JPH0150479B2 - - Google Patents

Info

Publication number
JPH0150479B2
JPH0150479B2 JP59244172A JP24417284A JPH0150479B2 JP H0150479 B2 JPH0150479 B2 JP H0150479B2 JP 59244172 A JP59244172 A JP 59244172A JP 24417284 A JP24417284 A JP 24417284A JP H0150479 B2 JPH0150479 B2 JP H0150479B2
Authority
JP
Japan
Prior art keywords
hydrazine
activated carbon
water
containing water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59244172A
Other languages
Japanese (ja)
Other versions
JPS61120691A (en
Inventor
Kunio Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP24417284A priority Critical patent/JPS61120691A/en
Publication of JPS61120691A publication Critical patent/JPS61120691A/en
Publication of JPH0150479B2 publication Critical patent/JPH0150479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はヒドラジンを含有する水からヒドラジ
ンを除去する方法に関するものである。 (従来技術) ヒドラジンは強い還元力を有しており、ボイラ
ー給水の脱酸素剤、防錆剤、ロケツト燃料等の面
で幅広く使用されている。そのため各種工場から
ヒドラジンを含有した水が排出される。しかし、
ヒドラジンはCOD成分であるため、そのままの
形態では放流することができない。したがつて何
らかの処理を必要としている。従来のヒドラジン
含有水の処理方法には種々の方法があるが、いま
火力発電所排水の場合を例にとり説明する。 火力発電所ではボイラ停止時にヒドラジンを数
十〜数百mg/添加して保罐することがよく行わ
れている。このヒドラジンを含有する水はボイラ
再起動時に数百〜数千m3非定常排水として排出さ
れる。この排水中のヒドラジンを除去する従来技
術として次の方法がある。 次亜塩素酸ソーダ等の酸化剤を添加し酸化分
解する 重金属等を触媒として添加しエアレーシヨン
酸化する 活性炭、イオン交換樹脂等の吸着剤で吸着除
去する。 の方法については、例えば次亜塩素酸ソーダ
による酸化分解を例にとると、ヒドラジンと次亜
塩素酸ソーダとの反応は(1)式で示される。 N2H4+2NaOCl→2NaCl+N2+2H2O −(1) この反応は当量反応であるためヒドラジン濃度
より当量的にわずかに多い次亜塩素酸ソーダを添
加するとヒドラジンはほぼ100%分解する。しか
し、ヒドラジン1mg/asN2H4に対し次亜塩素
酸ソーダを4.4mg/asCl2と多量に添加しなけれ
ばならずコストが高くなること、また塩類濃度が
増加するので処理水を再利用することができな
い。さらにヒドラジン分解に要する次亜塩素酸ソ
ーダ量のコントロールは反応液の酸化還元電位を
検出して行うが、PHの影響を受けやすい等の理由
で次亜塩素酸ソーダを当量注入するのがなかなか
難しい等の問題点がある。次亜塩素酸ソーダの注
入を残留塩素計でコントロールする方法が提案さ
れているが(例えば土屋彦治「火力発電所のヒド
ラジン廃水処理」PPM,1978/6,P21)、注入
方式は非常に複雑なものとなつている。 の方法は重金属等を触媒として添加しエアレ
ーシヨンによつてヒドラジンを酸化する方法であ
り、反応式は(2)式で示される。 N2H4+O2→N2+2H2O −(2) この反応はPHの影響を大きく受け、PHが高くな
るほどヒドラジン分解速度が早くなる。添加する
重金属としてよく知られているものに銅または銅
化合物があるが、これ等重金属は有害であるため
放流にあたつては除去しておかねばならない。そ
のため凝集沈殿、砂ろ過、イオン交換等の単位操
作が必要であり、それに要する薬品代も無視し得
ぬ金額となつている。 重金属以外の添加物として活性炭または活性炭
と鉄塩を添加してエアレーシヨンする方法が提案
されている(特開昭54−23071)。しかし、この方
法も固液分離操作が前提となつており、特に粉末
活性炭を使用した場合は鉄塩等を凝集剤として添
加することが不可欠である。 の方法の中間に位置する方法として、重金
属または活性炭と過酸化水素、オゾン等の酸化剤
との併用処理が提案されているが、設備、コスト
の面で先に述べた問題点を抱えている。の方法
は、ヒドラジンを活性炭、イオン交換樹脂等の吸
着剤で吸着する方法であるが、吸着剤の吸着能力
が低下した時点で再生を行わねばならず、再生剤
のコストおよび再生廃液処理の点で問題が多い。 このように、従来のヒドラジン含有水の処理技
術は種々の問題点を有している。 (発明が解決しようとする問題点) 本発明が解決しようとする問題点、すなわち本
発明の目的は次の特徴を有するヒドラジン含有水
の処理方法を提供することである。 高価で特殊な薬品を一切使用しない 簡素で維持管理が容易 高効率のヒドラジン分解が連続してできる (問題点を解決するための手段) 本発明は空気と接触している活性炭層にヒドラ
ジン含有水を散布するという非常に簡単な操作よ
り構成されている。活性炭の形状は粒状、球状、
繊維状、活性炭素、繊維を布状にしたものなどい
ずれでもよいが、粉末の場合は水と同伴して流出
してしまうので担体に担持させたものが好まし
い。活性炭は水中に浸漬させないので、活性炭の
表面をヒドラジン含有水が外気と触れながら流れ
ていくという接触方法となる。この接触の過程で
ヒドラジンは活性炭に吸着するが、吸着したヒド
ラジンは空気中の酸素により(2)式に従つて直ちに
酸化される。つまり、吸着と再生が同時に起こる
のである。このような接触方式を実現する手段と
して活性炭充填塔方式がある。この場合は、ヒド
ラジン含有水を塔上部から活性炭充填層へ散布
し、空気を好ましくは塔底部から送風するとよ
い。これはヒドラジン分解によつて発生した窒素
ガスを追い出すためである。使用する活性炭は粒
状のものをそのまま充填してもよいが、繊維状の
ものを使用した方が、表面積および空隙率が大き
くなり有利である。繊維状のものはランダムに充
填してもよいが、布状またはハニカム状の活性炭
素繊維ならスパイラルに充填してもよい。活性炭
充填塔方式は活性炭を使用した一種のぬれ壁塔と
解することができる。今、活性炭充填塔方式を代
表例として述べたが、要するに活性炭を水中に浸
漬しない状態に保ち、その表面にヒドラジン含有
水を散布すればよいのであり、充填塔方式に限定
されるわけではない。 このようにきわめて簡単な操作により得られた
処理水はヒドラジンがほとんど残留せず、しかも
塩類濃度の増加がないので、そのまま再利用する
ことが可能となる。 (作用) 本発明の一実施態様を活性炭充填塔方式につい
て第1図に示し、これを参照しながらさらに詳細
に説明する。 ヒドラジン含有水は原水流入管3より活性炭充
填塔1に流入し、原水流入管3の先端にとりつけ
たノズルより散布される。活性炭充填塔1には活
性炭2による充填層が形成されている。活性炭2
が粒状または球状の場合は支持体の上に積層させ
固定床の状態で使用する。活性炭2が繊維状のも
のであればランダムに充填してもよいし、布状ま
たはハニカム状に成型したものであれば、スパイ
ラルに充填した方が充填しやすい。活性炭2の充
填層より下部には空気流入管5と処理水流出管4
が設置されており、空気流入管5からの空気は活
性炭層を上昇し、排気管6より排出される。散布
されたヒドラジン含有水は活性炭表面をつたわり
ながら徐々に流下し、ヒドラジンは吸着除去され
る。しかし、吸着されたヒドラジンは空気中の酸
素によつて簡単に分解するので、ヒドラジン濃度
のきわめて低い処理水がいつまででも連続して得
ることができる。 実施例 1 内径50mm、高さ1000mmのアクリルカラムに粒状
活性炭(ツルミコールHC―30E商品名)を1.5
充填し、カラム底部より空気3/minを通気し
た。この状態でヒドラジン濃度550mg/
asN2H4の合成原水を3/hの流量で下向流で
流下させたところ、カラム底部からの流下液のヒ
ドラジン濃度は第1表のとおりであり、ヒドラジ
ンがブレークする傾向は認められなかつた。
(Industrial Application Field) The present invention relates to a method for removing hydrazine from water containing hydrazine. (Prior Art) Hydrazine has a strong reducing power and is widely used as an oxygen absorber for boiler feed water, a rust preventive, a rocket fuel, etc. As a result, water containing hydrazine is discharged from various factories. but,
Since hydrazine is a COD component, it cannot be released as is. Therefore, some kind of processing is required. There are various conventional methods for treating hydrazine-containing water, and we will now explain this using wastewater from a thermal power plant as an example. At thermal power plants, it is common practice to add tens to hundreds of milligrams of hydrazine to preserve the boiler when the boiler is stopped. This hydrazine-containing water is discharged as several hundred to several thousand m3 of unsteady wastewater when the boiler is restarted. The following method is known as a conventional technique for removing hydrazine from this wastewater. Add an oxidizing agent such as sodium hypochlorite to oxidize and decompose. Add heavy metals as a catalyst and perform aeration oxidation. Remove by adsorption with an adsorbent such as activated carbon or ion exchange resin. Regarding the method, for example, taking oxidative decomposition using sodium hypochlorite as an example, the reaction between hydrazine and sodium hypochlorite is shown by equation (1). N 2 H 4 +2NaOCl→2NaCl+N 2 +2H 2 O −(1) Since this reaction is an equivalence reaction, when sodium hypochlorite is added which is slightly more equivalent than the hydrazine concentration, hydrazine is decomposed by almost 100%. However, it is necessary to add a large amount of sodium hypochlorite (4.4 mg/asCl 2 to 1 mg/asN 2 H 4 of hydrazine), which increases costs and increases the salt concentration, making it necessary to reuse the treated water. I can't. Furthermore, the amount of sodium hypochlorite required for hydrazine decomposition is controlled by detecting the redox potential of the reaction solution, but it is difficult to inject an equivalent amount of sodium hypochlorite because it is easily affected by pH. There are other problems. A method has been proposed in which the injection of sodium hypochlorite is controlled using a residual chlorine meter (for example, Hikoji Tsuchiya, "Hydrazine wastewater treatment at thermal power plants," PPM, June 1978, p. 21), but the injection method is extremely complicated. It has become a thing. This method is a method in which hydrazine is oxidized by aeration by adding heavy metals etc. as a catalyst, and the reaction formula is shown by equation (2). N 2 H 4 +O 2 →N 2 +2H 2 O −(2) This reaction is greatly influenced by pH, and the higher the pH, the faster the hydrazine decomposition rate. Copper or copper compounds are well-known heavy metals to be added, but these heavy metals are harmful and must be removed before discharge. For this reason, unit operations such as coagulation sedimentation, sand filtration, and ion exchange are required, and the cost of chemicals required for these operations is also considerable. A method of aeration has been proposed in which activated carbon or activated carbon and iron salt are added as additives other than heavy metals (Japanese Patent Laid-Open No. 54-23071). However, this method also presupposes a solid-liquid separation operation, and especially when powdered activated carbon is used, it is essential to add iron salt or the like as a flocculant. As a method located between the above methods, a combination treatment using heavy metals or activated carbon and an oxidizing agent such as hydrogen peroxide or ozone has been proposed, but it has the problems mentioned above in terms of equipment and cost. . In this method, hydrazine is adsorbed using an adsorbent such as activated carbon or ion exchange resin, but regeneration must be performed when the adsorption capacity of the adsorbent decreases, which increases the cost of the regenerant and the treatment of recycled waste liquid. There are many problems with this. As described above, conventional hydrazine-containing water treatment techniques have various problems. (Problems to be Solved by the Invention) The problems to be solved by the present invention, that is, the purpose of the present invention is to provide a method for treating hydrazine-containing water having the following characteristics. No expensive or special chemicals are used. Simple and easy to maintain. Highly efficient hydrazine decomposition can be performed continuously (means to solve the problem). It consists of a very simple operation of dispersing. The shape of activated carbon is granular, spherical,
It may be in the form of fibers, activated carbon, cloth-like fibers, etc., but if it is a powder, it will flow out along with water, so it is preferable to have it supported on a carrier. Since activated carbon is not immersed in water, a contact method is used in which hydrazine-containing water flows over the surface of activated carbon while coming into contact with outside air. During this contact process, hydrazine is adsorbed onto the activated carbon, but the adsorbed hydrazine is immediately oxidized by oxygen in the air according to equation (2). In other words, adsorption and regeneration occur simultaneously. An activated carbon packed column system is available as a means for realizing such a contact system. In this case, hydrazine-containing water is preferably sprayed from the top of the tower to the activated carbon packed bed, and air is preferably blown from the bottom of the tower. This is to drive out nitrogen gas generated by hydrazine decomposition. Although granular activated carbon may be used as it is, it is more advantageous to use fibrous activated carbon because it has a larger surface area and porosity. Fiber-like activated carbon fibers may be filled randomly, but cloth-like or honeycomb-like activated carbon fibers may be filled spirally. The activated carbon packed column system can be understood as a type of wet wall column using activated carbon. Although the activated carbon packed tower system has been described as a representative example, in short, the activated carbon is not immersed in water, and hydrazine-containing water can be sprinkled on its surface, and the method is not limited to the packed tower system. The treated water obtained by this extremely simple operation has almost no residual hydrazine and no increase in salt concentration, so it can be reused as is. (Function) One embodiment of the present invention is shown in FIG. 1 in terms of an activated carbon packed column system, and will be described in more detail with reference to FIG. Hydrazine-containing water flows into the activated carbon packed tower 1 through the raw water inflow pipe 3 and is sprayed from a nozzle attached to the tip of the raw water inflow pipe 3. A packed bed of activated carbon 2 is formed in the activated carbon packed tower 1 . activated carbon 2
If it is granular or spherical, it is used in a fixed bed by layering it on a support. If the activated carbon 2 is fibrous, it may be filled randomly, or if it is formed into a cloth or honeycomb shape, it is easier to fill it spirally. Below the packed bed of activated carbon 2, there is an air inflow pipe 5 and a treated water outflow pipe 4.
is installed, and air from the air inlet pipe 5 rises through the activated carbon layer and is discharged from the exhaust pipe 6. The sprayed hydrazine-containing water gradually flows down the activated carbon surface, and hydrazine is adsorbed and removed. However, since the adsorbed hydrazine is easily decomposed by oxygen in the air, treated water with an extremely low concentration of hydrazine can be continuously obtained indefinitely. Example 1 1.5 granular activated carbon (Tsurumicol HC-30E trade name) was placed in an acrylic column with an inner diameter of 50 mm and a height of 1000 mm.
The column was packed, and air was bubbled through the bottom of the column at 3/min. In this state, the hydrazine concentration is 550mg/
When raw water for synthesis of asN 2 H 4 was allowed to flow downward at a flow rate of 3/h, the hydrazine concentration in the flowing liquid from the bottom of the column was as shown in Table 1, and no tendency for hydrazine to break was observed. Ta.

【表】 なお、150流下させた時点で通気を停止した
ところ、処理水のヒドラジン濃度は徐々に上昇
し、2時間後に150mg/asN2H4となつた。 実施例 2 実施例1と同様のカラムに繊維状活性炭を充填
率5%で1充填し、同様の条件でヒドラジン含
有水を流下させたところ第2表の結果を得た。
[Table] When the aeration was stopped after 150 mL of flow, the hydrazine concentration in the treated water gradually increased and reached 150 mg/asN 2 H 4 after 2 hours. Example 2 A column similar to that in Example 1 was filled with one fibrous activated carbon at a filling rate of 5%, and hydrazine-containing water was allowed to flow under the same conditions, and the results shown in Table 2 were obtained.

【表】 (発明の効果) 以上のように、本発明は簡単な操作によつてヒ
ドラジン含有水からヒドラジンを効果的に除去す
ることができ、しかも塩類濃度の増加がないので
処理水はそのまま再利用することが可能となる。 又本発明によつて次のような特徴を有するヒド
ラジン含有水の処理方法が提供できる。 (1) 高価で特殊な薬品を一切使用しない。 (2) 簡素で維持管理が容易。 (3) 高効率のヒドラジン分解が連続してできる。
[Table] (Effects of the invention) As described above, the present invention can effectively remove hydrazine from hydrazine-containing water through simple operations, and since there is no increase in salt concentration, the treated water can be recycled as is. It becomes possible to use it. Furthermore, the present invention can provide a method for treating hydrazine-containing water having the following characteristics. (1) No expensive or special chemicals are used. (2) Simple and easy to maintain. (3) Highly efficient hydrazine decomposition can be performed continuously.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示すフローシー
トである。 1……活性炭充填塔、2……活性炭、3……原
水流入管、4……処理水流出管、5……空気流入
管、6……排気管。
FIG. 1 is a flow sheet showing one embodiment of the present invention. 1... Activated carbon packed tower, 2... Activated carbon, 3... Raw water inflow pipe, 4... Treated water outflow pipe, 5... Air inflow pipe, 6... Exhaust pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 空気が流通している状態の活性炭層にヒドラ
ジン含有水を散布し、活性炭を水中に浸漬しない
状態に保つことを特徴とするヒドラジン含有水の
処理方法。
1. A method for treating hydrazine-containing water, which comprises spraying hydrazine-containing water onto an activated carbon bed in which air is circulating, and maintaining the activated carbon in a state where it is not immersed in water.
JP24417284A 1984-11-19 1984-11-19 Treatment of water containing hydrazine Granted JPS61120691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24417284A JPS61120691A (en) 1984-11-19 1984-11-19 Treatment of water containing hydrazine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24417284A JPS61120691A (en) 1984-11-19 1984-11-19 Treatment of water containing hydrazine

Publications (2)

Publication Number Publication Date
JPS61120691A JPS61120691A (en) 1986-06-07
JPH0150479B2 true JPH0150479B2 (en) 1989-10-30

Family

ID=17114836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24417284A Granted JPS61120691A (en) 1984-11-19 1984-11-19 Treatment of water containing hydrazine

Country Status (1)

Country Link
JP (1) JPS61120691A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758757B2 (en) 2007-10-19 2010-07-20 E. I. Du Pont De Nemours And Company Method for removing hydrazine compounds
JP4850201B2 (en) * 2008-03-19 2012-01-11 株式会社ササクラ HYDRAZINE-CONTAINING WASTEWATER TREATMENT DEVICE AND HYDRAZINE-CONTAINING WASTEWATER TREATMENT METHOD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0069800A1 (en) * 1981-07-15 1983-01-19 GebràœDer Sulzer Aktiengesellschaft Method for the purification of waste waters containing hydrazine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0069800A1 (en) * 1981-07-15 1983-01-19 GebràœDer Sulzer Aktiengesellschaft Method for the purification of waste waters containing hydrazine

Also Published As

Publication number Publication date
JPS61120691A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
US4007118A (en) Ozone oxidation of waste water
US4294706A (en) Process for treating waste water
US4534867A (en) System for removing iron and/or other chemically reducing substances from potable water
JPH04256495A (en) Method for treating water with ozone
JPS6054788A (en) Method of treating waste water generated when crude gas fromcoal gasifier is washed directly by water
CA1250506A (en) Deoxygenation and purification of liquids
JPH0150479B2 (en)
JP4455860B2 (en) Method and apparatus for treating oxidant
JPS6218230B2 (en)
KR100302478B1 (en) Apparatus for removing oxygen dissolved in water using activated carbon fiber catalyst
JPS6316194B2 (en)
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
KR100205443B1 (en) Apparatus for treating waste water using photocatalyst
Bach et al. Wastewater mineralization using advanced oxidation process
JPH0227035B2 (en)
JPH091160A (en) Removing method of oxidizing substance and wet type flue gas desulfurization equipment
JPH11165180A (en) Method for treating scrubber drainage
JP3843141B2 (en) Method and apparatus for treating flue gas desulfurization waste water
JPH05269305A (en) Deoxygenation method and device
JPH0229396B2 (en)
JP2004261734A (en) Method for treating ammonia-containing waste water
JPH0128864Y2 (en)
JP2006281041A (en) Organic material-containing water treating apparatus and its operation method
JP3739452B2 (en) Power plant wastewater treatment method containing amine compounds
JPH11197674A (en) Treatment of peroxide-containing waste water