JP2012101185A - Method for electrolyzing aqueous solution - Google Patents

Method for electrolyzing aqueous solution Download PDF

Info

Publication number
JP2012101185A
JP2012101185A JP2010252324A JP2010252324A JP2012101185A JP 2012101185 A JP2012101185 A JP 2012101185A JP 2010252324 A JP2010252324 A JP 2010252324A JP 2010252324 A JP2010252324 A JP 2010252324A JP 2012101185 A JP2012101185 A JP 2012101185A
Authority
JP
Japan
Prior art keywords
electrolysis
electrode
aqueous solution
water
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010252324A
Other languages
Japanese (ja)
Other versions
JP5323798B2 (en
Inventor
Takeshi Tachibana
武史 橘
Yoshihiro Yokota
嘉宏 横田
Satoru Narai
哲 奈良井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010252324A priority Critical patent/JP5323798B2/en
Publication of JP2012101185A publication Critical patent/JP2012101185A/en
Application granted granted Critical
Publication of JP5323798B2 publication Critical patent/JP5323798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for electrolyzing an aqueous solution, by which power efficiency can be raised and total cost can be reduced, or to provide a useful electrolyzing method for producing electrolytic ozone water of low-concentration of about 0.1 mg/L, which has been conventionally considered to be difficult even when any electrode material is used.SOLUTION: When the aqueous solution is electrolyzed by using an electrolytic device equipped with at least one pair of an anode electrode and a cathode electrode, an electrode containing conductive diamond is used at least as the anode electrode and power per unit area of the electrode is controlled so as to be 10 to 18 W/cmor 0.18 to 0.5 W/cm, to electrolyze the aqueous solution.

Description

本発明は、水溶液を電気化学的に分解(電解)して、除菌機能のある電解水やオゾン水を生成する方法に関するものであり、例えば生活家電製品や各種産業機器の分野において水溶液の処理に使われる電解方法に関するものである。尚、本発明で対象とされる水溶液は、水道水や井戸水の他、精製水等も含まれるものであるが、以下では単に「水」または「原水」と呼ぶことがある。   The present invention relates to a method of electrochemically decomposing (electrolyzing) an aqueous solution to generate electrolyzed water or ozone water having a sterilizing function. For example, in the field of household electrical appliances and various industrial equipment, It is related with the electrolysis method used for. The aqueous solution targeted by the present invention includes purified water and the like in addition to tap water and well water, but may be simply referred to as “water” or “raw water” below.

水を電解して改質するプロセスは、様々な分野で用いられている。例えば、生活家電製品では、洗濯機や食器洗浄器、空気清浄器、飲用整水器等が代表的なものとして挙げられる。また空調除菌においては、生活家電製品に止まらず、半導体や液晶ディスプレイパネル製造工場に代表されるクリーンルーム、各種輸送機器や医療・介護施設にも電解プロセスの適用が始まっている。先端医療分野においても、医療用精製水や生理食塩水への電解水の代替が試みられている。更には、電解水が有する除菌、脱臭、脱色等の優れた酸化力を利用する動きが広がっている。   Processes for electrolyzing and modifying water are used in various fields. For example, typical household appliances include washing machines, dishwashers, air purifiers, drinking water conditioners, and the like. In air conditioning sterilization, the application of the electrolysis process has started not only for household appliances, but also in clean rooms such as semiconductor and liquid crystal display panel manufacturing plants, various transport equipment, and medical and nursing care facilities. In the advanced medical field, substitution of electrolyzed water to purified medical water or physiological saline has been attempted. Furthermore, the movement which utilizes the superior oxidizing power, such as disinfection, deodorization, decoloring, etc. which electrolysis water has has spread.

電解による電解水生成は、一定範囲の処理速度と処理容量の範囲において、コスト面で優れた方法であり、こうした技術に適用される機器装置の製品も多種多様である。こうした機器装置の一つとして、導電性ダイヤモンド電極を用いた電解装置は、従来から提案されている。例えば、特許文献1は、導電性ダイヤモンド電極を使って、廃水溶液中の難分解性有機物の電解処理を実現した技術が提案されている。   Electrolyzed water generation by electrolysis is a cost-effective method within a range of processing speed and processing capacity within a certain range, and there are a wide variety of equipment products applied to such technology. As one of such devices, an electrolyzer using a conductive diamond electrode has been proposed. For example, Patent Document 1 proposes a technique that realizes electrolytic treatment of a hardly decomposable organic substance in a waste aqueous solution using a conductive diamond electrode.

近年の技術として、特許文献2には、ダイヤモンド電極を用いた電解によってフッ素含有物質を合成する技術が提案されている。また特許文献3には、水の直接電気分解によるオゾン水生成にダイヤモンド電極が適用されている。   As a recent technique, Patent Document 2 proposes a technique for synthesizing a fluorine-containing substance by electrolysis using a diamond electrode. In Patent Document 3, a diamond electrode is applied to ozone water generation by direct electrolysis of water.

特開平7−299467号公報Japanese Patent Laid-Open No. 7-299467 特開2009−1877号公報JP 2009-1877 A 特開2009−7655号公報JP 2009-7655 A

これまで提案されている技術は、いずれも導電性ダイヤモンド電極の化学的安定性と高い酸化還元電位を活かす有用な技術である。しかしながら、特に電解水生成の過程においては、電解効率が徐々に低下することが避けられず、更なる改善が望まれているのが実情である。これは、電極自体の劣化や溶出、電極に隔膜を利用する場合には隔壁の経時劣化、更にはスケール付着等、電解効率の阻害要因は通常、単一ではなく、多くの要因が重なっている。   All the techniques proposed so far are useful techniques that take advantage of the chemical stability and high redox potential of the conductive diamond electrode. However, particularly in the process of generating electrolyzed water, it is unavoidable that the electrolysis efficiency gradually decreases, and further improvement is desired. This is because degradation factors and elution of the electrode itself, degradation of the partition wall over time when using a diaphragm for the electrode, and scale adhesion, etc. are usually not single, but many factors overlap. .

電極や隔膜の寿命は有限であり交換が必要であるが、費用も手間もかかることになる。こうしたことから、可能な限り長寿命な電極と安定した電解条件を選び、堆積物を低減してメンテナンスを抑制することが、トータルコスト低減において重要な要件である。   The life of electrodes and diaphragms is finite and needs to be replaced, but this is expensive and time consuming. For this reason, it is an important requirement in terms of total cost reduction to select an electrode with a long life as possible and stable electrolysis conditions, and to reduce deposits and suppress maintenance.

これまでは、電極の単位面積当たりの電解電力を0.5W/cm2超、10W/cm2未満の範囲内に設定するのが一般的である。この電解電力を0.5W/cm2以下にしても希望する電解効率は発揮されないとされていた。また、電解電力を10W/cm2以上としても、過熱状態となって、水溶液が沸騰したりして良好な電解効率が達成されないものと考えられていた。 Previously, electrolytic power 0.5 W / cm 2 greater per unit area of the electrode, to set within a range of less than 10 W / cm 2 in general. It has been said that the desired electrolysis efficiency is not exhibited even when the electrolysis power is 0.5 W / cm 2 or less. Further, even when the electrolysis power is set to 10 W / cm 2 or more, it is considered that the solution is overheated and the aqueous solution boils, so that good electrolysis efficiency is not achieved.

一方、オゾン濃度が0.1mg/L程度の低濃度の電解オゾン水は、除菌、脱臭、脱色等においては効果が小さくなるが、手洗いや美容用水としては有用とされているが、これまではいかなる電極条件によっても、このような濃度の電解オゾン水を生成させることは困難とされていた。   On the other hand, low-concentration electrolytic ozone water with an ozone concentration of about 0.1 mg / L is less effective in sterilization, deodorization, decolorization, etc., but it has been useful for hand-washing and beauty water, It has been difficult to produce electrolytic ozone water having such a concentration under any electrode conditions.

本発明は上記の様な事情に着目してなされたものであって、その第1の目的は、電力効率を高めることができ、トータルコスト低減を実現することのできる水溶液の電解方法を提供することにある。本発明の第2の目的は、従来ではいかなる電極材料を用いても困難とされていた0.1mg/L程度の低濃度の電解オゾン水を生成するための有用な電解方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and a first object of the present invention is to provide an aqueous solution electrolysis method capable of improving power efficiency and reducing the total cost. There is. The second object of the present invention is to provide a useful electrolysis method for producing electrolyzed ozone water having a low concentration of about 0.1 mg / L, which has been conventionally difficult even if any electrode material is used. is there.

上記第1の目的を達成し得た本発明の電解方法とは、陽極電極と陰極電極を少なくとも一対備えた電解装置を用いて水溶液を電解するにあたり、少なくとも前記陽極電極は導電性ダイヤモンドを含有するものを用いると共に、電極の単位面積当たりの電力を10〜18W/cm2に制御して、水溶液の電解を行う点に要旨を有する。尚、「含有する」とは、電極基材表面に導電性ダイヤモンドが被覆されたものや表面に埋め込まれた(含浸)もの等のいずれも含む意味である。 The electrolysis method of the present invention capable of achieving the first object is that, when electrolyzing an aqueous solution using an electrolysis apparatus provided with at least a pair of an anode electrode and a cathode electrode, at least the anode electrode contains conductive diamond. The main point is that electrolysis of the aqueous solution is performed by using one and controlling the electric power per unit area of the electrode to 10 to 18 W / cm 2 . “Contains” means to include both those in which the surface of the electrode substrate is coated with conductive diamond and those embedded in the surface (impregnated).

上記第2の目的は、陽極電極と陰極電極を少なくとも一対備えた電解装置を用いて水溶液を電解するにあたり、少なくとも前記陽極電極は導電性ダイヤモンドを含有するものを用いると共に、電極の単位面積当たりの電力を0.18〜0.5W/cm2に制御して、水溶液の電解を行うことによって達成される。 The second object is to electrolyze an aqueous solution using an electrolysis apparatus provided with at least a pair of an anode electrode and a cathode electrode. At least the anode electrode contains a conductive diamond and is used per unit area of the electrode. This is achieved by controlling the electric power to 0.18 to 0.5 W / cm 2 and electrolyzing the aqueous solution.

上記いずれの構成を採用するにしても、本発明方法におけるより具体的な構成としては、電解装置として、前記陽極電極と前記陰極電極が隔膜によって区画されたものを用いると共に、前記水溶液の導電率が10-9〜10-5S/cmであり、電解電力当たり0.4mg/(L・W)以下でオゾンを含有するオゾン水を生成する構成が挙げられる。 Regardless of which of the above configurations is employed, a more specific configuration in the method of the present invention is an electrolysis apparatus in which the anode electrode and the cathode electrode are partitioned by a diaphragm, and the conductivity of the aqueous solution. 10 −9 to 10 −5 S / cm, and a configuration in which ozone water containing ozone is generated at a rate of 0.4 mg / (L · W) or less per electrolytic power can be given.

本発明方法における他の具体的な構成としては、電解装置として、前記陽極と前記陰極は隔膜によって区画されていないものを用いると共に、前記水溶液の導電率が10-9〜10-5S/cmであり、電解電力当たり0.1〜1.0mg/(L・W)の範囲でオゾンを含有するオゾン水を生成する構成が挙げられる。 As another specific configuration in the method of the present invention, as the electrolysis apparatus, the anode and the cathode are not separated by a diaphragm, and the conductivity of the aqueous solution is 10 −9 to 10 −5 S / cm. The structure which produces | generates ozone water containing ozone in the range of 0.1-1.0 mg / (L * W) per electrolysis electric power is mentioned.

本発明方法における更に他の具体的な構成としては、前記陽極と陰極は隔膜によって区画されていない電解装置を用いたときに、前記水溶液の導電率が10-4〜10-1S/cmで塩素イオンを含むものであって、電解電力当たり0.2〜2.0mg/(L・W)の範囲で遊離塩素を含有する電解水を生成する構成が挙げられる。 As another specific configuration in the method of the present invention, when an electrolytic device in which the anode and the cathode are not partitioned by a diaphragm is used, the conductivity of the aqueous solution is 10 −4 to 10 −1 S / cm. The structure which contains chlorine ion and produces | generates the electrolyzed water containing free chlorine in the range of 0.2-2.0 mg / (L * W) per electrolysis electric power is mentioned.

本発明の電解方法によれば、少なくとも前記陽極電極に導電性ダイヤモンドを含有するものを用いると共に、その電極の単位面積当たりの電力を高めの適切な範囲に設定することによって、水溶液の電解効率を高めることができ、トータルコスト低減を実現することのできる水溶液の電解方法が実現できた。   According to the electrolysis method of the present invention, at least the anode electrode containing conductive diamond is used, and the electric power per unit area of the electrode is set to a higher appropriate range, whereby the electrolysis efficiency of the aqueous solution is increased. An aqueous solution electrolysis method that can increase the total cost can be realized.

本発明方法を実施するために用いる電解装置における電解セルの構造例を示す概略説明図である。It is a schematic explanatory drawing which shows the structural example of the electrolysis cell in the electrolysis apparatus used in order to implement this invention method. 本発明方法を実施するために用いる電解装置における電解セルの他の構造例を示す概略説明図である。It is a schematic explanatory drawing which shows the other structural example of the electrolysis cell in the electrolysis apparatus used in order to implement this invention method. 実施例3において、電解電力が電解水中のオゾン濃度や電解電力当たりのオゾン生成量に与える影響を示すグラフである。In Example 3, it is a graph which shows the influence which electrolysis electric power has on the ozone concentration in electrolysis water, and the ozone production amount per electrolysis electric power. 実施例4において、電解電力が電解水中のオゾン濃度や電解電力当たりのオゾン生成量に与える影響を示すグラフである。In Example 4, it is a graph which shows the influence which electrolysis power has on the ozone concentration in electrolysis water, and the ozone production amount per electrolysis power. 実施例5において、電解電力が電解水中の遊離塩素濃度や電解電力当たりの遊離塩素生成量に与える影響を示すグラフである。In Example 5, it is a graph which shows the influence which the electrolysis electric power has on the free chlorine concentration in electrolyzed water, and the free chlorine production amount per electrolysis power.

本発明者らは、上記目的を達成するために、様々な角度から検討した。その結果、導電性ダイヤモンドを含有するものを、少なくとも陽極電極に用いると共に、電解に印加する電圧を高めにする一方、電流をできるだけ低減し、電解に必要な電力を適切な範囲に制御した状態で電解を行えば、上記目的が見事に達成されることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have studied from various angles. As a result, a material containing conductive diamond is used for at least the anode electrode and the voltage applied to the electrolysis is increased, while the current is reduced as much as possible and the power required for the electrolysis is controlled within an appropriate range. The inventors have found that the above object can be achieved by electrolysis and completed the present invention.

本発明では、少なくとも陽極電極材料として導電性ダイヤモンドを含有したもの(以下、このような電極を「導電性ダイヤモンド電極」と呼ぶことがある)を用いることによって、低コストで効率よく電解水を生成できるものとなる。導電性ダイヤモンド電極は、水溶液電解には不活性で、導電性ダイヤモンドは実質的に溶出しない。既存の電解水生成では一般に、陽極電極として黒鉛やグラシーカーボン、白金、イリジウム等の貴金属と貴金属酸化物が使用され、陰極には、白金、銀、鉄、チタン、グラシーカーボン等が使用されている。これらの電極材料では、電解条件に応じて材料が消耗し、電解水中に溶出する。電極材料が溶出すると電解水が汚染されることになる。従って、より耐食性の高い電極が望ましいが、そのような課題に対して、導電性ダイヤモンド電極は、高い熱伝導性があり、酸化に対する耐久性に優れ、高い酸化・還元触媒能と長寿命の電解用電極である。そのため、電解装置の電極交換や保全頻度を抑えるとともに、電解セル中に析出して電解反応を阻害する堆積物を低減し、メンテナンスおよびランニングコストの抑制が実現できる。   In the present invention, electrolyzed water is efficiently produced at low cost by using at least a material containing conductive diamond as an anode electrode material (hereinafter, such an electrode may be referred to as “conductive diamond electrode”). It will be possible. The conductive diamond electrode is inactive for aqueous electrolysis and does not substantially elute the conductive diamond. In existing electrolyzed water generation, noble metals and noble metal oxides such as graphite, glassy carbon, platinum and iridium are generally used as the anode electrode, and platinum, silver, iron, titanium, glassy carbon, etc. are used as the cathode. ing. In these electrode materials, the materials are consumed according to electrolysis conditions and are eluted in the electrolyzed water. When the electrode material is eluted, the electrolyzed water is contaminated. Therefore, electrodes with higher corrosion resistance are desirable, but for such problems, conductive diamond electrodes have high thermal conductivity, excellent durability against oxidation, high oxidation / reduction catalytic ability and long-life electrolysis. Electrode. Therefore, electrode replacement and maintenance frequency of the electrolysis apparatus can be suppressed, and deposits that precipitate in the electrolysis cell and inhibit the electrolytic reaction can be reduced, and maintenance and running costs can be suppressed.

導電性ダイヤモンド電極の特徴は、従来の電解電極に較べて電極の単位面積当たりの電解電力(電解として消費される電力)を抑制できることである。即ち、電解に直接に寄与せずに熱エネルギーとして損失する電力の割合が低く、電解プロセスに直接作用する電力の割合を高くできる。従来の電解電極に比べて、電解に必要な電圧は高めだが、電流は低くて済み、電力(=電圧と電流の積)を抑え込んでも、効率的に電解プロセスが進行することになる。   The feature of the conductive diamond electrode is that the electrolysis power (electric power consumed as electrolysis) per unit area of the electrode can be suppressed as compared with the conventional electrolysis electrode. That is, the ratio of power lost as thermal energy without directly contributing to electrolysis is low, and the ratio of power directly acting on the electrolysis process can be increased. Compared to conventional electrolytic electrodes, the voltage required for electrolysis is high, but the current is low, and the electrolysis process proceeds efficiently even if the power (= product of voltage and current) is suppressed.

逆に、導電性ダイヤモンド電極に過大(18W/cm2超)な電力を供給すると、単に電解効率が損なわれ、スケールの析出等を招くだけでなく、基材からの導電性ダイヤモンド電極の剥離や、電極基材自体の破損を誘発する。その結果として、電極交換や保全頻度が高くなってしまう。こうした観点から、電極の単位面積当たりの電力を10〜18W/cm2の範囲で制御することが必要となる。好ましくは、12W/cm2以上、15W/cm2以下である。尚、高効率電解を実行するためには、電解セルへの通水量を適切に制御することも有効であり、こうした観点から電解セルの水容量に対して40〜150倍程度の水量が単位時間(毎分)当たりに通水するように通水量を制御することも好ましい要件である。より好ましい通水量は、単位時間(毎分)当たり50〜120倍程度である。 On the contrary, if an excessive electric power (over 18 W / cm 2 ) is supplied to the conductive diamond electrode, the electrolytic efficiency is simply impaired, not only causing scale deposition, but also peeling of the conductive diamond electrode from the substrate. Inducing damage to the electrode substrate itself. As a result, electrode replacement and maintenance frequency increases. From such a viewpoint, it is necessary to control the electric power per unit area of the electrode in the range of 10 to 18 W / cm 2 . Preferably, 12W / cm 2 or more and 15W / cm 2 or less. In order to perform high-efficiency electrolysis, it is also effective to appropriately control the amount of water flowing to the electrolysis cell. From this viewpoint, the amount of water is about 40 to 150 times the water capacity of the electrolysis cell. It is also a preferable requirement to control the amount of water flowed so as to pass through (every minute). A more preferable water flow rate is about 50 to 120 times per unit time (every minute).

導電性ダイヤモンド電極を用いた電解におけるもう一つの特徴は、従来の電解条件では困難とされてきた、単位面積当たりの電解電力が従来よりも遙かに小さい領域(0.18〜0.5W/cm2)においても安定して所定濃度のオゾン水を電解生成できることにある。好ましくは、0.25W/cm2以上、0.40W/cm2以下である。 Another feature of electrolysis using a conductive diamond electrode is that the electrolysis power per unit area, which has been considered difficult under conventional electrolysis conditions, is much smaller than before (0.18 to 0.5 W / cm 2 ) can stably generate electrolyzed ozone water having a predetermined concentration. Preferably, 0.25 W / cm 2 or more and 0.40 W / cm 2 or less.

本発明によれば、電解装置(電解セル)が、隔膜で陽極電極(陽極室)と陰極電極(陰極室)が区画されたものを用いると共に、水溶液(原水)の導電率が10-9〜10-5S/cmであれば、電解電力当たり0.4mg/(L・W)以下でオゾン水を生成することができる。導電性ダイヤモンドは優れたオゾン水生成電極であるが、隔膜を用いて陽極室と陰極室を区画することにより、より高濃度のオゾン水を安定的に生成できる。 According to the present invention, the electrolysis apparatus (electrolysis cell) uses one in which an anode electrode (anode chamber) and a cathode electrode (cathode chamber) are partitioned by a diaphragm, and the conductivity of the aqueous solution (raw water) is 10 −9 to If it is 10 < -5 > S / cm, ozone water can be produced | generated by 0.4 mg / (L * W) or less per electrolytic power. Although conductive diamond is an excellent ozone water generating electrode, it is possible to stably generate ozone water having a higher concentration by partitioning the anode chamber and the cathode chamber using a diaphragm.

他の具体的な構成として、電解装置(電解セル)が、隔膜で陽極電極(陽極室)と陰極電極(陰極室)が区画されていないものを用いると共に、原水の導電率が10-9〜10-5S/cmであれば、電解電力当たり0.1〜1.0mg/(L・W)でオゾン水を生成することができる。この場合は、スケール付着を最小限に抑制しながら、所定濃度範囲(低濃度も含めて)のオゾン水を得ることができる。 As another specific configuration, the electrolysis apparatus (electrolysis cell) uses a diaphragm in which the anode electrode (anode chamber) and the cathode electrode (cathode chamber) are not partitioned, and the conductivity of the raw water is 10 −9 to If it is 10 <-5 > S / cm, ozone water can be produced | generated by 0.1-1.0 mg / (L * W) per electrolysis electric power. In this case, ozone water in a predetermined concentration range (including a low concentration) can be obtained while minimizing scale adhesion.

例えば、原水が水道水や井戸水等であって、金属イオン濃度が高いことがある。このような場合に、電解を継続して実施すると、電極表面に水酸化物等がスケールとして析出して電解効率を阻害することがある。こうした事態を防止するためには、一定通電量毎に逆電流を通電して、析出物を脱離させることも有効である。また、電解セルに隔膜を用いて生成する電解水を交互に通水することも有効な対策である。   For example, the raw water may be tap water or well water, and the metal ion concentration may be high. In such a case, if the electrolysis is continued, hydroxide or the like may be deposited on the electrode surface as a scale, thereby inhibiting the electrolysis efficiency. In order to prevent such a situation, it is also effective to apply a reverse current at every constant energization amount to desorb precipitates. It is also an effective measure to alternately pass electrolyzed water generated using a diaphragm in the electrolysis cell.

電解装置(電解セル)として、前記陽極電極と前記陰極電極が隔膜によって区画されていないものを用いると共に、前記水溶液の導電率が10-4〜10-1S/cmで塩素イオンを含むものであれば、電解電力当たり0.2〜2.0mg/(L・W)の範囲で遊離塩素を含有する電解水を生成することができる。 As an electrolysis device (electrolysis cell), the anode electrode and the cathode electrode are not separated by a diaphragm, and the aqueous solution has a conductivity of 10 −4 to 10 −1 S / cm and contains chlorine ions. If it exists, the electrolyzed water containing a free chlorine can be produced | generated in the range of 0.2-2.0 mg / (L * W) per electrolysis electric power.

いずれの構成を採用する場合でも、電極の単位面積当たりの電力を10〜18W/cm2または0.18〜0.5W/cm2の範囲に制御することで、電極自身の劣化、溶出、スケール付着といった問題を回避・抑制できる。 Regardless of which configuration is adopted, the power per unit area of the electrode is controlled within the range of 10 to 18 W / cm 2 or 0.18 to 0.5 W / cm 2 , so that the electrode itself deteriorates, elutes, and scales. Problems such as adhesion can be avoided and suppressed.

本発明で用いる導電性ダイヤモンド電極は、典型的には基材表面に導電性ダイヤモンド(膜)を基材表面に被覆したものや導電性ダイヤモンド(膜)を基材表面に埋め込んだ(含浸)したものであるが、こうした導電性ダイヤモンド電極は導電性の基材表面に蒸着形成したり、導電性ダイヤモンド電極を基材表面に塗布して不活性ガスや真空雰囲気中下で熱処理することによって得られる。導電性ダイヤモンド電極の基材としては、高温還元雰囲気下での耐熱性と導電性を有するチタン、ニオブ、タンタル、モリブデン、タングステン、シリコン、カーボン等が適用できる。これら材質の棒材、板材、打抜き板材、網状物、メッシュ部材、繊維体等が基材として使用できる。   The conductive diamond electrode used in the present invention typically has a substrate surface coated with conductive diamond (film) or a conductive diamond (film) embedded (impregnated) in the substrate surface. However, such a conductive diamond electrode can be obtained by vapor deposition on the surface of a conductive substrate, or by applying a conductive diamond electrode to the surface of the substrate and heat-treating it in an inert gas or vacuum atmosphere. . As a base material for the conductive diamond electrode, titanium, niobium, tantalum, molybdenum, tungsten, silicon, carbon, or the like having heat resistance and conductivity in a high temperature reducing atmosphere can be applied. Bar materials, plate materials, punched plate materials, nets, mesh members, fiber bodies and the like of these materials can be used as the base material.

導電性ダイヤモンドの蒸着法は様々であるが、代表的なものとしてマイクロ波プラズマCVD法や熱フィラメントCVD法が挙げられる。導電性を付与するために添加されるホウ素成分を含む炭化水素ガスを水素雰囲気中で分解して、700〜900℃に保たれた基材表面を0.1〜10μm程度の厚さのダイヤモンドで被覆する。   There are various methods for depositing conductive diamond, but typical examples include microwave plasma CVD and hot filament CVD. A hydrocarbon gas containing a boron component added to impart conductivity is decomposed in a hydrogen atmosphere, and the substrate surface maintained at 700 to 900 ° C. is made of diamond having a thickness of about 0.1 to 10 μm. Cover.

導電性ダイヤモンド電極を少なくとも陽極電極として電解に使用すると、電解水(酸性水)が生成する。電解条件によっては、オゾンが生成することになる。また、原水の水溶液中に例えば塩酸を1〜3%程度添加して導電率を適切な範囲に制御したものでは、次亜塩素酸が生成する。   When a conductive diamond electrode is used for electrolysis as at least an anode electrode, electrolyzed water (acidic water) is generated. Depending on the electrolysis conditions, ozone is generated. In addition, for example, about 1 to 3% of hydrochloric acid is added to an aqueous solution of raw water and the conductivity is controlled within an appropriate range, hypochlorous acid is generated.

導電性ダイヤモンド電極は、陰極電極の素材としても用いることができるが、導電性ダイヤモンド電極を陰極電極として電解すると、陰極電極付近の液中に水酸イオンが生じて還元電解水が生成する。いずれの場合にも、除菌力を有する電解水が生成するが、有機化合物を分解して清浄水に再生できる。電解水の優れた効能は、種々の科学的検証によって裏付けられているが、例えば除菌力を例にとると、大腸菌、サルモネラ菌、黄色ブドウ状球菌などの微生物の減少やウイルスの失活から立証できる。   The conductive diamond electrode can also be used as a material for the cathode electrode. However, when electrolysis is performed using the conductive diamond electrode as the cathode electrode, hydroxide ions are generated in the liquid near the cathode electrode to generate reduced electrolyzed water. In either case, electrolyzed water having sterilizing power is generated, but the organic compound can be decomposed and regenerated into clean water. The excellent efficacy of electrolyzed water is supported by various scientific verifications. For example, when sterilizing power is taken as an example, it is proved by the reduction of microorganisms such as Escherichia coli, Salmonella, Staphylococcus aureus and inactivation of viruses it can.

陽極電極と陰極電極を仕切る隔膜としては、中性隔膜やイオン交換膜が利用でき、電解セルを陽極室と陰極室とに区画することによって、原水の電解により生成する酸性水と還元電解水とを効率よく得られることになる。イオン交換膜は、電極近傍で生成したイオンが反対の電極で消費されることを防止するだけでなく、原水の導電性が低い場合に電解プロセスを速やかに進行させる。こうした隔膜を使用することによって、陽極側の酸性水と陰極側の還元電解水とを分離して得られる。このような酸性水と還元電解水を例えば交互に通水すると、酸化性洗浄とアルカリ性洗浄が繰り返されて電解セル内外の堆積物の低減と電解効率の維持・向上を実現できる。   As a diaphragm for partitioning the anode electrode and the cathode electrode, a neutral diaphragm or an ion exchange membrane can be used. By dividing the electrolytic cell into an anode chamber and a cathode chamber, acidic water and reduced electrolyzed water generated by electrolysis of raw water Can be obtained efficiently. The ion exchange membrane not only prevents ions generated in the vicinity of the electrode from being consumed by the opposite electrode, but also allows the electrolysis process to proceed rapidly when the conductivity of the raw water is low. By using such a diaphragm, it is obtained by separating the acidic water on the anode side and the reduced electrolyzed water on the cathode side. When such acidic water and reduced electrolyzed water are alternately passed, for example, oxidizing cleaning and alkaline cleaning are repeated, and it is possible to reduce deposits inside and outside the electrolytic cell and to maintain and improve electrolytic efficiency.

本発明では、電解効率の観点から、処理対象となる水溶液(原水)の温度は5〜55℃程度であることが好ましい(より好ましくは10〜25℃程度)。また電極間距離(陽極と陰極間距離)は極力小さくして抵抗損を抑制することが望ましいが、通水抵抗の増大にもつながるため0.2〜5.0mmの範囲とすることが好ましい(より好ましくは1.0mm以上、3.0mm以下)。   In the present invention, from the viewpoint of electrolytic efficiency, the temperature of the aqueous solution (raw water) to be treated is preferably about 5 to 55 ° C (more preferably about 10 to 25 ° C). The distance between the electrodes (the distance between the anode and the cathode) is desirably as small as possible to suppress the resistance loss, but it is preferable to be within a range of 0.2 to 5.0 mm because it leads to an increase in water resistance ( More preferably 1.0 mm or more and 3.0 mm or less).

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

図1は本発明方法を実施するために用いる電解装置における構造例を示す概略断面図である。この装置では、箱型の無隔膜電解セルに、チタン棒を基材としてその表面に導電性ダイヤモンドを被覆した[導電性ダイヤモンド/チタン電極]が装着され(図1では、2対の陽極電極と陰極電極)、直流電源が接続される。電解セルには原水供給口と被処理水(原水)取出口が設置されており、水道水や精製水等の原水が原水供給口から供給され、電極表面で電気化学的に処理される。導電性ダイヤモンド電極は溶出することなく、原水が処理されて電解水が生成され、被処理水取出口から取り出される。   FIG. 1 is a schematic cross-sectional view showing a structural example in an electrolysis apparatus used for carrying out the method of the present invention. In this apparatus, a box-type diaphragm electrolysis cell is equipped with [conductive diamond / titanium electrode] whose surface is coated with conductive diamond using a titanium rod as a base material (in FIG. 1, two pairs of anode electrodes and Cathode electrode) and DC power supply are connected. The electrolysis cell is provided with a raw water supply port and a treated water (raw water) outlet, and raw water such as tap water or purified water is supplied from the raw water supply port and is electrochemically processed on the electrode surface. Without eluting the conductive diamond electrode, the raw water is treated to generate electrolyzed water, which is taken out from the treated water outlet.

図2は、本発明方法を実施するために用いる電解装置の他の構造例を示す概略断面図である。箱型の電解セルは、導電性ダイヤモンド膜が被覆されたメッシュ状のチタン陽極(導電性ダイヤモンド/チタンメッシュ電極:陽極電極)が収容された陽極室と、微小な銀粒子を含有するステンレス陰極(微小銀粒子含有SUS陰極:陰極電極)を有する陰極室とに隔膜(プロトン透過膜)によって区画されている。電解セルの陽極室と陰極室の各々の底面に原水供給口があり、上面に電解水取出口が夫々設けられている。このような電解セルに水道水を供給し、電極間に通電すると、陽極室と陰極室の各々で電解水が生成して、電解水取出口から取出される。   FIG. 2 is a schematic cross-sectional view showing another structural example of the electrolytic apparatus used for carrying out the method of the present invention. A box-type electrolytic cell includes an anode chamber containing a mesh-like titanium anode coated with a conductive diamond film (conductive diamond / titanium mesh electrode: anode electrode), and a stainless steel cathode containing fine silver particles ( A cathode chamber having a fine silver particle-containing SUS cathode (cathode electrode) is partitioned by a diaphragm (proton permeable membrane). A raw water supply port is provided on the bottom surface of each of the anode chamber and the cathode chamber of the electrolysis cell, and an electrolytic water outlet is provided on the top surface. When tap water is supplied to such an electrolysis cell and energized between the electrodes, electrolyzed water is generated in each of the anode chamber and the cathode chamber and is taken out from the electrolyzed water outlet.

[実施例1]
2組の導電性ダイヤモンド/チタン電極(直径:2〜3mm、長さ:30〜120mm)を用いて、電極間距離:0.8mm、電解有効面積:3〜10cm2となるように設置し、図1に示す電解セル(隔壁のないもの:容量約5〜10cm3)を構成した。この電解セルに、0.2〜1.5L/minの速度で水道水を通水しながら、電解を行った。
[Example 1]
Using two sets of conductive diamond / titanium electrodes (diameter: 2 to 3 mm, length: 30 to 120 mm), the distance between the electrodes was set to 0.8 mm, and the electrolysis effective area: 3 to 10 cm 2 . The electrolytic cell shown in FIG. 1 (without a partition wall: capacity of about 5 to 10 cm 3 ) was constructed. Electrolysis was performed while passing tap water through this electrolysis cell at a rate of 0.2 to 1.5 L / min.

このとき、電極間に8〜22Vの電圧を印加して、0.1〜1.6Aの直流電流を通電しながら(電力:1〜8W/cm2)、電解セルに60分間の間、連続して通水した。電解セル、電解装置に異常が認められなかったので(例えば、通水や電解セルの異常加熱は発生せず)同条件の範囲内で計720時間の装置運転を行った。 At this time, a voltage of 8 to 22 V was applied between the electrodes and a direct current of 0.1 to 1.6 A was applied (power: 1 to 8 W / cm 2 ), and the electrolysis cell was continuously applied for 60 minutes. And watered. Since no abnormality was observed in the electrolysis cell and the electrolysis apparatus (for example, no water flow or abnormal heating of the electrolysis cell occurred), the apparatus was operated for a total of 720 hours within the same conditions.

装置停止後に、電解セルを分解して導電性ダイヤモンド/チタン電極を取り出し、その表面を目視観察したところ、カルシウム化合物と思われる析出物が観察された。但し、析出物の量は、同形状の白金メッキ/チタン電極の場合と比較すると、遥かに少量であり、電解条件を逸脱させるほどの電圧の上昇は見られなかった。   After the apparatus was stopped, the electrolytic cell was disassembled, the conductive diamond / titanium electrode was taken out, and the surface thereof was visually observed. As a result, precipitates that appeared to be calcium compounds were observed. However, the amount of the precipitate was much smaller than that of the platinum plating / titanium electrode having the same shape, and no increase in voltage was observed to deviate from the electrolysis conditions.

[実施例2]
実施例1に示した電解において、12時間毎に直流電流の向きを反転させて720時間の運転を行った。このとき、直流電流:0.2〜1.6A、電極間の印加電圧:8〜22Vの範囲で、セル投入電力を0.18〜0.5W/cm2または10〜18W/cm2の範囲に制御した。運転停止後に、電解セルから取出した導電性ダイヤモンド/チタン電極の表面を観察したが、析出物の付着は認められなかった。
[Example 2]
In the electrolysis shown in Example 1, the direction of the direct current was reversed every 12 hours, and the operation was performed for 720 hours. At this time, direct current: 0.2 to 1.6 A, applied voltage between electrodes: 8 to 22 V, cell input power is 0.18 to 0.5 W / cm 2 or 10 to 18 W / cm 2 Controlled. After the operation was stopped, the surface of the conductive diamond / titanium electrode taken out from the electrolytic cell was observed, but no deposits were observed.

[実施例3]
導電性ダイヤモンド/チタンメッシュ電極(厚さ:約1.5mm)を1枚と、微小な銀粒子を含有するステンレス陰極を1枚用いて、電極間距離:1.0mm、電解有効面積(電極面積)が100cm2となるように設置し、図2に示す電解セル(隔壁あり)を構成した。この電解セルに、1.5〜3.0L/minの速度で水道水(導電率:8×10-8S/cm)を通水しながら、電解装置を運転した。
[Example 3]
Using one conductive diamond / titanium mesh electrode (thickness: about 1.5 mm) and one stainless steel cathode containing fine silver particles, distance between electrodes: 1.0 mm, effective electrolysis area (electrode area) ) Was set to 100 cm 2, and the electrolytic cell (with partition walls) shown in FIG. 2 was configured. The electrolysis apparatus was operated while passing tap water (conductivity: 8 × 10 −8 S / cm) through the electrolysis cell at a rate of 1.5 to 3.0 L / min.

電解プロセス条件を変えて、陽極室側から取出した電解水中のオゾン濃度、電解能力(電解電力当たりのオゾン生成量)を調査した。尚、電解水中のオゾン濃度は、低圧水銀ランプを光源とした紫外線(波長254nm)吸光計(内製)によって計測した。その結果を、電解条件(電力、電極面積、単位面積当たりの電解電力、通水量)と共に、下記表1に示す。また電解電力が電解水中のオゾン濃度や電解電力当たりのオゾン生成量に与える影響を図3に示す。尚、図3において、白抜き記号(○、□、△)は電解水中のオゾン濃度を示し、塗りつぶし記号(●、■、▲)は電解電力当たりのオゾン生成量を示す。このうち、(○、●)は本発明によって初めて実現される電解結果、(□、■)は従来の電解条件で得られる電解結果である。また(△、▲)は、電極単位面積当たりの電解電力が過大または過小であり、効率的な電解が安定して進まないことを示す結果である。   The electrolysis process conditions were changed, and the ozone concentration in the electrolyzed water taken out from the anode chamber side and the electrolysis capacity (the amount of ozone generated per electrolysis power) were investigated. The ozone concentration in the electrolyzed water was measured with an ultraviolet (wavelength 254 nm) absorption meter (made in-house) using a low-pressure mercury lamp as a light source. The results are shown in Table 1 below together with the electrolysis conditions (power, electrode area, electrolysis power per unit area, water flow rate). Moreover, the influence which electrolysis electric power has on the ozone concentration in electrolyzed water and the ozone production amount per electrolysis electric power is shown in FIG. In FIG. 3, white symbols (◯, □, Δ) indicate the ozone concentration in the electrolyzed water, and solid symbols (●, ■, ▲) indicate the amount of ozone generated per electrolytic power. Among these, (◯, ●) are electrolysis results realized for the first time by the present invention, and (□, ■) are electrolysis results obtained under conventional electrolysis conditions. Further, (Δ, ▲) is a result showing that the electrolysis power per electrode unit area is too large or too small and efficient electrolysis does not proceed stably.

これらの結果から明らかなように、単位面積当たりの電解電力を0.18〜0.5W/cm2または10〜18W/cm2の範囲に設定したものでは(試験No.2、3、9、12〜15)、従来(試験No.4〜8、10、11)と同程度に、電解電力当たり0.2〜0.4mg/(L・W)の範囲でオゾンを含有するオゾン水を安定的に生成できていることが分かる。その一方で、電極の単位面積当たりの電解電力が18W/cm2を超えるような電解条件では、時間の経過と共に一定電流を維持するために必要な電圧が増大した(試験No.16〜18)。このような場合は、装置運転停止後に電極表面を観察したところ、カルシウム化合物と思われる析出物の付着が見られた。また隔膜にも変化が見られた。即ち、電極と接している部分の白濁現象が認められた。試験No.1のものは、単位面積当たりの電解電力を0.18W/cm2未満に設定したものであり、希望するオゾン生成量が達成できていないものである。 As apparent from these results, the obtained by setting the electrolytic power per unit area in the range of 0.18~0.5W / cm 2 or 10~18W / cm 2 (test Nanba2,3,9, 12-15), ozone water containing ozone is stabilized in the range of 0.2 to 0.4 mg / (L · W) per electrolytic power, similar to conventional (test Nos. 4 to 8, 10, 11). It can be seen that it is generated automatically. On the other hand, under the electrolysis conditions in which the electrolysis power per unit area of the electrode exceeds 18 W / cm 2 , the voltage necessary for maintaining a constant current increased with time (Test Nos. 16 to 18). . In such a case, when the surface of the electrode was observed after the operation of the apparatus was stopped, deposits considered to be calcium compounds were observed. Changes were also seen in the diaphragm. That is, a white turbidity phenomenon in the part in contact with the electrode was observed. Test No. In the case of No. 1, the electrolysis power per unit area is set to less than 0.18 W / cm 2 , and the desired ozone generation amount cannot be achieved.

[実施例4]
図1に示した電解装置を用い(隔壁なし)、0.2〜1.5L/minの速度で水道水(導電率:5×10-7S/cm)を通水し、電解条件を変えて、生成した電解水中のオゾン濃度、電解能力(電解電力当たりのオゾン生成量)を実施例3と同様に調査した。その結果を、電解条件(電力、電極面積、単位面積当たりの電解電力、通水量)と共に、下記表2に示す。また電解電力が電解水中のオゾン濃度や電解電力当たりのオゾン生成量に与える影響を図4に示す。尚、図4において、白抜き記号(○、□、△)は電解水中のオゾン濃度を示し、塗りつぶし記号(●、■、▲)は電解電力当たりのオゾン生成量を示す。このうち、(○、●)は本発明によって初めて実現される電解結果、(□、■)は従来の電解条件で得られる電解結果である。また(△、▲)は、電極単位面積当たりの電解電力が過大または過小であり、効率的な電解が安定して進まないことを示す結果である。
[Example 4]
Using the electrolytic apparatus shown in FIG. 1 (no partition wall), tap water (conductivity: 5 × 10 −7 S / cm) was passed at a rate of 0.2 to 1.5 L / min to change the electrolysis conditions. Then, the ozone concentration in the generated electrolyzed water and the electrolysis capacity (the amount of ozone generated per electrolysis power) were investigated in the same manner as in Example 3. The results are shown in Table 2 below together with the electrolysis conditions (power, electrode area, electrolysis power per unit area, water flow rate). Moreover, the influence which electrolysis electric power has on the ozone concentration in electrolyzed water and the ozone generation amount per electrolysis electric power is shown in FIG. In FIG. 4, white symbols (◯, □, Δ) indicate the ozone concentration in the electrolyzed water, and solid symbols (●, ■, ▲) indicate the amount of ozone generated per electrolytic power. Among these, (◯, ●) are electrolysis results realized for the first time by the present invention, and (□, ■) are electrolysis results obtained under conventional electrolysis conditions. Further, (Δ, ▲) is a result showing that the electrolysis power per electrode unit area is too large or too small and efficient electrolysis does not proceed stably.

これらの結果から明らかなように、単位面積当たりの電解電力を0.18〜0.5W/cm2または10〜18W/cm2の範囲に設定したものでは(試験No.22、28、29、32、36〜15)、従来(試験No.20、21、25〜27、33〜36)と同程度に、電解電力当たり0.1〜1.0mg/(L・W)の範囲でオゾンを含有するオゾン水を安定的に生成できていることが分かる。その一方で、電極の単位面積当たりの電解電力が18W/cm2を超えるような電解条件では、時間の経過と共に一定電流を維持するために必要な電圧が増大した(試験No.23、30、39)。このような場合は、装置運転停止後に電極表面を観察したところ、カルシウム化合物と思われる析出物の付着が見られた。試験No.19、24、31のものは、単位面積当たりの電解電力を0.18W/cm2未満に設定したものであり、希望するオゾン生成量が達成できていないものである。また、このような電解方法で用いた、一般菌含有水溶液の処理前後の菌数が初期値の3%以下に低減することを確認した。尚、一般菌数の測定は工業用水試験法(JIS K0101)によった。 As apparent from these results, the obtained by setting the electrolytic power per unit area in the range of 0.18~0.5W / cm 2 or 10~18W / cm 2 (test Nanba22,28,29, 32, 36 to 15), and ozone in the range of 0.1 to 1.0 mg / (L · W) per electrolytic power to the same extent as in the past (Test No. 20, 21, 25 to 27, 33 to 36). It turns out that the ozone water to contain can be produced | generated stably. On the other hand, under the electrolysis conditions in which the electrolysis power per unit area of the electrode exceeds 18 W / cm 2 , the voltage necessary to maintain a constant current increased with the passage of time (Test No. 23, 30, 39). In such a case, when the surface of the electrode was observed after the operation of the apparatus was stopped, deposits considered to be calcium compounds were observed. Test No. Nos. 19, 24, and 31 are those in which the electrolysis power per unit area is set to less than 0.18 W / cm 2 , and the desired ozone generation amount cannot be achieved. In addition, it was confirmed that the number of bacteria before and after treatment of the general bacteria-containing aqueous solution used in such an electrolysis method was reduced to 3% or less of the initial value. In addition, the general bacterial count was measured by the industrial water test method (JIS K0101).

[実施例5]
図1に示した電解装置に、チタン板を基材としてその表面に導電性ダイヤモンド粒子を含浸した電極を装着して、原水を水道水から、精製水に塩酸を溶かした希塩酸水(導電率:0.003〜0.02S/cm)に変えて、実施例4と同様の試験を行ない、電解水中の遊離塩素濃度(遊離塩素イオン濃度)との関係を調べた。尚、電解水中の遊離塩素濃度は、回転金電極を検知部としたポーラログラフィー(島津製作所製NC140)によって計測した。その結果を、電解条件(電力、電極面積、単位面積当たりの電解電力、通水量)と共に、下記表3に示す。また電解電力が電解水中の遊離塩素濃度や電解電力当たりの遊離塩素生成量に与える影響を図5に示す。尚、図5において、白抜き記号(○、□、△)は電解水中の遊離塩素濃度を示し、塗りつぶし記号(●、■、▲)は電解電力当たりの遊離塩素生成量を示す。このうち、(○、●)は本発明によって初めて実現される電解結果、(□、■)は従来の電解条件で得られる電解結果である。また(△、▲)は、電極単位面積当たりの電解電力が過大または過小であり、効率的な電解が安定して進まないことを示す結果である。
[Example 5]
1 is mounted with an electrode impregnated with conductive diamond particles on the surface of a titanium plate as a base material, and dilute hydrochloric acid water (conductivity: conductivity: raw water from tap water and purified water dissolved in hydrochloric acid). In the same manner as in Example 4, the relationship with the free chlorine concentration (free chlorine ion concentration) in the electrolyzed water was examined. The free chlorine concentration in the electrolyzed water was measured by polarography (NC140 manufactured by Shimadzu Corporation) using a rotating gold electrode as a detection unit. The results are shown in Table 3 below together with the electrolysis conditions (power, electrode area, electrolysis power per unit area, water flow rate). FIG. 5 shows the influence of electrolysis power on the concentration of free chlorine in electrolyzed water and the amount of free chlorine produced per electrolysis power. In FIG. 5, white symbols (◯, □, Δ) indicate the free chlorine concentration in the electrolyzed water, and solid symbols (●, ■, ▲) indicate the amount of free chlorine generated per electrolytic power. Among these, (◯, ●) are electrolysis results realized for the first time by the present invention, and (□, ■) are electrolysis results obtained under conventional electrolysis conditions. Further, (Δ, ▲) is a result showing that the electrolysis power per electrode unit area is too large or too small and efficient electrolysis does not proceed stably.

これらの結果から明らかなように、単位面積当たりの電解電力を0.18〜0.5W/cm2または10〜18W/cm2の範囲に設定したものでは(試験No.42、44、48、49、51、52、57、58)、従来(試験No.40、41、45〜47、53〜56)と同程度に、電解電力当たり2.0mg/(L・W)以下の範囲で遊離塩素を含有する電解水が安定的に生成できていることが分かる。その一方で、電極の単位面積当たりの電解電力が18W/cm2を超えるような電解条件では、時間の経過と共に一定電流を維持するために必要な電圧が増大した(試験No.43、50)。このような場合は、装置運転停止後に電極表面を観察したところ、カルシウム化合物またはシリカ化合物と思われる析出物の付着が見られた。
As apparent from these results, the obtained by setting the electrolytic power per unit area in the range of 0.18~0.5W / cm 2 or 10~18W / cm 2 (test Nanba42,44,48, 49, 51, 52, 57, 58), conventional (test No. 40, 41, 45-47, 53-56), free in the range of 2.0 mg / (L · W) or less per electrolytic power It can be seen that electrolyzed water containing chlorine can be stably generated. On the other hand, under the electrolysis conditions in which the electrolysis power per unit area of the electrode exceeds 18 W / cm 2 , the voltage necessary to maintain a constant current increased with time (Test Nos. 43 and 50). . In such a case, when the surface of the electrode was observed after the operation of the apparatus was stopped, deposits that appeared to be calcium compounds or silica compounds were observed.

Claims (5)

陽極電極と陰極電極を少なくとも一対備えた電解装置を用いて水溶液を電解するにあたり、少なくとも前記陽極電極は導電性ダイヤモンドを含有するものを用いると共に、電極の単位面積当たりの電力を10〜18W/cm2に制御して、水溶液の電解を行うことを特徴とする水溶液の電解方法。 In electrolyzing an aqueous solution using an electrolysis apparatus having at least a pair of an anode electrode and a cathode electrode, at least the anode electrode contains a conductive diamond, and the power per unit area of the electrode is 10 to 18 W / cm. 2. A method for electrolyzing an aqueous solution, wherein the electrolysis of the aqueous solution is performed under control of 2 . 陽極電極と陰極電極を少なくとも一対備えた電解装置を用いて水溶液を電解するにあたり、少なくとも前記陽極電極は導電性ダイヤモンドを含有するものを用いると共に、電極の単位面積当たりの電力を0.18〜0.5W/cm2に制御して、水溶液の電解を行うことを特徴とする水溶液の電解方法。 In electrolyzing an aqueous solution using an electrolysis apparatus including at least a pair of an anode electrode and a cathode electrode, at least the anode electrode contains a conductive diamond, and the power per unit area of the electrode is 0.18-0. A method for electrolyzing an aqueous solution, wherein the aqueous solution is electrolyzed while being controlled to 5 W / cm 2 . 前記電解装置は、前記陽極電極と前記陰極電極が隔膜によって区画されたものを用いると共に、前記水溶液の導電率が10-9〜10-5S/cmであり、電解電力当たり0.4mg/(L・W)以下でオゾンを含有するオゾン水を生成するものである請求項1または2に記載の電解方法。 The electrolysis apparatus uses an anode electrode and a cathode electrode partitioned by a diaphragm, and the conductivity of the aqueous solution is 10 −9 to 10 −5 S / cm, and 0.4 mg / (per electrolysis power). The electrolytic method according to claim 1 or 2, wherein ozone water containing ozone is generated at a level of L · W or less. 前記電解装置は、前記陽極電極と前記陰極電極が隔膜によって区画されていないものを用いると共に、前記水溶液の導電率が10-9〜10-5S/cmであり、電解電力当たり0.1〜1.0mg/(L・W)の範囲でオゾンを含有するオゾン水を生成するものである請求項1または2に記載の電解方法。 The electrolysis apparatus uses a device in which the anode electrode and the cathode electrode are not partitioned by a diaphragm, and the conductivity of the aqueous solution is 10 −9 to 10 −5 S / cm. The electrolysis method according to claim 1 or 2, wherein ozone water containing ozone is generated in the range of 1.0 mg / (L · W). 前記電解装置は、前記陽極電極と前記陰極電極が隔膜によって区画されていないものを用いると共に、前記水溶液の導電率が10-4〜10-1S/cmで塩素イオンを含むものであり、電解電力当たり0.2〜2.0mg/(L・W)の範囲で遊離塩素イオンを含有する電解水を生成するものである請求項1または2に記載の電解方法。 The electrolysis apparatus uses an electrode in which the anode electrode and the cathode electrode are not partitioned by a diaphragm, and has an electric conductivity of 10 −4 to 10 −1 S / cm and contains chlorine ions. The electrolysis method according to claim 1 or 2, wherein electrolyzed water containing free chlorine ions is generated in the range of 0.2 to 2.0 mg / (L · W) per electric power.
JP2010252324A 2010-11-10 2010-11-10 Electrolysis method of aqueous solution Expired - Fee Related JP5323798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010252324A JP5323798B2 (en) 2010-11-10 2010-11-10 Electrolysis method of aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010252324A JP5323798B2 (en) 2010-11-10 2010-11-10 Electrolysis method of aqueous solution

Publications (2)

Publication Number Publication Date
JP2012101185A true JP2012101185A (en) 2012-05-31
JP5323798B2 JP5323798B2 (en) 2013-10-23

Family

ID=46392253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010252324A Expired - Fee Related JP5323798B2 (en) 2010-11-10 2010-11-10 Electrolysis method of aqueous solution

Country Status (1)

Country Link
JP (1) JP5323798B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299467A (en) * 1993-12-22 1995-11-14 Eastman Kodak Co Processing method of waste water solute by electrolysis
JPH09268395A (en) * 1996-04-02 1997-10-14 Permelec Electrode Ltd Electrode for electrolysis and electrolytic cell using this electrode
JPH11269686A (en) * 1998-03-18 1999-10-05 Permelec Electrode Ltd Production of hydrogen peroxide and electrolytic cell for production of hydrogen peroxide
JP2003251357A (en) * 2001-12-28 2003-09-09 Kurita Water Ind Ltd Method for treating oxidizable material-containing water
JP2004237207A (en) * 2003-02-05 2004-08-26 Kurita Water Ind Ltd Method and apparatus for treating organic compound-containing water
JP2005046730A (en) * 2003-07-29 2005-02-24 Permelec Electrode Ltd Electrochemical sterilization and bacteriostasis method
JP2005279417A (en) * 2004-03-29 2005-10-13 Denkai Giken:Kk Electrochemical water treatment apparatus
JP2006083407A (en) * 2004-09-14 2006-03-30 Sumitomo Electric Ind Ltd Diamond electrode
JP2008255437A (en) * 2007-04-06 2008-10-23 Kobe Steel Ltd Conductive diamond coated net-like electrode, method of manufacturing the same and ozone water generator provided with the same
JP2008266717A (en) * 2007-04-19 2008-11-06 Kobe Steel Ltd Electrode for ozone generation
JP2010234250A (en) * 2009-03-31 2010-10-21 Daikin Ind Ltd Method for decomposing fluorine-containing organic compound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299467A (en) * 1993-12-22 1995-11-14 Eastman Kodak Co Processing method of waste water solute by electrolysis
JPH09268395A (en) * 1996-04-02 1997-10-14 Permelec Electrode Ltd Electrode for electrolysis and electrolytic cell using this electrode
JPH11269686A (en) * 1998-03-18 1999-10-05 Permelec Electrode Ltd Production of hydrogen peroxide and electrolytic cell for production of hydrogen peroxide
JP2003251357A (en) * 2001-12-28 2003-09-09 Kurita Water Ind Ltd Method for treating oxidizable material-containing water
JP2004237207A (en) * 2003-02-05 2004-08-26 Kurita Water Ind Ltd Method and apparatus for treating organic compound-containing water
JP2005046730A (en) * 2003-07-29 2005-02-24 Permelec Electrode Ltd Electrochemical sterilization and bacteriostasis method
JP2005279417A (en) * 2004-03-29 2005-10-13 Denkai Giken:Kk Electrochemical water treatment apparatus
JP2006083407A (en) * 2004-09-14 2006-03-30 Sumitomo Electric Ind Ltd Diamond electrode
JP2008255437A (en) * 2007-04-06 2008-10-23 Kobe Steel Ltd Conductive diamond coated net-like electrode, method of manufacturing the same and ozone water generator provided with the same
JP2008266717A (en) * 2007-04-19 2008-11-06 Kobe Steel Ltd Electrode for ozone generation
JP2010234250A (en) * 2009-03-31 2010-10-21 Daikin Ind Ltd Method for decomposing fluorine-containing organic compound

Also Published As

Publication number Publication date
JP5323798B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP4116949B2 (en) Electrochemical sterilization and sterilization method
US8431008B2 (en) Electrolytic disinfection system and method for purifying water
JP3988827B2 (en) Method and apparatus for producing negative and positive redox potential (ORP) water
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
EP1640343A1 (en) Photocatalyst water treating apparatus
CA3003308C (en) Apparatus and method for electrodisinfection
JP5595213B2 (en) Disinfecting water manufacturing apparatus and disinfecting water manufacturing method
TW201319322A (en) Electrolysis system and electrolysis method for the same
JP2017503916A (en) Electrolysis cell equipped with concentric electrode pairs
JP4552219B2 (en) Method for adjusting culture medium for hydroponics and method for supplying trace elements
JP5323798B2 (en) Electrolysis method of aqueous solution
KR101408133B1 (en) Electrode for sterilization and process for water treatment using the same
KR20110082453A (en) Electrolysis apparatus for manufacturing sterilized water using electrode combination
JP4428633B2 (en) Method of virus inactivation of treated water
EP1394119A1 (en) Method and apparatus for generating ozone by electrolysis
JP5116793B2 (en) Reactive oxygen species generator
Jwa et al. In situ disinfection and green hydrogen production using carbon-based cathodes in seawater electrolysis
KR20110054905A (en) Apparatus for manufacturing sterilized water included mixed oxidants
KR101314639B1 (en) Sterilizing system
KR20200081115A (en) Electrode catalyst layer composed of palladium, iridium, and tantalum, and sterilizing water generating module coated with the electrode catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130717

R150 Certificate of patent or registration of utility model

Ref document number: 5323798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130812

LAPS Cancellation because of no payment of annual fees