KR100302478B1 - Apparatus for removing oxygen dissolved in water using activated carbon fiber catalyst - Google Patents

Apparatus for removing oxygen dissolved in water using activated carbon fiber catalyst Download PDF

Info

Publication number
KR100302478B1
KR100302478B1 KR1019970052910A KR19970052910A KR100302478B1 KR 100302478 B1 KR100302478 B1 KR 100302478B1 KR 1019970052910 A KR1019970052910 A KR 1019970052910A KR 19970052910 A KR19970052910 A KR 19970052910A KR 100302478 B1 KR100302478 B1 KR 100302478B1
Authority
KR
South Korea
Prior art keywords
water
dissolved oxygen
activated carbon
carbon fiber
reducing agent
Prior art date
Application number
KR1019970052910A
Other languages
Korean (ko)
Other versions
KR19980079419A (en
Inventor
문전수
곤 서
박광규
송혜란
Original Assignee
이종훈
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종훈, 한국전력공사 filed Critical 이종훈
Priority to US09/172,603 priority Critical patent/US6391256B1/en
Publication of KR19980079419A publication Critical patent/KR19980079419A/en
Application granted granted Critical
Publication of KR100302478B1 publication Critical patent/KR100302478B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE: An apparatus for removing dissolved oxygen from water is provided in which the dissolved oxygen is removed by the following processes, a reducing agent is infused into water, the dissolved oxygen concentration of a reactor inlet is measured by a cell and the reducing agent and dissolved oxygen in water are passed through an activated carbon catalyst reactor to remove dissolved oxygen, followed by passing through an ion exchange column. Whereby, the dissolved oxygen in water is effectively removed at room temperature and the apparatus reduces maintenance cost. CONSTITUTION: The apparatus comprises: a reducing agent storage tank(30) and inducing pump(40) for inducing a reducing agent into water supplied from a water tank(10); a flow amount controller(50); a dissolved oxygen concentration measuring device(60) for reactor inlet; a reactor(70) for an activated carbon fiber catalyst; a dissolved oxygen concentration measuring device(80) for reactor outlet; an ion exchange resin column(90); a filtering device(100); and a controller(110) for automatically recording a water flow amount and controlling the amount of the reducing amount. The reactor for an activated carbon fiber catalyst uses activated carbon fiber or a catalyst in which a metal is supported on the activated carbon filter. The metal is one selected from Pt, Au, Ni, W, Co, Mn, Fe, Cu, Rh and Ir or a mixture thereof.

Description

활성탄소섬유 촉매에 의한 수중 용존산소 제거장치.Dissolved oxygen removal device in water by activated carbon fiber catalyst.

본 발명은 보일러 및 냉각계통 용수중 용존산소에 의한 금속재료의 부식을 방지하기 위한 용존산소 제거 촉매장치에 관한 것으로, 상세하게는 활성탄소섬유 (Activated Carbon Fiber, 이하 ACF로 약칭함)가 수중 용존산소 흡착력이 매우 강하고 비표면적이 넓다는 물리화학적 특성과 그 활성탄소섬유에 금속을 담지할 경우 수중 용존산소 제거성능이 획기적으로 증대되는 특성을 이용하여 산업체 보일러 및 냉각수계통의 용수 전처리용 플랜트에 이용할 수 있는 활성탄소섬유 촉매에 의한 수중 용존산소 제거 장치에 관한 것이다.The present invention relates to a catalyst for removing dissolved oxygen to prevent corrosion of metal materials by dissolved oxygen in boiler and cooling system water. Specifically, activated carbon fiber (hereinafter abbreviated as ACF) is dissolved in water. It is used for water pretreatment plants in industrial boilers and cooling water systems by utilizing physicochemical properties of very strong oxygen adsorption capacity and wide specific surface area, and dramatically increasing dissolved oxygen removal performance in water when metal is supported on the activated carbon fiber. The present invention relates to an apparatus for removing dissolved oxygen in water by means of an activated carbon fiber catalyst.

아래 표 1은 수온에 따른 수중 용존산소의 농도를 나타내는 것으로서 대기중에 노출되어 있을 때 상온에서 상당량의 용존산소(8∼10ppm)을 함유하고 있음을 알수 있다.Table 1 below shows the concentration of dissolved oxygen in water according to the water temperature, and it can be seen that it contains a considerable amount of dissolved oxygen (8-10 ppm) at room temperature when exposed to the air.

[표 1]TABLE 1

수온에 따른 용존산소 농도의 변화Dissolved Oxygen Concentration with Water Temperature

Figure kpo00001
Figure kpo00001

용존산소로 포화된 이러한 용수를 보일러에 곧바로 사용하면 계통금속의 부식 발생으로 장치의 수명 단축뿐만 아니라 파열사고 및 불시정지를 야기시키는데, 용존산소에 의한 금속부식은 용존산소의 환원반응이 일어나는 음극반응과 금속의 산화반응이 일어나는 양극반응으로 설명할 수 있다.The use of such water saturated with dissolved oxygen directly in the boiler causes corrosion of system metals, which not only shortens the life of the device, but also causes rupture accidents and sudden stops.Metal corrosion by dissolved oxygen causes cathodic reactions that cause the reduction of dissolved oxygen. This can be explained by the anodic reaction where the oxidation reaction of and metal occurs.

▣ 용존산소에 의한 철의 부식 반응▣ Corrosion reaction of iron by dissolved oxygen

i) 음극 반응:i) cathodic reaction:

02+ 4 H++ 4e →2 H2O (산 용액)0 2 + 4 H + + 4e → 2 H 2 O (acid solution)

02 + 2 H2O + 4e →4 OH-(중성, 알칼리 용액)02 + 2 H2O + 4e → 4 OH-(Neutral, alkaline solution)

ii) 양극 반응:ii) anode reaction:

Fe →Fe+2+ 2eFe → Fe +2 + 2e

Fe+2+ 2 OH-→ Fe(OH)2(또는 FeO nH2O) Fe +2 + 2 OH - → Fe (OH) 2 ( or FeO nH 2 O)

4 Fe(OH)2+ O2+ 2H2O →4 Fe(OH)3(또는 Fe2O3nH2O)4 Fe (OH) 2 + O 2 + 2H 2 O → 4 Fe (OH) 3 (or Fe 2 O 3 nH 2 O)

2 Fe(OH)3→Fe2O3+ H2O (고온)2 Fe (OH) 3 → Fe 2 O 3 + H 2 O (high temperature)

철의 부식생성물에는 세 가지 종류가 있으며, 그중 Fe(OH)2는 녹색으로서 금속면의 인접부위에, Fe(OH)3는 갈색으로서 최외각에 그리고, Fe3O4.H2O는 검은색으로서 앞의 두 층 사이에서 형성된다.There are three kinds of corrosion products of iron, among which Fe (OH) 2 is green and adjacent to the metal surface, Fe (OH) 3 is brown at the outermost side, and Fe 3 O 4 .H 2 O is black. As a color it is formed between the two preceding layers.

수중에서 용존산소에 의한 금속부식은 용존산소농도에 비례하여 선형적으로 증가하고, 용존산소가 없는 경우는 철의 부식율이 0.2mpy 미만으로 낮지만 용존산소로 포화될 때는 부식율이 100배 이상 증가하며, 부식이 발생되면 설비수명 단축뿐만 아니라 부식생성물의 전열면 부착으로 열전달이 방해되어 공정 열효율이 크게감소된다.Metal corrosion caused by dissolved oxygen increases linearly with dissolved oxygen concentration.In the absence of dissolved oxygen, the corrosion rate of iron is lower than 0.2mpy, but the corrosion rate is more than 100 times when saturated with dissolved oxygen. In addition, when corrosion occurs, not only shortening the life of the equipment but also heat transfer is prevented due to adhesion of the heat transfer surface of the corrosion product, thereby greatly reducing the process thermal efficiency.

따라서, 용존산소에 의한 금속재료의 부식방지와 열효율 유지를 위하여 보일러 용수중 용존산소 농도를 엄격하게 제한하여야 하는데, 다음의 표 2는 발전설비보일러 제작사에서 제공한 용존산소농도 제한치의 예를 나타낸 것으로 정상 운전시계통에서 용존산소 농도를 10ppb 미만으로 유지가 필요함을 알 수 있다.Therefore, in order to prevent corrosion of metal materials by dissolved oxygen and to maintain thermal efficiency, the concentration of dissolved oxygen in boiler water should be strictly restricted. The following Table 2 shows examples of dissolved oxygen concentration limits provided by the power plant boiler manufacturer. It can be seen that it is necessary to maintain the dissolved oxygen concentration below 10 ppb in the normal operation clock case.

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

종래에는 용존산소 제거방법으로 기계적 탈기 및 환원제(하이드라진 등) 주 입으로 보일러 용수중의 용존산소를 제거하였으나, 이러한 방법으로는 처리 성능과 비용면에서 다음과 같은 문제점이 있었다.Conventionally, dissolved oxygen in boiler water has been removed by mechanical degassing and reducing agent (hydrazine, etc.) injection using dissolved oxygen, but these methods have the following problems in terms of treatment performance and cost.

1. 기계적 탈기버1. Mechanical degassers

i) 진공감압탈기법i) vacuum degassing

원자력 발전소에서 증기 발생기 용수중의 용존산소를 제거하기 위해 지금까지 가장 많이 적용하고 있는 방법으로, 운전 원리는 진공으로 유지되는 충전탑 상부에서 용수를 분사시켜 탑내부에서 기체분압을 감소시킴으로서 산소기체를 포함한 비응축성가스를 제거하는 방법인데, 충전탑을 2단이상으로 설치하면 장치의 산소제거효율을 증진시킬 수 있다.The most widely used method to remove dissolved oxygen in steam generator water in nuclear power plants is the operating principle, which reduces the partial pressure of gas in the tower by injecting water from the top of the packed column maintained in vacuum. It is a method of removing the non-condensable gas, including two or more stages of the packed tower can improve the oxygen removal efficiency of the device.

이때 용존산소 제거 효율은 진공도, 충전탑 크기, 입구 수온 등에 따라 영향을 받으며, 충전물은 단위부피당 넓은 표면적의 것이 바람직하며 충전탑 크기를 결정짓는데, 사용하는 충전물로 부터는 불순물의 용출이 없어야 하며 충전탑에서의 산소, 질소, 이산화탄소를 충분히 제거할 수 있도록 진공펌프가 증기이젝터를 이용하여 장치진공을 일정수준이상 유지하여야 하나, 보통 진공탈기방법에 의해 처리된용수는 30∼40ppb범위의 용존산소를 함유하여 완전한 제거는 어려우며, 밀봉장치부분의 공기유입으로 용존산소농도가 더욱 증가하게 되고, 또한, 계통을 진공으로 유지하기 위하여 특수한 밀봉장치가 요구되며, 충전탑내부 진공을 유지하기 위하여 고가의 장치비와 유지보수비가 소요된다.At this time, the dissolved oxygen removal efficiency is affected by vacuum degree, packed tower size, inlet water temperature, etc., and the filling material has a large surface area per unit volume and determines the size of the packing tower. There should be no elution of impurities from the packing material used. In order to remove oxygen, nitrogen, and carbon dioxide from the vacuum pump, the vacuum pump must maintain a certain level of the apparatus vacuum by using a steam ejector, but the water treated by the vacuum degassing method contains dissolved oxygen in the range of 30 to 40 ppb. It is difficult to remove it completely, and the dissolved oxygen concentration is increased by the air inflow of the sealing part. Also, a special sealing device is required to maintain the system in a vacuum, and expensive equipment cost and There is a maintenance fee.

ii) 가열 탈기법(Heating Deaerator)ii) Heating Deaerator

수중에서의 기체 용해도는 헨리법칙에 따라 기상에서 그 기체의 분압에 비례함에 따라 기상에서의 기체분압을 낮춤으로서 수용액에서 용존기체를 제거할 수 있으며, 또한 기체의 용해도는 온도의 영향을 받아 수온이 증가함에 따라 감소하는데, 이러한 원리를 이용하여 가열탈기기에서 급수를 가열하고, 증기와 혼합하여 기체분압을 낮춤으로서 용존기체를 제거하는 방법이 가열 탈기법이다.Gas solubility in water can be removed according to the Henry's Law in proportion to the partial pressure of the gas in the gas phase, thereby removing the dissolved gas from the aqueous solution, and the solubility of the gas is affected by the temperature. It decreases as it increases. The heating degassing method is used to remove the dissolved gas by heating the feed water in the heating degassing apparatus and mixing it with steam to lower the gas partial pressure.

하지만 상기 가열탈기기의 최적 운전으로 용존산소를 7ppb미만까지 낮출 수있으나 스팀의 열원이 없는 곳에서는 적용이 불가능하다는 제약이 있다.However, it is possible to lower the dissolved oxygen to less than 7 ppb by the optimum operation of the heating degasser, but there is a limitation that it is not applicable where there is no heat source of steam.

2. 환원제(하이드라진)처리법2. Reducing agent (hydrazine) treatment method

수준의 용존산소를 제거하기 위한 효과적인 방법중의 하나는 하이드라진과 같은 환원제를 사용하는 방법인데, 수중에서 하이드라진의 산소 제거 화학반응으로 반응 부산물로는 질소 기체와 물분자가 생성되어 금속 재질 부식에 영향을 미치지 않기 때문에 용존산소 제거를 위하여 광범위하게 적용되고 있다.One effective way to remove levels of dissolved oxygen is to use a reducing agent such as hydrazine, which is an oxygen removal chemical reaction of hydrazine in water, which produces nitrogen gas and water molecules as reaction by-products that affect metal corrosion. It is widely applied to remove dissolved oxygen because it does not.

N2H4+ O2→N2+ 2H2ON 2 H 4 + O 2 → N 2 + 2H 2 O

이때 용존산소 1ppm당 하이드라진 소요량이 1ppm으로서 약품 사용량도 비교적 적은 편이나, 비교적 높은 수온(80℃이상)에서만 반응이 진행되기 때문에 상온에서는 용존산소의 제거가 매우 어렵다는 문제점이 있다.In this case, the amount of hydrazine per 1 ppm of dissolved oxygen is 1 ppm, but the amount of chemicals used is relatively small, but the reaction proceeds only at a relatively high water temperature (80 ° C. or higher), and thus, dissolved oxygen is difficult to remove at room temperature.

따라서, 본 발명은 상기 종래의 용존산소 제거 기술의 문제점들을 해결하고 발전소 및 산업체 보일러 또는 냉각계통의 용수중 용존산소를 완전히 제거하여 금속 부식 발생을 최소화함으로써, 설비수명을 연장하고 안전운전과 유지보수비를 절감하기 위하여 활성탄소섬유나 그 활성탄소섬유에 금속을 담지시켜서 수중 용존산소를 상온에서 효과적으로 제거하는 활성탄소섬유에 의한 수중 용존산소 제거장치를 제공함에 그 목적이 있다.Accordingly, the present invention solves the problems of the conventional dissolved oxygen removal technology and completely eliminates dissolved oxygen in the water of power plants and industrial boilers or cooling systems, thereby minimizing the occurrence of metal corrosion, thereby extending the service life of the equipment and safe operation and maintenance costs. It is an object of the present invention to provide an apparatus for removing dissolved oxygen in water by activated carbon fibers which effectively removes dissolved oxygen in water at room temperature by supporting metal on the activated carbon fiber or the activated carbon fiber in order to reduce energy consumption.

도 1 은 본 발명의 일 실시예에 의한 금속담지 활성탄소섬유에 의한 용존 산소 제거 장치의 구성도.1 is a block diagram of a dissolved oxygen removal device by a metal-supported activated carbon fiber according to an embodiment of the present invention.

도 2 는 본 발명의 일 실시예에 의한 금속담지 활성탄소섬유 촉매를 통과 한 처리수중의 용존산소 농도 변화도.2 is a change diagram of dissolved oxygen concentration in treated water passing through a metal-supported activated carbon fiber catalyst according to one embodiment of the present invention.

도 3 은 본 발명의 일 실시예에 의한 금속담지 활성탄소섬유 촉매 통과시 유량별 처리수중의 용존산소 농도 변화도.Figure 3 is a change in dissolved oxygen concentration in the treated water according to the flow rate when passing through the metal-supported activated carbon fiber catalyst according to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 용수탱크 11 : 용수탱크 밸브10: water tank 11: water tank valve

20 : 용수펌프 21 : 용수펌프 토출밸브20: water pump 21: water pump discharge valve

30 : 환원제 탱크 40 : 환원제 주입펌프30: reducing agent tank 40: reducing agent injection pump

41 : 환원제 주입펌프 토출밸브 50 : 용수 유량제어기41: reducing agent injection pump discharge valve 50: water flow controller

51 : 용수 유량센서 52 : 용수 유량제어밸브51: water flow sensor 52: water flow control valve

60 : 반응기입구 용존산소 농도측정기60: dissolved oxygen concentration measuring instrument at the reactor entrance

70 : 활성탄소섬유 촉매반응기70: activated carbon fiber catalytic reactor

80 : 반응기출구 용존산소 농도측정기 90 : 이온교환수지탑80: dissolved oxygen concentration meter of reactor outlet 90: ion exchange resin tower

100 : 여과기 110 : 수질감시/제어장치100: filter 110: water quality monitoring / control device

상기 목적을 달성하기 위하여 본 발명에 의한 용존산소 제거방법은, 용수를 펌핑한 후 용수에 0∼9ppm 범위의 용존산소를 함유하고 있는 상온의 용수중 용존 산소를 소정 농도 이하로 제거하기 위하여 용수중에 존재하는 용존산소 농도의 소정 배수 당량의 환원제를 주입한 후 갈바닉 또는 폴라로그라픽 셀에 의해 반응기입구 용존산소 농도를 측정하고, 환원제가 주입된 용수의 유량을 조절한 후 상기 주입된 환원제와 수중의 용존산소를 활성탄소섬유 촉매반응기를 통해 용존산소를 제거하여 촉매반응을 수행하고 용존산소가 제거된 처리수중의 용존산소 농도를 갈바닉이나 폴라로그라픽을 이용하여 반응기 출구의 용존산소 농도를 측정하는 단계,In order to achieve the above object, the dissolved oxygen removing method according to the present invention includes a method for removing dissolved oxygen in a water at room temperature containing a dissolved oxygen in the range of 0 to 9 ppm in a water after pumping the water to a predetermined concentration or less. After injecting a reducing agent with a predetermined drainage equivalent of the dissolved oxygen concentration present, the dissolved oxygen concentration of the reactor is measured by a galvanic or polarographic cell, and the flow rate of the injected water with the reducing agent is adjusted. Performing a catalytic reaction by removing the dissolved oxygen through the activated carbon fiber catalytic reactor and measuring the dissolved oxygen concentration in the treated water from which the dissolved oxygen is removed using galvanic or polarographic, and measuring the dissolved oxygen at the outlet of the reactor. ,

상기 촉매반응단계를 수행한 후 이온교환수지에 의해 수중의 불순물 이온을 제거하기 위해 양이온교환수지와 음이온교환수지를 혼합 사용한 이온교환단계를 부가하여 수행하는 것을 특징으로 한다.After the catalytic reaction step is carried out by adding an ion exchange step using a mixture of a cation exchange resin and an anion exchange resin to remove impurity ions in the water by the ion exchange resin.

또한 마이크로필터 또는 멜브레인 여과기를 사용하여 상기 처리수중의 탁도성분을 제거하는 여과단계로 이루어진 것을 특징으로 한다.In addition, it is characterized by consisting of a filtration step to remove the turbidity component in the treated water using a micro filter or melbrane filter.

아울러, 본 발명에 따른 활성탄소섬유 촉매에 의한 용존산소 제거방법은 용수중의 용존산소를 강하게 해리흡착시켜 저온에서도 환원제와 용존산소 사이의 반응을 크게 촉진시켜 주는 활성탄소섬유를 촉매로 사용하거나, 촉매반응의 활성화에너지를 낮추기 위하여 활성탄소섬유에 금속을 담지시킨 촉매를 사용하는 촉매반응 단계를 포함한다.In addition, the method for removing dissolved oxygen by the activated carbon fiber catalyst according to the present invention uses activated carbon fiber as a catalyst which strongly dissociates and adsorbs dissolved oxygen in water, thereby greatly promoting the reaction between the reducing agent and dissolved oxygen even at low temperatures. In order to lower the activation energy of the catalytic reaction includes a catalytic reaction step using a catalyst loaded with metal on the activated carbon fiber.

이때, 상기 활성탄소섬유 촉매 또는 금속산화물을 담지한 활성탄소섬유 촉매표면에서의 하이드라진에 의한 용존산소의 제거반응은 다음과 같이 진행된다.At this time, the removal reaction of dissolved oxygen by hydrazine on the surface of the activated carbon fiber catalyst or the activated carbon fiber catalyst carrying the metal oxide proceeds as follows.

- ACF 또는 금속산화물 표면 : O2→2O-* *:(촉매 활성점)-ACF or metal oxide surface: O 2 → 2O- * * :( catalyst active site)

- 수중의 하이드라진 : N2H4+ 2O-→ N2+ 2H2O- hydrazine in water: N 2 H 4 + 2O - → N 2 + 2H 2 O

활성탄소섬유에 코발트, 철 니켈 등의 금속산화물을 담지하면 분자 상태의 용존산소를 원자상태의 산소원자로 쉽게 해리시켜주므로 용존산소 제거속도가 크게 증가한다.Supporting metal oxides, such as cobalt and iron nickel, on activated carbon fibers can easily dissociate dissolved oxygen in the molecular state into the oxygen atom in the atomic state, which greatly increases the dissolved oxygen removal rate.

활성탄소섬유에 Pt나 Pd 등의 귀금속을 담지한 활성탄소섬유 촉매표면에서의 환원제인 하이드라진에 의한 용존산소 제거반응은 다음과 같이 진행한다.The dissolved oxygen removal reaction by hydrazine, a reducing agent, on the surface of an activated carbon fiber catalyst on which activated metal fibers such as Pt or Pd are supported is carried out as follows.

- Pt나 Pd표면 : N2H4→ N2+ 4H-* *:(촉매 활성점)-Pt or Pd surface: N 2 H 4 → N 2 + 4H- * *: (catalyst active point)

4H-* →4H++ 4e- 4H- * → 4H + + 4e -

- ACF 표면 : O2+ 2H2O + 4e-→ 4OH- - ACF Surface: O2+ 2H2O + 4e-→ 4OH-

- 종결반응 : 4H++ 4OH-→ 4H2O- termination reactions: 4H + + 4OH - → 4H 2 O

활성탄소섬유에 Pt나 Pd 등의 귀금속을 담지하면 환원제인 하이드라진을 4개의 수소원자 상태로 쉽게 분해시켜 주기 때문에 용존산소의 제거반응 속도를 크게 높여주는 효과가 있다.Carrying precious metals such as Pt and Pd on activated carbon fibers can easily decompose the hydrazine, a reducing agent, into four hydrogen atoms, which greatly speeds up the removal of dissolved oxygen.

그리고, 상기 본 발명에 의한 용존산소 제거방법을 달성하기 위한 용존산소 제거장치는, 용소를 저장하기 위한 용수 저장탱크와, 상기 용수 정재탱크로부터 용수를 공급하기 위한 용수펌핑부와, 상기 용수펌핑부에 의해 공급되는 용수에 환원제를 주입하기 위한 환원제 주입부와, 상기 환원제가 주입된 용수중의 용존산소 농도를 측정하기 위한 반응기입구 용존산소 농도 측정부와, 상기 용수펌핑부에 연결되어 용수의 유량을 조절하기 위한 용수 유량제어부와, 상기 유량제어부에 연결되어 용수중의 용존산소와 환원제를 반응시키기 위한 활성탄소섬유 또는 금속담지 활성탄소섬유 촉매가 충전된 활성탄소섬유 촉매반응부와, 상기 활성탄소섬유 촉매반응부에 연결되어 반응기를 통과한 처리수중의 용존산소 농도를 측정하는 반응기출구 용존산소 농도 측정부와, 상기 활성탄소섬유 촉매반응부와 연결되어 처리수중의 불순물을 제거하기 위한 마이크로필터 또는 멤브레인 여과기를 사용한 여과부와, 상기 반응기 입구 및 출구의 용존산소 측정부의 측정치와 용수 유량측정치를 자동기록하고 상기 반응기 입구 용존산소측정기의 측정치와 용수 유량에 따라 용수에 주입하는 환원제 주입량을 제어하는 수질감시 및 제어부와, 상기 촉매반응부와 여과부사이에 연결되어 용수중 불순물이온을 제거하기 위한 양이온교환수지와 음이온교환수지가 혼합하여 충전된 이온교환수지탑을 부가하여 설치하는 것을 특징으로 한다.The dissolved oxygen removing apparatus for achieving the dissolved oxygen removing method according to the present invention includes a water storage tank for storing the dissolved oxygen, a water pumping unit for supplying water from the water refining tank, and the water pumping unit. Reducing agent injecting unit for injecting a reducing agent into the water supplied by the reactor, Dissolved oxygen concentration measuring unit for measuring the dissolved oxygen concentration in the water injected with the reducing agent, connected to the water pump and the flow rate of the water A water flow rate control unit for controlling the water, an activated carbon fiber catalyst reaction unit filled with activated carbon fiber or a metal-supported activated carbon fiber catalyst for reacting dissolved oxygen in the water with a reducing agent connected to the flow rate control unit, and the activated carbon Dissolved oxygen concentration at the outlet of the reactor connected to the fiber catalysis reactor and measuring the dissolved oxygen concentration in the treated water passing through the reactor A measurement unit, a filter unit using a micro filter or a membrane filter connected to the activated carbon fiber catalytic reaction unit to remove impurities in the treated water, a measurement value and a water flow rate measurement value of the dissolved oxygen measurement unit at the inlet and outlet of the reactor Water quality monitoring and control unit for controlling the amount of reducing agent injected into the water according to the measured value of the reactor inlet dissolved oxygen meter and the flow rate of the reactor, and cation exchange for removing impurity ions in the water by being connected between the catalytic reaction unit and the filtration unit. Resin and anion exchange resin is characterized in that the installation by adding an ion exchange resin tower filled with a mixture.

본 발명은 활성탄소섬유의 표면적이 매우 넓고, 용존산소 흡착력이 강하다는 사실에 착안한 것으로 환원제와 병행 사용함으로서 상온에서는 수중의 용존산소를완전히 제거할 수 있게 작용함에 따라 본 발명에 의한 용존산소 제거장치의 성능 시험결과 용존산소 제거효과가 종래의 것에 비해 월등히 우수한 것으로 확인되었다.The present invention focuses on the fact that the surface area of the activated carbon fiber is very wide and the dissolved oxygen adsorption power is strong. By using the reducing agent in parallel, the dissolved oxygen in the water can be completely removed at room temperature. The performance test of the device confirmed that the dissolved oxygen removal effect was much better than the conventional one.

이하, 본 발명의 실시예를 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

도 1에 도시된 바와 같이 본 발명의 실시예에 따른 활성탄소섬유에의한 용존산소 제거 장치는 용수를 저장하기 위한 용수 탱크(10)와, 상기 용수 탱크(10)에 연결되어 용수를 공급하기 위한 용수 펌프(20)와, 상기 용수 탱크(10)로 부터 보급되는 용수에 환원제를 주입하기 위한 환원제 저장탱크(30) 및 주입펌프(40)와, 상기환원제가 주입된 용수유량을 제어하기 위한 유량제어기(50)와, 상기용수펌프 (20)에 의해 펌핑된 용수의 용존산소 농도를 측정하기 위한 반응기입구 용존산소 농도 측정기(60)와, 상기 용수 펌프(20)에 연결되어 용존산소와 환원제와의 촉매반응을 수행하기 위한 활성탄소섬유 촉매가 충전된 활성탄소섬유 촉매반응기(70)와, 상기 활성탄소섬유 촉매반응기(70) 출구에 연결되어 처리수중의 용존산소 농도를 측정하는 반응기출구 용존산소 농도측정기(80)와, 상기 활성탄소섬유 촉매반응기 (70)에 연결되어 처리수중의 불순물 이온을 제거하기 위한 이온교환수지탑(90)과, 상기 이온교환수지탑(90)에 연결되어 용수중의 탁도성분을 제거하기 위한 여과장치 (100)와, 상기 용존산소 농도측정기(60, 80)의 측정치와 유량제어기(50)의 용수유량을 시간별로 자동기록하고 환원제 주입펌프(40)를 제어하여 용수에 주입되는 환원제 양을 자동으로 조절하는 수질감시 및 제어장치(110)로 구성된다.As shown in FIG. 1, the apparatus for removing dissolved oxygen by activated carbon fibers according to an exemplary embodiment of the present invention is connected to a water tank 10 for storing water, and connected to the water tank 10 to supply water. Water pump 20 for reducing, the reducing agent storage tank 30 and the injection pump 40 for injecting a reducing agent into the water supplied from the water tank 10, and for controlling the flow rate of the water injected with the reducing agent Dissolved oxygen and reducing agent connected to the flow controller 50, the reactor inlet dissolved oxygen concentration measuring device 60 for measuring the dissolved oxygen concentration of the water pumped by the water pump 20, and the water pump 20 An activated carbon fiber catalyst reactor (70) filled with an activated carbon fiber catalyst for carrying out a catalytic reaction with the reactor, and a reactor outlet dissolved in the outlet of the activated carbon fiber catalyst reactor (70) to measure the dissolved oxygen concentration in the treated water Oxygen concentration It is connected to the measuring device 80, the activated carbon fiber catalytic reactor 70, the ion exchange resin tower 90 for removing impurity ions in the treated water, and the ion exchange resin tower 90 is connected to the Filtration device 100 for removing turbidity components, the measured values of the dissolved oxygen concentration measuring device (60, 80) and the water flow rate of the flow controller 50 is automatically recorded by time and the reducing agent injection pump 40 is controlled to Water quality monitoring and control device 110 for automatically adjusting the amount of reducing agent injected into.

상기 용수탱크(10)와 용수펌프(20)사이에는 용수의 흐름을 제어하기 위한 용수탱크 밸브(11)와 용수펌프 토출밸브(21)가 설치되어 있고, 상기 환원제 탱크(30)에 연결된 환원제 주입펌프(40)에는 환원제 탱크밸브와 환원제 펌프 토출밸브(41)가 구비되어 있으며, 상기 반응기(70)는 활성탄소섬유 촉매 또는 금속담지 활성탄소섬유 촉매를 카트리지 형태로 충진할 수 있도록 반응기를 제작한다.A water tank valve 11 and a water pump discharge valve 21 for controlling the flow of water are installed between the water tank 10 and the water pump 20, and a reducing agent injection connected to the reducing agent tank 30 is provided. Pump 40 is provided with a reducing agent tank valve and reducing agent pump discharge valve 41, the reactor 70 is to produce a reactor to fill the activated carbon fiber catalyst or metal supported activated carbon fiber catalyst in the form of a cartridge. .

또한 상기 유량제어기는(50)에는 유량센서(51)와 유량제어밸브(52)가 설치되어 있으며, 상기 유량센서(51)로부터 유량신호를 받아 운전원이 입력한 용수 유량설정치가 일정하게 유지되도록 상기 유량제어밸브(52)의 개도를 자동으로 조절하고 유량신호를 수질감시 및 제어장치(110)에 보내어 유량 자료가 자동 기록되게 하며, 상기 용존산소 측정장치(60, 80)는 갈바닉 또는 폴라로그래픽 셀(cell) 원리의 센서가 연결된 용존산소 농도 측정기를 사용하며, 상기 수질감시 및 제어장치(110)는상기 용존산소 농도 측정기(60, 80)에 의해 측정된 수중 용존산소농도와 유량제어기(50)에서 측정된 용수유량을 내장된 PC에 시간별로 자동으로 저장하고, 상기 반응기입구 용존산소측정부(60)의 측정치와 용수 유량에 따라 용수에 환원제 주입량을 제어하게 한다.In addition, the flow controller 50 is provided with a flow sensor 51 and a flow control valve 52, the water flow rate set by the operator receives a flow signal from the flow sensor 51 to maintain a constant Automatically adjusts the opening degree of the flow control valve 52 and sends a flow signal to the water quality monitoring and control device 110 to automatically record the flow rate data, the dissolved oxygen measuring device (60, 80) is galvanic or polarographic A dissolved oxygen concentration measuring device connected to a sensor of a cell principle is used, and the water quality monitoring and control device 110 includes the dissolved oxygen concentration and the flow controller 50 measured by the dissolved oxygen concentration measuring instruments 60 and 80. Automatically stores the water flow rate measured in the built-in PC by time, and controls the amount of reducing agent injection into the water according to the measured value and the water flow rate of the reactor inlet dissolved oxygen measuring unit 60.

이때 상기 환원제 탱크(30)는 환원제로서 수소, 하이드라진, DEHA, Carbohydrazide, MEKO, Ascorbic acid, Erythorbic acid 중의 하나 또는 이들의 혼합물이 주입되도록 구비하였다.At this time, the reducing agent tank 30 is provided to inject one or a mixture of hydrogen, hydrazine, DEHA, Carbohydrazide, MEKO, Ascorbic acid, Erythorbic acid as a reducing agent.

상기와 같이 구성된 활성탄소섬유에 의한 용존산소 제거 장치의 동작을 설명하면 다음과 같다.Referring to the operation of the dissolved oxygen removal device by the activated carbon fiber configured as described above are as follows.

상기 용수탱크(10)로 부터 용수 펌프(20)를 이용해 용수를 펌핑한 후, 펌핑 한 용수에 환원제 탱크(30) 및 주입펌프(40)로부터 환원제를 주입하고, 환원제를 주입한 용수를 상기 유량제어기(50)에 의해 그 유량을 제어하여 반응기(70)로 유입시키며, 이때 용수를 상기 반응기(70)로 유입시키기 전에 반응기 입구에서 반응기입구 용존산소측정기(60)에 의해 용수내의 용존산소를 측정한 후 반응기(70)로 유입시키면 활성탄소섬유 촉매반응기(70)에서는 유입된 용수중의 용존산소와 환원제가 촉매반응하여 용수내의 용존산소가 제거되는데, 이때 상기 반응기(70)에서 용존산소가 제거된 처리수는 반응기(70) 밖으로 유출되고 반응기출구 용존산소 농도측정기(80)에 의해서 처리수중의 용존산소를 측정한 후 처리수를 이용교환수지탑(90)에 보내어 처리수내 과잉의 환원제 및 불순물 이온을 제거하고, 상기 이온교환수지탑(90)으로 부터 유출된 처리수 여과장치(100)에 통과시켜 처리수내의 탁도성분을 제거한 후 처리수 탱크로 보낸다.After pumping the water from the water tank 10 using the water pump 20, the reducing agent is injected into the pumped water from the reducing agent tank 30 and the injection pump 40, and the water into which the reducing agent is injected is flow rate. The flow rate is controlled by the controller 50 and introduced into the reactor 70, where the dissolved oxygen in the water is measured by the reactor inlet dissolved oxygen measuring instrument 60 at the reactor inlet before the water is introduced into the reactor 70. After entering the reactor 70, the activated carbon fiber catalytic reactor 70 removes dissolved oxygen in the water by catalyzing the dissolved oxygen in the introduced water and the reducing agent, wherein the dissolved oxygen is removed from the reactor 70. The treated water is discharged out of the reactor 70 and the dissolved oxygen in the treated water is measured by the reactor outlet dissolved oxygen concentration meter 80, and then the treated water is sent to the use exchange resin tower 90 to reduce excess in the treated water. And removing the impurity ions, and sends it to the ion exchange resin column 90, treatment tanks and then be spilled from the process and passed through a filtration device 100 to remove the turbidity in the treated component.

또한 상기 반응기 입구와 출구의 용존산소 측정기(60, 80)의 측정치와 유량제어기(50)에 의해 측정된 용수유량을 수질감시/제어기(110)에 시간별로 자동기록되도록 하고, 반응기입구 용존산소측정기(60)의 측정치와 용수 유량에 따라 수질감시/제어기(110)에서 환원제 주입펌프(40)를 제어하여 용수의 환원제 주입량이 자동으로 제어되도록 한다.In addition, the measured values of the dissolved oxygen measuring devices (60, 80) and the flow rate of the water flow rate measured by the flow controller 50 at the reactor inlet and outlet to be automatically recorded in the water quality monitoring / controller 110 by time, the reactor inlet dissolved oxygen measuring instrument The reducing agent injection pump 40 is controlled by the water quality monitoring / controller 110 according to the measured value and the water flow rate of 60 so that the reducing agent injection amount of the water is automatically controlled.

본 실험에서는 환원제로 하이드라진의 희석용액(2%)을 만들어 반응기 용수중에 약 20ppm이 되도록 주입하여 사용하였다.In this experiment, a dilute solution (2%) of hydrazine was used as a reducing agent and injected into the reactor water to be about 20 ppm.

시험은 다음과 같은 조건하에서 실시하였다.The test was carried out under the following conditions.

- 수 질 : pH 7.1, Cond 132u s/cm, 칼슘이온 15.56ppm, 마그네슘이온 3.15ppm, 나트륨이온 7.02ppm, 칼륨이온 1.32ppm, 실리카 3.51ppm, 철이온 0.004ppm, 황산이온 19.38ppm, 염소이온 11.89ppm, 질산이온 5.05ppm-Water quality: pH 7.1, Cond 132u s / cm, calcium ion 15.56ppm, magnesium ion 3.15ppm, sodium ion 7.02ppm, potassium ion 1.32ppm, silica 3.51ppm, iron ion 0.004ppm, sulfate ion 19.38ppm, chlorine ion 11.89 ppm, nitrate 5.05ppm

- 수 온 : 12.2℃Water temperature: 12.2 ℃

- 유 량 : 72, 120, 168, 192 BV/hrFlow rate: 72, 120, 168, 192 BV / hr

- 촉매종류 : 활성탄소섬유 촉매, 금속담지 활성탄소섬유 촉매-Type of catalyst: activated carbon fiber catalyst, metal supported activated carbon fiber catalyst

아래 표3은 용존산소 제거 반응촉매 물성치를 나타낸다.Table 3 below shows the dissolved oxygen removal reaction catalyst properties.

[표 3]TABLE 3

용존산소제거 반응촉매 물성치Dissolved Oxygen Removal Reaction Catalyst Properties

Figure kpo00003
Figure kpo00003

이상의 시험 조건하에서 본 실시예에 의한 시험결과는 다음과 같다.Under the above test conditions, the test results according to this example are as follows.

(실시예1)Example 1

상온에서는 하이드라진 처리만으로는 용존산소가 거의 제거되지 않고 9.4ppm로 유지되었으나, 활성탄소섬유 촉매반응기를 통과시키면 급속하게 감소하였다.At room temperature, dissolved oxygen was hardly removed and maintained at 9.4 ppm. However, the hydrazine treatment was rapidly reduced when passed through an activated carbon fiber catalytic reactor.

표 4는 반응기 입구 용존산소농도 9.4ppm, 수온 12.2℃, N2H420ppm에서의 시간경과에 따른 활성탄소섬유 반응기를 통과한 처리수중의 용조산소농도 측정치를 나타내고 있으며, 도 2는 표 4를 그래프로 도시한 것이다.Table 4 shows the measured dissolved oxygen concentrations in the treated water passing through the activated carbon fiber reactor at 9.4ppm in the reactor inlet dissolved oxygen concentration, water temperature 12.2 ℃, N 2 H 4 20ppm, Figure 2 is shown in Table 4 It is shown graphically.

[표 4]TABLE 4

반응기 입구 용존산소농도 9.4ppm, 수온 12.2℃, N2H420ppm에서의 시간경과에 따른 활성탄소섬유 반응기를 통과한 처리수중의 용존산소농도 측정치Dissolved oxygen concentration in treated water passing through activated carbon fiber reactor at 9.4 ppm dissolved reactor concentration, water temperature 12.2 ℃, N 2 H 4 20 ppm

Figure kpo00004
Figure kpo00004

Figure kpo00005
Figure kpo00005

아래의 표 5는 반응기 입구 용존산소농도 9.4ppm, 수온 12.2℃, N2H420ppm에서의 공간속도 변화에 따른 활성탄소섬유 촉매반응기 통과시 처리수중의 용존산소농도 측정치를 나타내고 있으며, 도 3은 표 5를 그래프로 도시한 것이다.Table 5 below shows the measured dissolved oxygen concentration in the treated water when the activated carbon fiber catalytic reactor passes through the reactor inlet dissolved oxygen concentration of 9.4ppm, water temperature 12.2 ℃, N 2 H 4 20ppm, Figure 3 Table 5 is a graph.

[표 5]TABLE 5

반응기 입구 용존산소농도 9.4ppm, 수온 12.2℃, N2H420ppm에서의 공간속도 변화 에 따른 활성탄소섬유 촉매반응기 통과시 처리수중의 용존산소농도 측정치.Determination of dissolved oxygen concentration in treated water at the inlet of the activated carbon fiber catalytic reactor at 9.4ppm dissolved oxygen concentration, 9.4ppm water temperature, 12.2 ℃ and 20ppm N 2 H 4 .

Figure kpo00006
Figure kpo00006

도시된 바와 같이 반응속도 12.2℃에서 공간속도 120BV/hr까지는 60분을 경과하면 처리수중의 용존산소 농도가 1.0ppb미만으로 유지되어 처리성능이 매우 우수함을 확인할 수 있으나, 공간속도를 192BV/hr이상 증가시키면 처리성능이 떨어짐에 따라 실제공정 적용시는 공간속도를 120BV/hr미만으로 유지하고 초기운전후 60분뒤 후부터 처리수를 공정에 이용하여야 한다.As shown, after 60 minutes from the reaction rate 12.2 ° C. to the space velocity 120 BV / hr, the dissolved oxygen concentration in the treated water is maintained at less than 1.0 ppb. However, the treatment performance is excellent, but the space velocity is higher than 192 BV / hr. Increasing the treatment performance decreases, so in the actual process application, the space velocity should be kept below 120 BV / hr and treated water should be used in the process 60 minutes after the initial operation.

(실시예 2)(Example 2)

다음의 표 6은 환원제로서 Hydrogen, Diethylhydroxylamine(DEHA), Carbohydrazide, Methyl-ethyl-ketoxime(MEKO), Ascorbic acid, Erythorbic acid 를 사용하여 활성탄소섬유 촉매 반응기를 통과시켰을 때의 수중 용존산소 농도변화 를 관찰한 시험결과를 나타낸 것으로서, 어느 경우나 촉매반응기를 통과시키면 용존산소농도가 크게 감소함을 알 수 있다.Table 6 below shows the change of dissolved oxygen concentration in water when passed through an activated carbon fiber catalyst reactor using Hydrogen, Diethylhydroxylamine (DEHA), Carbohydrazide, Methyl-ethyl-ketoxime (MEKO), Ascorbic acid, and Erythorbic acid. As a result of the test, in any case, it can be seen that the dissolved oxygen concentration is greatly reduced by passing through the catalytic reactor.

다음 표 6은 환원제로서 Hydrogen, Diethylhydroxylamine(DEHA), Carbohydrazide, Methyl ethyl-ketoxime(MEKO), Ascorbic acid, Erythorbic acid를 사용하여 활성탄소섬유 촉매 반응기를 통과시켰을 때의 수중 용존산소농도변화를 관찰한 시험결과이다.Table 6 shows the changes in dissolved oxygen concentration in water when the activated carbon fiber catalyst reactor was passed using Hydrogen, Diethylhydroxylamine (DEHA), Carbohydrazide, Methyl ethyl-ketoxime (MEKO), Ascorbic acid, and Erythorbic acid as reducing agents. The result is.

[표 6]TABLE 6

Figure kpo00007
Figure kpo00007

(실시예 3)(Example 3)

활성탄소섬유에 담지되는 금속으로서 백금(Pt), 팔라듐(Pd), 금(Au), 니켈 (Ni), 텅스텐(W), 코발트(Co), 망간(Mn), 철(Fe), 구리(Cu), 루테늄(Ru), 로듐(Rh), 이리듐(Ir)중의 하나 또는 이들의 혼합물을 사용하도록 한다.Metals supported on activated carbon fibers include platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), tungsten (W), cobalt (Co), manganese (Mn), iron (Fe), copper ( One of Cu), ruthenium (Ru), rhodium (Rh), iridium (Ir) or mixtures thereof is used.

다음표 표 7은 활성탄소섬유에 여러 금속을 담지시켜 사용할 경우 용존산소제거 성능이 월등히 증대됨을 보여 주고 있다.Table 7 shows that dissolved oxygen removal performance is greatly increased when using various metals supported on activated carbon fiber.

즉, 수중의 촉매 사용량이 미량일 경우에는 활성탄소섬유 촉매에 의해서는 전화율이 거의 없었으나, 금속을 담지했을 경우에 전화율이 크게는 6.72%(Pt를 담지했을 경우)까지 증가되는 것을 확인할 수 있다.In other words, when the amount of the catalyst used in the water is small, the conversion rate was almost unchanged by the activated carbon fiber catalyst, but when the metal was supported, the conversion rate was increased to 6.72% (when supporting Pt). .

이는 전하율이 미량 증가되어도 경제적인 면에서 매우 효과적이기 때문에 본 발명에 의한 결과는 획기적인 것이라 할 수 있으며, 본 실시예에서는 금속 담지량은 촉매담체에 대해 1wt.%가 되도록 Impregnation방법에 의하여 담지하였고, 400℃에서 4시간동안 질소기류 속에서 소성 후 반응시험에 사용하였으며, 용존산소제거를 위한 촉매반응 시험조건은 다음과 같으며, 미량의 촉매를 사용한 미분형 반응응기에서의 촉매의 성능을 비교 평가하였다.This is very economically effective even when the charge rate is increased a little, the results according to the present invention can be said to be a breakthrough, in the present embodiment was carried by the Impregnation method so that the metal loading is 1wt.% Relative to the catalyst carrier, After firing in nitrogen stream for 4 hours at 400 ° C, it was used for reaction test. The catalytic reaction test conditions for dissolved oxygen removal were as follows, and the performance of the catalyst in the differential reaction reactor using trace amount of catalyst was evaluated. It was.

- 반응속도 : 20℃-Reaction rate: 20 ℃

- 용수유량 : 1.0L/min-Water flow rate: 1.0L / min

- 촉 매 량 : 3겹(직경 10mm)-Catalyst amount: 3 layers (diameter 10mm)

- 반응물 농도 : N2H428ppm, DO 8.5ppm-Reactant concentration: N 2 H 4 28ppm, DO 8.5ppm

[표 7]TABLE 7

활성탄소섬유에 여러 금속을 담지시켜 사용할 경우 용존산소제거 성능비교Performance Comparison of Dissolved Oxygen Removal When Supporting Multiple Metals on Activated Carbon Fiber

Figure kpo00008
Figure kpo00008

본 시험결과 저온에서도 활성탄소섬유 촉매 또는 금속담지 활성탄소섬유 촉매에 의한 용존산소 제거 성능이 매우 우수함을 확인할 수 있었으며, 본 발명의 장치를 발전소의 보일러 및 냉각계통 용수처리에 활용할 경우 장치 설비수명 연장 및 효율개선 뿐만 아니라 운전비 절감효과가 매우 높을 것으로 사료된다.As a result of this test, the dissolved oxygen removal performance by activated carbon fiber catalyst or metal-supported activated carbon fiber catalyst was found to be excellent even at low temperature. When the device of the present invention is utilized for boiler and cooling system water treatment of power plant, the equipment life is extended. In addition to the improvement of efficiency and efficiency, the operation cost reduction effect is expected to be very high.

본 발명에 의하면 비표면적이 매우 넓고 용존산소 흡착력이 강한 활성탄소섬유 촉매 또는 금속담지 활성탄소섬유 촉매와 환원제를 병행 처리함으로써, 상온에서도 수중의 용존산소를 거의 완전히 제거(2ppb미만)할 수 있어 산업체 보일러, 냉각 설비 등의 용수중 용존산소 제거 장치로서의 적용이 가능하며, 또한 현장에 본발명의 장치를 설치 운용할 경우 설비의 수명 연장과 유지 보수비의 절감 효과가 매우 클 것으로 예상된다.According to the present invention, by treating the activated carbon fiber catalyst or the metal-supported activated carbon fiber catalyst and the reducing agent with a very large specific surface area and strong dissolved oxygen adsorption power, the dissolved oxygen in water can be almost completely removed (less than 2 ppb) even at room temperature. It can be applied as a dissolved oxygen removal device in water such as boilers and cooling facilities, and when the device of the present invention is installed and operated on site, it is expected that the effect of extending the life of the facility and reducing the maintenance cost will be very large.

Claims (5)

보일러 및 냉각계통 용수중 용존산소에 의한 금속재료의 부식을 방지하기 위한 상온에서의 용수중 용존산소 제거장치에 있어서,In the apparatus for removing dissolved oxygen in water at room temperature to prevent corrosion of metal materials by dissolved oxygen in boiler and cooling system water, 용수를 저장하기 위한 용수탱크(10)와;A water tank 10 for storing water; 상기 용수탱크(10)에 연결되어 용수를 공급하기 위한 용수펌프(20)와;A water pump 20 connected to the water tank 10 for supplying water; 상기 용수탱크(10)로 부터 보급되는 용수에 환원제를 주입하기 위한 환원제저장탱크(30) 및 주입펌프(40)와;A reducing agent storage tank 30 and an injection pump 40 for injecting a reducing agent into the water supplied from the water tank 10; 상기 환원제가 주입된 용수유량을 제어하기 위한 유량제어기(50)와;A flow controller 50 for controlling the flow rate of water into which the reducing agent is injected; 상기 용수펌프(20)에 의해 펌핑된 용수의 용존산소를 측정하기 위한 반응기입구 용존산소 농도측정기(60)와;A reactor inlet dissolved oxygen concentration measuring device (60) for measuring the dissolved oxygen of the water pumped by the water pump (20); 상기 용수펌프(20)에 연결되어 용존산소와 환원제와의 촉매반응을 수행하기 위한 활성탄소섬유 촉매가 카트리지(cartridge)형이나 판(plate)형으로 충전된 활성탄소섬유 촉매반응기(70)와;An activated carbon fiber catalyst reactor (70) connected to the water pump (20) and filled with an activated carbon fiber catalyst (cartridge) or a plate type to carry out a catalytic reaction between dissolved oxygen and a reducing agent; 상기 활성탄소섬유 촉매반응기(70) 출구에 연결되어 처리수중의 용존산소를 측정하는 반응기출구 용존산소 농도측정기(80)와;A reactor outlet dissolved oxygen concentration measuring device (80) connected to the outlet of the activated carbon fiber catalytic reactor (70) for measuring dissolved oxygen in the treated water; 상기 활성탄소섬유 촉매반응기(70)에 연결되어 처리수중의 불순물 이온을 제거하기 위한 이온교환수지탑(90)과;An ion exchange resin tower (90) connected to the activated carbon fiber catalytic reactor (70) for removing impurity ions in the treated water; 상기 이온교환수지탑(90)에 연결되어 용수중의 탁도성분을 제거하기 위한 여과장치(100)와;A filtration device (100) connected to the ion exchange resin tower (90) for removing turbidity components in water; 상기 용존산소 농도측정기(60)(80)의 측정치와 유량제어기(50)의 용수유량을 시간별로 자동기록하고 환원제 주입펌프(40)을 제어하여 용수에 주입되는 환원제 양을 자동으로 조절하는 수질감시 및 제어장치(110)로 구성됨을 특징으로 하는 활성탄소섬유 촉매에 의한 수중 용존산소 제거장치.Water quality monitoring to automatically record the measured values of the dissolved oxygen concentration measuring device 60, 80 and the water flow rate of the flow controller 50 by time and control the reducing agent injection pump 40 to automatically adjust the amount of reducing agent injected into the water. And an apparatus for removing dissolved oxygen in water by using an activated carbon fiber catalyst, characterized in that it comprises a control device (110). 제 1항에 있어서,The method of claim 1, 상기 활성탄소섬유 촉매반응기(70)에서 주입되는 환원제로는 수소, 하이드라진, Diethylhydroxylamine, Ascorbic acid, Erythorbic acid, Carbohydrazide, Methyl-ethyl-ketoxime 중의 하나 또는 이들의 혼합물을 주입하는 것을 특징으로 하는 활성탄소섬유 촉매에 의한 수중 용존산소제거 장치.As the reducing agent injected in the activated carbon fiber catalytic reactor 70, activated carbon fiber characterized in that the injection of one or a mixture of hydrogen, hydrazine, Diethylhydroxylamine, Ascorbic acid, Erythorbic acid, Carbohydrazide, Methyl-ethyl-ketoxime Dissolved oxygen removal device in water by a catalyst. 제 1항에 있어서,The method of claim 1, 상기 활성탄소섬유 촉매반응기(70)는,The activated carbon fiber catalytic reactor 70, 활성탄소섬유 또는 활성탄소섬유에 금속을 담지시킨 금속담지 활성탄소섬유촉매를 사용하는 것을 특징으로 하는 활성탄소섬유 촉매에 의한 수중 용존산소제거장치.An apparatus for removing dissolved oxygen in water using an activated carbon fiber catalyst, characterized by using an activated carbon fiber catalyst supported on a metal supported on activated carbon fibers or activated carbon fibers. 제 3항에 있어서,The method of claim 3, wherein 상기 활성탄소섬유 촉매반응기(70)의 활성탄소섬유에 담지되는 금속은, 백금(Pt), 팔라듐(Pd), 금(Au), 니켈(Ni), 텅스텐(W), 코발트(Co), 망간(Mn), 철(Fe), 구리(Cu), 루테늄(Ru), 로듐(Rh), 이리듐(Ir) 중의 하나 또는 이들의 혼합물인 것을 특징으로 하는 활성탄소섬유 촉매에 의한 수중 용존산소 제거장치.Metals supported on the activated carbon fibers of the activated carbon fiber catalytic reactor 70 are platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), tungsten (W), cobalt (Co), and manganese. (Mn), iron (Fe), copper (Cu), ruthenium (Ru), rhodium (Rh), iridium (Ir) one or a mixture of these, dissolved oxygen in the water removal apparatus using an activated carbon fiber catalyst . 제 1항에 있어서,The method of claim 1, 상기 여과장치(100)는 처리수중의 탁도성분과 불순물을 제거하기 위한 마이크로필터 또는 멤브레인 여과기를 사용하는 것을 특징으로 하는 활성탄소섬유 촉매에 의한 수중 용존산소 제거장치.The filtration device 100 is dissolved oxygen in the water by the activated carbon fiber catalyst, characterized in that using a micro filter or a membrane filter for removing turbidity components and impurities in the treated water.
KR1019970052910A 1997-03-27 1997-10-15 Apparatus for removing oxygen dissolved in water using activated carbon fiber catalyst KR100302478B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/172,603 US6391256B1 (en) 1997-10-15 1998-10-15 Dissolved oxygen removal method using activated carbon fiber and apparatus thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1019970010953 1997-03-27
KR97-10953 1997-03-27
KR19970010953 1997-03-27

Publications (2)

Publication Number Publication Date
KR19980079419A KR19980079419A (en) 1998-11-25
KR100302478B1 true KR100302478B1 (en) 2001-11-22

Family

ID=37529550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970052910A KR100302478B1 (en) 1997-03-27 1997-10-15 Apparatus for removing oxygen dissolved in water using activated carbon fiber catalyst

Country Status (1)

Country Link
KR (1) KR100302478B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101168279B1 (en) 2010-08-25 2012-07-30 삼성중공업 주식회사 Apparatus for treating ballast water and Vessel having the apparatus
WO2014157853A1 (en) 2013-03-29 2014-10-02 (주)아모레퍼시픽 Device and method for detecting bubbles of vacuum container for manufacturing cosmetic contents, and recording medium for storing program code for executing method thereof by computer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317527B1 (en) * 1999-10-22 2002-01-18 이종훈 Dissolved Oxygen Removal Apparatus by Electrochemical Catalytic Reaction and Method Thereof
KR100765409B1 (en) * 2005-10-31 2007-10-11 한국전력공사 Apparatus and method for dissolved oxygen removal
KR101287044B1 (en) * 2011-09-06 2013-07-17 한국수력원자력 주식회사 Apparatus for removing all-in-one dissolved oxygen
CN111977714A (en) * 2020-07-16 2020-11-24 河南中烟工业有限责任公司 Control method for stabilizing oxygen content in boiler water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323348A (en) * 1995-05-31 1996-12-10 Hitachi Plant Eng & Constr Co Ltd Method and device for removing dissolved oxygen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323348A (en) * 1995-05-31 1996-12-10 Hitachi Plant Eng & Constr Co Ltd Method and device for removing dissolved oxygen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101168279B1 (en) 2010-08-25 2012-07-30 삼성중공업 주식회사 Apparatus for treating ballast water and Vessel having the apparatus
WO2014157853A1 (en) 2013-03-29 2014-10-02 (주)아모레퍼시픽 Device and method for detecting bubbles of vacuum container for manufacturing cosmetic contents, and recording medium for storing program code for executing method thereof by computer

Also Published As

Publication number Publication date
KR19980079419A (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US6391256B1 (en) Dissolved oxygen removal method using activated carbon fiber and apparatus thereof
US4007118A (en) Ozone oxidation of waste water
CN109478437B (en) Method for decontaminating metal surfaces in nuclear power generation plants
KR920002057B1 (en) Catalyzed oxygen removal with hydrogen for steam generator systems
JPS5919757B2 (en) Wastewater treatment method
KR100302478B1 (en) Apparatus for removing oxygen dissolved in water using activated carbon fiber catalyst
US4789488A (en) Catalyzed oxygen removal with hydrogen for steam generator systems
US5603844A (en) Instant, chemical-free dechlorination of water supplies
US5725781A (en) Method and catalyst for forced catalytic deoxygenation of sea water
JP5303263B2 (en) Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst
JP2000167593A (en) Ultrapure water making apparatus and its operation method
KR100765409B1 (en) Apparatus and method for dissolved oxygen removal
KR100317527B1 (en) Dissolved Oxygen Removal Apparatus by Electrochemical Catalytic Reaction and Method Thereof
JP2988290B2 (en) Deaerator for ultrapure water
JPH0839081A (en) Treatment of regenerated waste water of condensed water desalting apparatus
JP2019098248A (en) Modifier of platinum group catalyst for water treatment, catalyst modification device, modification method of platinum group catalyst for water treatment, water treatment system, and water treatment method
JP3525623B2 (en) Condensate treatment method
JPH11128958A (en) Water denitrification treatment apparatus
JP2001113121A (en) Method for treating desulfurization waste water
JP3464266B2 (en) Dissolved oxygen remover and method for treating hydrogen gas in dissolved oxygen remover
JPH0150479B2 (en)
JP2000288538A (en) Treating method for nitrogen-containing wastewater
WO2022010725A1 (en) Treatment of nitrogen compounds in spent caustic
JPH09253497A (en) Method of regenerating catalyst for treating ammonia-containing waste water
CN115697915A (en) Water treatment apparatus, ultrapure water production apparatus, and water treatment method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 17