant power means that the antioxidant power in the body is increased by the intake of hydrogen water.
  • the ion tank 400 is further configured in the housing 100 of the first embodiment, compared to the configuration of the first embodiment.
  • the ion tank 400 is installed between the inlet 112a and the outlet 112b of the housing 100 and is filled in the filling chamber 110a by the first electrode 200. It is a tank that stores.
  • the acidic water electrolytic cell according to the second embodiment of the present invention can generate a large potential difference proportionally by the amount of ions stored in the ion tank 400, thereby increasing the acidification and reducing power.
  • the polarity of the electrode is changed and applied.
  • the cathode (-) is applied to the first electrode 200a
  • the anode (+) is applied to the second electrode 300a and the third electrode 300b.
  • Example 1 acidic and cyclic acidic water can be obtained, whereas in Example 2, acidic and highly oxidizable acidic water can be obtained.
  • the ion tank 400 is further configured in the housing 100 of the third embodiment.
  • the acid reduced water obtained from the electrolytic cell according to the present invention electrolyzes raw water (water) having a conductivity of 50 uS / cm or less, and has acid (pH 4 to pH 6.9) and reducing power (ORP -100 kPa to -650 kPa) at the cathode side. It features.
  • the acid reduced water is characterized in that the dissolved hydrogen concentration (DH) is 200ppb ⁇ 1500ppb.
  • the acidic reduced water according to the present invention can be used as raw material water, drinking water or beverage water, microbial growth and cell growth drinking water, growth promotion, and browning prevention water such as vegetables and fruits and cosmetic raw water.
  • the acidic oxidized water obtained from the electrolytic cell according to the present invention is electrolytic raw water (water) having a conductivity of 50 uS / cm or less, and has an acidic power (ORP +700 kPa ⁇ +1,200 kPa) at the anode side.
  • Such acidic oxidized water can be used as sterilized water, microbial growth and drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw material water such as vegetables and fruits.
  • the present invention not only obtains acid reduced water by increasing the potential difference by filling dissociated ions through the filling space, but also obtains acidic oxidation water by changing its polarity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The objective of the present invention is to provide an electrolytic bath for preparing acidic water that can electrolyze pure water or deionized water as well as tap water by ensuring sufficient conductivity even without using a separate catalyst or ion exchange resin for the pure water or the deionized water, and a method for using the acidic reduced water. In particular, another objective of the present invention is to provide an electrolytic bath for preparing acidic water that can obtain acidic water having reduced power (acidic reduced water) on a cathode side and acidic water having oxidized power (acidic oxidized water) on an anode side without using a catalyst, as opposed to a typical electrolytic bath that can obtain acidic water having oxidized power on an anode side and alkaline water having reducing power on a cathode side while performing electrolysis using a catalyst, and a method for using the acidic reduced water. To this end, the electrolytic bath for preparing acidic water according to the present invention comprises: a housing including at least two filling chambers that are separated from each other with respect to at least one ion exchange film, each of the filling chambers having a water inlet and a water outlet formed therein; a first electrode placed inside one of the filling chambers; a second electrode that is placed close to the ion exchange film inside the remaining filling chambers and has a different polarity from the first electrode; and a third electrode that has the same polarity as the second electrode and is placed inside each filling chamber to be spaced a predetermined interval apart from the second electrode.

Description

산성수 전해조 및 그 산성수의 이용방법Acid Water Electrolyzer and How to Use It
본 발명은 산성수 전해조 및 그 산성수의 이용방법에 관한 것으로, 더욱 상세하게는 이온교환수지를 사용하지 않고 수도물 뿐만 아니라 순수(RO)나 초순수(DI)를 전기분해하여 고농도의 산성환원수나 산성산화수를 얻을 수 있는 산성수 전해조 및 그 산성수의 이용방법에 관한 것이다.The present invention relates to an acidic electrolyzer and a method of using the acidic water, and more particularly, to a high concentration of acid-reduced water or acid by electrolyzing not only tap water but also pure water (RO) or ultrapure water (DI) without using an ion exchange resin. The present invention relates to an acidic electrolytic cell which can obtain oxidized water and a method of using the acidic water.
본 출원인은, 한국등록특허 제10-0660609호, 알카리성 환원수를 생성하는 전해조에 대하여 출원하여 등록받은 바 있다. 이러한 알카리성 환원수 생성 전해조는, 전해액에 접하는 캐소드 전극의 면적은 전해액에 접하는 애노드 전극의 면적보다 더 크게 형성되며, 상기 애노드 전극은 상부가 개방된 애노드실에 안착되고, 상기 캐소드 전극이 안착되는 캐소드실은 상기 애노드실의 측면에 연속적으로 배치되고 상기 애노드실에 형성된 출구는 인접한 상기 캐소드실의 입구와 연통되게 형성되고, 연속적으로 배치되는 n-1번째의 상기 캐소드실의 출구는 인접한 n번째의 상기 캐소드실의 입구와 연통되는 구성이다. 이와 같은 발명에 의해 화학약품의 첨가 없이 액성의 변화가 가능하게 된다. 이렇게 생성된 알칼리성 환원수는 반도체 웨이퍼나 포토마스크등의 표면 미립자 세정에 유용하며 초순수 또는 순수만을 원료수로 사용했기 때문에 패턴의 데미지 및 표면의 산화방지를 해결할 수 있는 효과가 있고, 특히 배수된 물을 저비용으로 재사용할 수 있어 환경문제를 경감할 수 있는 효과가 발생된다.The present applicant has been filed and registered for the Korean Patent No. 10-0660609, the electrolytic cell for producing alkaline reduced water. In the alkaline reduced water generating electrolyzer, the area of the cathode electrode in contact with the electrolyte is formed to be larger than the area of the anode electrode in contact with the electrolyte, and the anode electrode is seated in the anode chamber in which the top is open, and the cathode chamber in which the cathode electrode is seated is The outlet formed continuously in the side of the anode chamber and formed in the anode chamber is formed in communication with the inlet of the adjacent cathode chamber, and the outlet of the n-1 th cathode chamber arranged in succession is the nth cathode adjacent thereto. It is a configuration that communicates with the entrance of the chamber. This invention enables the change of liquidity without the addition of chemicals. The generated alkaline reduced water is useful for cleaning surface particles such as semiconductor wafers and photomasks, and since only pure water or pure water is used as raw material water, it has the effect of solving pattern damage and preventing oxidation of the surface. It can be reused at low cost, which can reduce the environmental problems.
하지만, 본 출원인이 출원하였던 전해조는 다음과 같은 문제가 발생하였다.However, the electrolyzer applied by the applicant has the following problem.
(1) 기존의 전해조는 순수(RO)나 초순수(DI)를 원수로 사용하기 때문에 이들 원수의 전도도가 낮아서 전도성을 높이기 위해서는 이온교환수지를 이용해야 했다.(1) Since the existing electrolytic cell uses pure water (RO) or ultrapure water (DI) as raw water, the conductivity of these raw water is low, and ion exchange resin has to be used to increase conductivity.
(2) 이러한 이온교환수지는 전해조를 통해 반복적으로 사용하다 보면 수지의 내열성이 저하되어 그 수명에 제약을 받게 되었다.(2) Repeated use of these ion exchange resins through electrolyzers lowers the heat resistance of the resin and constrains its lifespan.
(3) 일반적으로 전기분해는 음극과 양극의 전극표면에서 분해반응이 일어나게 된다. 하지만, 기존의 전해조는 전극표면과 직접적으로 접촉되지 않는 부분에서는 전해효율이 저하되는 문제가 발생하였다.(3) In general, electrolysis causes decomposition reactions at the electrode surfaces of the cathode and anode. However, the conventional electrolytic cell has a problem in that the electrolytic efficiency is lowered in the portion that is not in direct contact with the electrode surface.
본 발명은 이러한 점을 감안하여 안출한 것으로, 순수나 초순수에서도 별도의 촉매제나 이온교환수지를 이용하지 않고서도 충분한 전도성을 확보하여 수도물 뿐만 아니라 순수나 초순수도 전기분해할 수 있는 산성수 전해조 및 그 산성수의 이용방법을 제공하는데 그 목적이 있다.The present invention has been made in view of the above-mentioned, acidic water electrolyzer which can electrolyze pure water or ultrapure water as well as tap water by securing sufficient conductivity without using a separate catalyst or ion exchange resin even in pure water or ultrapure water. The purpose is to provide a method of using acidic water.
특히, 본 발명은, 기존의 전해조가 촉매제를 사용하여 전기분해를 하면 양극측에서는 산성이면서 산화력을 음극측에서는 알칼리성이면서 환원력의 물성을 얻을 수 있는데 반하여, 촉매제를 사용하지 않고 캐소드측의 물성을 산성이면서 환원력을 갖는 물(산성환원수)과 양극측에서는 산성이면서 산화력을 갖는 물(산성 산화수)을 얻을 수 있는 산성수 전해조 및 그 산성수의 이용방법을 제공하는데 다른 목적이 있다.Particularly, in the present invention, when the electrolytic cell is electrolyzed using a catalyst, it is possible to obtain the acidic and oxidizing power on the anode side and the alkalinity and reducing power on the cathode side. It is another object of the present invention to provide an acidic electrolyzer and a method of using the acidic water to obtain water (acidic reducing water) having an acid and an acidic and oxidizing power (acidic oxidation water) on the anode side.
이러한 목적을 달성하기 위한 본 발명에 따른 산성수 전해조는, 적어도 하나의 이온교환막을 중심으로 분리된 적어도 2개의 충진실이 구비되고, 각 충진실에는 각각 입수구 및 출수구가 형성된 하우징; 상기 충진실에 설치되는 제1전극; 나머지 충진실 내에 이온교환막과 근접하게 설치되며 제1전극과 다른 극성을 갖는 제2전극; 및 상기 각 충진실에, 제2전극과 동일 극성을 가지면서 이 제2전극과 미리 정해진 간격만큼 이격되게 설치되는 제3전극;을 포함하여 구성된 것을 특징으로 한다.The acidic water electrolytic cell according to the present invention for achieving the above object is provided with at least two filling chambers centered on at least one ion exchange membrane, each filling chamber has a inlet and outlet respectively formed; A first electrode installed in the filling chamber; A second electrode disposed in the remaining filling chamber close to the ion exchange membrane and having a different polarity than the first electrode; And a third electrode in each of the filling chambers having the same polarity as the second electrode and spaced apart from the second electrode by a predetermined interval.
특히, 상기 이온교환막과 상기 제1전극은 0.1~2.0㎜ 이격되게 설치하여 원수가 통과할 수 있도록 그 사이를 충진공간으로 이용하는 것을 특징으로 한다.In particular, the ion exchange membrane and the first electrode is installed 0.1 to 2.0mm apart from each other characterized in that it is used as a filling space so that raw water can pass through.
또한, 상기 제2전극과 상기 제3전극은 0.1~100.0㎜ 이격되게 설치하여 원수가 통과할 수 있도록 그 사이를 충진공간으로 이용하는 것을 특징으로 한다.In addition, the second electrode and the third electrode is characterized in that the space is installed between 0.1 ~ 100.0mm to use between the filling space so that the raw water can pass through.
그리고, 제3전극이 설치되지 않은 충진실의 입수구와 출수구 사이에는, 이온탱크가 구비된 것을 특징으로 한다.An ion tank is provided between the inlet and the outlet of the filling chamber in which the third electrode is not provided.
또한, 상기 이온교환막은 불소계 캐치온 교환막인 것을 특징으로 한다.In addition, the ion exchange membrane is characterized in that the fluorine-based catch-on membrane.
또한, 상기 제1 내지 제3전극은 타공성 백금전극 또는 메쉬 백금 전극인 것을 특징으로 한다.The first to third electrodes may be perforated platinum electrodes or mesh platinum electrodes.
한편, 본 발명에 따른 산성수 전해조로부터 전해된 물은 용존수소농도(DH)가 200ppb~1,500ppb인 것을 특징으로 한다.On the other hand, the water electrolyzed from the acidic water electrolytic cell according to the present invention is characterized in that the dissolved hydrogen concentration (DH) is 200ppb ~ 1500ppb.
그리고, 본 발명에 따른 산성수 전해조는, 전해조의 캐소드측으로부터 전도도가 50uS/cm 이하인 원수(물)를 전해하여 음극측에서 산성(pH4~pH6.9)이면서 환원력(ORP -100㎷~-650㎷)을 갖은 산성의 환원수를 얻는 것을 특징으로 한다.In addition, the acidic water electrolytic cell according to the present invention delivers raw water (water) having a conductivity of 50 uS / cm or less from the cathode side of the electrolytic cell, and has a reducing power (ORP -100 kPa--650) while being acidic (pH 4 -pH 6.9) at the cathode side. It is characterized by obtaining the acidic reduced water having i).
또한, 산성의 환원수는 황산화제 원료수·음용수나 음료수의 원료수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용하는 이용방법을 포함한다.In addition, acidic reduced water includes raw water for sulfated agent, drinking water or beverage, raw water for microbial growth, drinking water for cell proliferation, growth promotion, and use for preventing browning or cosmetic raw water such as vegetables and fruits.
한편, 본 발명에 따른 산성수 전해조는, 전해조의 에노드측으로부터 전도도가 50uS/cm이하인 원수(물)을 전해하여 양극측에서 산성(pH3.5~pH6.0)이면서 산화력(ORP +700㎷~+1,200㎷)을 갖은 산성 산화수를 얻는 것을 특징으로 한다.On the other hand, the acidic water electrolytic cell according to the present invention electrolyzes raw water (water) having a conductivity of 50 uS / cm or less from the anode side of the electrolytic cell, and has an acidic power (ORP +700 kPa) while being acidic (pH 3.5 to pH 6.0) at the anode side. It is characterized by obtaining an acidic oxidation water having ˜ + 1,200 Hz).
이렇게 얻어지는 산성 산화수는 살균수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용하는 것을 특징으로 한다.The acidic oxidation water thus obtained is characterized in that it is used as sterilizing water, microbial growth, drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw material water such as vegetables or fruits.
본 발명의 산성수 전해조 및 그 산성수의 이용방법에 따르면 다음과 같은 효과가 있다.According to the acidic water electrolytic cell of the present invention and the use method of the acidic water has the following effects.
(1) 이온교환수지를 사용하지 않고 이온교환막을 이용하기 때문에, 기존의 이온교환수지와 달리 내구성의 저하와 같은 문제점이 발생하지 않아 수명을 연장시켜 사용할 수 있게 된다.(1) Since the ion exchange membrane is used without using the ion exchange resin, unlike conventional ion exchange resins, problems such as deterioration of durability do not occur, and thus the life can be extended.
(2) 전기분해에 사용되는 원수로서 이물질이 많아 전도도가 높은 수도물 뿐만 아니라 순수(RO)나 초순수(DI)를 원수로서 사용하여 전기분해를 할 수 있다.(2) As raw water used for electrolysis, there are many foreign matters, and electrolysis can be performed using pure water (RO) or ultrapure water (DI) as raw water as well as tap water with high conductivity.
(3) 충진실에 인가되는 극성에 따라서 산성 환원수 또는 산성 산화수를 선택적으로 전기분해하여 얻을 수 있다.(3) It can be obtained by selective electrolysis of acidic reduced or acidic oxidized water depending on the polarity applied to the filling chamber.
(4) 이렇게 얻은 산성산화수나 산성환원수는 그 특성에 따라 다양한 원수로서 사용될 수 있다.(4) The acidified or acidified water thus obtained can be used as various raw waters depending on its characteristics.
(5) 특히, 본 발명은 미리 정해진 간격만큼 이격되게 설치된 캐소드 전극 사이로 원수가 유동되게 구성함으로써, 이 캐소드의 표면에서 반응이 일어나게 하여 고농도의 수소수(산성수)를 생성할 수 있다.(5) In particular, according to the present invention, the raw water flows between cathode electrodes provided spaced at predetermined intervals, so that a reaction occurs on the surface of the cathode to generate a high concentration of hydrogen water (acidic water).
도 1은 본 발명의 실시예1에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.1 is a cross-sectional view schematically showing the configuration of an acidic electrolytic cell according to a first embodiment of the present invention.
도 2는 본 발명의 실시예2에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.Figure 2 is a cross-sectional view schematically showing the configuration of an acidic water electrolytic cell according to a second embodiment of the present invention.
도 3은 본 발명의 실시예3에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.3 is a cross-sectional view schematically showing the configuration of an acidic water electrolytic cell according to a third embodiment of the present invention.
도 4는 본 발명의 실시예4에 따른 산성수 전해조의 구성을 보여주기 위하여 개략적으로 도시한 단면도.Figure 4 is a cross-sectional view schematically showing the configuration of the acidic water electrolytic cell according to a fourth embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 보다 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various equivalents that may be substituted for them at the time of the present application It should be understood that there may be water and variations.
[실시예 1]Example 1
본 발명의 실시예1에 따른 산성수 전해조는, 도 1과 같이, 전기분해가 이루어지는 하우징(100), 하우징(100)에 설치되어 전기분해에 필요한 전원을 공급시켜 주기 위해 서로 다른 극성을 갖는 제1 전극(200)과 제2전극(300), 그리고 이들 전극중 어느 하나와 같은 전극을 가지면서 해당 이온수를 증가시켜 전위차를 높여서 산성산화수 또는 산성 환원수를 얻을 수 있도록 한 것이다.The acidic water electrolytic cell according to the first embodiment of the present invention, as shown in Figure 1, is installed in the housing 100, the housing 100, the electrolysis is made of a material having a different polarity to supply power for electrolysis Having the same electrode as the first electrode 200 and the second electrode 300, and any one of these electrodes to increase the potential difference to obtain the acidic oxidation water or acidic reduced water.
특히, 본 발명에 따른 산성수 전해조는, 전기분해된 이온들이 미리 정해진 공간 내에 충진될 수 있도록 하우징(100) 내부에 이온교환막(111)을 이용하여 충진실(110a,110b)을 구성하게 된다.In particular, the acidic water electrolytic cell according to the present invention configures the filling chambers 110a and 110b by using the ion exchange membrane 111 inside the housing 100 so that the electrolyzed ions can be filled in a predetermined space.
이하,이러한 구성에 대하여 보다 구체적으로 설명하면 다음과 같다.Hereinafter, this configuration will be described in more detail.
하우징(100)은 내부에 일정량의 물(원수)를 공급받아 전기분해를 일으키기 위한 전해조본체이다.The housing 100 is an electrolytic cell body for causing electrolysis by receiving a certain amount of water (raw water) therein.
이러한 하우징(100)은 내부가 빈 중공의 형태로 형성되며, 전기분해된 이온을 분리할 수 있도록 이온교환막(111)이 구비된다. 이온교환막(111)은 하우징(100)의 내부를 적어도 2개의 충진실(110a,110b)로 구획한다. 본 발명의 바람직한 실시예에서는 2개로 분리된 것으로 설명하고 있으나 이보다 더 많게 분리하여 구성할 수도 있다. 본 발명의 바람직한 실시예에서, 이러한 이온교환막으로는 불소계 캐치온 교환막(듀퐁사 나피온 117))을 이용할 수 있다.The housing 100 is formed in a hollow hollow shape, and is provided with an ion exchange membrane 111 to separate the electrolyzed ions. The ion exchange membrane 111 partitions the inside of the housing 100 into at least two filling chambers 110a and 110b. In the preferred embodiment of the present invention is described as being separated into two, but may be configured to be separated more than this. In a preferred embodiment of the present invention, such an ion exchange membrane may be used a fluorine-based catchon exchange membrane (Dupont Nafion 117).
한편, 상기 각 충진실(110a,110b)에는 전기분해를 위해 원수(물)을 공급받기 위한 입수구(112a,113a)와 전기분해된 산성수를 외부로 배출하기 위한 출수구(112b,113b)가 형성된다.Meanwhile, in each of the filling chambers 110a and 110b, inlets 112a and 113a for receiving raw water (water) for electrolysis and outlets 112b and 113b for discharging the electrolyzed acidic water to the outside are formed. do.
여기서, 상기 충진실(110a,110b)은 2개가 구성된 것으로 설명하고 있으나, 복수개가 각각 이온교환막(111)에 의해 구획되며 병렬로 연결된 형태로 구성하여 사용할 수도 있다.Here, the filling chambers 110a and 110b are described as being composed of two, but a plurality of compartments are divided by the ion exchange membrane 111 and may be configured in a form connected in parallel.
제1전극(200)은 어느 하나의 충진실(110a)에 설치된다. 이때, 제1전극(200)은 이온교환막(111)과의 사이에 미리 정해진 크기의 충진공간을 확보하게 된다.The first electrode 200 is installed in any one of the filling chambers 110a. In this case, the first electrode 200 secures a filling space having a predetermined size between the ion exchange membrane 111.
이를 위하여, 상기 제1전극(200)은 이온교환막(111)과의 간극(W1)을 0.1~2.0㎜이 되도록 충진실(110a)에 설치한다. 이는 간극(W1)이 이보다 넓어 버리면 후술하게 될 제2전극(300)과의 전기분해능이 저하되는 것으로 판단되기 때문이다.To this end, the first electrode 200 is installed in the filling chamber 110a such that the gap W1 with the ion exchange membrane 111 is 0.1 to 2.0 mm. This is because if the gap W1 becomes wider than this, the electrical resolution with the second electrode 300, which will be described later, is reduced.
본 발명의 바람직한 실시예에서, 상기 제1전극(200)은 충진실이 2개 이상 구성된 하우징(100)에 장착하는 경우에는 가장 바깥쪽에 구비된 충진실에 장착하게 된다.In the preferred embodiment of the present invention, when the first electrode 200 is mounted in the housing 100 having two or more filling chambers, the first electrode 200 is mounted in the filling chamber provided at the outermost side.
제2전극(300)은 제1전극(200)과 다른 극성을 가지면서 이온교환막(111)과 인접하도록 다른 충진실(110b)에 설치된다. The second electrode 300 has a different polarity from that of the first electrode 200 and is installed in the other filling chamber 110b to be adjacent to the ion exchange membrane 111.
이때, 제2전극(300)이 설치되는 충진실(110b)이 복수개가 구비된 경우에는 각각의 충진실마다 제2전극(300)을 하나씩 설치한다.In this case, when a plurality of filling chambers 110b in which the second electrodes 300 are installed are provided, one second electrode 300 is provided for each filling chamber.
제3전극(300')은 제2전극(300)과 동일한 극성을 가지면서 이 제2전극(300)이 설치된 충진실(110b) 내에 설치된다.The third electrode 300 ′ has the same polarity as the second electrode 300 and is installed in the filling chamber 110b in which the second electrode 300 is installed.
이때, 상기 제3전극(300')은 제2전극(300)과의 사이의 미리 정해진 간극(W2)만큼 이격되게 설치된다. 이 경우 간극(W2)은 0.1~100.0㎜로 형성하여 그 사이를 이온의 충진공간으로 활용하게 된다.In this case, the third electrode 300 'is spaced apart from the second electrode 300 by a predetermined gap W2. In this case, the gap W2 is formed to be 0.1 to 100.0 mm, and the gap W2 is used as a space for filling ions therebetween.
한편, 본 발명의 바람직한 실시예에서, 상술한 제1 내지 제3전극(200,300,300')은 타공성 백금전극이나 메쉬 백금 전극을 이용할 수 있다.Meanwhile, in a preferred embodiment of the present invention, the above-described first to third electrodes 200, 300, and 300 'may use a porous platinum electrode or a mesh platinum electrode.
[동작][action]
상술한 본 발명의 실시예1과 같은 구성을 갖는 본 발명에 따른 산성수 전해조의 동작에 대하여 설명하면 다음과 같다.Referring to the operation of the acidic water electrolytic cell according to the present invention having the same configuration as in the first embodiment of the present invention as follows.
우선, 하우징(100)에는 입수구(112a,113a)를 통해 원수를 공급한다. 이때, 원수는 2개의 입수구(112a,113a) 중에서 어느 하나만을 통해 공급할 수도 있다.First, raw water is supplied to the housing 100 through the inlets 112a and 113a. In this case, the raw water may be supplied through only one of the two inlets 112a and 113a.
이어, 제1전극(200)에는 양극(+)을 인가하고, 제2전극(300)과 제3전극(300')에는 음극(-)을 인가하게 된다. 이에, 원수의 전기분해가 일어나면서 이온교환막(111)에 의해 양극이 인가된 충진실(110a)에는 OH-이 충진되고, 다른 충진실(110b)에는 H+이 충진된다.Next, an anode (+) is applied to the first electrode 200, and a cathode (−) is applied to the second electrode 300 and the third electrode 300 ′. Accordingly, as the electrolysis of raw water occurs, OH is filled in the filling chamber 110a to which the anode is applied by the ion exchange membrane 111, and H + is filled in the other filling chamber 110b.
이처럼 각 충진실(110a,110b)에 OH-과 H+이 충진되게 되면 이들 이온의 전위차로 인하여 전류가 흐르게 된다. 특히, 제3전극(300')이 설치된 충진실(110b)의 경우 음극(-)성 이온의 증가로 인하여 일부 H+은 H나 H2로 변환될 것으로 생각된다.As such, when OH and H + are filled in each of the filling chambers 110a and 110b, current flows due to the potential difference between these ions. In particular, in the case of the charging chamber 110b in which the third electrode 300 'is installed, it is considered that some H + is converted into H or H 2 due to the increase of the negative (-) ions.
이처럼 이온들의 충진으로 인하여 얻어지는 높은 전위차는 일반적으로 사용되는 수도물 뿐만 아니라 전도도가 낮은 순수(RO)나 초순수(DI)를 전기분해하는데에도 유용하게 사용할 수 있다.The high potential difference resulting from the filling of ions can be useful for electrolyzing not only tap water but also electroconductive pure water (RO) or ultrapure water (DI) with low conductivity.
<음극간의 간극 변화에 대한 물성변화><Physical property change for gap change between cathodes>
이와 같이 동작하는 본 발명에 따른 산성수 전해조를 이용하여 음극측, 즉 상술한 충진실(110b)에서 얻은 산성수에 대하여, 간극(W2)의 변화에 따른 물성 변화를 얻기 위하여 다음과 같이 시험을 수행하였다.Using the acidic water electrolytic cell according to the present invention operating as described above, the acidic water obtained in the cathode side, that is, the filling chamber 110b described above, was tested as follows to obtain a change in physical properties according to the change of the gap W2. Was performed.
원수 : 물(전도도 10uS/cm이하, pH7.0, ORP +230㎷, 온도 25.5℃)Raw water: Water (conductivity 10uS / cm or less, pH7.0, ORP + 230㎷, temperature 25.5 ℃)
전원 : DC24VPower source: DC24V
유속(유량) : 0.3l/minFlow rate (flow rate): 0.3l / min
측정기 : 토아사의 계측기Meter: Toa's Instrument
pH : TOA- 21PpH: TOA- 21P
ORP : TOA- 21PORP: TOA- 21P
DH : TOA DH-35ADH: TOA DH-35A
다음의 [표 1]은 그 측정 결과를 나타낸다.Table 1 below shows the measurement results.
표 1
간극 / 물성 pH ORP DH
2㎜ 4.82 -653㎷ 1.43ppm
5㎜ 5.05 -620 ㎷ 1.21ppm
10㎜ 5.37 -586 ㎷ 0.97ppm
20㎜ 5.83 -534 ㎷ 0.81ppm
30㎜ 6.20 -508 ㎷ 0.77ppm
40㎜ 6.42 -472 ㎷ 0.68ppm
50㎜ 6.75 -426 ㎷ 0.52ppm
60㎜ 6..81 -398 ㎷ 0.43ppm
70㎜ 6.98 -327 ㎷ 0.32ppm
Table 1
Gap / Property pH ORP DH
2 mm 4.82 -653㎷ 1.43ppm
5 mm 5.05 -620 yen 1.21ppm
10 mm 5.37 -586 ㎷ 0.97 ppm
20 mm 5.83 -534 ㎷ 0.81 ppm
30 mm 6.20 -508 ㎷ 0.77 ppm
40 mm 6.42 -472 ㎷ 0.68 ppm
50 mm 6.75 -426 ㎷ 0.52 ppm
60 mm 6..81 -398 ㎷ 0.43 ppm
70 mm 6.98 -327 ㎷ 0.32 ppm
위의 [표 1]에서와 같이, 본 발명에 의해 얻어진 전해수는, 전반적으로 산성을 띄고 있으며, 특히 간극(W2)이 좁아질수록 점차 강산성을 띄고, 산화환원 전위차(ORP) 또한 간극(W2)이 커져감에 따라 높아짐을 알 수 있다. 결과적으로, 이렇게 얻어진 전해수는 산성 환원수임을 알 수 있게 된다.As shown in Table 1 above, the electrolyzed water obtained by the present invention is generally acidic, and in particular, the narrower the gap W2 is, the stronger the acidity becomes, and the redox potential difference (ORP) is also the gap (W2). It can be seen that as the size increases. As a result, it can be seen that the electrolytic water thus obtained is acidic reduced water.
<양극측의 산화력 측정예><Example of measuring oxidizing power on the anode side>
본 발명에 따른 산화수 전해조의 양극이 구비된 충진실에서의 전류변화에 따른 산화력의 물성 변화를 측정한 결과는 다음과 같다.The result of measuring the change in the oxidizing power according to the current change in the filling chamber equipped with the anode of the oxidation water electrolytic cell according to the present invention is as follows.
원수 : 물(전도도 10uS/cm이하, pH7.0, ORP+230mV, 25.5℃)Raw water: Water (conductivity 10uS / cm or less, pH7.0, ORP + 230mV, 25.5 ℃)
전원 : DC24VPower source: DC24V
유속(유량) : 0.3l/minFlow rate (flow rate): 0.3l / min
측정기 : 토아사의 계측기Meter: Toa's Instrument
pH : TOA -21PpH: TOA -21P
ORP : TOA- 21PORP: TOA- 21P
다음의 [표 2]는 그 측정 결과를 나타낸다.Table 2 below shows the measurement results.
표 2
전류(A) 전압(V) ORP(mV) pH
0,5 6.0 +995 4.80
1.0 8.5 +1041 4.46
1.5 10.5 +1952 4.41
2.0 12.0 +1060 4.39
2.5 12.9 +1067 4.34
3.0 14.1 +1073 4.28
TABLE 2
Current (A) Voltage (V) ORP (mV) pH
0,5 6.0 +995 4.80
1.0 8.5 +1041 4.46
1.5 10.5 +1952 4.41
2.0 12.0 +1060 4.39
2.5 12.9 +1067 4.34
3.0 14.1 +1073 4.28
위의 표에서 보는 바와 같이, 전류의 세기가 커질수록 산화환원 전위차(ORP)가 커져 산화력이 커질 뿐만 아니라 pH농도 또한 낮아져서 산성에 가까워짐을 알 수 있다.As shown in the above table, it can be seen that as the current intensity increases, the redox potential difference (ORP) increases to increase the oxidizing power as well as lower the pH concentration, thereby approaching acidity.
<산성수의 유해성 시험><Hazard test of acidic water>
(1) 캐소드측의 수소수가 눈의 망막에 미치는 영향.(1) Effect of hydrogen water on cathode side on retina of eye.
안압(intraocular pressure, IOP)의 일시적 상승에 의한 망막(retinal) 허혈 재관류(ischemia-reperfusion, IR)손상은 활성산소를 발생시켜 신경세포손상을 일으키는 것으로 알려져 있다.Retinal ischemia-reperfusion (IR) damage caused by a temporary increase in intraocular pressure (IOP) is known to cause free radicals and nerve cell damage.
실험쥐의 IOP를 60분간 올려 허혈을 유도하였다. 허혈 재관류 기간 동안 본 발명에 따른 산성의 수소수로 이루어진 수소기체가 포화된 식염수 점안제(eye drops)를 지속적으로 투여하였다.IOP was raised for 60 minutes in mice to induce ischemia. During the ischemia reperfusion period, saline eye drops saturated with hydrogen gas of acidic hydrogen water according to the present invention were continuously administered.
그 결과 유리체(vitreous body)의 수소농도를 즉시 증기시켰고 IR-유도 OH를 감소시켰다. 점안제는 망막 세포사 및 산화적 스트레스 지표-양성(positive) 세포수를 감소시켰고 뮬러(Muller) 교질세포(glia), 성상세포(astrocytes) 및 소교세포(microglia) 의 활성화에 따른 망막 두께 감소를 억제했다.As a result, the hydrogen concentration in the vitreous body was immediately vaporized and the IR-induced OH was reduced. Eye drops reduced retinal cell death and oxidative stress indicator-positive cell counts and inhibited retinal thickness reduction following activation of Muller glia, astrocytes and microglia. .
점안제는 망막두께를 70%이상 회복시켰다.Eye drops restored more than 70% of retinal thickness.
(2) 측시형(immediate-type) 앨러지(allergic) 반응(2) immediate-type allergic reactions
본 발명의 산성수 전해조의 음극측에서 얻은 수소수(수소 1.0ppm)를 섭취한 생쥐로부터 측시형(immediate-type) 앨러지(allergic) 반응을 관찰했다.An immediate-type allergic reaction was observed from mice ingested with hydrogen water (1.0 ppm of hydrogen) obtained from the cathode side of the acidic water electrolytic cell of the present invention.
쥐의 RBL-2H3 마스트(mast) 세포에서 수소는 FcεRI-연관(associated) Lyn 인산화(phosphorylation)와 이의 하류 신호전달[downstream signal transduction, NADPH 산화효소(oxidase) 활성을 억제하고 과산화수소 생성을 감소시킴]을 저해시켰다In rat RBL-2H3 mast cells, hydrogen inhibits FcεRI-associated Lyn phosphorylation and its downstream signal transduction (NADPH oxidase activity and decreases hydrogen peroxide production). Inhibited
(3) 음극측에서 얻은 수소수의 항산화력을 측정시험(3) Measurement test of antioxidant power of hydrogen water obtained from cathode side
4주령의 웅성 ICR 생쥐를 1주간 적응시킨 후, 15일간 사료와 수소수를 자유로이 섭취하게 하였으며 대조군은 수돗물을 섭취시켰다. 수소수의 농도저하를 방지하기 위해 하루 3회 수소수를 교체하였다. 시료투여 종료 후 생쥐를 이서(ether)로 마취시킨 후 심장에서 혈액을 채취하였다. 채취된 혈액은 항응고제가 들은 시험관에서 혈장을 분리하였다.Four-week-old male ICR mice were acclimated for one week, followed by free feeding of feed and hydrogen water for 15 days, and the control group consumed tap water. Hydrogen water was replaced three times a day to prevent concentration decrease. After the end of the sample, mice were anesthetized with ether and blood was collected from the heart. The collected blood was isolated from the plasma containing anticoagulant.
혈장 총 항산화력은 랜독스(Randox)사(U. K.)의 총 항산화상태(total antioxdant status) 측정용 키트(kit)를 이용하여 측정하였다. 체력증진효과를 조사하기 위하여 6분간의 강제 수영 동안 부동(immobility)시간이 측정되었다 . 이 측정은 원형원통(높이: 25cm, 지름: 10cm)에 23~25℃의 물을 10cm 깊이로 채우고, 생쥐가 머리를 물 위에 내밀고 움직임이 없이 떠 있는 자세를 부동으로 하여 종료전 4분간의 부동시간을 측정되었다.Plasma total antioxidant activity was measured using a kit for measuring total antioxdant status of Randox Inc. (U. K.). The immobility time was measured during 6 minutes of forced swimming to investigate the effects of physical fitness. This measurement was performed by filling a circular cylinder (height: 25cm, diameter: 10cm) with 10cm depth of water at 23 ~ 25 ℃, and floating the mouse in a floating position with no head motion and floating for 4 minutes before the end. The time was measured.
그리고, 강제 수영 시험 후 생쥐를 이서(ether)로 마취시킨 후 심장에서 혈액을 채취하였다. 채취된 혈액을 4℃에서 3000rpm으로 10분간 원심분리하여 혈청을 얻었다. After the forced swimming test, the mice were anesthetized with ether and blood was collected from the heart. The collected blood was centrifuged for 10 minutes at 3000 rpm at 4 ℃ to obtain a serum.
오토애널라이[Autoanalyzer, 히다치(Hitachi) 747. 히다치 일본]을 이용하여 혈청의 혈액 요소태 질소(blood urea nitrogen), 크레아틴 카이네이즈(creatin kinase), 유산 탈수소효소(lactic dehydrogrnase), 포도당 및 총 단백질(total protein)이 측정되었다. 측정치는 스튜던트 t-검정(Student's t-test)로 분석되었으며 M±SEM으로 표시되었다.Serum blood urea nitrogen, creatin kinase, lactic dehydrogrnase, glucose and total protein (Autoanalyzer, Hitachi 747. Hitachi Japan) total protein) was measured. The measurements were analyzed by Student's t-test and expressed in M ± SEM.
산소는 유기호흡을 하는 생물에게 필수적인 원소지만 에너지 대사과정 중 불완전하게 환원 될 때 발생하는 활성산소는 세포내의 거대분자를 변성, 파괴하여 세포의 항상성을 깨뜨려 세포를 사멸시킨다. 활성산소는 담배, 매연 등의 요인에 의해 생성되어 단백질, DNA, 효소, T-세포 등의 생체 구성요소를 손상시켜 각종질환을 일으키며, 특히 생체막의 구성성분인 불포화지방산을 공격, 과산화지질을 생성하여 노화 및 성인병을 일으킨다고 알려져 있다.Oxygen is an essential element for organisms in organic respiration, but active oxygen, which occurs when energy is incompletely reduced during metabolism, denatures and destroys macromolecules in the cell, destroying homeostasis and killing cells. Free radicals are produced by factors such as tobacco and soot, which damages biological components such as proteins, DNA, enzymes, and T-cells, causing various diseases, and especially attacking unsaturated fatty acids, which are components of biological membranes, to produce lipid peroxide. It is known to cause aging and adult disease.
5주령의 ICR 생쥐에게 수소수를 15일간 섭취시킨 뒤 혈장을 분리하여 총 항산화력(total antioxidant status)를 측정하여 [표 3]에 나타내었다.After ingesting hydrogen water for 15 days in 5-week-old ICR mice, plasma was separated, and the total antioxidant status was measured and shown in [Table 3].
표 3
구분 비교 트롤록스 (relative Trolox) 농도[nmol/ml 혈장(plasma)]
대조군(비교예) 1.24±0.06
수소수(실시예) 1.46±0.13*
[표 3] 수소수의 투여가 생쥐 혈장의 총 산화력에 미치는 영향1의 측정결과1평균치±SEM, n=10.2수용성(water-soluble) 비타민E 유사체(analogue).*P<0.05, 대조군과 비교
TABLE 3
division Compare Trolox relative Trolox concentration [nmol / ml plasma]
Control group (comparative example) 1.24 ± 0.06
Hydrogen Water (Examples) 1.46 ± 0.13*
[Table 3] Effect of the administration of hydrogen water on the total oxidative power of mouse plasmaOneResult ofOneMean ± SEM, n = 10.2Water-soluble vitamin E analogue.*P <0.05, compared with control
            
그 결과, 수소수 섭취군의 총항산화력이 수돗물을 섭취시킨 대조군에 비하여 유의하게 18%증가했다(P<0.05). 혈장의 총항산화력은 체내의 항산력을 대표하는 값으로 생각 될 수 있으며 혈장 총항산화력의 증가는 수소수의 섭취에 의해 체내 항산화력이 증가하였음을 의미한다. 이러한 결과는 수소수가 생체 항산화력을 증가시켜서 여러 요인에 의하여 발생하는 여러가지 질병 및 노화로부터 생체를 보호할 수 있음을 보여주고 있다.As a result, the total antioxidant power of the hydrogen water intake group was significantly increased by 18% compared to the control group ingesting tap water (P <0.05). The total antioxidant power of plasma can be considered as a representative value of the antioxidant power in the body, and the increase of total plasma antioxidant power means that the antioxidant power in the body is increased by the intake of hydrogen water. These results show that hydrogen water can increase the biological antioxidant power and protect the living body from various diseases and aging caused by various factors.
강제 수영시험은 항피로 및 지구력조사에 사용된다. 5주령의 웅성 ICR 생쥐에게 수소수를 15일간 섭취시킨 뒤 강제 수영 시험을 하여 부동시간을 측정하고 혈액 생화학검사를 실시하였다. 수소수의 섭취에 의해 생쥐의 강제 수영 시험에서 부동시간이 대조군에 비하여 유의성 있게 13%감소하였다([표 4]참조). 이는 수소수의 섭취가 항피로 및 지구력증가작용을 하여 부동기간을 감소시켰음을 나타내는 것이다.Forced swimming tests are used for antifatigue and endurance surveys. Five-week-old male ICR mice were ingested with hydrogen water for 15 days, followed by a forced swimming test to measure immobility time and blood biochemistry. Intake of hydrogen water significantly reduced the dead time in the forced swimming test of mice by 13% compared to the control group (see Table 4). This indicates that the intake of hydrogen water reduced antifreeze by increasing fatigue and endurance.
표 4
비교예 실시예(수소수군)
섭취 전 190±13 193±11
섭취 후 224±8 195±7*
표2 수소수의 섭취가 생쥐의 강제 수영 시험에서 부동시간(초)에 미치는 영향1 1평균치±SEM, n=10.*P<0.05, 대조군과 비교.
Table 4
Comparative example Example (hydrogen water group)
Before intake 190 ± 13 193 ± 11
After ingestion 224 ± 8 195 ± 7 *
Table 2 Effect of hydrogen water intake on immobility time (seconds) in forced swimming test of mice 1 1 Mean ± SEM, n = 10. * P <0.05, compared with control.
피로와 관련된 혈액 생화학 지표인 혈액 요소태 질소(blood urea nitrogen) 15%감소, 크레아틴 카이네이즈(creatin kinase) 22%감소, 유산 탈수소효소(lactic dehydrogrnase) 9%감소, 포도당 9%증가 및 총 단백질(total protein)이 19%증가하여 모든 측정치가 수소수의 섭취에 의해 개선되었다([표 5] 참조).15% decrease in blood urea nitrogen, 22% decrease in creatin kinase, 9% decrease in lactic dehydrogrnase, 9% increase in glucose and total protein protein) increased by 19%, all measurements improved by ingestion of hydrogen water (see Table 5).
따라서 수소수의 섭취가 체력증강 및 항피로 효과를 지니고 있음이 입증되었다.Therefore, it was proved that the intake of hydrogen water has the effect of physical strength and anti-fatigue.
표 5
대조군 수소수군
혈액 요소태 질소(blood urea nitrogen, mg/dl) 22.0±0.9 18.8±0.6*
크레아틴 카이네이즈(creatin kinase,mg/dl)) 0.36±0.03 0.28±0.02*
유산 탈수소효소(lactic dehydrogrnase, U/I) 988±167 896±171
포도당(mg/dl) 219±13 238±14
총 단백질(total protein, g/dl) 4.3±0.1 5.1±0.1*
[표 5]수소수의 섭취가 생쥐의 혈액 생화학 지표에 미치는 영향1 1평균치±SEM, n=10.*P<0.05, 대조군과비교
Table 5
Control Hydrogen water group
Blood urea nitrogen (mg / dl) 22.0 ± 0.9 18.8 ± 0.6 *
Creatin kinase (mg / dl) 0.36 ± 0.03 0.28 ± 0.02 *
Lactic dehydrogrnase (U / I) 988 ± 167 896 ± 171
Glucose (mg / dl) 219 ± 13 238 ± 14
Total protein (g / dl) 4.3 ± 0.1 5.1 ± 0.1 *
[Table 5] Effect of Hydrogen Intake on Blood Biochemical Indices of Mice 1 1 Mean ± SEM, n = 10. * P <0.05, Comparison with Control
[실시예 2]Example 2
여기서, 실시예1과 동일한 구성에 대해서는 동일부호를 부여하고, 그 상세한 설명을 생략한다.Here, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
본 발명의 실시예2에 따른 산성수 전해조는, 실시예1의 구성과 비교하여, 실시예1의 하우징(100)에 이온탱크(400)를 더 구성한 것이다.In the acidic water electrolytic cell according to the second embodiment of the present invention, the ion tank 400 is further configured in the housing 100 of the first embodiment, compared to the configuration of the first embodiment.
이온탱크(400)는, 도 2와 같이, 상기 하우징(100)의 입수구(112a)와 출구수(112b) 사이에 설치되며, 제1전극(200)에 의해 충진실(110a) 내에 충진된 이온을 저장해 주는 탱크이다.As shown in FIG. 2, the ion tank 400 is installed between the inlet 112a and the outlet 112b of the housing 100 and is filled in the filling chamber 110a by the first electrode 200. It is a tank that stores.
이에, 본 발명의 실시예2에 따른 산성수 전해조는, 이 이온탱크(400)에 저장되는 이온량만큼 비례하게 더 큰 전위차를 발생시킬 수 있게 되어 그만큼 산성화 및 환원력을 높여줄 수 있게 되는 것이다.Thus, the acidic water electrolytic cell according to the second embodiment of the present invention can generate a large potential difference proportionally by the amount of ions stored in the ion tank 400, thereby increasing the acidification and reducing power.
[실시예 3]Example 3
여기서, 실시예1과 동일한 구성에 대해서는 동일부호를 부여하고, 그 상세한 설명을 생략한다.Here, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
본 발명의 실시예3에 따른 산성수 전해조는, 도 3과 같이, 전극의 극성을 바꿔서 인가하도록 한 것이다.In the acidic water electrolytic cell according to the third embodiment of the present invention, as shown in FIG. 3, the polarity of the electrode is changed and applied.
즉, 실시예3의 산성조 전해조에서는, 제1전극(200a)에 음극(-)을 인가하고, 제2전극(300a) 및 제3전극(300b)에는 양극(+)을 인가하여 구성한 것이다.That is, in the acid bath of the third embodiment, the cathode (-) is applied to the first electrode 200a, and the anode (+) is applied to the second electrode 300a and the third electrode 300b.
이에, 실시예1에서는 산성이면서 환성성이 있는 산성수를 얻을 수 있으나, 실시예2에서는 산성이면서 산화성이 높은 산성수를 얻을 수 있게 되는 것이다.Thus, in Example 1, acidic and cyclic acidic water can be obtained, whereas in Example 2, acidic and highly oxidizable acidic water can be obtained.
[실시예 4]Example 4
여기서, 실시예3과 동일한 구성에 대해서는 동일부호를 부여하고, 그 상세한 설명을 생략한다.Here, the same components as those in the third embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
본 발명의 실시예4에 따른 산성수 전해조는, 도 4와 같이, 실시예3의 하우징(100)에 이온탱크(400)를 더 구성한 것이다.In the acidic water electrolytic cell according to the fourth embodiment of the present invention, as shown in FIG. 4, the ion tank 400 is further configured in the housing 100 of the third embodiment.
이에 산성 산화수의 전위차를 더욱 더 높여줄 수 있게 되는 것이다.This is to increase the potential difference of the acidic oxidation water even more.
(이용발명)(Invention)
본 발명에 따른 전해조로부터 얻은 산성 환원수는, 전도도가 50uS/cm 이하인 원수(물)를 전해하여 음극측에서 산성(pH4~pH6.9)이면서 환원력(ORP -100㎷~-650㎷)을 갖는 것을 특징으로 한다. 그리고, 이러한 산성환원수는 용존수소농도(DH)가 200ppb~1,500ppb인 것을 특징으로 한다.The acid reduced water obtained from the electrolytic cell according to the present invention electrolyzes raw water (water) having a conductivity of 50 uS / cm or less, and has acid (pH 4 to pH 6.9) and reducing power (ORP -100 kPa to -650 kPa) at the cathode side. It features. In addition, the acid reduced water is characterized in that the dissolved hydrogen concentration (DH) is 200ppb ~ 1500ppb.
그리고 이러한 본 발명에 따른 산성 환원수는 황산화제 원료수·음용수나 음료수의 원료수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 및 화장품 원료수로 이용할 수 있다.The acidic reduced water according to the present invention can be used as raw material water, drinking water or beverage water, microbial growth and cell growth drinking water, growth promotion, and browning prevention water such as vegetables and fruits and cosmetic raw water.
한편, 본 발명에 따른 전해조로부터 얻은 산성 산화수는, 전도도가 50uS/cm이하인 원수(물)을 전해하여 양극측에서 산성(pH3.5~pH6.0)이면서 산화력(ORP +700㎷~+1,200㎷)을 갖는다.On the other hand, the acidic oxidized water obtained from the electrolytic cell according to the present invention is electrolytic raw water (water) having a conductivity of 50 uS / cm or less, and has an acidic power (ORP +700 kPa ~ +1,200 kPa) at the anode side. Has
이러한 산성 산화수는 살균수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용할 수 있다.Such acidic oxidized water can be used as sterilized water, microbial growth and drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw material water such as vegetables and fruits.
이상과 같이 본 발명은 충진공간을 통해 해리된 이온을 충진시켜 전위차를 높여 산성환원수를 얻을 수 있을 뿐만 아니라 그 극성을 바꾸어줌으로써 산성산화수를 얻을 수 있게 되는 것이다.As described above, the present invention not only obtains acid reduced water by increasing the potential difference by filling dissociated ions through the filling space, but also obtains acidic oxidation water by changing its polarity.

Claims (11)

  1. 적어도 하나의 이온교환막(111)을 중심으로 분리된 적어도 2개의 충진실(110a,110b)이 구비되고, 각 충진실(110a,110b)에는 각각 입수구(112a,113a) 및 출수구(112b,113b)가 형성된 하우징(100);At least two filling chambers 110a and 110b separated from the at least one ion exchange membrane 111 are provided, and each of the filling chambers 110a and 110b has inlets 112a and 113a and outlets 112b and 113b, respectively. The housing 100 is formed;
    상기 충진실(110a)에 설치되는 제1전극(200);A first electrode 200 installed in the filling chamber 110a;
    나머지 충진실(110b) 내에 이온교환막(111)과 근접하게 설치되며 제1전극(200)과 다른 극성을 갖는 제2전극(300); 및A second electrode 300 installed near the ion exchange membrane 111 in the remaining filling chamber 110b and having a different polarity from that of the first electrode 200; And
    상기 각 충진실(110b)에, 제2전극(300)과 동일 극성을 가지면서 이 제2전극(300)과 미리 정해진 간격만큼 이격되게 설치되는 제3전극(300');을 포함하여 구성된 것을 특징으로 하는 산성수 전해조.And a third electrode 300 'installed in each of the filling chambers 110b to have the same polarity as that of the second electrode 300 and spaced apart from the second electrode 300 by a predetermined interval. An acidic electrolyzer characterized by the above-mentioned.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 이온교환막(111)과 상기 제1전극(200)은 0.1~2.0㎜의 간극(W1)만큼 이격되게 설치하여 원수가 통과할 수 있도록 그 사이를 충진공간으로 이용하는 것을 특징으로 하는 산성수 전해조.The ion exchange membrane 111 and the first electrode 200 is installed by spaced apart by a gap (W1) of 0.1 ~ 2.0mm acid water electrolytic cell, characterized in that used as a filling space so that raw water can pass through.
  3. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 제2전극(300)과 상기 제3전극(300')은 0.1~100.0㎜의 간극(W2)만큼 이격되게 설치하여 원수가 통과할 수 있도록 그 사이를 충진공간으로 이용하는 것을 특징으로 하는 산성수 전해조.The acidic water is characterized in that the second electrode 300 and the third electrode 300 ′ are spaced apart by a gap W2 of 0.1 to 100.0 mm, and used as a filling space therebetween so that raw water can pass therethrough. Electrolyzer.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    제3전극(300')이 설치되지 않은 충진실(110a)의 입수구(112a)와 출수구(112b) 사이에는,Between the inlet 112a and the outlet 112b of the filling chamber 110a in which the third electrode 300 'is not provided,
    이온탱크(400)가 구비된 것을 특징으로 하는 산성수 전해조.Acid water electrolytic cell, characterized in that the ion tank 400 is provided.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 이온교환막(111)은 불소계 캐치온 교환막인 것을 특징으로 하는 산성수 전해조.The ion exchange membrane 111 is an acidic water electrolytic cell, characterized in that the fluorine-based catch-on membrane.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 제1 내지 제3전극(200,300,300')은 타공성 백금전극 또는 메쉬 백금 전극인 것을 특징으로 하는 산성수 전해조.The first to third electrodes (200, 300, 300 ') is an acidic water electrolytic cell, characterized in that the porous platinum electrode or mesh platinum electrode.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 전해조로부터 전해된 물은 용존수소농도(DH)가 200ppb~1,500ppb인 것을 특징으로 하는 산성수 전해조.The water electrolyzed from the electrolytic cell is an acidic water electrolytic cell, characterized in that the dissolved hydrogen concentration (DH) is 200ppb ~ 1500ppb.
  8. 제 7 항에 의한 전해조에 전도도가 50uS/cm 이하인 원수(물)를 전해하여 음극측에서 산성(pH4~pH6.9)이면서 환원력(ORP -100㎷~-650㎷)을 갖은 산성의 환원수를 얻는 것을 특징으로 하는 산성수 전해조.Electrolyzing raw water (water) having a conductivity of 50 uS / cm or less in an electrolytic cell according to claim 7 to obtain acidic reducing water having acidity (pH4 to pH6.9) and reducing power (ORP -100 kPa to -650 kPa) at the cathode side. Acid water electrolytic cell, characterized in that.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 산성의 환원수는 황산화제 원료수·음용수나 음료수의 원료수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용하는 이용방법.The acidic reduced water is used as the raw material water of sulfated water, drinking water or beverage water, microbial growth and drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw water such as vegetables and fruits.
  10. 제 7 항에 의한 전해조에 전도도가 50uS/cm이하인 원수(물)을 전해하여 양극측에서 산성(pH3.5~pH6.0)이면서 산화력(ORP +700㎷~+1,200㎷)을 갖은 산성 산화수를 얻는 것을 특징으로 하는 산성수 전해조.The raw water (water) having a conductivity of 50 uS / cm or less is delivered to the electrolytic cell according to claim 7, and acidic oxidation water having an acidity (pH 3.5 to pH 6.0) and an oxidizing power (ORP +700 kPa to +1,200 kPa) is supplied from the anode side. Obtaining an acidic electrolytic cell, characterized by the above-mentioned.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 산성 산화수는 살균수·미생물증식 및 세포증식용 식용수·성장촉진 및 야채나 과일 등의 갈변방지수 또는 화장품 원료수로 이용하는 이용방법.The acidic oxidation water is used as sterilized water, microbial growth and drinking water for cell proliferation, growth promotion, and browning prevention water or cosmetic raw material water such as vegetables and fruits.
PCT/KR2013/007441 2013-08-20 2013-08-20 Electrolytic bath for preparing acidic water and method for using acidic water WO2015025991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/007441 WO2015025991A1 (en) 2013-08-20 2013-08-20 Electrolytic bath for preparing acidic water and method for using acidic water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/007441 WO2015025991A1 (en) 2013-08-20 2013-08-20 Electrolytic bath for preparing acidic water and method for using acidic water

Publications (1)

Publication Number Publication Date
WO2015025991A1 true WO2015025991A1 (en) 2015-02-26

Family

ID=52483758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007441 WO2015025991A1 (en) 2013-08-20 2013-08-20 Electrolytic bath for preparing acidic water and method for using acidic water

Country Status (1)

Country Link
WO (1) WO2015025991A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229565A (en) * 1995-02-28 1996-09-10 Hoshizaki Electric Co Ltd Electrolyzed water producing device
KR19980081448A (en) * 1997-04-16 1998-11-25 요코야마시게미츠 Electrolyzer for Acid and Alkaline Water Production
KR20050117840A (en) * 2004-06-11 2005-12-15 강송식 A electrolysis water purifier
KR20060032490A (en) * 2004-10-12 2006-04-17 바이오닉스(주) Making apparatus of electrolysis water
KR20080035847A (en) * 2006-10-20 2008-04-24 박상길 Electrolytic bath for producing sterilizing water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229565A (en) * 1995-02-28 1996-09-10 Hoshizaki Electric Co Ltd Electrolyzed water producing device
KR19980081448A (en) * 1997-04-16 1998-11-25 요코야마시게미츠 Electrolyzer for Acid and Alkaline Water Production
KR20050117840A (en) * 2004-06-11 2005-12-15 강송식 A electrolysis water purifier
KR20060032490A (en) * 2004-10-12 2006-04-17 바이오닉스(주) Making apparatus of electrolysis water
KR20080035847A (en) * 2006-10-20 2008-04-24 박상길 Electrolytic bath for producing sterilizing water

Similar Documents

Publication Publication Date Title
WO2014035088A1 (en) Electrolysis bath for acidic water and method for using the acidic water
KR101408502B1 (en) Electrolytic bath for manufacturing acid water and the using method of the water
Bienenstock et al. The role of mast cells in inflammatory processes: evidence for nerve/mast cell interactions
US7001493B1 (en) Apparatus for preparing sterilizing water and process for sterilizing water
MX9701408A (en) System for electrolyzing fluids for in vivo administration to humans and other warm blooded mammals.
EP1081096B1 (en) Method and apparatus for producing electrolytic reduced water
EP2927349A1 (en) Device for supplying highly concentrated hydrogen gas for biological applications
NZ553427A (en) Hydrogen enriched hypochlorite free ionized water and method of producing same
CN103951020A (en) Health water dispenser
KR100761099B1 (en) An apparatus and method for manufacturing reducing hydrogen water using brown&#39;s gas, and an apparatus and method for manufacturing for reducing hydrogen drinking water using brown&#39;s gas
WO2015025991A1 (en) Electrolytic bath for preparing acidic water and method for using acidic water
Yamazaki et al. Ghrelin‐induced growth hormone release from isolated rat anterior pituitary cells depends on intracellullar and extracellular Ca2+ sources
Ling et al. Mobility of potassium ion in frog muscle cells, both living and dead
WO2022045535A1 (en) Natural disinfectant based on hypochlorous acid solution, and manufacturing method therefor
WO2021141202A1 (en) Slightly acidic electrolyzed water supply device
WO2020106006A1 (en) Sterilization electrode, method for manufacturing same, and sterilization apparatus using same
KR100607868B1 (en) Ozone apparatus to connect electrolysis-core in parallel
PT1242653E (en) ELECTROCHEMICAL CELLS FOR ELECTROLYSER WITH INDIVIDUAL ELEMENTS TECHNIQUE
WO2018147550A1 (en) Electrolysis module, electrolyzed water generating device comprising same, and method for driving electrolyzed water generating device
WO2016159455A1 (en) Acid water electrolyzer
WO2022215903A1 (en) Electrolyzed water generation device
Greczko et al. The effect of serotonin on airway transepithelial sodium ion pathways
KR20070057873A (en) Immunopotentiator and method and apparatus for producing the same
Richter On the role of energy decline in muscle cell apoptosis
KR20230130055A (en) Hydrogen water for suppressing alcoholic liver failure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891880

Country of ref document: EP

Kind code of ref document: A1