JPH09256001A - Alloy for r-t-b base anisotropic magnet, production of alloy powder and alloy for inspecting - Google Patents

Alloy for r-t-b base anisotropic magnet, production of alloy powder and alloy for inspecting

Info

Publication number
JPH09256001A
JPH09256001A JP8093074A JP9307496A JPH09256001A JP H09256001 A JPH09256001 A JP H09256001A JP 8093074 A JP8093074 A JP 8093074A JP 9307496 A JP9307496 A JP 9307496A JP H09256001 A JPH09256001 A JP H09256001A
Authority
JP
Japan
Prior art keywords
phase
alloy
kpa
hydrogen gas
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8093074A
Other languages
Japanese (ja)
Other versions
JP3595064B2 (en
Inventor
Satoru Hirozawa
哲 広沢
Minoru Uehara
稔 上原
Hiroyuki Tomizawa
浩之 冨澤
Takashi Ikegami
尚 池上
Toshiro Tomita
俊郎 富田
Naoyuki Sano
直幸 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9307496A priority Critical patent/JP3595064B2/en
Publication of JPH09256001A publication Critical patent/JPH09256001A/en
Application granted granted Critical
Publication of JP3595064B2 publication Critical patent/JP3595064B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Abstract

PROBLEM TO BE SOLVED: To optimize the hydrogenizing and recrystallizing treating conditions by discharging an alloy for inspecting in the process of hydrogenizing the alloy powder and confirming intermediate stage phases. SOLUTION: The temp. of the raw powder of an R-T-(M) base alloy is raised, which is hydrogenized, is discharged in the process of the treatment and is rapidly cooled to obtain an alloy for inspecting. As for intermediate stage phases confirmed by this alloy for inspecting, in addition to a lamellar structure composed of coarse α-Fe and Fe2 B grains and α-Fe and RH2 , contg. R2 Fe14 B fine grains and RH2 on the direction same as that of mother phases, Fe enriched alloy phases contg. <=10at.% are largely present, but, they vanish by the prolongation of the hydrogenizing time. Then, in the process of the hydrogenizing, this Fe enriched alloy phases, i.e., the intermediate stage phases are confirmed, and while the formation of the R2 Fe14 B fine grains and their convertion into anisotropic ones are verified, it is regulated to an optimum alloy phase structure, i.e., the optimum conditions are set, by which the fine crystals of the R2 Fe14 B phases can uniformly be dispersed into the intermediate stage phases by the hydrogenizing treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、水素化・再結晶
処理によるR−T−B系異方性ボンド磁石用合金粉末の
製造方法に活用可能な新規に知見した検査用合金に係
り、該異方性ボンド磁石用合金粉末の製造に際して、新
規に知見した該合金粉末の水素化途中の中間段階相を有
する検査用合金を製造工程途中で取り出して、R2Fe
14B微粒子の生成や異方化の過程を検証しながら、適正
な合金相組織に調整することが可能なR−T−B系異方
性磁石用合金粉末の製造方法と検査用合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a newly discovered inspection alloy that can be utilized in a method for producing an R-T-B type anisotropic bonded magnet alloy powder by hydrogenation / recrystallization treatment. When manufacturing the alloy powder for anisotropic bonded magnets, a newly discovered test alloy having an intermediate stage phase in the middle of hydrogenation of the alloy powder is taken out during the manufacturing process to obtain R 2 Fe.
The present invention relates to a method for producing an R-T-B based anisotropic magnet alloy powder capable of adjusting to an appropriate alloy phase structure while verifying the generation and anisotropic processes of fine particles of B, and an alloy for inspection.

【0002】[0002]

【従来の技術】R−T−(M)−B系異方性ボンド磁石
粉末の製造方法には、水素化・再結晶処理による製造方
法として、例えば特開平1−132106号公報に開示
されている。すなわち、かかる水素化・再結晶処理法と
は、R−T−(M)−B系原料合金鋳塊または粉末を、
2ガス雰囲気またはH2ガスと不活性ガスの混合雰囲気
中で温度500℃〜1000℃に保持して上記合金の鋳
塊または粉末にH2を吸蔵させた後、H2ガス圧力13P
a(1×10-1Torr)以下の真空雰囲気、又はH2
ガス分圧13Pa(1×10-1Torr)以下の不活性
ガス雰囲気になるまで温度500℃〜1000℃で脱H
2処理し、ついで冷却する工程を言い、該公報には水素
化・再結晶処理で得られた粉末を粉砕後に樹脂配合して
成形してR−T−B系異方性ボンド磁石を得ることが開
示されている。
2. Description of the Related Art A method for producing an RT- (M) -B anisotropic bonded magnet powder is disclosed in, for example, Japanese Patent Application Laid-Open No. 1-132106 as a production method by hydrogenation / recrystallization treatment. There is. That is, the hydrogenation / recrystallization treatment method means that the RT- (M) -B-based raw material alloy ingot or powder is
After maintaining the temperature of 500 ° C. to 1000 ° C. in a H 2 gas atmosphere or a mixed atmosphere of H 2 gas and an inert gas to occlude H 2 in the ingot or powder of the above alloy, H 2 gas pressure 13P
a (1 × 10 −1 Torr) or less vacuum atmosphere or H 2
H removal at a temperature of 500 ° C to 1000 ° C until an inert gas atmosphere having a gas partial pressure of 13 Pa (1 x 10 -1 Torr) or less is obtained.
2 Treatment, and then cooling. In this publication, the powder obtained by the hydrogenation / recrystallization treatment is crushed and then resin-blended to obtain an RTB anisotropic bonded magnet. Is disclosed.

【0003】また、水素化処理法による種々のヒートパ
ターンが開示され、さらにインゴットの均質化処理を付
加することも提案されており、例えば、インゴットを6
00℃〜1200℃で均質化して合金粉末をH2中また
はH2と不活性ガスの混合雰囲気中で500℃〜100
0℃に保持してH2を吸蔵させ、その後、500℃〜1
000℃で真空脱気して、冷却する方法が提案(特開平
2−4901号公報)されている。
Further, various heat patterns by the hydrotreating method have been disclosed, and it has been proposed to add an ingot homogenizing treatment.
The 00 ° C. to 1200 alloy powder was homogenized at ° C. in a mixed atmosphere of an inert gas in H 2 or H 2 and 500 ° C. to 100
Hold at 0 ° C. to occlude H 2 and then 500 ° C. to 1
A method of vacuum degassing at 000 ° C. and cooling has been proposed (JP-A-2-4901).

【0004】このような水素化・再結晶処理法で製造さ
れたR−T−B系合金磁石は、大きな保磁力と磁気異方
性を有する。これは上記処理によって、非常に微細な再
結晶粒径、実質的には0.1μm〜1μmの平均再結晶
粒径を持つ組織となり、磁気的には正方晶R2Fe14
系化合物の単磁区臨界粒径に近い結晶粒径となってお
り、なおかつこれらの極微細結晶がある程度結晶方位を
揃えて再結晶しているためである。この結晶方位は原料
合金粉末と同じ方位を水素化・再結晶処理後も継承して
いることが考えられる。
The RTB-based alloy magnet produced by such a hydrogenation / recrystallization treatment method has a large coercive force and magnetic anisotropy. This treatment results in a structure having a very fine recrystallized grain size, that is, an average recrystallized grain size of substantially 0.1 μm to 1 μm, which is magnetically tetragonal R 2 Fe 14 B.
This is because the crystal grain size is close to the single domain critical grain size of the system compound, and these ultrafine crystals are recrystallized with the crystal orientation aligned to some extent. It is considered that this crystal orientation is the same as that of the raw material alloy powder even after the hydrogenation / recrystallization treatment.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
1−132106号公報及び特開平2−4901号公報
に開示される水素化処理法により得られたR−T−
(M)−B系磁石用合金粉末の磁気的性質は、特に磁化
において、原料インゴットの1.2MA/mでの磁化と
比較して0.1T程度低くなる。すなわち、異方化度が
処理によって低下してしまうという欠点があった。
However, R-T-obtained by the hydrotreating method disclosed in JP-A-1-132106 and JP-A-2-4901.
The magnetic properties of the (M) -B system alloy powder for magnets are about 0.1 T lower than the magnetization of the raw material ingot at 1.2 MA / m. That is, there is a drawback that the degree of anisotropy is lowered by the processing.

【0006】また、特開平4−141502号公報に開
示される原料インゴットの粉砕工程を、密閉容器内で水
素による合金の自然崩壊で行う方法では、水素粉砕した
際に合金中に生成した不安定なRH2+X(0≦X≦1)
が大気中に暴露された時、大気と反応して酸化する傾向
が極めて強いため、合金粉末の酸化が回避できず、粉末
が酸化すると、それに伴い水素化処理して得た磁石粉末
の異方度が低下する傾向があるため、異方化度の向上が
望めなかった。
Further, in the method of performing the crushing step of the raw material ingot disclosed in Japanese Patent Laid-Open No. 4-141502 by spontaneously disintegrating the alloy with hydrogen in a closed container, instability generated in the alloy during hydrogen crushing RH 2 + X (0 ≦ X ≦ 1)
When exposed to the atmosphere, it has a very strong tendency to react with the atmosphere and oxidize, so the oxidization of the alloy powder cannot be avoided, and when the powder oxidizes, the anisotropic magnet powder obtained by hydrogenation The degree of anisotropy cannot be expected to improve because the degree of deterioration tends to decrease.

【0007】すなわち、水素化・再結晶処理法で製造し
た粉末を原料とするR−T−B系ボンド磁石は、処理に
用いる合金鋳塊の組織と粉砕方法によって、水素化・再
結晶処理法で製造した粉末の磁化が低下してしまうとい
う欠点があった。
That is, the R-T-B type bonded magnet made of the powder produced by the hydrogenation / recrystallization treatment method as a raw material is a hydrogenation / recrystallization treatment method depending on the structure of the alloy ingot used for the treatment and the pulverization method. There was a drawback in that the magnetization of the powder produced in 1. was reduced.

【0008】従来、水素化・再結晶処理法は、R2Fe
14B系化合物相の水素化、相分解、脱水素化、及び再結
合の各工程の英語の頭文字を並べて、HDDR処理法と
呼ばれておりり、確かに、R−T−(M)−B系合金を
HDDR処理することで異方性磁石粉末が得られるが、
本当にH.D.D.R.の各工程から成り立つのか、そ
の異方化の機構は未だ明らかにされていないのが現状で
ある。
Conventionally, the hydrogenation / recrystallization treatment method is based on R 2 Fe.
14 The English acronyms for the steps of hydrogenation, phase decomposition, dehydrogenation, and recombination of the B-based compound phase are lined up and called the HDDR processing method, and it is true that RT- (M) Anisotropic magnet powder can be obtained by subjecting a -B alloy to HDDR treatment.
Really H. D. D. R. It is the current situation that the mechanism of the anisotropy has not been clarified yet, whether it consists of each process.

【0009】従って、当該処理の最適化を図り優れた特
性のR−T−B系合金粉末を得ようとする試みは、近年
多数の提案がされているが、諸条件を設定してこれを実
施して確かめる試行錯誤に近く、処理条件が最適か否か
の推定や判断するための指標すらなく、困難を究めてい
る。
[0009] Therefore, many attempts have been made in recent years to optimize the treatment to obtain an R-T-B type alloy powder having excellent characteristics. It is close to the trial and error of conducting and confirming, and the difficulty is investigated without even an index for estimating or judging whether or not the processing condition is optimum.

【0010】この発明は、水素化・再結晶処理法の現状
に鑑み、その異方化の機構を明らかにすることを目的と
するるとともに、当該処理条件の最適化を図ったR−T
−(M)−B系合金粉末の製造方法の提供を目的とし、
また、かかる処理条件等の最適化を図る上で不可欠の指
標となり得るものを提供することを目的としている。
In view of the current state of the hydrogenation / recrystallization treatment method, the present invention has an object to clarify the mechanism of the anisotropy, and the RT for which the treatment condition is optimized.
-(M) -Aiming to provide a method for producing a B-based alloy powder,
Moreover, it aims at providing what can be an indispensable index in order to optimize such processing conditions.

【0011】[0011]

【課題を解決するための手段】発明者らは、水素化・再
結晶処理法における合金の異方化の機構を明らかにせん
と、水素化された合金組織について、詳細に調査、鋭意
検討を加えた結果、水素化された合金内には、水素化時
間とともに消失する未知相の中間段階相(Interm
ediate Hydrogenation Phas
e、以下IHまたはIH相と略称する時がある)がある
ことを知見した。
[Means for Solving the Problems] To clarify the mechanism of anisotropy of the alloy in the hydrogenation / recrystallization treatment method, the inventors have made a detailed investigation and earnest study on the hydrogenated alloy structure. As a result of the addition, in the hydrogenated alloy, an intermediate phase (Interm phase) of unknown phase disappears with hydrogenation time.
edit Hydrogenation Phas
e, hereinafter sometimes abbreviated as IH or IH phase).

【0012】発明者らが水素化途中の合金内に新規に知
見した中間段階相は、R−T−(M)−B系合金を溶体
化後粉砕し、粉末とした後、真空中で昇温し、水素を導
入して水素化し、水素化処理中に取出して急冷した検査
用合金により確認できるもので、発明者らは、NdFe
B系合金の場合、中間段階の組織は母相と同方位のNd
2Fe14B微粒子やNdH2を含む粗大なα−Fe及びF
2B粒子、α−FeとNdH2からなるラメラ状組織に
加えて、中間段階相が多量に存在するもので、この中間
段階相は水素化時間の延長により消失することを知見し
た。
The intermediate phase newly discovered by the inventors in the alloy in the middle of hydrogenation is the solution of the RT- (M) -B type alloy, which is pulverized into a powder, which is then raised in a vacuum. It can be confirmed by an inspection alloy that has been warmed, hydrogenated by introducing hydrogen, taken out during the hydrogenation treatment, and rapidly cooled.
In the case of B-based alloys, the intermediate structure is Nd with the same orientation as the parent phase.
Coarse α-Fe and F containing 2 Fe 14 B fine particles and NdH 2
It was found that in addition to the e 2 B particles, the lamellar structure composed of α-Fe and NdH 2, a large amount of the intermediate stage phase is present, and this intermediate stage phase disappears due to the extension of the hydrogenation time.

【0013】また、発明者らは、かかる新規な中間段階
相について詳細に検討を加えたところ、中間段階相は、
Nd2Fe14Bと類似構造を持ち、この二者が結晶方位
関係を持つもので、a軸長がNd2Fe14B相とほぼ同
じでc軸長が約1/3の正方晶であり、Nd2Fe14
微粒子生成や異方化の機構と深く関連しており、当該水
素化・再結晶処理法の処理条件等の最適化を図る上で不
可欠の指標となり得ることを知見した。
Further, the inventors have made a detailed study on such a novel intermediate stage phase.
It has a structure similar to that of Nd 2 Fe 14 B, and the two have a crystal orientation relationship. It is a tetragonal crystal whose a-axis length is almost the same as that of the Nd 2 Fe 14 B phase and whose c-axis length is about 1/3. , Nd 2 Fe 14 B
It was found that it is closely related to the mechanism of fine particle formation and anisotropy, and can be an indispensable index for optimizing the processing conditions of the hydrogenation / recrystallization processing method.

【0014】さらに、発明者らは、中間段階相は、水素
化によるNd2Fe14B相の未分解領域とラメラ状のN
dH2+α−Fe混合組織を挟んで接しており、中間段
階相と未分解領域のNd2Fe14B相とは方位関係を保
持するが、ラメラ組織の各相と未分解領域相との方位関
係はなく、また、ラメラと反対側でα−FeとFe2
とNdH2とからなる領域と接し、ここでは先の未分解
領域相と方位関係を保持しているNd2Fe14B相の微
結晶を含有していることから、中間段階相は、水素化分
解反応のフロンティア部分に存在し、また、水素化・分
解反応を完結させると、フロンティアは消滅し、中間段
階相もなくなるもので、中間段階相は、次の脱水素工程
を経て保磁力と残留磁化の高い異方性の集合組織を得る
ために必要な条件であることを知見した。
Furthermore, the inventors have found that the intermediate phase is composed of undecomposed regions of Nd 2 Fe 14 B phase due to hydrogenation and lamellar N.
They are in contact with each other with a dH 2 + α-Fe mixed structure sandwiched between them, and the intermediate stage phase and the Nd 2 Fe 14 B phase in the undecomposed region maintain an orientation relationship, but the orientation of each phase of the lamellar structure and the undecomposed region phase It does not matter, and α-Fe and Fe 2 B on the opposite side of the lamella
And NdH 2 are contained in the intermediate stage phase, and the intermediate stage phase contains hydrogenated Nd 2 Fe 14 B phase crystallites having an orientation relationship with the undecomposed region phase. It exists in the frontier part of the cracking reaction, and when the hydrogenation / cracking reaction is completed, the frontier disappears and the intermediate stage phase disappears. We have found that this is a necessary condition for obtaining an anisotropic texture with high magnetization.

【0015】また、発明者らは、中間段階相内部には、
必ず格子整合したNd2Fe14B構造の微結晶相が存在
し、球状のNdH2相も分散していることを高分解能透
過型電子顕微鏡により確認した。従って、中間段階相の
存在だけを確認することによって、望ましい中間段階組
織となっていることを保証できることを知見した。
Further, the inventors have found that inside the intermediate stage phase,
It was confirmed by a high-resolution transmission electron microscope that a microcrystalline phase of Nd 2 Fe 14 B structure, which was lattice-matched, was always present and that a spherical NdH 2 phase was also dispersed. Therefore, it was found that by confirming only the existence of the intermediate stage phase, it is possible to guarantee that the desired intermediate stage organization is formed.

【0016】すなわち、発明者らは、異方性の集合組織
を作る工程で最も重要なものは、前記の中間段階相にR
2Fe14B相の微結晶を均一に分散させる第一段階であ
り、中間段階相を取り出して確認することでこれらの現
象を検証できることを知見し、この発明を完成した。
That is, the present inventors have found that the most important step in the production of anisotropic texture is R in the intermediate stage phase.
It was the first step to uniformly disperse the fine crystals of the 2 Fe 14 B phase, and it was found that these phenomena can be verified by taking out and confirming the intermediate phase, and completed the present invention.

【0017】[0017]

【発明の実施の形態】以下にこの発明による中間段階相
の詳細を説明し、その役割について詳述し、さらに、水
素化・再結晶処理法の本質について説明する。R−Fe
−B系合金は、鋳造後はR2Fe14B相、RFe44
(B濃度が6at%を超える場合のみ)、α−Fe相、
Rリッチ相、M−B相(Mを添加した場合に限る)、な
どからなる。これに均質化熱処理を施すと、α−Fe相
の体積比率は減少するが、相の構成自体は変化しない。
均質化した合金を水素雰囲気中、850℃前後で保持す
ると、R2Fe14B相に水素が固溶した相が出現する
が、この相は熱力学的には準安定相であり、中間段階相
に変態する。
BEST MODE FOR CARRYING OUT THE INVENTION The intermediate phase according to the present invention will be described in detail below, its role will be described in detail, and the essence of the hydrogenation / recrystallization treatment method will be further described. R-Fe
After casting, the -B-based alloy has an R 2 Fe 14 B phase, an RFe 4 B 4 phase (only when the B concentration exceeds 6 at%), an α-Fe phase,
R-rich phase, MB phase (only when M is added), and the like. When this is subjected to homogenizing heat treatment, the volume ratio of the α-Fe phase is reduced, but the phase structure itself does not change.
When the homogenized alloy is kept in a hydrogen atmosphere at about 850 ° C., a phase in which hydrogen is solid-dissolved in the R 2 Fe 14 B phase appears, but this phase is thermodynamically a metastable phase, and the intermediate stage Transform into a phase.

【0018】この中間段階相は、水素化初期の試料を油
中に焼き入れることにより室温に取り出すことができ、
発明者らが初めて発見したものである。その構造は正方
晶と考えられ、a軸はR2Fe14Bと同じ、c軸はR2
14B相の3分の1である。組成は、R含有量がR2
14B相よりも低く、分析結果では0.5から3at%
の程度である。これに対し、Fe+Coは90%以上に
なっている。中間段階相は、RとFeとCoとBとMを
含み、その組成を原子比率で表すとき、R: 0.01
〜10%、Fe+Co: 70〜99%、M: 0.0
1〜10%、B: 残部である。
This intermediate stage phase can be brought to room temperature by quenching a sample of the early hydrogenation in oil,
This is the first discovery made by the inventors. The structure is considered to be tetragonal, the a-axis is the same as R 2 Fe 14 B, and the c-axis is R 2 F.
e 14 It is one-third of B phase. The composition is such that the R content is R 2 F.
e 14 lower than the B phase, the analysis results 3at% from 0.5
Of the degree. On the other hand, Fe + Co is 90% or more. The intermediate stage phase contains R, Fe, Co, B and M, and when its composition is represented by an atomic ratio, R: 0.01
-10%, Fe + Co: 70-99%, M: 0.0
1 to 10%, B: The balance.

【0019】この中間段階相は、内部に格子整合したR
2Fe14B相の微結晶を内在させており、多くの場合、
数個のR2Fe14B微結晶と球状のRH2微結晶を含む。
中間段階相は水素化による分解がまだ起こっていないR
2Fe14B相の未分解領域とラメラ状のRH2+α−Fe
混合組織を挟んで接している。中間段階相と未分解領域
のR2Fe14B相とは方位関係を保持しており、c軸方
向が一致している。ラメラ組織の内部にはR2Fe14
微結晶は見つかっておらず、ラメラ組織の各相と未分解
領域のR2Fe14B相との方位関係はない。中間段階相
はラメラ組織と反対側にはα−FeとFe2BとRH2
からなる領域と接しており、α−Fe相とFe2B相か
らなる部分は未分解領域のとR2Fe14B相と方位関係
を保持しているR2Fe14B相の微結晶を含有してい
る。
This intermediate stage phase has an internally lattice-matched R
Incorporating 2 Fe 14 B phase microcrystals, in many cases,
It contains several R 2 Fe 14 B crystallites and spherical RH 2 crystallites.
The intermediate phase is R, which has not yet been decomposed by hydrogenation
2 Fe 14 B phase undecomposed region and lamellar RH 2 + α-Fe
The mixed tissues are in contact with each other. The intermediate stage phase and the R 2 Fe 14 B phase in the undecomposed region maintain the azimuth relationship, and the c-axis directions coincide with each other. R 2 Fe 14 B is present inside the lamella structure.
No fine crystals were found, and there is no orientation relationship between each phase of the lamella structure and the R 2 Fe 14 B phase in the undecomposed region. The intermediate stage phase is in contact with the region composed of α-Fe, Fe 2 B and RH 2 on the side opposite to the lamella structure, and the part composed of α-Fe phase and Fe 2 B phase is the undecomposed region R 2 containing microcrystalline R 2 Fe 14 B phase that holds the Fe 14 B phase and orientational relationship.

【0020】これらのことから、水素化初期の反応は水
素が合金表面から内部に向かって拡散するに従い、水素
を固溶したR2Fe14B相がまずRに富んだ中間段階相
に変態すると考えられる。この時、部分的にCo+M元
素の比率が高い領域が組成の熱揺らぎにより形成され、
その領域でR2Fe14B微結晶が変態せずに取り残さ
れ、Rに富んだ中間段階相からRが排出されてRH2
球状粒子となって析出し、ついで中間段階相がα−Fe
とFe2B相とに分解すると考えられる。
From these facts, in the reaction in the initial stage of hydrogenation, as the hydrogen diffuses from the alloy surface toward the inside, the R 2 Fe 14 B phase in which hydrogen is solid-solved is first transformed into the R-rich intermediate stage phase. Conceivable. At this time, a region where the ratio of Co + M element is high is partially formed by thermal fluctuation of the composition,
In that region, R 2 Fe 14 B microcrystals are left without transformation, R is discharged from the R-rich intermediate stage phase, and RH 2 is precipitated as spherical particles, and then the intermediate stage phase is α-Fe.
And Fe 2 B phase.

【0021】中間段階相はこのようにして水素化分解反
応のフロンティア部分に存在し、合金全体が水素化・分
解反応を完了するまでは水素ガス中で焼き入れることに
より、室温にクウェンチして観察することができる。
The intermediate phase exists in the frontier part of the hydrocracking reaction in this way, and is quenched at room temperature by quenching in the hydrogen gas until the entire alloy completes the hydrogenolysis / cracking reaction and observed. can do.

【0022】クウェンチ過程で、未分解領域と中間段階
相との境界部分は中間段階相中のR含有量が高いために
不安定となり、α−FeとRH2とのラメラ組織に分解
してしまうと考えられる。あるいは、別の考え方とし
て、分解反応のフロンティアに近い未分解のR2Fe14
B相の水素含有量が室温付近の平衡水素含有量よりも高
くなっているので、冷却過程でこの部分が分解し、RH
2とα−Feとのラメラ組織に変態するとも考えられ
る。水素化・分解反応を完結させると、フロンティアは
消滅し、中間段階相もなくなる。中間段階相を完全に分
解させてしまうことは、次の脱水素工程を経て保磁力と
残留磁化の高い異方性の集合組織を得るために必要な条
件である。
During the Quench process, the boundary between the undecomposed region and the intermediate phase becomes unstable due to the high R content in the intermediate phase and decomposes into a lamellar structure of α-Fe and RH 2. it is conceivable that. Alternatively, as another way of thinking, undecomposed R 2 Fe 14 close to the frontier of decomposition reaction is used.
Since the hydrogen content of phase B is higher than the equilibrium hydrogen content near room temperature, this part is decomposed during the cooling process and RH
It is also considered to transform into a lamellar structure of 2 and α-Fe. When the hydrogenation / cracking reaction is completed, the frontier disappears and the intermediate phase disappears. Complete decomposition of the intermediate phase is a necessary condition for obtaining an anisotropic texture with high coercive force and residual magnetization through the subsequent dehydrogenation step.

【0023】次に、脱水素工程に移る。水素ガスの圧力
をRH2の平衡水素圧力よりも低くすると、RH2が水素
を放出し、金属Rが生成する。この状態は不安定であ
り、すぐに周囲の相と反応して、R2Fe14B相が形成
される。この時、組織中に微細に分散したR2Fe14
微結晶が核となって結晶粒成長が進行するため、微細で
方位が揃ったR2Fe14Bの集合組織が形成される。
Next, the dehydrogenation step is performed. A lower than the equilibrium hydrogen pressure of the RH 2 the pressure of the hydrogen gas, RH 2 is releasing hydrogen, a metal R is produced. This state is unstable and immediately reacts with the surrounding phase to form the R 2 Fe 14 B phase. At this time, R 2 Fe 14 B finely dispersed in the structure
Since the microcrystals serve as nuclei and the crystal grain growth progresses, a fine texture of R 2 Fe 14 B having a uniform orientation is formed.

【0024】未分解領域のR2Fe14Bが中間段階相を
経ずに直接α−Fe+RH2+Fe2B+R2Fe14Bに
分解するのであれば、分解前にR2Fe14B相中にRお
よびBなど構成元素の大きな組成変動が生じなければな
らず、それらの中にR2Fe14Bが組織中に均質に取り
残された組織を作りうるメカニズムが存在しないため、
最終製品において均質な異方性の集合組織を得ることが
できなくなり、等方性の組織となるか、または保磁力と
Hkの低い、異方性磁石としては低特性の合金組織とな
る。
If R 2 Fe 14 B in the undecomposed region directly decomposes into α-Fe + RH 2 + Fe 2 B + R 2 Fe 14 B without passing through the intermediate stage phase, R 2 Fe 14 B in the R 2 Fe 14 B phase before decomposition Since a large compositional variation of constituent elements such as R and B must occur, and there is no mechanism capable of forming a structure in which R 2 Fe 14 B is left uniformly in the structure,
In the final product, it is not possible to obtain a homogeneous anisotropic texture, resulting in an isotropic texture or an alloy texture with low coercive force and Hk and low properties as an anisotropic magnet.

【0025】したがって、中間段階相の役割は、 (1)もとのR2Fe14B相の方位関係をそのまま受け
継ぐマトリックス相として機能する。 (2)もとの方位を保ったR2Fe14B微結晶が均質に
分散した状態が維持されることを助ける。
Therefore, the role of the intermediate stage phase is (1) functioning as a matrix phase which inherits the orientation relation of the original R 2 Fe 14 B phase as it is. (2) Helps maintain a state in which the R 2 Fe 14 B microcrystals maintaining the original orientation are uniformly dispersed.

【0026】以上に詳述したごとく、例えば、異方性N
d−Fe−B磁性合金を得る手段としてのHDDR工程
は、従来考えられていたような水素化・分解と脱水素・
再結合という2段階の工程ではなく、(1)中間段階相
中に格子整合したNd2Fe14B微結晶を作る工程、
(2)中間段階相を完全に分解させる工程、(3)脱水
素してもとの方位を持った無数のNd2Fe14B結晶か
らなる集合組織を作る工程の3段階からなっているとい
える。従って、異方性の集合組織を作る工程で最も本質
的なのは、中間段階相中にNd2Fe14B相の微結晶を
均一に分散させる第一段階であるといえる。
As described in detail above, for example, anisotropic N
The HDDR process as a means for obtaining a d-Fe-B magnetic alloy involves hydrogenation / decomposition and dehydrogenation
Rather than a two-step process of recombination, (1) a step of producing lattice-matched Nd 2 Fe 14 B crystallites in an intermediate phase,
It consists of three steps: (2) the step of completely decomposing the intermediate phase, and (3) the step of forming a texture composed of innumerable Nd 2 Fe 14 B crystals having the original orientation after dehydrogenation. I can say. Therefore, it can be said that the most essential step of forming the anisotropic texture is the first step in which fine crystals of the Nd 2 Fe 14 B phase are uniformly dispersed in the intermediate step phase.

【0027】以下に、中間段階相の利用方法について説
明する。まず、水素化・分解反応のごく初期段階におい
て、合金の一部分を炉外に取り出して走査型電子顕微鏡
などで観察することにより、水素化が正しい条件で行わ
れているか否かを判定できる。
The method of using the intermediate phase will be described below. First, at a very early stage of the hydrogenation / decomposition reaction, a part of the alloy is taken out of the furnace and observed by a scanning electron microscope or the like, so that it is possible to determine whether or not the hydrogenation is performed under correct conditions.

【0028】すなわち、異方性集合組織を得るために
は、もとの方位を記憶しているR2Fe14B微結晶が均
質に分散した水素化組織を形成させることが必須である
が、この微結晶を観察するには加速電圧300kV〜4
00kV程度の高性能な超高分解能の透過型電子顕微鏡
が必要で、しかも、試料の方位を例えばR2Fe14Bの
c軸と電子線の方向が平行になるよう調節しないと観察
できない。しかし、中間段階相(IH)の中には、この
ようなR2Fe14B微結晶が均質に分散しているのであ
るから、IH相の存在を確認すれば事足りる。中間段階
相は数百nmの大きさがあり、走査型電子顕微鏡で観察
可能であり、方位を合わせることも不必要である。従っ
て、判定に要する時間を大幅に削減できる。
That is, in order to obtain an anisotropic texture, it is essential to form a hydrogenated structure in which R 2 Fe 14 B crystallites memorizing the original orientation are uniformly dispersed. To observe these crystallites, an acceleration voltage of 300 kV-4
A high-performance transmission electron microscope with high performance of about 00 kV is required, and it cannot be observed unless the orientation of the sample is adjusted such that the c-axis of R 2 Fe 14 B and the direction of the electron beam are parallel. However, since such R 2 Fe 14 B crystallites are homogeneously dispersed in the intermediate phase (IH), it is sufficient to confirm the existence of the IH phase. The intermediate phase has a size of several hundreds nm, can be observed with a scanning electron microscope, and it is not necessary to align the orientation. Therefore, the time required for the determination can be significantly reduced.

【0029】また、中間段階相の利用方法として、水素
化・分解反応が完了すると中間段階相は全てが分解して
いるので、水素化・分解反応工程の終了点の判定に中間
段階相の存在が認められないという条件を用いることが
できる。
As a method of utilizing the intermediate stage phase, when the hydrogenation / cracking reaction is completed, the intermediate stage phase is wholly decomposed. Therefore, the presence of the intermediate stage phase in determining the end point of the hydrogenation / cracking reaction step. Can be used.

【0030】以下に、上述のこの発明による中間段階相
を利用した種々の製造方法、調整方法、手法などを説明
する。以下、RにNdを用いた例で説明する。まず、異
方性集合組織を有するNd−T−B系異方性磁石用合金
の微細組織調整法として、(1)Nd2Fe14B化合物
を主相とする合金を水素雰囲気中で熱処理し、合金中に
含まれるNd2Fe14B相を、a軸がもとのNd2Fe14
B相と同じでc軸が3分の1でかつもとのNd2Fe14
B相とc軸の方位を同じくする正方晶構造の中間段階相
と、未分解のNd2Fe14B相と、NdH2相と、α−F
eと、Fe2Bとの5相混合組織に分解する工程、
(2)水素ガス中で熱処理することにより中間段階相を
さらにα−FeとFe2Bとに分解させ、中間段階相の
体積比率を5%以下にすることにより、もとの合金中に
存在したNd2Fe14B相の部分を実質的に未分解Nd2
Fe14Bとα−FeとNdH2とFe2Bとの4相組織と
する工程、(3)水素ガス分圧を10kPa以下に下げ
て熱処理し、体積比率で95%以上をNd2Fe14B相
に再結合させる工程、(4)室温まで冷却し、大気中に
取り出す工程、からなる製造方法がある。
Hereinafter, various manufacturing methods, adjusting methods, methods and the like using the above-mentioned intermediate stage phase according to the present invention will be described. Hereinafter, an example using Nd for R will be described. First, as a fine structure adjusting method for an alloy for an Nd-T-B type anisotropic magnet having an anisotropic texture, (1) an alloy containing a Nd 2 Fe 14 B compound as a main phase is heat-treated in a hydrogen atmosphere. , The Nd 2 Fe 14 B phase contained in the alloy is converted to the original Nd 2 Fe 14
Same as B phase, with c-axis one-third and original Nd 2 Fe 14
A tetragonal intermediate phase having the same c-axis direction as the B phase, an undecomposed Nd 2 Fe 14 B phase, an NdH 2 phase, and α-F
a step of decomposing into a five-phase mixed structure of e and Fe 2 B,
(2) Existence in the original alloy by further decomposing the intermediate-stage phase into α-Fe and Fe 2 B by heat treatment in hydrogen gas, and reducing the volume ratio of the intermediate-stage phase to 5% or less. substantially undegraded Nd 2 portions of the Nd 2 Fe 14 B phase
Step of forming a four-phase structure of Fe 14 B, α-Fe, NdH 2 and Fe 2 B, (3) Heat treatment with a partial pressure of hydrogen gas reduced to 10 kPa or less, and 95% or more by volume of Nd 2 Fe 14 There is a manufacturing method including a step of recombining with phase B and a step of (4) cooling to room temperature and taking out into the atmosphere.

【0031】また、上述の微細組織調整法において、工
程(1)で、中間段階相がそれと格子整合した未分解の
Nd2Fe14B相の微結晶をその中に多数分散して含有
するマトリックスとなっているミクロ組織を作ることを
特徴とする製造方法がある。具体的には、下記のa,b
工程からなる。 (a)水素分圧50Pa以下で760℃〜870℃に昇
温した後、10kPa〜1000kPaの水素ガス圧力
とし、15分〜2時間保持する。 (b)水素分圧10kPa〜500kPaで600℃〜
750℃の温度範囲を10℃/分〜200℃/分の昇温
速度で通過させ、760℃〜870℃で15〜2時間保
持する。
Further, in the above-mentioned fine structure adjusting method, in step (1), a matrix containing a large number of undecomposed Nd 2 Fe 14 B phase fine crystals lattice-matched with the intermediate stage phase is contained in the matrix. There is a manufacturing method characterized by making a microstructure of Specifically, the following a, b
Process. (A) After raising the temperature to 760 ° C. to 870 ° C. at a hydrogen partial pressure of 50 Pa or less, the hydrogen gas pressure is set to 10 kPa to 1000 kPa and kept for 15 minutes to 2 hours. (B) Hydrogen partial pressure of 10 kPa to 500 kPa and 600 ° C to
A temperature range of 750 ° C. is passed at a temperature rising rate of 10 ° C./min to 200 ° C./min, and the temperature is maintained at 760 ° C. to 870 ° C. for 15 to 2 hours.

【0032】上記の微細組織調整法において、温度範囲
は760℃〜900℃。時間は15分〜6時間の条件
で、工程(2)を工程(1)よりも高い水素分圧下(最
高100kPa)で行い、中間段階相の分解を促進する
製造方法も有用である。
In the above fine structure adjusting method, the temperature range is 760 ° C to 900 ° C. A production method is also useful in which step (2) is carried out under a hydrogen partial pressure higher than that in step (1) (maximum 100 kPa) under the condition of 15 minutes to 6 hours to promote decomposition of the intermediate phase.

【0033】別のNd−T−B系異方性磁石用合金の微
細組織調整法として、(1)Nd2Fe14B化合物を主
相とする合金を水素ガス中で熱処理し、合金中に含まれ
るNd2Fe14B相から、a軸がもとのNd2Fe14B相
と同じでc軸が3分の1でかつもとのNd2Fe14B相
とc 軸の方位を同じくする正方晶相(IH)の中に格
子が整合した直径5nm〜100nmのNd2Fe14
相微結晶と球状のNdH2とが分散した組織とする工
程、(2)水素ガス中で熱処理することにより前記正方
晶相(IH)をさらにα−FeとFe2Bとに分解さ
せ、正方晶相(IH)の体積比率を5%以下にすること
により、もとの合金中に存在したNd2Fe14B相の部
分を実質的にNd2Fe14B微結晶がα−FeとFe2
相中に微細に分散した部分とNdH2からなる組織とす
る工程、(3)水素ガス分圧を10kPa以下に下げて
熱処理し、体積比率で95%以上をNd2Fe14B相に
再結合させる工程、(4)室温まで冷却し、大気中に取
り出す工程、からなる製造方法がある。
As another method for adjusting the microstructure of an alloy for Nd-T-B system anisotropic magnets, (1) an alloy containing a Nd 2 Fe 14 B compound as a main phase is heat-treated in hydrogen gas to form an alloy in the alloy. From the included Nd 2 Fe 14 B phase, the a-axis is the same as the original Nd 2 Fe 14 B phase, the c-axis is one-third, and the orientation of the c-axis is the same as the original Nd 2 Fe 14 B phase. Nd 2 Fe 14 diameter 5nm~100nm lattice is aligned in the tetragonal phase (IH) to B
Step of forming a structure in which phase microcrystals and spherical NdH 2 are dispersed, (2) heat treatment in hydrogen gas to further decompose the tetragonal phase (IH) into α-Fe and Fe 2 B, by the volume ratio of the phase (IH) 5% or less, substantially Nd 2 Fe 14 B microcrystalline portions of the Nd 2 Fe 14 B phase which is present in the original alloy alpha-Fe and Fe 2 B
A step of forming a structure consisting of NdH 2 and finely dispersed parts in the phase, (3) reducing the partial pressure of hydrogen gas to 10 kPa or less and heat-treating, and recombining 95% or more by volume ratio with the Nd 2 Fe 14 B phase. And a step (4) of cooling to room temperature and taking out into the atmosphere.

【0034】さらに、Nd−T−B系異方性磁石用合金
の微細組織調整法として、(1)Nd2Fe14B化合物
を主相とする合金を水素ガス中で熱処理し、合金中に含
まれるNd2Fe14B相の周りに、a軸がもとのNd2
14B相と同じでc軸が3分の1でかつもとのNd2
14B相とc 軸の方位を同じくする正方晶相(IH)
の中に格子が整合した直径5nm〜100nmのNd2
Fe14B相微結晶と球状のNdH2とが分散した組織を
形成する工程、(2)水素ガス中で熱処理する事により
IH相に取り囲まれた直径120nm以上のNd2Fe
14B相の領域を体積比率で合金の5%以下とする工程、
(3)水素ガス中で熱処理することによりIHをさらに
α−FeとFe2Bとに分解させ、IHの体積比率を合
計で5%以下にすることにより、もとの合金中に存在し
たNd2Fe14B相の部分を実質的にNd2Fe14B微結
晶がα−FeとFe2B相中に微細に分散した部分とN
dH2からなる組織とする工程、(4)水素ガス分圧を
10kPa以下に下げて熱処理し、体積比率で95%以
上をNd2Fe14B相に再結合させる工程、(5)室温
まで冷却し、大気中に取り出す工程、からなる製造方法
がある。
Further, as a method for adjusting the microstructure of the alloy for Nd-T-B type anisotropic magnet, (1) an alloy containing a Nd 2 Fe 14 B compound as a main phase is heat-treated in hydrogen gas, Around the contained Nd 2 Fe 14 B phase, the a-axis is the original Nd 2 F
e 14 Same as B phase, with c-axis one-third and original Nd 2 F
e 14 B phase and tetragonal phase (IH) having the same c-axis direction
Nd 2 with a diameter of 5 nm to 100 nm in which the lattice is matched
Step of forming a structure in which Fe 14 B phase microcrystals and spherical NdH 2 are dispersed, (2) Nd 2 Fe having a diameter of 120 nm or more surrounded by IH phase by heat treatment in hydrogen gas
14 A step of making the B phase region 5% or less of the alloy by volume ratio,
(3) IH is further decomposed into α-Fe and Fe 2 B by heat treatment in hydrogen gas, and the total volume ratio of IH is set to 5% or less, whereby Nd existing in the original alloy is reduced. The 2 Fe 14 B phase portion is substantially Nd 2 Fe 14 B fine crystal finely dispersed in α-Fe and the Fe 2 B phase portion and N
Step of forming a structure composed of dH 2 , (4) Step of heat-treating by reducing hydrogen gas partial pressure to 10 kPa or less, and step of recombining 95% or more by volume ratio with Nd 2 Fe 14 B phase, (5) Cooling to room temperature However, there is a manufacturing method including a step of taking out into the atmosphere.

【0035】水素中熱処理工程を開始するにあたり、開
始点では、合金の大部分は未分解のNd2Fe14B相に
なっていることが異方性集合組織を最終的に得るために
必須である。従って、熱処理温度までの昇温工程には次
の注意が必要である。すなわち、600℃〜750℃の
温度域では、100Pa以上の水素ガス圧力下ではNd
2Fe14B相は安定ではなく、Fe2BとNdH2とα−
Feに完全に分解する傾向にある。そこで、この温度域
をNd2Fe14Bを分解せずに昇温するための方法とし
て、次の2つのプロセスが提案できる。 (1)水素圧力を50Pa以下にする。(この場合、水
素ガスは760℃以上に合金温度が到達した後に系内に
導入される。) (2)昇温速度を充分早くする。(この際、最低10℃
/min以上が必要である。上限は設備の能力と合金の
総熱容量のバランスにより定まり、通常200℃/mi
n以上は困難であるし、意味がない。)
When starting the heat treatment step in hydrogen, it is essential that most of the alloy is in the undecomposed Nd 2 Fe 14 B phase at the starting point in order to finally obtain an anisotropic texture. is there. Therefore, the following precautions are required in the temperature raising process up to the heat treatment temperature. That is, in the temperature range of 600 ° C. to 750 ° C., Nd under a hydrogen gas pressure of 100 Pa or more.
2 Fe 14 B phase is not stable, and Fe 2 B, NdH 2 and α-
It tends to completely decompose into Fe. Therefore, the following two processes can be proposed as a method for raising the temperature in this temperature range without decomposing Nd 2 Fe 14 B. (1) The hydrogen pressure is set to 50 Pa or less. (In this case, hydrogen gas is introduced into the system after the alloy temperature reaches 760 ° C. or higher.) (2) The heating rate is made sufficiently fast. (At this time, at least 10 ℃
/ Min or more is required. The upper limit is determined by the balance between the facility capacity and the total heat capacity of the alloy, and is usually 200 ° C / mi.
It is difficult and meaningless for n or more. )

【0036】よって、Nd2Fe14B微結晶からなる集
合組織を得る異方性ハード磁性合金組織の調整方法とし
て、水素分圧50Pa以下で760℃〜870℃に昇温
した後、10kPa〜800kPaの水素ガス圧力と
し、15分〜30時間保持した後、合金の一部をサンプ
リングポートより取り出し、合金中に含まれるNd2
14B相の周りに、α−FeとNdH2からなる周期5
0nm〜300nm厚さ100nm〜2000nmのラ
メラ組織を介して、a軸がもとのNd2Fe14B相と同
じでc 軸が3分の1でかつもとのNd2Fe14B相と
c 軸の方位を同じくする正方晶相(IH)と中に格子
が整合した直径5nm〜100nmのNd2Fe14B相
微結晶と球状のNdH2とが分散した組織となっている
ことを確認した後、水素分圧を10kPa以下に下げて
合金中から水素ガスを分離し、直径0.05μm〜1μ
mのNd2Fe14B微結晶からなる集合組織を得る方法
がある。
Therefore, as a method of adjusting the anisotropic hard magnetic alloy structure to obtain the texture composed of Nd 2 Fe 14 B microcrystals, the temperature is raised from 760 ° C. to 870 ° C. at a hydrogen partial pressure of 50 Pa or less and then 10 kPa to 800 kPa. After maintaining the hydrogen gas pressure of 15 minutes to 30 hours, a part of the alloy is taken out from the sampling port, and Nd 2 F contained in the alloy is removed.
e 14 Around the B phase, a cycle of α-Fe and NdH 2 of 5
Through the lamella structure having a thickness of 0 nm to 300 nm and a thickness of 100 nm to 2000 nm, the a-axis is the same as the original Nd 2 Fe 14 B phase, the c-axis is 1/3, and the original Nd 2 Fe 14 B phase and c It was confirmed that Nd 2 Fe 14 B phase microcrystals having a diameter of 5 nm to 100 nm and lattice-matched with a tetragonal phase (IH) having the same axis direction and spherical NdH 2 were dispersed. After that, the hydrogen partial pressure is reduced to 10 kPa or less to separate hydrogen gas from the alloy, and the diameter is 0.05 μm to 1 μm.
There is a method of obtaining a texture composed of Nd 2 Fe 14 B microcrystals of m.

【0037】さらに、別のNd2Fe14B微結晶からな
る集合組織を得る異方性ハード磁性合金組織の調整方法
として、水素分圧10kPa〜500kPaで600℃
〜750℃の温度範囲を10℃/分〜200℃/分の昇
温速度で通過させ、760℃〜870℃で15〜60分
保持した後、合金の一部をサンプリングポートより取り
出し、合金中に含まれるNd2Fe14B相の周りに、α
−FeとNdH2からなる周期50nm〜300nm厚
さ100nm〜2000nmのラメラ組織を介して、a
軸がもとのNd2Fe14B相と同じでc 軸が3分の1
でかつもとのNd2Fe14B相とc 軸の方位を同じく
する正方晶相(IH)と中に格子が整合した直径5nm
〜100nmのNd2Fe14B相微結晶と球状のNdH2
とが分散した組織となっていることを確認した後、水素
分圧を10kPa以下に下げて合金中から水素ガスを分
離し、直径0.05μm〜1μmのNd2Fe14B微結
晶からなる集合組織を得る方法がある。
Further, as a method of adjusting the anisotropic hard magnetic alloy structure to obtain a texture composed of another Nd 2 Fe 14 B microcrystal, a hydrogen partial pressure of 10 kPa to 500 kPa and 600 ° C.
After passing through the temperature range of 750 ° C to 750 ° C at a temperature rising rate of 10 ° C / min to 200 ° C / min and holding at 760 ° C to 870 ° C for 15 to 60 minutes, a part of the alloy is taken out from the sampling port and Around the Nd 2 Fe 14 B phase contained in
Through the lamellar structure of the periodic 50nm~300nm thickness 100nm~2000nm consisting -Fe and NdH 2, a
The axis is the same as the original Nd 2 Fe 14 B phase and the c axis is 1/3
And a diameter of 5 nm in which the lattice is matched with the original Nd 2 Fe 14 B phase and the tetragonal phase (IH) having the same c-axis direction.
˜100 nm Nd 2 Fe 14 B phase crystallites and spherical NdH 2
After confirming that and have a dispersed structure, the hydrogen partial pressure is lowered to 10 kPa or less to separate hydrogen gas from the alloy, and an aggregate consisting of Nd 2 Fe 14 B microcrystals with a diameter of 0.05 μm to 1 μm. There is a way to get an organization.

【0038】この発明のR−T−B系異方性磁石用合金
粉末の製造方法において、R2Fe14B化合物を主相と
する合金の組成としては、R:10〜20at%、T:
67〜85at%、B:4〜10at%、M:10at
%以下を主成分とする合金が好ましい。この発明に使用
する原料合金に用いるRすなわち希土類元素は、Y、L
a、Ce、Pr、Nd、Sm、Gd、Tb、Dy、H
o、Er、Tm、Luが包括され、このうち少なくとも
1種以上で、Pr、Ndのうち少なくとも1種または2
種をRのうち50at%以上含有する必要がある。Rの
50at%以上をPr、Ndの1種または2種とするの
は50at%未満では充分な磁化が得られないためであ
る。
In the method for producing the R-T-B type anisotropic magnet alloy powder of the present invention, the composition of the alloy containing the R 2 Fe 14 B compound as the main phase is R: 10 to 20 at%, T:
67 to 85 at%, B: 4 to 10 at%, M: 10 at
Alloys whose main component is not more than% are preferable. R used in the raw material alloy used in the present invention, that is, the rare earth element is Y, L
a, Ce, Pr, Nd, Sm, Gd, Tb, Dy, H
O, Er, Tm, and Lu are included, and at least one of them is included, and at least one of Pr and Nd or 2 is included.
It is necessary to contain 50 at% or more of R in seeds. The reason why 50 at% or more of R is 1 type or 2 types of Pr and Nd is that sufficient magnetization cannot be obtained at less than 50 at%.

【0039】Rは、10at%未満ではα−Fe相の析
出により保磁力が低下し、また20at%を超えると、
目的とする正方晶Nd2Fe14B型化合物以外に、Rリ
ッチの第2相が多く析出し、この第2相が多すぎると合
金の磁化が低下する。従ってRの範囲は10〜20at
%とする
When R is less than 10 at%, the coercive force is lowered due to precipitation of α-Fe phase, and when it exceeds 20 at%,
In addition to the intended tetragonal Nd 2 Fe 14 B type compound, a large amount of R-rich second phase precipitates, and if the amount of this second phase is too large, the alloy magnetization decreases. Therefore, the range of R is 10 to 20 at
%

【0040】Tは鉄族元素であって、Fe、Coを包含
する。Tは、67at%未満では低保磁力、低磁化の第
2相が析出して磁気的特性が低下し、85at%を超え
るとα−Fe相の析出により保磁力、角型性が低下する
ため、67〜85at%とする。また、Feのみでも必
要な磁気的性質は得られるが、Coの添加は、キュリー
温度の向上、すなわち耐熱性の向上に有用であり、必要
に応じて添加できる。FeとCoの原子比において、F
eが50%以下となるとNd2Fe14B型化合物の飽和
磁化そのものの減少量が大きくなってしまうため、Tの
うち原子比でFeを50%以上とした。
T is an iron group element and includes Fe and Co. If T is less than 67 at%, the second coercive force and low magnetization precipitates and the magnetic properties are deteriorated. If it exceeds 85 at%, the coercive force and squareness are deteriorated due to the precipitation of the α-Fe phase. , 67 to 85 at%. Further, although necessary magnetic properties can be obtained with Fe alone, addition of Co is useful for improving the Curie temperature, that is, improving heat resistance, and can be added as necessary. In the atomic ratio of Fe and Co, F
When e is 50% or less, the amount of decrease in the saturation magnetization of the Nd 2 Fe 14 B type compound itself becomes large, so that Fe in the atomic ratio of T is set to 50% or more.

【0041】Bは、正方晶Nd2Fe14B型結晶構造を
安定して析出させるためには必須である。添加量は、4
at%以下ではR217相が析出して保磁力を低下さ
せ、また減磁曲線の角型性が著しく損なわれる。また、
10at%を超えて添加した場合は、磁化の小さい第2
相が析出して粉末の磁化を低下させる。従って、Bは、
4〜10at%とした。
B is essential for stably depositing a tetragonal Nd 2 Fe 14 B type crystal structure. Addition amount is 4
When it is at% or less, the R 2 T 17 phase precipitates to lower the coercive force, and the squareness of the demagnetization curve is significantly impaired. Also,
When added in excess of 10 at%, the second magnetization is small.
The phase precipitates and reduces the magnetization of the powder. Therefore, B is
It was set to 4 to 10 at%.

【0042】また、このほかの添加元素としては、水素
化・再結晶処理後も磁気特性を向上させる目的で異方性
とするには水素化時に母相の分解反応を完全に終了させ
ずに、母相、すなわちR214B相を安定化して故意に
残存させるのに有効な元素が望まれる。特に顕著な効果
を持つものとして、Al、Ti、V、Cr、Ni、G
a、Zr、Nb、Mo、In、Sn、Hf、Ta、Wが
ある。前記添加元素は、全く添加しなくてもよいが、添
加する場合は10at%を超えると強磁性でない第2相
が析出して磁化を低下させるため、添加量は10at%
以下とする。
Further, as other additive elements, in order to make them anisotropic for the purpose of improving the magnetic properties even after the hydrogenation / recrystallization treatment, the decomposition reaction of the mother phase is not completely completed during the hydrogenation. However, an element effective for stabilizing the parent phase, that is, the R 2 T 14 B phase and intentionally remaining is desired. Al, Ti, V, Cr, Ni, and G have particularly remarkable effects.
a, Zr, Nb, Mo, In, Sn, Hf, Ta, W. The additive element may not be added at all, but if it exceeds 10 at%, the second phase that is not ferromagnetic precipitates to lower the magnetization, so the additive amount is 10 at%.
The following is assumed.

【0043】この発明において、中間段階相を得る方法
としては、合金全体が水素化・分解反応を完了するまで
は水素ガス中で焼き入れることにより、室温にクウェン
チして観察することができる。急冷方法と好ましい条件
としては、(a)水素ガス圧力を水素化時と同一に保持
したまま、合金の一部(好ましくは重量10g以下)を
10℃〜60℃の油中に焼き入れする方法、(b)別チ
ャンバー中に合金の一部を移した後、水素ガスジェット
中で急冷する方法、(c)別チャンバー中に合金の一部
を移した後、ヘリウムガスジェット中で急冷する方法、
などがある。この時の冷却速度は10℃/min以上、
好ましくは100℃/min以上が適している。
In the present invention, as a method of obtaining the intermediate stage phase, quenching in room temperature can be performed by quenching in the hydrogen gas until the entire alloy completes the hydrogenation / decomposition reaction, and it can be observed. As the quenching method and preferable conditions, (a) a method of quenching a part of the alloy (preferably 10 g or less in weight) into oil at 10 ° C to 60 ° C while keeping the hydrogen gas pressure the same as during hydrogenation , (B) a method of transferring a part of the alloy to another chamber and then rapidly cooling it in a hydrogen gas jet, and (c) a method of transferring a part of the alloy to another chamber and then rapidly cooling it in a helium gas jet. ,
and so on. The cooling rate at this time is 10 ° C / min or more,
It is preferably 100 ° C./min or more.

【0044】[0044]

【実施例】【Example】

実施例1 Nd13Fe62.2Co10.88.9Ga1Zr0.1合金を溶体
化した後、粉砕して粗粉砕粉とした。この粉末を1Pa
以下の真空中で850℃まで昇温後、純度99.999
9%以上のH2ガスを導入した100kPaのH2雰囲気
で、種々の時間水素化し、取り出した試料を油中に焼き
入れることにより室温まで急冷し、検査用合金を得た。
得られた合金を電子線が透過する厚さにまで加工し、加
速電圧300kv〜400kvで透過型電子顕微鏡を用
いて観察した。
Example 1 An Nd 13 Fe 62.2 Co 10.8 B 8.9 Ga 1 Zr 0.1 alloy was solutionized and then pulverized to obtain coarsely pulverized powder. 1 Pa of this powder
After heating to 850 ° C. in the following vacuum, the purity is 99.999.
In an H 2 atmosphere of 100 kPa in which 9% or more of H 2 gas was introduced, hydrogenation was carried out for various times, and the sample taken out was quenched in oil to be rapidly cooled to room temperature to obtain an inspection alloy.
The obtained alloy was processed to a thickness that allows the electron beam to pass therethrough, and observed with a transmission electron microscope at an acceleration voltage of 300 kv to 400 kv.

【0045】上記により得られた試料の透過型電子顕微
鏡観察結果の模式図を図1に示す。30〜60分水素化
した試料内には、残存Nd2Fe14B相(母相)と同方
位のNd2Fe14B微粒子や、NdH2を含む粗大なα−
Fe及びFe2B粒子、α−FeとNdH2からなるラメ
ラ状組織に加えて、未知相が多量に残存することが分か
った。また、この未知相は水素化時間の延長により消失
することが分かった。従って、この未知相を中間段階相
(IH:Intermediate Hydrogen
ation Phase)と称することとした。
FIG. 1 shows a schematic diagram of the results of observation by a transmission electron microscope of the sample obtained as described above. In the sample hydrogenated for 30 to 60 minutes, Nd 2 Fe 14 B fine particles having the same orientation as the residual Nd 2 Fe 14 B phase (mother phase) and coarse α-containing NdH 2 were formed.
It was found that in addition to the Fe and Fe 2 B particles and the lamellar structure composed of α-Fe and NdH 2, a large amount of unknown phase remained. It was also found that this unknown phase disappears as the hydrogenation time increases. Therefore, this unknown phase is referred to as an intermediate phase (IH: Intermediate Hydrogen).
application phase).

【0046】図2は、実施例1の検査用合金の中間段階
相(IH)と残存母相からの電子線回折像写真であり、
母合金のc軸方向と平行に電子線を入射した場合を示
す。中間段階相は、Nd2Fe14Bと類似構造を持ち、
この二者が結晶方位関係を持つことがわかる。
FIG. 2 is a photograph of an electron diffraction image from the intermediate phase (IH) and the residual matrix of the test alloy of Example 1,
The case where an electron beam is incident parallel to the c-axis direction of the mother alloy is shown. The intermediate phase has a structure similar to Nd 2 Fe 14 B,
It can be seen that the two have a crystal orientation relationship.

【0047】また、図3は、母合金のc軸方向と垂直に
電子線を入射した場合の電子線回折像写真を示し、Aは
残存Nd2Fe14B微結晶、Bは中間段階相を示す。図
3より、C軸方向の回折スポットの周期が、中間段階相
ではNd2Fe14B相の3倍になっており、実空間では
中間段階相のc軸の長さがNd2Fe14B相の3分の1
であることが分かる。これらより、IHの構造は、a軸
長がNd2Fe14Bとほぼ同じで、c軸長が約1/3の
正方晶であると判断される。なお、図中では、両者の回
折の消滅則の違いにより、a軸長が異なっているように
見えている。
FIG. 3 shows a photograph of an electron beam diffraction image when an electron beam is incident perpendicularly to the c-axis direction of the mother alloy, where A is the residual Nd 2 Fe 14 B microcrystal and B is the intermediate stage phase. Show. From FIG. 3, the period of the diffraction spot in the C-axis direction, in the intermediate stage phase are tripled Nd 2 Fe 14 B phase, the length of the c axis of the intermediate stage phase in the real space is Nd 2 Fe 14 B One third of the phase
It turns out that it is. From these, it is judged that the structure of IH is a tetragonal crystal whose a-axis length is almost the same as Nd 2 Fe 14 B and whose c-axis length is about 1/3. In the figure, the a-axis length seems to be different due to the difference in the extinction rules of the two diffractions.

【0048】図4は、実施例1の検査用合金において、
中間段階相中に存在するNd2Fe14B微結晶を示す超
高分解能透過型電子顕微鏡写真である。図4より、二つ
の相の格子が整合していることが分かる。
FIG. 4 shows the test alloy of Example 1,
3 is an ultra-high resolution transmission electron micrograph showing Nd 2 Fe 14 B crystallites present in the intermediate phase. From FIG. 4, it can be seen that the lattices of the two phases are matched.

【0049】図5は、実施例1の検査用合金において、
中間段階相が、α−FeとFe2Bに分解した後のα−
Fe中に存在するNd2Fe14B微結晶を示す超高分解
能透過型電子顕微鏡写真である。また、Nd2Fe14
微結晶の電子線回折像写真を併せて写し込んである。
FIG. 5 shows the inspection alloy of Example 1,
Α-Fe after decomposition of the intermediate phase into α-Fe and Fe 2 B
It is an ultrahigh-resolution transmission electron micrograph showing Nd 2 Fe 14 B microcrystals present in Fe. In addition, Nd 2 Fe 14 B
An electron diffraction image photograph of the microcrystal is also shown in the image.

【0050】図6は、実施例1の検査用合金において、
中間段階相が、α−FeとFe2Bに分解した後の、F
2Bに存在するNd2Fe14B微結晶を示す超高分解能
透過型電子顕微鏡写真である。また、Fe2Bに存在す
るNd2Fe14B微結晶の電子線回折像写真を併せて写
し込んである。
FIG. 6 shows the inspection alloy of Example 1,
F after the intermediate phase has decomposed into α-Fe and Fe 2 B
It is an ultra-high resolution transmission electron micrograph showing Nd 2 Fe 14 B microcrystals present in e 2 B. In addition, an electron diffraction image photograph of Nd 2 Fe 14 B microcrystals existing in Fe 2 B is also shown.

【0051】図7は、実施例1の検査用合金の組織の一
部を示す超高分解能透過型電子顕微鏡写真である。背景
の大部分は中間段階相(IH)で、そのほか、写真左に
ラメラ組織(l)とα−Fe(f)、及び中間段階相中
に分散した直径100〜200nmの球状NdH2(n
h)と数nmの残存Nd2Fe14B微結晶(nf)が認
められる。なお、図6は、合金の組織において、分解し
た部分のみを撮影したものなので、未分解のNd2Fe
14B相(母相)は写っていない。
FIG. 7 is an ultra-high resolution transmission electron micrograph showing a part of the structure of the inspection alloy of Example 1. Most of the background is the intermediate phase (IH), the lamellar structure (l) and α-Fe (f) on the left side of the photograph, and spherical NdH 2 (n having a diameter of 100 to 200 nm dispersed in the intermediate phase).
h) and residual Nd 2 Fe 14 B microcrystals (nf) of several nm are observed. It should be noted that FIG. 6 is a photograph of only the decomposed portion of the alloy structure, so that undecomposed Nd 2 Fe
14 Phase B (mother phase) is not shown.

【0052】以上の結果から、中間段階相の構造は正方
晶と考えられ、a軸はNd2Fe14Bと同じ、c軸はN
2Fe14B相の3分の1である。組成はNd含有量が
Nd2Fe14B相よりも低く、分析結果では0.5から
3at%の程度である。これに対し、Fe+Coは90
%以上になっている。ただし、Bの分析ができていない
ので正しい百分率にはなっていない。
From the above results, it is considered that the structure of the intermediate phase is tetragonal, the a-axis is the same as Nd 2 Fe 14 B, and the c-axis is N.
It is one third of the d 2 Fe 14 B phase. As for the composition, the Nd content is lower than that of the Nd 2 Fe 14 B phase, and the analysis result is about 0.5 to 3 at%. On the other hand, Fe + Co is 90
% Or more. However, since B has not been analyzed, the percentage is not correct.

【0053】実施例2 高周波誘導溶解法によって溶製して得られた表1の組成
No.1〜4の鋳塊を、1100℃、24時間、Ar雰
囲気中で焼鈍し、この鋳塊を300μm以下まで粗粉砕
した。粗粉砕粉を圧力容器中に入れ、1Pa以下にまで
真空排気した。その後、純度99.999%以上の水素
ガスを導入して容器内の圧力を水素分圧50Pa以下と
なし、760℃〜870℃に昇温した後、10kPa〜
800kPaの水素ガス圧力とし、15分〜30分間保
持した後、合金の一部をサンプリングポートより取り出
し、油中に焼き入れ、急冷して検査用合金を得た。得ら
れた合金をEDX機能付き走査型電子顕微鏡を用いて検
査した。
Example 2 Composition No. 1 of Table 1 obtained by melting by the high frequency induction melting method. The ingots 1 to 4 were annealed at 1100 ° C. for 24 hours in an Ar atmosphere, and the ingots were roughly pulverized to 300 μm or less. The coarsely pulverized powder was placed in a pressure vessel and evacuated to 1 Pa or less. After that, hydrogen gas having a purity of 99.999% or more was introduced to make the internal pressure of the container 50 HPa or less and the temperature was raised to 760 ° C to 870 ° C, and then 10 kPa to
After setting the hydrogen gas pressure to 800 kPa and holding it for 15 to 30 minutes, a part of the alloy was taken out from the sampling port, quenched in oil, and rapidly cooled to obtain an alloy for inspection. The obtained alloy was examined using a scanning electron microscope with an EDX function.

【0054】検査用合金中に含まれるNd2Fe14B相
の周りに、α−FeとNdH2からなる周期50nm〜
300nm厚さ100nm〜2000nmのラメラ組織
を介して、Nd含有10at%以下の広範囲のNd−F
e−Co−Ga相(Bは本方法で判別できない)が存在
し、さらに、ラメラ組織とは反対側にFe−Co合金
相、および軽元素を多く含むことから、Fe2B相と判
別される相との粒子(300nm〜800nm)が存在
する組織であることを確認した。
Around the Nd 2 Fe 14 B phase contained in the inspection alloy, a period of 50 nm consisting of α-Fe and NdH 2
A wide range of Nd-F containing Nd of 10 at% or less through a lamellar structure having a thickness of 300 nm and a thickness of 100 nm to 2000 nm.
Since there is an e-Co-Ga phase (B cannot be distinguished by this method), and the Fe-Co alloy phase and a large amount of light elements are contained on the side opposite to the lamella structure, it is distinguished as the Fe 2 B phase. It was confirmed that the structure has particles (300 nm to 800 nm) with a phase.

【0055】その後、水素分圧を10kPa以下に下げ
て合金中から水素ガスを分離し、直径0.05μm〜1
μmのNd2Fe14B微結晶からなる集合組織を得る異
方性ハード磁性合金組織に調整した。
Then, the hydrogen partial pressure is lowered to 10 kPa or less to separate hydrogen gas from the alloy, and the diameter is 0.05 μm to 1 μm.
An anisotropic hard magnetic alloy structure was obtained to obtain a texture composed of Nd 2 Fe 14 B microcrystals of μm.

【0056】実施例3 高周波誘導溶解法によって溶製して得られた表1の組成
No.1の鋳塊を、1100℃、24時間、Ar雰囲気
中で焼鈍し、この鋳塊を300μm以下まで粗粉砕し
た。粗粉砕粉を圧力容器中に入れ、1Pa以下にまで真
空排気した。その後、純度99.999%以上の水素ガ
スを導入して容器内の圧力を水素分圧130kPaで6
00℃〜750℃の温度範囲を20℃/minの昇温速
度で通過させ、850℃で30分保持した後、サンプリ
ングポートより取り出し、急冷して検査用合金を得た。
得られた合金をEDX機能付き走査型電子顕微鏡で検査
した。
Example 3 Composition No. 1 of Table 1 obtained by melting by the high frequency induction melting method. The ingot 1 was annealed at 1100 ° C. for 24 hours in an Ar atmosphere, and the ingot was roughly pulverized to 300 μm or less. The coarsely pulverized powder was placed in a pressure vessel and evacuated to 1 Pa or less. After that, hydrogen gas having a purity of 99.999% or more was introduced to adjust the pressure in the container to a hydrogen partial pressure of 130 kPa.
After passing through the temperature range of 00 ° C to 750 ° C at a temperature rising rate of 20 ° C / min and holding at 850 ° C for 30 minutes, it was taken out from the sampling port and rapidly cooled to obtain an inspection alloy.
The obtained alloy was examined by a scanning electron microscope with an EDX function.

【0057】検査用合金中に含まれるNd2Fe14B相
の周りに、α−FeとNdH2からなる周期50nm〜
300nm厚さ100nm〜2000nmのラメラ組織
を介して、Nd含有10at%以下の広範囲のNd−F
e−Co−Ga相(Bは本方法で判別できない)が存在
し、さらに、ラメラ組織とは反対側にFe−Co合金
相、および軽元素を多く含むことから、Fe2B相と判
別される相との粒子(300nm〜800nm)が存在
する組織であることを確認した。
Around the Nd 2 Fe 14 B phase contained in the inspection alloy, a period of 50 nm consisting of α-Fe and NdH 2
A wide range of Nd-F containing Nd of 10 at% or less through a lamellar structure having a thickness of 300 nm and a thickness of 100 nm to 2000 nm.
Since there is an e-Co-Ga phase (B cannot be distinguished by this method), and the Fe-Co alloy phase and a large amount of light elements are contained on the side opposite to the lamella structure, it is distinguished as the Fe 2 B phase. It was confirmed that the structure has particles (300 nm to 800 nm) with a phase.

【0058】その後、水素分圧を10kPa以下に下げ
て合金中から水素ガスを分離し、直径0.05μm〜1
μmのNd2Fe14B微結晶からなる集合組織を得た。
Then, the hydrogen partial pressure is reduced to 10 kPa or less to separate hydrogen gas from the alloy, and the diameter is 0.05 μm to 1 μm.
A texture composed of Nd 2 Fe 14 B crystallites of μm was obtained.

【0059】実施例4 高周波誘導溶解法によって溶製して得られた表1の組成
No.4の鋳塊を、1100℃、24時間、Ar雰囲気
中で焼鈍し、この鋳塊を300μm以下まで粗粉砕し
た。粗粉砕粉を圧力容器中に入れ、1Pa以下にまで真
空排気した。その後、純度99.999%以上の水素ガ
スを導入して容器内の圧力を水素分圧50Pa以下とな
し、850℃に昇温した後、130kPaの水素ガス圧
力とし、30分保持した。その結果、組織は、a軸がも
とのNd2Fe14B相と同じでc軸が3分の1でかつも
とのNd2Fe14B相とc軸の方位を同じくする正方晶
構造の中間段階相(IH)と、未分解のNd2Fe14
相と、NdH2相と、α−Feと、Fe2Bとの5相混合
組織に分解された。(中間段階相がそれと格子整合した
未分解のNd2Fe14B相の微結晶をその中に多数分散
して含有するマトリックスとなっているミクロ組織が得
られた。)
Example 4 Composition No. of Table 1 obtained by melting by high frequency induction melting method The ingot No. 4 was annealed at 1100 ° C. for 24 hours in an Ar atmosphere, and the ingot was roughly pulverized to 300 μm or less. The coarsely pulverized powder was placed in a pressure vessel and evacuated to 1 Pa or less. After that, hydrogen gas having a purity of 99.999% or more was introduced so that the pressure in the container was set to 50 Pa or less for the hydrogen partial pressure. As a result, the structure is a tetragonal structure in which the a-axis is the same as the original Nd 2 Fe 14 B phase, the c-axis is 1/3, and the original Nd 2 Fe 14 B phase has the same c-axis orientation. Intermediate phase (IH) and undecomposed Nd 2 Fe 14 B
Phase, NdH 2 phase, α-Fe, and Fe 2 B were decomposed into a five-phase mixed structure. (A microstructure was obtained in which the intermediate-stage phase was a matrix containing a large number of undecomposed Nd 2 Fe 14 B-phase crystallites lattice-matched with it.

【0060】次いで、前記工程より高い水素分圧180
kPaで850℃〜875℃の温度範囲で2時間保持し
た。その結果、中間段階相をさらにα−FeとFe2
とに分解させ、その体積比率を5%以下にすることによ
り、もとの合金中に存在したNd2Fe14B相の部分を
実質的に未分解Nd2Fe14Bとα−FeとNdH2とF
2Bとの4相組織が得られた。
Then, a hydrogen partial pressure higher than that in the above step is set to 180.
The temperature was maintained at 850 ° C. to 875 ° C. for 2 hours at kPa. As a result, the intermediate stage phase was further converted to α-Fe and Fe 2 B.
And Nd 2 Fe 14 B phase portion existing in the original alloy is substantially undecomposed Nd 2 Fe 14 B and α-Fe and NdH. 2 and F
A four-phase structure with e 2 B was obtained.

【0061】さらに、水素ガス分圧を10kPa以下に
下げて825℃×1時間の条件で、熱処理し、その後、
平均冷却速度13℃/minの条件で、室温まで冷却
し、大気中に取り出したところ、体積比率で95%以上
がNd2Fe14B相に再結合していた。
Further, the partial pressure of hydrogen gas was reduced to 10 kPa or less and heat treatment was performed under the condition of 825 ° C. × 1 hour, and then,
When cooled to room temperature under the condition of an average cooling rate of 13 ° C./min and taken out into the atmosphere, 95% or more by volume ratio was recombined with the Nd 2 Fe 14 B phase.

【0062】実施例5 高周波誘導溶解法によって溶製して得られた表1の組成
No.4の鋳塊を、1100℃、24時間、Ar雰囲気
中で焼鈍した。この鋳塊を圧力容器中に入れ、1Pa以
下にまで真空排気した。その後、純度99.999%以
上の水素ガスを導入して容器内の圧力を200kPaと
し、10時間、100℃で保持した。得られた粗粉砕粉
を、容器内の圧力を水素分圧90kPaで600℃〜7
50℃の温度範囲を15℃/分の昇温速度で通過させ、
830℃で45分保持した。その結果、組織は、正方晶
相の中間段階相と中に格子が整合した直径5nm〜10
0nmのNd2Fe14B相微結晶と球状のNdH2とが分
散した組織であった。
Example 5 Composition No. 1 of Table 1 obtained by melting by the high frequency induction melting method. The ingot No. 4 was annealed at 1100 ° C. for 24 hours in an Ar atmosphere. This ingot was put in a pressure vessel and evacuated to 1 Pa or less. Then, hydrogen gas having a purity of 99.999% or higher was introduced to adjust the pressure in the container to 200 kPa, and the temperature was kept at 100 ° C. for 10 hours. The obtained coarsely pulverized powder is heated to 600 ° C. to 7 ° C. under a hydrogen partial pressure of 90 kPa in the container.
Pass the temperature range of 50 ° C at a temperature rising rate of 15 ° C / min,
Hold at 830 ° C for 45 minutes. As a result, the structure has a lattice matching diameter of 5 nm to 10 nm with the intermediate phase of the tetragonal phase.
It had a structure in which Nd 2 Fe 14 B phase fine crystals of 0 nm and spherical NdH 2 were dispersed.

【0063】次いで、前記工程より高い水素分圧150
kPaで825℃〜850℃の温度範囲で3時間保持し
た。その結果、中間段階相がα−FeとFe2Bとに分
解して体積比率が5%以下となり、もとの合金中に存在
したNd2Fe14B相の部分が実質的にNd2Fe14B微
結晶がα−FeとFe2B相中に微細に分散した部分と
NdH2からなる組織となった。
Then, the hydrogen partial pressure is higher than that in the above step 150.
It was kept at a temperature range of 825 ° C to 850 ° C in kPa for 3 hours. As a result, the intermediate phase is decomposed into α-Fe and Fe 2 B to have a volume ratio of 5% or less, and the portion of the Nd 2 Fe 14 B phase existing in the original alloy is substantially Nd 2 Fe. The structure was that in which 14 B microcrystals were finely dispersed in α-Fe and Fe 2 B phase and NdH 2 .

【0064】さらに、水素ガス分圧を10kPa以下に
下げて825℃〜850℃の条件で、熱処理し、その
後、平均冷却速度5℃/minの条件で、室温まで冷却
し、大気中に取り出したところ、体積比率で95%以上
がNd2Fe14B相に再結合していた。
Further, the partial pressure of hydrogen gas was reduced to 10 kPa or less and heat treatment was performed under the conditions of 825 ° C. to 850 ° C., after which it was cooled to room temperature under the condition of an average cooling rate of 5 ° C./min and taken out into the atmosphere. However, 95% or more by volume ratio was recombined with the Nd 2 Fe 14 B phase.

【0065】実施例6 高周波誘導溶解法によって溶製して得られた表1の組成
No.4の鋳塊を、1100℃、24時間、Ar雰囲気
中で焼鈍した。この鋳塊を圧力容器中に入れ、1Pa以
下にまで真空排気した。その後、純度99.999%以
上の水素ガスを導入して容器内の圧力を200kPaと
し、10時間、100℃で保持した。合金は水素吸蔵に
より崩壊し、粗粉砕された。得られた粗粉砕粉を、容器
内の圧力を水素分圧10Pa以下とし、825℃に昇温
した後、80kPaの水素ガス分圧とし、20分〜40
分保持した。その結果、合金中に含まれるNd2Fe14
B相の周りに、正方晶相の中間段階相(IH)と中に格
子が整合した直径5nm〜100nmのNd2Fe14
相微結晶と球状のNdH2とが分散した組織を得た。
Example 6 Composition No. 1 in Table 1 obtained by melting by the high frequency induction melting method. The ingot No. 4 was annealed at 1100 ° C. for 24 hours in an Ar atmosphere. This ingot was put in a pressure vessel and evacuated to 1 Pa or less. Then, hydrogen gas having a purity of 99.999% or higher was introduced to adjust the pressure in the container to 200 kPa, and the temperature was kept at 100 ° C. for 10 hours. The alloy collapsed due to hydrogen occlusion and was coarsely crushed. The obtained coarsely pulverized powder is heated to 825 ° C. under a pressure of hydrogen in the container of 10 Pa or less, and is then heated to 825 ° C. to have a hydrogen gas partial pressure of 80 kPa for 20 minutes to 40 minutes.
Minutes. As a result, Nd 2 Fe 14 contained in the alloy
Around the B phase, Nd 2 Fe 14 B having a diameter of 5 nm to 100 nm and having a lattice matched with the intermediate phase (IH) of the tetragonal phase.
A structure in which phase crystallites and spherical NdH 2 were dispersed was obtained.

【0066】次いで、水素分圧120kPa、850℃
で90分保持することにより、中間段階相に取り囲まれ
た直径120nm以上のNd2Fe14B相の領域を体積
比率で合金の5%以下となした。
Then, the hydrogen partial pressure is 120 kPa and 850 ° C.
By holding it for 90 minutes, the region of the Nd 2 Fe 14 B phase surrounded by the intermediate stage phase and having a diameter of 120 nm or more was reduced to 5% or less of the alloy by volume ratio.

【0067】さらに、水素ガス分圧を200kPa以下
とし、温度範囲は860℃〜880℃、1時間の条件で
熱処理し、その後、Arガス2気圧、ファン冷却の条件
で、室温まで冷却し、大気中に取り出したところ、体積
比率で95%以上がNd2Fe14B相に再結合してい
た。
Further, the hydrogen gas partial pressure is set to 200 kPa or less, the temperature range is 860 ° C. to 880 ° C., and the heat treatment is performed for 1 hour. Then, the atmosphere is cooled to room temperature under the conditions of Ar gas 2 atm and fan cooling. When taken out, 95% or more by volume ratio was recombined with the Nd 2 Fe 14 B phase.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【発明の効果】この発明は、R−T−(M)−B系合金
を粗粉末とした後、真空中を昇温し、水素を導入して水
素化し、水素化処理中に取出して急冷した検査用合金を
特徴とし、この検査用合金より確認できる中間段階相
は、母相と同方位のR2Fe14B微粒子やRH2を含む粗
大なα−Fe及びFe2B粒子、α−FeとRH2からな
るラメラ状組織に加えて、Rが10at%以下のFeリ
ッチ合金相が多量に存在するもので、このFeリッチ合
金相は水素化時間の延長により消失するものであるが、
対象とする合金粉末の水素化途中でこのFeリッチ合金
相、すなわち中間段階相を有する検査用合金を取り出こ
とにより、R2Fe14B微粒子の生成や異方化の過程を
検証しながら、適正な合金相組織に調整、すなわち、最
適条件を設定して水素化処理で、前記の中間段階相にR
2Fe14B相の微結晶を均一に分散させることが可能
で、脱水素後に、保磁力と残留磁化の高い異方性の集合
組織を得ることが可能である。
Industrial Applicability According to the present invention, after the RT- (M) -B alloy is made into a coarse powder, the temperature is raised in a vacuum, hydrogen is introduced and hydrogenated, and it is taken out during the hydrogenation treatment and rapidly cooled. The intermediate phase that can be confirmed from this inspection alloy is the coarse α-Fe and Fe 2 B particles containing R 2 Fe 14 B fine particles and RH 2 having the same orientation as the parent phase, α- In addition to the lamellar structure composed of Fe and RH 2, a large amount of Fe-rich alloy phase with R of 10 at% or less is present, and this Fe-rich alloy phase disappears due to extension of hydrogenation time.
During the hydrogenation of the target alloy powder, the Fe-rich alloy phase, that is, the inspection alloy having the intermediate stage phase is taken out to verify the generation and anisotropic processes of R 2 Fe 14 B fine particles. Adjust to a proper alloy phase structure, that is, set the optimum conditions and perform hydrogenation to R
It is possible to uniformly disperse the fine crystals of the 2 Fe 14 B phase, and it is possible to obtain an anisotropic texture with high coercive force and residual magnetization after dehydrogenation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による検査用合金の透過型電子顕微鏡
観察結果の模式図である。
FIG. 1 is a schematic view of a transmission electron microscope observation result of an inspection alloy according to the present invention.

【図2】この発明による検査用合金の中間段階相中(I
H)およびその中に残存したNd2Fe14B微結晶の電
子線回折像写真である。
FIG. 2 (I in the intermediate phase of the test alloy according to the invention)
3B is an electron diffraction image photograph of Hd) and Nd 2 Fe 14 B microcrystals remaining therein.

【図3】母合金のc軸方向と垂直に電子線を入射した場
合の電子線回折像写真を示し、Aは残存Nd2Fe14
微結晶、Bは中間段階相を示す。
FIG. 3 shows an electron beam diffraction image photograph when an electron beam is incident perpendicularly to the c-axis direction of the master alloy, and A is residual Nd 2 Fe 14 B
Microcrystal, B indicates an intermediate phase.

【図4】この発明による検査用合金の中間段階相中の残
存Nd2Fe14B微結晶の超高分解能透過型電子顕微鏡
写真である。
FIG. 4 is an ultra high resolution transmission electron micrograph of residual Nd 2 Fe 14 B crystallites in the intermediate phase of the test alloy according to the present invention.

【図5】中間段階相がα−FeとFe2Bに分解した後
の、α−Fe中に存在するNd2Fe14B微結晶を示す
超高分解能透過型電子顕微鏡写真と電子線回折像写真で
ある。
FIG. 5: Ultra-high resolution transmission electron micrograph and electron beam diffraction image showing Nd 2 Fe 14 B microcrystals present in α-Fe after the intermediate phase has decomposed into α-Fe and Fe 2 B. It is a photograph.

【図6】中間段階相がα−FeとFe2Bに分解した後
の、Fe2Bに存在するNd2Fe14B微結晶を示す超高
分解能透過型電子顕微鏡写真と電子線回折像写真であ
る。
FIG. 6 is an ultra-high-resolution transmission electron micrograph and electron diffraction image photograph showing Nd 2 Fe 14 B microcrystals present in Fe 2 B after the intermediate phase is decomposed into α-Fe and Fe 2 B. Is.

【図7】水素化・分解反応初期段階の検査用合金の透過
型電子顕微鏡写真である。
FIG. 7 is a transmission electron micrograph of the alloy for inspection at the initial stage of hydrogenation / decomposition reaction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/06 H01F 1/06 A (72)発明者 冨澤 浩之 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社山崎製作所内 (72)発明者 池上 尚 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社山崎製作所内 (72)発明者 富田 俊郎 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 佐野 直幸 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01F 1/06 H01F 1/06 A (72) Inventor Hiroyuki Tomizawa 2-chome, Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture No. 15-17 Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Takashi Ikegami 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metal Co., Ltd. Yamazaki Works (72) Inventor Toshiro Tomita Osaka, Osaka Sumitomo Metal Industries, Ltd. 4-53-3 Kitahama, Chuo-ku, Tokyo (72) Inventor Naoyuki Sano 4-53-3 Kitahama, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 以下の工程からなる異方性集合組織を有
するR−T−B系異方性磁石用合金粉末の製造方法。 (1)R2Fe14B化合物を主相とする合金を水素雰囲
気中で熱処理し、合金中に含まれるR2Fe14B相を、
a軸がもとのR2Fe14B相と同じでc軸が3分の1で
かつもとのR2Fe14B相とc軸の方位を同じくする正
方晶(中間段階相IH)と、未分解のR2Fe14B相
と、RH2相と、α−Feと、Fe2Bとの5相混合組織
に分解する工程、(2)水素ガス中で熱処理することに
よりIHをさらにα−FeとFe2Bとに分解させ、I
Hの体積比率を5%以下にすることにより、もとの合金
中に存在したR2Fe14B相の部分を実質的に未分解R2
Fe14Bとα−FeとRH2とFe2Bとの4相組織とす
る工程、(3)水素ガス分圧を10kPa以下に下げて
熱処理し、体積比率で95%以上をR2Fe14B相に再
結合させる工程、(4)室温まで冷却し、大気中に取り
出す工程。
1. A method for producing an alloy powder for an R-T-B type anisotropic magnet having an anisotropic texture, which comprises the following steps. (1) An alloy containing a R 2 Fe 14 B compound as a main phase is heat-treated in a hydrogen atmosphere to remove the R 2 Fe 14 B phase contained in the alloy.
a tetragonal crystal (intermediate stage phase IH) in which the a-axis is the same as the original R 2 Fe 14 B phase, the c-axis is one-third, and has the same c-axis orientation as the original R 2 Fe 14 B phase , A step of decomposing into an undecomposed R 2 Fe 14 B phase, a RH 2 phase, a 5-phase mixed structure of α-Fe and Fe 2 B, (2) further heat treatment in hydrogen gas to further increase IH Decompose into α-Fe and Fe 2 B,
By adjusting the volume ratio of H to 5% or less, the portion of the R 2 Fe 14 B phase existing in the original alloy is substantially undecomposed R 2
A step of forming a four-phase structure of Fe 14 B, α-Fe, RH 2 and Fe 2 B, (3) a hydrogen gas partial pressure is reduced to 10 kPa or less and heat treatment is performed, and 95% or more by volume of R 2 Fe 14 is added. Step of recombining with phase B, (4) Step of cooling to room temperature and taking out to the atmosphere.
【請求項2】 以下の工程からなる異方性集合組織を有
するR−T−B系異方性磁石用合金粉末の製造方法。 (1)R2Fe14B化合物を主相とする合金を水素ガス
中で熱処理し、合金中に含まれるR2Fe14B相から、
a軸がもとのR2Fe14B相と同じでc 軸が3分の1
でかつもとのR2Fe14B相とc軸の方位を同じくする
正方晶相(中間段階相IH)の中に格子が整合した直径
5nm〜100nmのR2Fe14B相微結晶と球状のR
2とが分散した組織とする工程、(2)水素ガス中で
熱処理する事によりIHをさらにα−FeとFe2Bと
に分解させ、IHの体積比率を5%以下にすることによ
り、もとの合金中に存在したR2Fe14B相の部分を実
質的にR2Fe14B微結晶がα−FeとFe2B相中に微
細に分散した部分とRH2からなる組織とする工程、
(3)水素ガス分圧を10kPa以下に下げて熱処理
し、体積比率で95%以上をR2Fe14B相に再結合さ
せる工程、(4)室温まで冷却し、大気中に取り出す工
程。
2. A method for producing an alloy powder for an R-T-B type anisotropic magnet having an anisotropic texture, which comprises the following steps. (1) An alloy containing a R 2 Fe 14 B compound as a main phase is heat-treated in hydrogen gas, and the R 2 Fe 14 B phase contained in the alloy is
The a-axis is the same as the original R 2 Fe 14 B phase and the c-axis is 1/3
And a tetragonal phase (intermediate phase IH) having the same c-axis direction as the original R 2 Fe 14 B phase and an R 2 Fe 14 B phase microcrystal with a diameter of 5 nm to 100 nm and spherical R
A step of forming a structure in which H 2 is dispersed, (2) IH is further decomposed into α-Fe and Fe 2 B by heat treatment in hydrogen gas, and the volume ratio of IH is set to 5% or less. The R 2 Fe 14 B phase portion existing in the original alloy is composed of RH 2 and a portion in which R 2 Fe 14 B crystallites are finely dispersed in α-Fe and Fe 2 B phase. Process,
(3) A step of reducing the partial pressure of hydrogen gas to 10 kPa or less and heat-treating, and recombining 95% or more by volume ratio with the R 2 Fe 14 B phase, (4) a step of cooling to room temperature and extracting to the atmosphere.
【請求項3】 以下の工程からなる異方性集合組織を有
するR−T−B系異方性磁石用合金粉末の製造方法。 (1)R2Fe14B化合物を主相とする合金を水素ガス
中で熱処理し、合金中に含まれるR2Fe14B相の周り
に、a軸がもとのR2Fe14B相と同じでc軸が3分の
1でかつもとのR2Fe14B相とc軸の方位を同じくす
る正方晶相(IH)の中に格子が整合した直径5nm〜
100nmのR2Fe14B相微結晶と球状のRH2とが分
散した組織を形成する工程、(2)水素ガス中で熱処理
する事によりIH相に取り囲まれた直径120nm以上
のR2Fe14B相の領域を体積比率で合金の5%以下と
する工程、(3)水素ガス中で熱処理することによりI
Hをさらにα−FeとFe2Bとに分解させ、IHの体
積比率を合計で5%以下にすることにより、もとの合金
中に存在したR2Fe14B相の部分を実質的にR2Fe14
B微結晶がα−FeとFe2B相中に微細に分散した部
分とRH2からなる組織とする工程、(4)水素ガス分
圧を10kPa以下に下げて熱処理し、体積比率で95
%以上をR2Fe14B相に再結合させる工程、(5)室
温まで冷却し、大気中に取り出す工程。
3. A method for producing an RTB-based anisotropic magnet alloy powder having an anisotropic texture, comprising the steps of: (1) An alloy having a R 2 Fe 14 B compound as a main phase is heat-treated in hydrogen gas, and the R 2 Fe 14 B phase contained in the alloy is surrounded by the original R 2 Fe 14 B phase. Same as the above, the c-axis is one-third, and the lattice is matched in the tetragonal phase (IH) having the same R-axis direction as the original R 2 Fe 14 B phase.
A step of forming a structure in which 100 nm of R 2 Fe 14 B phase fine crystals and spherical RH 2 are dispersed, (2) R 2 Fe 14 having a diameter of 120 nm or more surrounded by IH phase by heat treatment in hydrogen gas A step of reducing the volume of the B phase region to 5% or less of the alloy, (3) by heat treatment in hydrogen gas, I
By further decomposing H into α-Fe and Fe 2 B and setting the volume ratio of IH to 5% or less in total, the R 2 Fe 14 B phase portion existing in the original alloy is substantially reduced. R 2 Fe 14
A step of forming a structure composed of RH 2 and a portion in which B microcrystals are finely dispersed in α-Fe and Fe 2 B phase, (4) Heat treatment is performed by reducing the hydrogen gas partial pressure to 10 kPa or less, and the volume ratio is 95%.
% Or more of the R 2 Fe 14 B phase to be recombined, (5) a step of cooling to room temperature and taking out into the atmosphere.
【請求項4】 R2Fe14B化合物を主相とする合金
を、水素分圧50Pa以下で760℃〜870℃に昇温
した後、10kPa〜800kPaの水素ガス圧力と
し、15分〜30時間保持した後、合金の一部をサンプ
リングポートより取り出し、室温に急冷して合金中に含
まれるR2Fe14B相の周りに、α−FeとRH2からな
る周期50nm〜300nm厚さ100nm〜2000
nmのラメラ組織を介して、R濃度が10at%以下の
Feリッチ中間段階相(IH)が存在し、さらにその外
側にα−FeとFe2B相からなる領域が存在する組織
となっていることを確認した後、水素分圧を10kPa
以下に下げて合金中から水素ガスを分離し、直径0.0
5μm〜1μmのR2Fe14B微結晶からなる異方性集
合組織を有するR−T−B系異方性磁石用合金粉末の製
造方法。
4. An alloy containing a R 2 Fe 14 B compound as a main phase is heated to 760 ° C. to 870 ° C. at a hydrogen partial pressure of 50 Pa or less and then at a hydrogen gas pressure of 10 kPa to 800 kPa for 15 minutes to 30 hours. After the holding, a part of the alloy was taken out from the sampling port, rapidly cooled to room temperature, and surrounded by the R 2 Fe 14 B phase contained in the alloy, a cycle of α-Fe and RH 2 of 50 nm to 300 nm, thickness of 100 nm to 2000
The Fe-rich intermediate-stage phase (IH) having an R concentration of 10 at% or less exists through the lamella structure of nm, and a region composed of α-Fe and Fe 2 B phase exists outside thereof. After confirming that the hydrogen partial pressure is 10 kPa
Hydrogen gas is separated from the alloy by lowering it to a diameter of 0.0
A method for producing an alloy powder for an R-T-B anisotropic magnet, which has an anisotropic texture composed of R 2 Fe 14 B microcrystals of 5 μm to 1 μm.
【請求項5】 R2Fe14B化合物を主相とする合金
を、水素分圧10kPa〜500kPaで600℃〜7
50℃の温度範囲を10℃/分〜200℃/分の昇温速
度で通過させ、760℃〜870℃で15〜120分保
持した後、合金の一部をサンプリングポートより取り出
し、室温に急冷して合金中に含まれるR 2Fe14B相の
周りに、α−FeとRH2からなる周期50nm〜30
0nm厚さ100nm〜2000nmのラメラ組織を介
して、R濃度が10at%以下のFeリッチ中間段階相
(IH)が存在し、さらにその外側にα−FeとFe2
B相からなる領域が存在する組織状のRH2とが分散し
た組織となっていることを確認した後、水素分圧を10
kPa以下に下げて合金中から水素ガスを分離し、直径
0.05μm〜1μmのR2Fe14B微結晶からなる異
方性集合組織を有するR−T−B系異方性磁石用合金粉
末の製造方法。
5. RTwoFe14Alloy containing B compound as main phase
At a hydrogen partial pressure of 10 kPa to 500 kPa at 600 ° C to 7
Temperature rising rate of 50 ° C over 10 ° C / min to 200 ° C / min
And keep it at 760 ℃ -870 ℃ for 15-120 minutes.
After holding, take out a part of the alloy from the sampling port
And then rapidly cooled to room temperature, R contained in the alloy TwoFe14Phase B
Around α-Fe and RHTwoA period of 50 nm to 30
0 nm thickness 100 nm-2000 nm through lamella structure
And Fe-rich intermediate-stage phase with R concentration of 10 at% or less
(IH) exists, and α-Fe and Fe are further present outside thereof.Two
Textured RH with a region consisting of phase BTwoAnd are dispersed
After confirming that the structure is
Reduced to below kPa to separate hydrogen gas from the alloy,
R of 0.05 μm to 1 μmTwoFe14Difference consisting of B crystallites
Alloy powder for R-T-B anisotropic magnets having an anisotropic texture
Manufacturing method of powder.
【請求項6】 請求項1から請求項5において、IH相
は、RとFeとCoとBとMを含み、その組成を原子比
率で表すとき、R: 0.01〜10%、Fe+Co:
70〜99%、M: 0.01〜10%、B: 残部
である異方性集合組織を有するR−T−B系異方性磁石
用合金粉末の製造方法。
6. The IH phase according to any one of claims 1 to 5, wherein the IH phase contains R, Fe, Co, B and M, and when its composition is represented by an atomic ratio, R: 0.01 to 10%, Fe + Co:
70 to 99%, M: 0.01 to 10%, B: a method for producing an R-T-B based alloy powder for anisotropic magnets having the remaining anisotropic texture.
【請求項7】 R2Fe14B化合物を主相とする合金
を、水素分圧50Pa以下で760℃〜870℃に昇温
した後、10kPa〜800kPaの水素ガス圧力と
し、15分〜60分保持した後、合金の一部をサンプリ
ングポートより取り出し、室温まで急冷した検査用合
金。
7. An alloy containing a R 2 Fe 14 B compound as a main phase is heated to 760 ° C. to 870 ° C. at a hydrogen partial pressure of 50 Pa or less and then set to a hydrogen gas pressure of 10 kPa to 800 kPa for 15 to 60 minutes. After holding, a part of the alloy was taken out from the sampling port and rapidly cooled to room temperature.
【請求項8】 R2Fe14B化合物を主相とする合金
を、水素分圧10kPa〜500kPaで600℃〜7
50℃の温度範囲を10℃/分〜200℃/分の昇温速
度で通過させ、760℃〜870℃で15〜60分保持
した後、合金の一部をサンプリングポートより取り出
し、室温まで急冷した検査用合金。
8. An alloy containing a R 2 Fe 14 B compound as a main phase is prepared at a hydrogen partial pressure of 10 kPa to 500 kPa at 600 ° C. to 7 ° C.
After passing through the temperature range of 50 ° C at a temperature rising rate of 10 ° C / min to 200 ° C / min and holding at 760 ° C to 870 ° C for 15 to 60 minutes, a part of the alloy is taken out from the sampling port and rapidly cooled to room temperature. Inspection alloy.
JP9307496A 1996-03-22 1996-03-22 Method for producing alloy powder for RTB based anisotropic magnet and alloy for inspection Expired - Lifetime JP3595064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9307496A JP3595064B2 (en) 1996-03-22 1996-03-22 Method for producing alloy powder for RTB based anisotropic magnet and alloy for inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9307496A JP3595064B2 (en) 1996-03-22 1996-03-22 Method for producing alloy powder for RTB based anisotropic magnet and alloy for inspection

Publications (2)

Publication Number Publication Date
JPH09256001A true JPH09256001A (en) 1997-09-30
JP3595064B2 JP3595064B2 (en) 2004-12-02

Family

ID=14072375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9307496A Expired - Lifetime JP3595064B2 (en) 1996-03-22 1996-03-22 Method for producing alloy powder for RTB based anisotropic magnet and alloy for inspection

Country Status (1)

Country Link
JP (1) JP3595064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246644A (en) * 2019-08-01 2019-09-17 泮敏翔 A kind of preparation method of the more main phase Ce base nanometer crystal magnets of high-performance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267800B2 (en) 2009-02-27 2013-08-21 ミネベア株式会社 Self-repairing rare earth-iron magnet
JP5344171B2 (en) 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246644A (en) * 2019-08-01 2019-09-17 泮敏翔 A kind of preparation method of the more main phase Ce base nanometer crystal magnets of high-performance
CN110246644B (en) * 2019-08-01 2020-08-07 中国计量大学 Preparation method of high-performance multi-main-phase Ce-based nanocrystalline magnet

Also Published As

Publication number Publication date
JP3595064B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
CN106024253B (en) R-Fe-B sintered magnet and preparation method thereof
EP0304054B1 (en) Rare earth-iron-boron magnet powder and process of producing same
TWI673729B (en) R-Fe-B based sintered magnet and manufacturing method thereof
TWI673732B (en) R-Fe-B based sintered magnet and manufacturing method thereof
Fidler et al. Electron microscopy of Nd-Fe-B based magnets
EP0177371B1 (en) Process for manufacturing a permanent magnet
WO2021219063A1 (en) Fine-grain high-coercivity sintered neodymium iron boron magnet and preparation method therefor
Hosokawa et al. Influences of microstructure on macroscopic crystallinity and magnetic properties of Sm-Fe-N fine powder produced by jet-milling
EP1460650B1 (en) R-t-b based rare earth element permanent magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH1070023A (en) Permanent magnet and manufacture thereof
JP3368294B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH0768561B2 (en) Method for producing rare earth-Fe-B alloy magnet powder
JP3595064B2 (en) Method for producing alloy powder for RTB based anisotropic magnet and alloy for inspection
JP2002294413A (en) Magnet material and manufacturing method therefor
JPH1092617A (en) Permanent magnet and its manufacture
JP2022037085A (en) Rare earth-iron-boron based sintered magnet
WO2021193333A1 (en) Anisotropic rare-earth sintered magnet and method for producing same
JP2564492B2 (en) Manufacturing method of rare earth-Fe-B cast permanent magnet
JP3423965B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH09283313A (en) Sintered permanent magnet
WO2021193334A1 (en) Anisotropic rare earth sintered magnet and method for producing same
JP2746223B2 (en) Rare earth-Fe-B cast permanent magnet
JP3562138B2 (en) Raw material alloy for manufacturing rare earth magnet powder
JP2691034B2 (en) Method for producing rare earth element-iron-nitrogen based magnetic material with controlled microstructure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

EXPY Cancellation because of completion of term