JPH09253497A - Method of regenerating catalyst for treating ammonia-containing waste water - Google Patents

Method of regenerating catalyst for treating ammonia-containing waste water

Info

Publication number
JPH09253497A
JPH09253497A JP9032796A JP9032796A JPH09253497A JP H09253497 A JPH09253497 A JP H09253497A JP 9032796 A JP9032796 A JP 9032796A JP 9032796 A JP9032796 A JP 9032796A JP H09253497 A JPH09253497 A JP H09253497A
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
metal catalyst
waste water
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9032796A
Other languages
Japanese (ja)
Inventor
Ryoichi Yamada
亮一 山田
Yasuhiko Takabayashi
泰彦 高林
Toshiji Nakahara
敏次 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP9032796A priority Critical patent/JPH09253497A/en
Publication of JPH09253497A publication Critical patent/JPH09253497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply remove catalyst poisons from a metal catalyst which has been poisoned by metals such as copper, and regenerate the catalyst by bringing the catalyst suffering from deterioration of activity into contact with an ammonia-containing waste water to which an oxidizing agent has not been added. SOLUTION: Ammonia-containing waste water received in a crude water tank 1 is transferred to an adjustment tank 3 by means of a pump 2, and a pH controlling agent is added as necessary, and a sodium nitrile aqueous solution is injected from an oxidizing agent tank 5 in the above process and then temperature is adjusted before ammonia nitrogen is decomposed in a catalyst packed tower 9. When activity of the metal catalyst in the catalyst packed tower 9 is deteriorated, a pump 6 is stopped and injection of the oxidizing agent is stopped, and a valve 11 is closed, and a valve 12 is opened, and the ammonia containing waste water, into which the oxidizing agent has not been added, is introduced into the catalyst packed tower 9. The metal catalyst is regenerated and copper contained in the ammonia containing waste water used for regeneration of the metal catalyst is simultaneously removed before the waste water is returned to the crude water tank 1. As described above, the metal catalyst is regenerated in the process of treating the ammonia containing waste water in a short period of time and treatment can be restarted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア含有排
水処理用の触媒の再生方法に関する。さらに詳しくは、
本発明は、アンモニア含有排水に酸化剤を添加し、アン
モニアを分解して窒素として除去するに当たり、活性点
に金属が付着して活性の低下した金属触媒を、酸を使用
することなく、容易に再生することができるアンモニア
含有排水処理用の触媒の再生方法に関する。
TECHNICAL FIELD The present invention relates to a method for regenerating a catalyst for treating wastewater containing ammonia. For more information,
The present invention adds an oxidizing agent to ammonia-containing wastewater, decomposes ammonia to remove it as nitrogen, and easily removes a metal catalyst having a reduced activity due to a metal adhering to an active site without using an acid. The present invention relates to a method for regenerating a catalyst for treating wastewater containing ammonia that can be regenerated.

【0002】[0002]

【従来の技術】火力発電所排水、半導体工場排水、染料
工場排水や肥料工場排水などには、アンモニア性窒素が
かなりの量含まれている場合が多い。アンモニア性窒素
は、閉鎖性水域において富栄養化の源となるので、排水
処理によって除去しなければならない。従来から、アン
モニア性窒素含有排水に酸化剤を添加し、触媒の存在下
にアンモニア性窒素を分解して無害な窒素ガスにする処
理方法が知られている(特開平6−99180号公報、
特開平7−8974号公報など)。例えば、酸化剤とし
て亜硝酸塩を用いた場合、アンモニア性窒素は次式にし
たがって分解される。 NH4 ++NO2 - → N2+2H2O 排水中のアンモニア性窒素を酸化剤との反応により接触
分解する処理を続けると、触媒の活性が次第に低下す
る。これは、排水中に含まれる銅などの金属が、触媒の
活性点に吸着されることによる場合が多い。従来、この
ように被毒した触媒から吸着された銅などの金属を除去
する方法として、触媒を酸溶液と接触させ、銅などの金
属を溶解させて除去する方法が知られている(特開昭5
8−114731号公報、特開昭58−114732号
公報、特開昭58−114734号公報など)。しか
し、これらの従来技術では、酸溶液を充填塔に通液して
触媒に付着した銅などの金属を除去しようとすれば、充
填塔や配管材料などを耐食材料で作製しなければなら
ず、設備費が嵩むという問題があった。また、酸の負荷
により触媒担体の強度、担持金属の性能などが損なわれ
るという問題があった。
BACKGROUND ART Wastewater from thermal power plants, wastewater from semiconductor factories, wastewater from dyestuff factories and wastewater from fertilizer factories often contain a considerable amount of ammoniacal nitrogen. Ammoniacal nitrogen is a source of eutrophication in closed waters and must be removed by wastewater treatment. Conventionally, a treatment method has been known in which an oxidizing agent is added to wastewater containing ammoniacal nitrogen, and ammoniacal nitrogen is decomposed into harmless nitrogen gas in the presence of a catalyst (JP-A-6-99180).
JP-A-7-8974). For example, when nitrite is used as the oxidizing agent, ammoniacal nitrogen is decomposed according to the following equation. NH 4 + + NO 2 → N 2 + 2H 2 O When the treatment of catalytically decomposing ammonia nitrogen in wastewater by reaction with an oxidant is continued, the activity of the catalyst gradually decreases. This is often because the metal such as copper contained in the waste water is adsorbed on the active sites of the catalyst. Conventionally, as a method of removing the metal such as copper adsorbed from the catalyst poisoned in this way, a method of contacting the catalyst with an acid solution to dissolve the metal such as copper and removing it is known (Japanese Patent Laid-Open No. 2003-242242). Sho 5
8-114731, JP-A-58-114732, JP-A-58-114734, etc.). However, in these conventional techniques, if an acid solution is passed through a packed tower to remove metals such as copper adhering to the catalyst, the packed tower and piping materials must be made of corrosion-resistant materials, There was a problem that equipment costs increased. Further, there is a problem that the strength of the catalyst carrier and the performance of the supported metal are impaired by the load of acid.

【0003】[0003]

【発明が解決しようとする課題】本発明は、アンモニア
含有排水の酸化処理において、銅などの金属により被毒
した触媒から、触媒毒を簡単に除去し、触媒を再生する
方法を提供することを目的としてなされたものである。
DISCLOSURE OF THE INVENTION It is an object of the present invention to provide a method for easily removing a catalyst poison from a catalyst poisoned by a metal such as copper in the oxidation treatment of ammonia-containing wastewater to regenerate the catalyst. It was done for the purpose.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、触媒存在下のア
ンモニア含有排水の酸化分解処理において、活性の低下
した金属触媒に、酸化剤を添加しないアンモニア含有排
水を接触させることにより、容易に触媒活性が回復する
ことを見いだし、この知見に基づいて本発明を完成する
に至った。すなわち、本発明は、アンモニア含有排水に
酸化剤を添加したのち、加温下に金属触媒と接触させる
アンモニアの分解処理において、活性の低下した金属触
媒に酸化剤を添加しないアンモニア含有排水を接触させ
て再生することを特徴とするアンモニア含有排水処理用
の触媒の再生方法を提供するものである。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that in the oxidative decomposition treatment of ammonia-containing wastewater in the presence of a catalyst, a metal catalyst with reduced activity is added, It was found that the catalytic activity was easily recovered by contacting the ammonia-containing wastewater to which the oxidizing agent was not added, and the present invention was completed based on this finding. That is, the present invention, after adding an oxidizing agent to the ammonia-containing wastewater, in the decomposition treatment of ammonia to be brought into contact with the metal catalyst under heating, contact the ammonia-containing wastewater without addition of the oxidizing agent to the metal catalyst of reduced activity. The present invention provides a method for regenerating a catalyst for treating wastewater containing ammonia, which is characterized in that it is regenerated.

【0005】[0005]

【発明の実施の形態】本発明方法は、火力発電所排水、
半導体工場排水、染料工場排水や肥料工場排水など、ア
ンモニア性窒素とともに、触媒毒となる銅などの金属を
含有する排水に、酸化剤を添加し、加温下に金属触媒と
接触させるアンモニアの分解処理に適用することができ
る。本発明方法においては、アンモニア性窒素を含有す
る排水への酸化剤の添加に先だって、排水のpHを4〜7
に調整することが好ましく、pHを5〜6に調整すること
がより好ましい。pHの調整は、無機酸又は無機塩基の添
加により行うことが好ましく、無機酸としては、例え
ば、塩酸、硫酸などを使用することができ、無機塩基と
しては、例えば、水酸化ナトリウム、水酸化カリウム、
水酸化カルシウムなどを使用することができる。本発明
方法において使用する酸化剤には特に制限はなく、例え
ば、過酸化水素、亜硝酸塩、過硫酸塩、オゾン、高純度
酸素ガス、空気などを使用することができる。これらの
酸化剤は、1種を単独で使用することができ、2種以上
を組み合わせて使用することもできる。これらの酸化剤
の中で、亜硝酸塩はアンモニアと略当量を添加すれば、
次式のごとく完全に無害な窒素ガスと水になるので、特
に好適に使用することができる。 NH4 ++NO2 - → N2+2H2
BEST MODE FOR CARRYING OUT THE INVENTION
Decomposition of ammonia by adding an oxidizing agent to wastewater containing copper and other metals that are catalyst poisons along with ammoniacal nitrogen, such as semiconductor factory wastewater, dye factory wastewater, and fertilizer factory wastewater. It can be applied to processing. In the method of the present invention, the pH of the wastewater is adjusted to 4 to 7 prior to the addition of the oxidizing agent to the wastewater containing ammoniacal nitrogen.
It is preferable to adjust the pH to 5 and more preferable to adjust the pH to 5 to 6. The pH is preferably adjusted by adding an inorganic acid or an inorganic base. As the inorganic acid, for example, hydrochloric acid, sulfuric acid or the like can be used, and as the inorganic base, for example, sodium hydroxide or potassium hydroxide. ,
Calcium hydroxide or the like can be used. The oxidizing agent used in the method of the present invention is not particularly limited, and for example, hydrogen peroxide, nitrite, persulfate, ozone, high-purity oxygen gas, air and the like can be used. These oxidizing agents may be used alone or in combination of two or more. Among these oxidizers, nitrite can be added in an equivalent amount to ammonia,
Since it becomes completely harmless nitrogen gas and water as shown in the following formula, it can be used particularly preferably. NH 4 + + NO 2 - → N 2 + 2H 2 O

【0006】本発明方法において使用する金属触媒には
特に制限はなく、例えば、白金、イリジウム、パラジウ
ム、ルテニウム、ロジウム、金などの貴金属触媒や、コ
バルト、ニッケルなどの卑金属触媒などを使用すること
ができる。これらの触媒は、1種を単独で使用すること
ができ、2種以上を併用することもできる。触媒は粉末
状で使用することができるが、運転操作上からは、触媒
を担体に担持させ、粒状、板状などの成形体として使用
することが好ましい。触媒の担持量は、担体に対し0.
05〜10重量%であることが好ましく、0.1〜1重
量%であることがより好ましい。触媒を担持する担体に
は特に制限はなく、例えば、チタニア、α−アルミナ、
γ−アルミナ、シリカ、ゼオライト、活性炭、ポリテト
ラフルオロエチレなどを使用することができるが、多孔
質担体であることが好ましい。多孔質担体としては、比
表面積が10〜100m2/gであるチタニア粒状物を
特に好適に使用することができる。本発明方法におい
て、アンモニア性窒素を含有する排水を酸化剤の存在下
に接触処理する方法には特に制限はないが、粒状などの
成形体の触媒を充填した充填塔を使用することが好まし
い。アンモニア性窒素を含有する排水に酸化剤を添加し
たのち、金属触媒を充填した充填塔に、上向流又は下向
流で通水することによりアンモニア性窒素を窒素ガスに
まで分解することができる。
There is no particular limitation on the metal catalyst used in the method of the present invention. For example, a noble metal catalyst such as platinum, iridium, palladium, ruthenium, rhodium or gold, or a base metal catalyst such as cobalt or nickel can be used. it can. These catalysts may be used alone or in combination of two or more. The catalyst can be used in the form of powder, but from the viewpoint of operation, it is preferable to support the catalyst on a carrier and use it as a granular, plate-shaped or other shaped body. The loading amount of the catalyst is 0.
It is preferably from 05 to 10% by weight, more preferably from 0.1 to 1% by weight. There is no particular limitation on the carrier supporting the catalyst, for example, titania, α-alumina,
γ-alumina, silica, zeolite, activated carbon, polytetrafluoroethylene, etc. can be used, but a porous carrier is preferable. As the porous carrier, titania particles having a specific surface area of 10 to 100 m 2 / g can be particularly preferably used. In the method of the present invention, the method of contact-treating wastewater containing ammoniacal nitrogen in the presence of an oxidant is not particularly limited, but it is preferable to use a packed tower packed with a catalyst such as granular shaped bodies. After adding an oxidizer to wastewater containing ammoniacal nitrogen, the ammoniacal nitrogen can be decomposed into nitrogen gas by passing water through a packed column filled with a metal catalyst in an upward flow or a downward flow. .

【0007】本発明方法において、アンモニア性窒素と
酸化剤とを反応するための加温条件は、100〜250
℃であることが好ましく、120〜180℃であること
がより好ましい。加温条件が100℃未満であると、ア
ンモニア性窒素の分解速度が低下し、設備が大型化する
おそれがある。加温条件が250℃を超えると、反応速
度は速くなるが、取り扱い上危険性を伴い、設備の耐圧
強度を大きくする必要があることなどから設備が高価と
なる。本発明方法において、酸化剤を添加したアンモニ
ア性窒素を含む排水を金属触媒充填層に通水する際、S
V(空塔速度)は0.5〜20hr-1とすることが好まし
く、1〜5hr-1とすることがより好ましい。必要な反応
時間は、アンモニア性窒素を含有する排水の水質や反応
温度によって影響されるので、これらの条件を考慮して
SVを適切に選択することができる。本発明方法におい
ては、アンモニア性窒素を含有する排水に酸化剤を添加
し、加温下に金属触媒と接触させてアンモニア性窒素の
分解処理を継続し、アンモニア性窒素の除去率が低下し
たとき、排水への酸化剤の添加を止めて、酸化剤を添加
しないアンモニア含有排水を金属触媒に接触させること
により、金属触媒を再生する。金属触媒の再生を開始す
る時期には特に制限はなく、所望する処理水の水質など
に応じて適宜選定することができる。
In the method of the present invention, the heating conditions for reacting the ammoniacal nitrogen and the oxidizing agent are 100 to 250.
C. is preferable, and 120 to 180.degree. C. is more preferable. If the heating condition is less than 100 ° C., the decomposition rate of ammoniacal nitrogen may decrease, and the equipment may be large. When the heating condition exceeds 250 ° C., the reaction rate increases, but the handling is dangerous, and the equipment is expensive because it is necessary to increase the pressure resistance of the equipment. In the method of the present invention, when waste water containing ammoniacal nitrogen added with an oxidizer is passed through the metal catalyst packed bed, S
V (superficial velocity) is preferably set to 0.5~20hr -1, and more preferably a 1~5hr -1. The required reaction time is influenced by the water quality of the wastewater containing ammoniacal nitrogen and the reaction temperature, and therefore the SV can be appropriately selected in consideration of these conditions. In the method of the present invention, when an oxidizing agent is added to the wastewater containing ammoniacal nitrogen, the decomposition treatment of the ammoniacal nitrogen is continued by contacting with the metal catalyst under heating, and the removal rate of the ammoniacal nitrogen decreases. The metal catalyst is regenerated by stopping the addition of the oxidizer to the waste water and bringing the ammonia-containing waste water containing no oxidizer into contact with the metal catalyst. The timing for starting the regeneration of the metal catalyst is not particularly limited, and can be appropriately selected depending on the desired water quality of the treated water.

【0008】本発明方法において、活性の低下した金属
触媒に酸化剤を添加しないアンモニア含有排水を接触さ
せる際の温度は、100〜250℃であることが好まし
く、120〜180℃であることがより好ましい。接触
温度が100℃未満であると、金属触媒の再生に長時間
を要するおそれがある。加温条件が250℃を超える
と、再生の速度は速くなるが、取り扱い上危険性を伴
い、設備の耐圧強度を大きくする必要があることなどか
ら設備が高価となる。通常は、金属触媒の再生の温度
は、アンモニア性窒素の分解処理温度と同一とすること
が好ましい。アンモニア性窒素の分解処理温度と金属触
媒の再生の温度を同一とすることにより、装置の運転条
件を大きく変更することなく、単にアンモニア含有排水
への酸化剤の添加を止めるのみで、アンモニア性窒素の
分解処理から金属触媒の再生へ工程を切り替えることが
できる。本発明方法において、金属触媒が充填塔に充填
されている場合は、活性の低下した金属触媒に酸化剤を
添加しないアンモニア含有排水を接触させる際のSV
(空塔速度)は0.5〜20hr-1とすることが好まし
く、1〜5hr-1とすることがより好ましい。アンモニア
性窒素の分解処理の際のSVと金属触媒の再生の際のS
Vを同一とすることにより、単にアンモニア含有排水へ
の酸化剤の添加を止めるのみで、アンモニア性窒素の分
解処理から金属触媒の再生へ工程を切り替えることがで
きるが、SVの変更は容易であるので、金属触媒の再生
条件に応じて適宜選定することができる。金属触媒の再
生のための酸化剤を添加しないアンモニア含有排水の通
水量は、金属触媒の状態に応じて適宜選択することがで
きるが、触媒表面に付着した金属をアンモニアと錯体を
形成させるに必要な量以上となるように通水量を決定す
るのが望ましい。もしアンモニア含有量が少なすぎる場
合には、外部から添加してもよい。通常は触媒容積の1
〜5倍量の通水で金属触媒は再生し、多くの場合触媒容
積の1〜3倍の通水で金属触媒は再生する。本発明方法
において、活性の低下した金属触媒に酸化剤を添加しな
いアンモニア含有排水を接触させることにより再生する
機構は明らかではないが、金属触媒の活性点に吸着した
銅などの触媒毒となる金属が、アンモニウムイオンと錯
体を形成して脱着し、活性点から除去されることによる
ものと考えられる。
[0008] In the method of the present invention, the temperature at which the ammonia-containing wastewater containing no oxidizing agent is brought into contact with the metal catalyst having reduced activity is preferably 100 to 250 ° C, more preferably 120 to 180 ° C. preferable. If the contact temperature is less than 100 ° C, it may take a long time to regenerate the metal catalyst. When the heating condition exceeds 250 ° C., the rate of regeneration becomes faster, but there is a danger in handling, and the equipment becomes expensive because it is necessary to increase the pressure resistance of the equipment. Usually, the temperature for regenerating the metal catalyst is preferably the same as the decomposition temperature for ammoniacal nitrogen. By keeping the decomposition treatment temperature of ammoniacal nitrogen and the temperature of regeneration of the metal catalyst at the same temperature, the addition of oxidizer to the ammonia-containing wastewater can be simply stopped without significantly changing the operating conditions of the equipment. It is possible to switch the process from the decomposition treatment of (1) to the regeneration of the metal catalyst. In the method of the present invention, when the metal catalyst is packed in a packed column, the SV at the time when the ammonia-containing wastewater without addition of an oxidizing agent is brought into contact with the metal catalyst whose activity has decreased
(Superficial velocity) is preferably set to 0.5~20hr -1, and more preferably a 1~5hr -1. SV when decomposing ammoniacal nitrogen and S when regenerating the metal catalyst
By making V the same, the process can be switched from the decomposition process of ammonia nitrogen to the regeneration of the metal catalyst by simply stopping the addition of the oxidant to the ammonia-containing wastewater, but the SV can be easily changed. Therefore, it can be appropriately selected according to the regeneration conditions of the metal catalyst. The flow rate of the ammonia-containing wastewater without addition of an oxidizing agent for the regeneration of the metal catalyst can be appropriately selected according to the state of the metal catalyst, but it is necessary for the metal attached to the catalyst surface to form a complex with ammonia. It is desirable to determine the water flow rate so that it will be equal to or more than this amount. If the ammonia content is too low, it may be added externally. Usually 1 catalyst volume
The metal catalyst is regenerated by passing water in an amount of ˜5 times, and in many cases, the metal catalyst is regenerated by passing water in an amount of 1 to 3 times the catalyst volume. In the method of the present invention, the mechanism of regeneration by contacting ammonia-containing wastewater without addition of an oxidizer to the metal catalyst with reduced activity is not clear, but a metal that becomes a catalyst poison such as copper adsorbed at the active site of the metal catalyst. However, it is considered that the complex is desorbed by forming a complex with ammonium ion and is removed from the active site.

【0009】図1は、本発明方法を実施するアンモニア
含有排水処理の一態様の工程系統図である。原水槽1に
受け入れたアンモニア含有排水は、ポンプA2により調
整槽3に送り、必要に応じてpH調整剤を添加して(図示
せず)pH調整を行う。pH調整を終えた被処理水は、ポン
プB4により送り出し、配管の途中で、酸化剤槽5から
ポンプC6により亜硝酸ナトリウム水溶液などの酸化剤
を注入する。酸化剤を添加した被処理水は、熱交換器7
で余熱を回収し、さらにヒーター8により所定の温度ま
で昇温して、触媒充填塔9に送り、アンモニア性窒素の
分解を行う。アンモニア性窒素を分解除去した処理水
は、熱交換器、圧力調整バルブ10及びバルブA11を
経由して次工程へ送る。触媒充填塔内の金属触媒の活性
が低下したときは、ポンプC6を停止して酸化剤の注入
を中止し、バルブA11を閉じ、バルブB12を開い
て、触媒充填塔に酸化剤を添加しないアンモニア含有排
水を通水し、金属触媒を再生するとともに、金属触媒の
再生に使用したアンモニア含有排水中に含まれる銅を除
去したのち原水槽1へ返送する。銅除去のための排水処
理方法は、特に制限はないが、通常は凝集沈殿槽13及
びろ過器14を設けて凝集沈殿法によって行う。本発明
方法によれば、従来の酸処理による金属触媒の再生方法
のように、触媒充填塔から金属触媒を取り出して、別に
酸処理をする必要がないので、排水処理を中断したり、
触媒充填塔を2基設けたりする必要がない。また、酸溶
液を触媒充填塔に通水することがないので、触媒塔や配
管を耐食材料で作製する必要がない。本発明方法によれ
ば、アンモニア含有排水処理中に単に酸化剤の添加を止
め、バルブの切り替えを行うだけで、触媒充填塔の温度
や通水速度を変更することなく、アンモニア含有排水の
処理と同一条件で金属触媒の再生を短時間で容易に行う
ことができる。
FIG. 1 is a process system diagram of one embodiment of an ammonia-containing wastewater treatment for carrying out the method of the present invention. The ammonia-containing wastewater received in the raw water tank 1 is sent to the adjusting tank 3 by the pump A2, and a pH adjusting agent is added (not shown) as needed to adjust the pH. The water to be treated whose pH has been adjusted is sent out by the pump B4, and an oxidizer such as an aqueous sodium nitrite solution is injected by the pump C6 from the oxidizer tank 5 in the middle of the piping. The water to be treated to which the oxidizing agent has been added is the heat exchanger 7
The residual heat is recovered by, and the temperature is further raised to a predetermined temperature by the heater 8 and sent to the catalyst packed tower 9 to decompose the ammonia nitrogen. The treated water from which ammonia nitrogen has been decomposed and removed is sent to the next step via the heat exchanger, the pressure adjusting valve 10 and the valve A11. When the activity of the metal catalyst in the catalyst packed tower is lowered, the pump C6 is stopped to stop the injection of the oxidant, the valve A11 is closed, the valve B12 is opened, and the oxidant not added to the catalyst packed tower is ammonia. After passing the contained wastewater to regenerate the metal catalyst and remove the copper contained in the ammonia-containing wastewater used for regenerating the metal catalyst, it is returned to the raw water tank 1. The wastewater treatment method for removing copper is not particularly limited, but it is usually performed by the coagulation sedimentation method by providing the coagulation sedimentation tank 13 and the filter 14. According to the method of the present invention, unlike the conventional method of regenerating a metal catalyst by acid treatment, it is not necessary to take out the metal catalyst from the catalyst packed column and separately perform acid treatment, so that the wastewater treatment can be interrupted,
It is not necessary to provide two catalyst packed towers. Further, since the acid solution is not passed through the catalyst packed tower, it is not necessary to make the catalyst tower or the pipe with a corrosion resistant material. According to the method of the present invention, the addition of the oxidizer is simply stopped during the treatment of the ammonia-containing wastewater, and the valve is simply switched to treat the ammonia-containing wastewater without changing the temperature or the water flow rate of the catalyst packed tower. Under the same conditions, the metal catalyst can be easily regenerated in a short time.

【0010】[0010]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこの実施例によりなんら限定さ
れるものではない。 実施例1 発電所の復水脱塩装置のカチオン交換樹脂再生排水の処
理及び処理によって活性の低下した触媒の再生を行っ
た。原水の水質は、アンモニア性窒素4,000mg/リ
ットル、銅3.3mg/リットルで、pH5.8であった。こ
の原水に亜硝酸ナトリウムをアンモニア性窒素と当量に
なるよう添加し、0.5重量%白金担持チタニア触媒0.
14リットルを充填し、温度を160℃に保った触媒充
填塔にSV=2hr-1で通水した。通水開始直後のアンモ
ニア性窒素の除去率は99%であったが、原水を700
リットル/リットル触媒通水したところアンモニア性窒
素の除去率は85%に低下した。そこで、亜硝酸ナトリ
ウムの添加を止め、アンモニア性窒素4,000mg/リ
ットルを含むpH5.8の原水を2リットル/リットル触
媒SV=2hr-1の条件で通水した。原水0.14リット
ルをそのまま通液処理したときの洗浄処理水中には、
1,040mg/リットルのCu2+が含まれていた。この
排水に硫化ナトリウムを添加後、pHを7.5に調整して
凝集沈殿させたところ、Cu2+の残留量は3mg/リット
ル以下となり、これを原水槽に返送した。その後、再び
原水にアンモニア性窒素と当量の亜硝酸ナトリウムを添
加したところ、アンモニア性窒素の除去率は98%に回
復していた。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 Treatment of cation exchange resin regeneration wastewater of a condensate demineralizer of a power plant and regeneration of a catalyst whose activity has decreased due to the treatment were performed. The water quality of the raw water was 4,000 mg / liter of ammonia nitrogen, 3.3 mg / liter of copper, and pH 5.8. Sodium nitrite was added to this raw water in an amount equivalent to that of ammoniacal nitrogen, and 0.5 wt% platinum-supported titania catalyst was added.
14 liters were filled and water was passed through the catalyst packed column whose temperature was kept at 160 ° C. at SV = 2 hr −1 . Immediately after the passage of water, the removal rate of ammonia nitrogen was 99%,
When water was passed through a liter / liter catalyst, the removal rate of ammonia nitrogen decreased to 85%. Then, the addition of sodium nitrite was stopped, and raw water of pH 5.8 containing 4000 mg / l of ammonia nitrogen was passed under the condition of 2 liter / liter catalyst SV = 2 hr −1 . When 0.14 liters of raw water is directly passed through the washing water,
It contained 1,040 mg / l Cu 2+ . After adding sodium sulfide to this waste water and adjusting the pH to 7.5 to cause coagulation and precipitation, the residual amount of Cu 2+ was 3 mg / liter or less, and this was returned to the raw water tank. After that, when the equivalent amount of sodium nitrite was added to the raw water again, the removal ratio of ammonia nitrogen was recovered to 98%.

【0011】[0011]

【発明の効果】本発明方法によれば、アンモニア含有排
水処理において、活性の低下した金属触媒を、単に酸化
剤を添加しないアンモニア含有排水を通水するのみで再
生することができるので、触媒の取り出し操作や耐食材
料製の装置を必要とせず、アンモニア含有排水処理工程
中で短時間で金属触媒を再生し、処理を再開することが
できる。
EFFECTS OF THE INVENTION According to the method of the present invention, in the treatment of wastewater containing ammonia, the metal catalyst having a reduced activity can be regenerated by simply passing the wastewater containing ammonia containing no oxidizing agent. The metal catalyst can be regenerated and the treatment can be restarted in a short time in the ammonia-containing wastewater treatment process without requiring a take-out operation or a device made of a corrosion resistant material.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明方法を実施するアンモニア含有
排水処理の一態様の工程系統図である。
FIG. 1 is a process system diagram of one embodiment of an ammonia-containing wastewater treatment for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 原水槽 2 ポンプA 3 調整槽 4 ポンプB 5 酸化剤槽 6 ポンプC 7 熱交換器 8 ヒーター 9 触媒充填塔 10 圧力調整バルブ 11 バルブA 12 バルブB 13 凝集沈殿槽 14 ろ過器 1 Raw Water Tank 2 Pump A 3 Adjustment Tank 4 Pump B 5 Oxidizer Tank 6 Pump C 7 Heat Exchanger 8 Heater 9 Catalyst Packing Tower 10 Pressure Adjustment Valve 11 Valve A 12 Valve B 13 Coagulation Sedimentation Tank 14 Filter

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/72 CDJ C02F 1/72 CDJZ Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location C02F 1/72 CDJ C02F 1/72 CDJZ

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アンモニア含有排水に酸化剤を添加したの
ち、加温下に金属触媒と接触させるアンモニアの分解処
理において、活性の低下した金属触媒に酸化剤を添加し
ないアンモニア含有排水を接触させて再生することを特
徴とするアンモニア含有排水処理用の触媒の再生方法。
1. A method of decomposing ammonia by adding an oxidizing agent to ammonia-containing wastewater and then contacting it with a metal catalyst under heating, by contacting ammonia-containing wastewater to which the oxidizing agent is not added to the metal catalyst whose activity has decreased. A method for regenerating a catalyst for treating wastewater containing ammonia, which comprises regenerating.
JP9032796A 1996-03-19 1996-03-19 Method of regenerating catalyst for treating ammonia-containing waste water Pending JPH09253497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9032796A JPH09253497A (en) 1996-03-19 1996-03-19 Method of regenerating catalyst for treating ammonia-containing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9032796A JPH09253497A (en) 1996-03-19 1996-03-19 Method of regenerating catalyst for treating ammonia-containing waste water

Publications (1)

Publication Number Publication Date
JPH09253497A true JPH09253497A (en) 1997-09-30

Family

ID=13995440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9032796A Pending JPH09253497A (en) 1996-03-19 1996-03-19 Method of regenerating catalyst for treating ammonia-containing waste water

Country Status (1)

Country Link
JP (1) JPH09253497A (en)

Similar Documents

Publication Publication Date Title
JP5303263B2 (en) Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst
JP3507553B2 (en) Treatment method for ammoniacal nitrogen-containing water
JPH09253497A (en) Method of regenerating catalyst for treating ammonia-containing waste water
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
KR100302478B1 (en) Apparatus for removing oxygen dissolved in water using activated carbon fiber catalyst
JP3565637B2 (en) Treatment of wastewater containing ammonia
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JPH07265870A (en) Treatment of dithionate ion-containing water
JP3509186B2 (en) Denitrification treatment method
JP4187845B2 (en) Method for treating ammonia-containing water
JP3739452B2 (en) Power plant wastewater treatment method containing amine compounds
JP3457143B2 (en) Method of treating water containing imidazolidinone compound
JPH11128958A (en) Water denitrification treatment apparatus
JP3358905B2 (en) Method for treating wastewater containing nitrate nitrogen and ammonia nitrogen
JP3568298B2 (en) Method for treating power plant wastewater containing amine compounds
JPH09304591A (en) Condensate processing method
JP4390357B2 (en) Method for treating ammonia-containing water
JP2000167570A (en) Treatment of waste water
JP3269176B2 (en) Method of treating ammonium fluoride-containing water
JPH0910780A (en) Treatment of alkanolamine containing waste water
JP3822520B2 (en) Nitrogen compound-containing water treatment method
JPH09285793A (en) Removing method for nitrate nitrogen in water and removing system
JP2002172384A (en) Method for treating waste water containing ammonia and hydrogen peroxide
JP4450146B2 (en) COD component-containing water treatment method
JP2000288538A (en) Treating method for nitrogen-containing wastewater