JPS6316194B2 - - Google Patents

Info

Publication number
JPS6316194B2
JPS6316194B2 JP26255384A JP26255384A JPS6316194B2 JP S6316194 B2 JPS6316194 B2 JP S6316194B2 JP 26255384 A JP26255384 A JP 26255384A JP 26255384 A JP26255384 A JP 26255384A JP S6316194 B2 JPS6316194 B2 JP S6316194B2
Authority
JP
Japan
Prior art keywords
activated carbon
hydrazine
containing water
water
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26255384A
Other languages
Japanese (ja)
Other versions
JPS61141987A (en
Inventor
Kunio Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP26255384A priority Critical patent/JPS61141987A/en
Publication of JPS61141987A publication Critical patent/JPS61141987A/en
Publication of JPS6316194B2 publication Critical patent/JPS6316194B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はヒドラジンを含有する水からヒドラジ
ンを除去する方法に関するものである。 (従来技術) ヒドラジンは強い還元力を有しており、ボイラ
ー給水の脱酸素剤、防錆剤、ロケツト燃料等の面
で幅広く使用されているが、ヒドラジンを含有し
た水はヒドラジンがCOD成分であるため、その
ままの形態では放流することができず、何らかの
処理を必要としている。処理方法としては種々の
方法があるが、今火力発電所排水の場合を例にと
り説明する。 火力発電所ではボイラ停止時にヒドラジンを数
十〜数百mg/添加して保罐することがよく行わ
れている。このヒドラジンを含有する水はボイラ
再起動時に数百〜数千m3非定常排水として排出さ
れる。この排水のヒドラジンを除去する従来技術
として次亜塩素酸ソーダ等の酸化剤を添加し酸
化分解する方法および重金属等を触媒として添
加しエアレーシヨン酸化する方法がよく行われて
いる。 の方法については、例えば次亜塩素酸ソーダ
による酸化分解を例にとると、ヒドラジンと次亜
塩素酸ソーダとの反応は(1)式で示されるように当
量反応であるためヒドラジンはほぼ100%分解す
る。 N2H4+2NaOCl→2NaCl+N2+2H2O ………(1) しかし、ヒドラジン1mg/asN2H4に対し次
亜塩素酸ソーダを4.4mg/asCl2と多量に添加し
なければならずコストが高くなること、またヒド
ラジン分解に要する次亜塩素酸ソーダ量のコント
ロールは反応液の酸化還元電位を検出して行う
が、PHの影響を受けやすい等の理由で次亜塩素酸
ソーダを当量注入するのがなかなか難しい等の問
題点がある。次亜塩素酸ソーダの注入を残留塩素
計でコントロールする方法が提案されているが
(例えば土屋彦治「火力発電所のヒドラジン廃水
処理」PPM1978/6、P21)、注入方式は非常に
複雑なものとなつている。 の方法は重金属(例えば硫酸銅)を触媒とし
て添加しエアレーシヨンによつてヒドラジンを酸
化する方法であり、反応式は(2)式で示される。 N2H4+O2→N2+2H2O ………(2) この反応はPHの影響を大きく受け、アルカリ域
のほどヒドラジン分解速度は早い。しかし、添加
した重金属は有害であるため放流にあたつては除
去しておかねばならない。そのため凝集沈殿、砂
ろ過、イオン交換等の単位操作が必要であり、そ
れに要する薬品代も無視し得ぬ金額となつてい
る。 またの方法の変法として活性炭または活性炭
と鉄塩とを添加してエアレーシヨンする方法が知
られている。(特開昭54−23071)。しかし、この
方法も固液分離操作が前提となつており、特に粉
末活性炭を使用した場合は鉄塩等を凝集剤として
添加することが不可欠である。 このように従来のヒドラジン含有水の処理技術
は種々の問題点を有し改善すべき点が多い。 なお本出願に関連する技術としては、本出願と
同一の出願人による特願昭59−229292がある。 (発明が解決しようとする問題点) 本発明が解決しようとする問題点は高価な薬
品を使用せず簡素で維持管理の容易なヒドラジ
ン含有水の処理方法を提供することである。 (問題点を解決するための手段) 本発明は活性炭とヒドラジン含有水を接触させ
ヒドラジンを活性炭へ吸着させる吸着工程とヒド
ラジンを吸着して吸着能力の低下した活性炭を水
切りし、その状態で放置して外気と接触させる
か、強制的に外気と接触させることにより吸着能
力を回復させる再生工程より構成されている。こ
こで、使用する活性炭の形状は特に限定されず、
粉末、粉末を担体に担持させたもの、粒状、繊維
状、繊維を布状にしたもの、繊維をハニカム状に
したもの、繊維をフエルト状にしたものなどいず
れでもよくその1種または2種以上の組合せで使
用することもできるが、粉末状のものは取扱いが
面倒なのでなるべく担体に担持させて用いるのが
好ましい。 活性炭とヒドラジン含有水との接触方法は、活
性炭を塔(または槽)に充填しておき、固定床の
状態で活性炭充填層へヒドラジン含有水を通液す
る方法もあるが、塔(または槽)の内または外に
固液分離機構を付設し、この塔(または槽)内に
おいて、活性炭を分散または流動させる方法もあ
る。固定床の場合は、ヒドラジン含有水中の懸濁
物質をも除去することができ、通液方法も下向流
または上向流で行うことができる。 吸着能力の低下した活性炭は再生する必要があ
るが、従来は高温蒸気、電流、特殊な薬品等を使
用していたため、コストが膨大となつていた。 本発明による再生は、吸着能力の低下した活性
炭を水切りした状態で放置し、必要ならば空気を
送風するという極めて簡単な操作でよい。活性炭
に吸着したヒドラジンは空気中の酸素と接触し、
(2)式の如く分解するが、活性炭を水切りしている
ので、活性炭と空気との接触面積が飛躍的に増大
し、分解反応は短時間で終了する。活性炭の水切
り操作は、固定床で使用する場合、ヒドラジン含
有水の流入を停止し、充填層より下方の位置より
塔(または槽)内の水を抜き出すだけでよく、重
力により水切りができる。必要ならば、充填層よ
り上方より空気を導入し、充填層内の水を押出し
てもよい。 活性炭を分散または流動させて使用する場合
は、付設の固液分離機構を使用することができ
る。これも、固液分離機構の設置位置より、重力
で水切りが可能である。 このようにして、外気と接触することよつて再
生された活性炭は初期の吸着能力を有しており、
ヒドラジンの吸着に再使用できる。 すなわち、何ら特殊な薬品を使用せずとも簡単
な操作でヒドラジンの除去が可能となるのであ
る。 (作 用) 本発明の一実施態様を粒状活性炭による固定床
を使用し、下向流で通液する方法について第1図
に示し、これを参照しつつさらに詳細に説明す
る。 ヒドラジン含有水は原水流入管4より活性炭充
填塔1に流入し、活性炭充填層3でヒドラジンを
吸着除去した後、処理水流出管5および処理水槽
2を経て、放流水流出管6より放流される。通液
を続けていくと処理水中のヒドラジン濃度が徐々
に上昇するので、基準値を満足しなくなつたら通
液を停止する。その際、原水流入を停止し処理水
流出管5および排気管8を開としておけば活性炭
充填塔1内の水は重力によつてそのまま塔外へ流
出し、活性炭層は水切りの状態となる。ここで、
水が塔外へ流出しにくければ塔上部より加圧空気
(図示せず)を導入し押出してもよい。 次に、処理水流出管5を閉じ、空気流入管7よ
り空気を導入し、排気管8より排気する。導入し
た空気は活性炭層3を上向流で通過し、この過程
でヒドラジンは(1)式によつて分解する。空気流入
管の設置位置は活性炭充填層3の下部であるが、
上部でもよい。水切りするため塔上部より加圧空
気を導入したような場合は、そのまま空気の流入
を続けてもよい。空気量は活性炭層高にもよる
が、通常LV10以上、好ましくはLV50〜500がよ
く、通気時間は0.5〜10時間で十分である。通気
によるヒドラジンの分解が終了すると、空気の導
入を停止し、処理水を処理水流入管9を経て活性
炭充填塔1に導入し、活性炭層を浸漬させる。こ
れは、活性炭層の気泡除去が目的であり、通液処
理時の液位まで水を導入すればよい。次いで、原
水流入管4および処理水流出管5を開として、ヒ
ドラジンの吸着除去を再開する。 第2図は粒状活性炭の充填塔を塔使用した例で
ある。活性炭充填塔1は吸着、活性炭充填塔1′
は再生中を示す。この方式でヒドラジン含有水の
処理を行えば、連続処理が可能である。 次に、活性炭を分散させて使用する場合の一実
施態様を第3図に示す。 ヒドラジン分解槽10には底部よりわずか上方
に多孔板13、さらに上方に空気導入管7が設置
されている。ヒドラジン含有水を原水流入管4よ
りヒドラジン分解槽10に導入し、活性炭を投入
して空気を空気導入管7より導入すると第3図の
ように活性炭12は分散する。多孔板13の役割
は活性炭と水との固液分離にあり、孔径は使用す
る活性炭の大きさ、形状等により決まり、活性炭
が通過しない孔径であることが必要である。第3
図はヒドラジン分解槽10内に多孔板を設置して
いる例であるが、砂、アンスラサイト、砂利、プ
ラスチツク等の充填剤を積層させてもよいし、多
孔性の膜、多孔管なども使用できる。要するに活
性炭と水とを固液分離できる手段であればよいの
である。さらに、第3図はヒドラジン分解と固液
分離を同一槽で行う例であるが、活性炭を槽外へ
移送しそこで固液分離してもよい。また、空気導
入管7のかわりに撹拌機を使用して分散させても
よい。 さて、ヒドラジン分解槽10に流入したヒドラ
ジン含有水は活性炭12と接触し、ヒドラジンは
活性炭に吸着除去される。吸着工程が終了すると
処理水流出管5よりヒドラジン分解槽10内の水
を全量処理水タンク2に流出させる。しかし活性
炭12は多孔板13により流出しないので、活性
炭12は多孔板13の上に水切りの状態で積層し
外気に曝露する。このまま一定時間放置しておく
だけで(2)式の分解反応が起こるが、空気導入管7
を設置している場合は空気を送風する方がよい。
特に使用する活性炭量が多い場合は空気導入管7
の位置を多孔板13のすぐ上方かまたは多孔板よ
り下方に設置しておけば空気が活性炭層を流通す
ることになりヒドラジン分解の時間が短かくてす
む。 ヒドラジンの分解が終了すると再び原水流入管
4よりヒドラジン含有水をヒドラジン分解槽10
に満たし吸着を行えばよい。一度投入した活性炭
は空気による再生で初期の吸着性能に復帰し、何
度でも半永久的に使用可能である。循環ライン1
4は処理水タンク2内のヒドラジン濃度が所定の
濃度に達していない場合に処理水を再びヒドラジ
ン分解槽10に返送し処理を繰返すために設置さ
れている。処理水のヒドラジン濃度が所定濃度に
達している場合は放流管6により放流するかまた
は再利用する。 水と活性炭の分離機構は、使用する活性炭の種
類、形状、粒度等によつて異なるが、活性炭が分
離できるのであれば、いずれの形式でも適用でき
る。 実施例 1 内径50mm、高さ1000mmのアクリルカラムに粒状
活性活性炭(ツルミコールHC―30E商品名)1.5
充填し、ヒドラジン550mg/asN2H4含む合
成原水を3/hの流速で下向流で通液したとこ
ろ、第1表の結果を得た。
(Industrial Application Field) The present invention relates to a method for removing hydrazine from water containing hydrazine. (Prior art) Hydrazine has a strong reducing power and is widely used as an oxygen scavenger for boiler feed water, a rust preventive agent, and rocket fuel. Therefore, it cannot be released as is and requires some kind of treatment. There are various treatment methods, but we will explain this using wastewater from a thermal power plant as an example. At thermal power plants, it is common practice to add tens to hundreds of milligrams of hydrazine to preserve the boiler when the boiler is stopped. This hydrazine-containing water is discharged as several hundred to several thousand m3 of unsteady wastewater when the boiler is restarted. Conventional techniques for removing hydrazine from this wastewater include a method in which an oxidizing agent such as sodium hypochlorite is added to perform oxidative decomposition, and a method in which a heavy metal or the like is added as a catalyst to perform aeration oxidation. Regarding the method, for example, if we take oxidative decomposition using sodium hypochlorite as an example, the reaction between hydrazine and sodium hypochlorite is an equivalent reaction as shown in equation (1), so hydrazine is almost 100% Disassemble. N 2 H 4 +2NaOCl→2NaCl+N 2 +2H 2 O (1) However, a large amount of sodium hypochlorite (4.4 mg/asCl 2 ) must be added to 1 mg/asN 2 H 4 of hydrazine, which increases the cost. The amount of sodium hypochlorite required for decomposition of hydrazine is controlled by detecting the redox potential of the reaction solution, but because it is easily affected by pH, an equivalent amount of sodium hypochlorite is injected. There are some problems, such as it being difficult to A method has been proposed in which the injection of sodium hypochlorite is controlled using a residual chlorine meter (for example, Hikoji Tsuchiya, "Hydrazine wastewater treatment at thermal power plants", PPM 1978/6, p. 21), but the injection method is extremely complicated. It's summery. The method is a method in which a heavy metal (for example, copper sulfate) is added as a catalyst and hydrazine is oxidized by aeration, and the reaction formula is shown by equation (2). N 2 H 4 +O 2 →N 2 +2H 2 O (2) This reaction is greatly affected by pH, and the more alkaline the region, the faster the hydrazine decomposition rate. However, the added heavy metals are harmful and must be removed before discharge. For this reason, unit operations such as coagulation sedimentation, sand filtration, and ion exchange are required, and the cost of chemicals required for these operations is also considerable. As a modification of the above method, a method is known in which activated carbon or activated carbon and iron salt are added and aeration is carried out. (Japanese Patent Publication No. 54-23071). However, this method also presupposes a solid-liquid separation operation, and especially when powdered activated carbon is used, it is essential to add iron salt or the like as a flocculant. As described above, the conventional treatment technology for hydrazine-containing water has various problems and there are many points to be improved. As a technology related to the present application, there is Japanese Patent Application No. 59-229292 filed by the same applicant as the present application. (Problems to be Solved by the Invention) A problem to be solved by the present invention is to provide a method for treating hydrazine-containing water that is simple and easy to maintain without using expensive chemicals. (Means for Solving the Problems) The present invention includes an adsorption step in which activated carbon and hydrazine-containing water are brought into contact and hydrazine is adsorbed onto the activated carbon, and activated carbon whose adsorption capacity has decreased after adsorbing hydrazine is drained and left in that state. It consists of a regeneration process in which the adsorption capacity is restored by bringing the adsorbent into contact with the outside air or by forcing it into contact with the outside air. Here, the shape of the activated carbon used is not particularly limited,
One or more types of powder, powder supported on a carrier, granules, fibers, cloth-like fibers, honeycomb-like fibers, felt-like fibers, etc. are acceptable. Although they can be used in combination, powdered ones are difficult to handle, so it is preferable to use them as supported on a carrier. To bring activated carbon into contact with hydrazine-containing water, there is a method in which activated carbon is packed in a column (or tank) and hydrazine-containing water is passed through the activated carbon packed bed in a fixed bed state. There is also a method in which a solid-liquid separation mechanism is attached inside or outside the tower and activated carbon is dispersed or fluidized within the tower (or tank). In the case of a fixed bed, suspended substances in the hydrazine-containing water can also be removed, and the liquid can be passed in either a downward flow or an upward flow. Activated carbon that has lost its adsorption capacity needs to be regenerated, but in the past, high-temperature steam, electric current, special chemicals, etc. were used, resulting in enormous costs. Regeneration according to the present invention can be accomplished by an extremely simple operation of leaving activated carbon whose adsorption capacity has decreased in a drained state and blowing air if necessary. Hydrazine adsorbed on activated carbon comes into contact with oxygen in the air,
It decomposes as shown in equation (2), but since the activated carbon is drained, the contact area between the activated carbon and air increases dramatically, and the decomposition reaction ends in a short time. When activated carbon is used in a fixed bed, all that is required is to stop the flow of hydrazine-containing water and draw out the water in the tower (or tank) from a position below the packed bed, allowing gravity to drain the activated carbon. If necessary, air may be introduced from above the packed bed to push out water in the packed bed. When activated carbon is used in a dispersed or fluidized manner, an attached solid-liquid separation mechanism can be used. This also allows water to be drained by gravity from the location where the solid-liquid separation mechanism is installed. In this way, activated carbon regenerated by contact with outside air has an initial adsorption capacity,
Can be reused for adsorption of hydrazine. In other words, hydrazine can be removed by simple operations without using any special chemicals. (Function) An embodiment of the present invention in which a fixed bed of granular activated carbon is used and a method of passing liquid in a downward flow is shown in FIG. 1, and will be described in more detail with reference to FIG. Hydrazine-containing water flows into the activated carbon packed tower 1 through the raw water inflow pipe 4, and after adsorbing and removing hydrazine in the activated carbon packed bed 3, it passes through the treated water outflow pipe 5 and the treated water tank 2, and is discharged from the effluent water outflow pipe 6. . As the water flow continues, the hydrazine concentration in the treated water gradually increases, and when it no longer satisfies the standard value, the water flow is stopped. At this time, if the inflow of raw water is stopped and the treated water outflow pipe 5 and the exhaust pipe 8 are opened, the water in the activated carbon packed tower 1 will directly flow out of the tower by gravity, and the activated carbon layer will be in a drained state. here,
If water is difficult to flow out of the tower, pressurized air (not shown) may be introduced from the upper part of the tower to extrude the water. Next, the treated water outflow pipe 5 is closed, air is introduced through the air inflow pipe 7, and air is exhausted through the exhaust pipe 8. The introduced air passes through the activated carbon layer 3 in an upward flow, and in this process, hydrazine is decomposed according to equation (1). The installation position of the air inflow pipe is at the bottom of the activated carbon packed bed 3,
It can also be on the top. If pressurized air is introduced from the top of the tower to drain water, the air may continue to flow in as is. Although the amount of air depends on the height of the activated carbon layer, it is usually LV10 or higher, preferably LV50 to 500, and an aeration time of 0.5 to 10 hours is sufficient. When the decomposition of hydrazine by aeration is completed, the introduction of air is stopped, and the treated water is introduced into the activated carbon packed tower 1 through the treated water inlet pipe 9, and the activated carbon layer is immersed. The purpose of this is to remove air bubbles from the activated carbon layer, and it is sufficient to introduce water up to the liquid level during the liquid flow treatment. Next, the raw water inflow pipe 4 and the treated water outflow pipe 5 are opened to resume adsorption and removal of hydrazine. Figure 2 shows an example of using a column packed with granular activated carbon. Activated carbon packed tower 1 is adsorption, activated carbon packed tower 1'
indicates that it is being played. If hydrazine-containing water is treated in this manner, continuous treatment is possible. Next, FIG. 3 shows an embodiment in which activated carbon is used in a dispersed manner. The hydrazine decomposition tank 10 is provided with a perforated plate 13 slightly above the bottom and an air introduction pipe 7 further above. When hydrazine-containing water is introduced into the hydrazine decomposition tank 10 through the raw water inflow pipe 4, activated carbon is introduced, and air is introduced through the air introduction pipe 7, the activated carbon 12 is dispersed as shown in FIG. The role of the perforated plate 13 is to separate solid and liquid between activated carbon and water, and the pore diameter is determined by the size, shape, etc. of the activated carbon used, and it is necessary that the pore diameter is such that the activated carbon does not pass through. Third
The figure shows an example in which a perforated plate is installed in the hydrazine decomposition tank 10, but fillers such as sand, anthracite, gravel, plastic, etc. may be laminated, or porous membranes, perforated pipes, etc. may also be used. can. In short, any means that can separate activated carbon and water into solid and liquid may be used. Furthermore, although FIG. 3 shows an example in which hydrazine decomposition and solid-liquid separation are performed in the same tank, activated carbon may be transferred outside the tank and solid-liquid separated there. Further, instead of the air introduction pipe 7, a stirrer may be used for dispersion. Now, the hydrazine-containing water that has flowed into the hydrazine decomposition tank 10 comes into contact with the activated carbon 12, and hydrazine is adsorbed and removed by the activated carbon. When the adsorption step is completed, all of the water in the hydrazine decomposition tank 10 is discharged from the treated water outflow pipe 5 to the treated water tank 2. However, since the activated carbon 12 is prevented from flowing out by the perforated plate 13, the activated carbon 12 is stacked on the perforated plate 13 in a drained state and exposed to the outside air. If you leave it as it is for a certain period of time, the decomposition reaction of equation (2) will occur, but the air introduction pipe 7
It is better to blow air if the
Especially when using a large amount of activated carbon, air introduction pipe 7
If it is located immediately above or below the perforated plate 13, air will flow through the activated carbon layer, and the time for decomposing hydrazine will be shortened. When the decomposition of hydrazine is completed, hydrazine-containing water is again supplied to the hydrazine decomposition tank 10 from the raw water inflow pipe 4.
Just fill it with water and perform adsorption. Activated carbon once added returns to its initial adsorption performance through air regeneration and can be used semi-permanently over and over again. Circulation line 1
4 is installed to return the treated water to the hydrazine decomposition tank 10 and repeat the treatment when the hydrazine concentration in the treated water tank 2 has not reached a predetermined concentration. When the hydrazine concentration of the treated water reaches a predetermined concentration, it is discharged through the discharge pipe 6 or reused. The mechanism for separating water and activated carbon differs depending on the type, shape, particle size, etc. of the activated carbon used, but any type can be applied as long as activated carbon can be separated. Example 1 Granular activated carbon (Tsurumicol HC-30E trade name) 1.5 in an acrylic column with an inner diameter of 50 mm and a height of 1000 mm.
When the tank was filled with synthetic raw water containing 550 mg of hydrazine/asN 2 H 4 in a downward flow at a flow rate of 3/h, the results shown in Table 1 were obtained.

【表】 15通液した時点で通液を停止し、カラム内の
液をカラム最下部の処理水流出管より排出し活性
炭層の水切りをした。次に、処理水流出管より空
気を導入し、カラム上部より排気した。通気量は
3/h、2時間であつた。通気を停止した後、
処理水1.5を活性炭層へ上向流で通液し、活性
炭層内の気泡を追い出した。続いて合成原水の通
液を開始した。このように、原水の通液と通気に
よる再生を5、10サイクル繰返したところ、結果
は第2表のとおりであり、処理水質悪化の傾向は
認められなかつた。
[Table] When 15 liquids had passed, the liquid flow was stopped, and the liquid in the column was discharged from the treated water outflow pipe at the bottom of the column, and the activated carbon layer was drained. Next, air was introduced through the treated water outflow pipe and exhausted from the top of the column. The aeration rate was 3/h for 2 hours. After stopping ventilation,
1.5 liters of the treated water was passed through the activated carbon layer in an upward flow to expel air bubbles in the activated carbon layer. Next, the flow of synthetic raw water was started. In this way, the regeneration of the raw water by passing through it and aeration was repeated for 5 to 10 cycles, and the results are shown in Table 2, with no tendency for the quality of the treated water to deteriorate.

【表】 実施例 2 2のビーカーに粒状活性炭(ツルミコール
HC―30E商品名)300mlとヒドラジン550mg/
asN2H4を含む合成原水2とを加え、撹拌機で
2時間撹拌したところ上澄液のヒドラジンは17.6
mg/asN2H4に低下した。次に活性炭と水とを
50meshのふるいで分離し、分離した活性炭はそ
のまま1昼夜放置しておいた。そして、再度この
活性炭を2のビーカーに移し同様の操作でヒド
ラジン含有水と接触させたところ、上澄液のヒド
ラジン濃度20.3mg/asN2H4であつた。以上の
操作を合計5回繰返しても上澄液のヒドラジン濃
度は19.5mg/asN2H4と悪化の傾向は認められ
なかつた。 (発明の効果) 以上述べたように、本発明によればヒドラジン
を吸着した活性炭を水切りした状態で放置し外気
と接触させるか、必要ならば強制的に外気と接触
させるという単純な操作で短時間のうちに再生す
ることができる。したがつて高価で特殊な薬品を
何ら使用しないので、コストが非常に低減し省資
源、省エネルギーの社会的背景に合致しているば
かりでなく、現場作業者の安全衛生面でも寄与す
るところ大である。
[Table] Example 2 Add granular activated carbon (Tsurumicol) to the beaker 2.
HC-30E brand name) 300ml and hydrazine 550mg/
When synthetic raw water 2 containing asN 2 H 4 was added and stirred for 2 hours with a stirrer, the hydrazine in the supernatant was 17.6
mg / asN2H4 . Next, add activated carbon and water.
The activated carbon was separated using a 50 mesh sieve and left as it was for one day and night. Then, this activated carbon was transferred to beaker 2 again and brought into contact with hydrazine-containing water in the same manner, and the hydrazine concentration of the supernatant was 20.3 mg/asN 2 H 4 . Even after repeating the above operation five times in total, the hydrazine concentration in the supernatant was 19.5 mg/asN 2 H 4 with no tendency for deterioration. (Effects of the Invention) As described above, according to the present invention, activated carbon that has adsorbed hydrazine can be left in a drained state and brought into contact with the outside air, or if necessary, forced into contact with the outside air. Can be played in no time. Therefore, since no expensive or special chemicals are used, the cost is extremely low and it not only meets the social background of resource and energy conservation, but also greatly contributes to the health and safety of on-site workers. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による、粒状活性炭の固定床を
使用し、下向流で通液する方法についての実施態
様を示す。第2図は粒状活性炭の充填塔を2塔使
用して連続処理する場合の態様図で、活性炭充填
塔1は吸着、活性炭充填塔1′は再生中を示す。 第3図は活性炭を分解槽中に分散させて使用す
る場合の一実施態様を示す。 1,1′……活性炭充填塔、2……処理水槽、
3,3′……活性炭充填層、4……原水流入管、
5……処理水流出管、6……放流水流出管、7…
…空気流入管、8,8′……排風管、9……処理
水流入管、10……ヒドラジン分解槽、12……
活性炭、13……多孔板、14……循環ライン。
FIG. 1 shows an embodiment of the method according to the invention using a fixed bed of granular activated carbon with downward flow. FIG. 2 is a diagram showing a case where two granular activated carbon packed columns are used for continuous treatment, where activated carbon packed column 1 shows adsorption, and activated carbon packed column 1' shows regeneration. FIG. 3 shows an embodiment in which activated carbon is dispersed in a decomposition tank. 1, 1'... activated carbon packed tower, 2... treated water tank,
3,3′...Activated carbon packed bed, 4...Raw water inflow pipe,
5... Treated water outflow pipe, 6... Effluent water outflow pipe, 7...
... Air inflow pipe, 8, 8' ... Exhaust pipe, 9 ... Treated water inflow pipe, 10 ... Hydrazine decomposition tank, 12 ...
Activated carbon, 13...perforated plate, 14...circulation line.

Claims (1)

【特許請求の範囲】 1 活性炭とヒドラジン含有水を接触させ、ヒド
ラジンを活性炭に吸着させる吸着工程およびヒド
ラジンを吸着して吸着能力の低下した活性炭を水
切りした後外気と接触させる再生工程よりなるヒ
ドラジン含有水の処理方法。 2 前記活性炭を塔または槽に充填した固定床の
状態で使用し、吸着はヒドラジン含有水を活性炭
充填層へ浸漬状態で通液することによつて、再生
は活性炭充填槽を水切りし、必要ならば空気を送
風することによつて行う特許請求の範囲第1項記
載のヒドラジン含有水の処理方法。 3 塔または槽の内または外に固液分離機構を付
設した塔または槽を使用し、吸着は活性炭をヒド
ラジン含有水中で分散または流動化させることに
よつて、再生は付設の固液分離機構を使用して水
切りし、必要ならば空気を送風することによつて
行う特許請求の範囲第1項記載のヒドラジン含有
水の処理方法。 4 前記活性炭の形状は粒状、粉末状、粉末状の
ものを担体に担持させたもの、繊維状、繊維をフ
エルト状にしたもの、繊維をハニカム状にしたも
のより選ばれた1種または2種以上である特許請
求の範囲第1項、第2項または第3項記載のヒド
ラジン含有水の処理方法。
[Scope of Claims] 1. A hydrazine-containing method comprising an adsorption step in which activated carbon and hydrazine-containing water are brought into contact and hydrazine is adsorbed onto the activated carbon, and a regeneration step in which activated carbon whose adsorption capacity has decreased by adsorbing hydrazine is drained and then brought into contact with outside air. How to treat water. 2. The activated carbon is used in a fixed bed packed in a tower or tank, and adsorption is carried out by passing hydrazine-containing water through the activated carbon packed bed in an immersed state.Regeneration is carried out by draining the activated carbon packed tank and removing water if necessary. A method for treating hydrazine-containing water according to claim 1, which is carried out by blowing air. 3 Use a tower or tank equipped with a solid-liquid separation mechanism inside or outside the tower or tank. Adsorption is performed by dispersing or fluidizing activated carbon in hydrazine-containing water, and regeneration is performed using the attached solid-liquid separation mechanism. A method for treating hydrazine-containing water according to claim 1, which comprises using, draining, and blowing air if necessary. 4. The shape of the activated carbon is one or two selected from granules, powder, powder supported on a carrier, fibers, felt fibers, and honeycomb fibers. The method for treating hydrazine-containing water according to claim 1, 2, or 3 above.
JP26255384A 1984-12-12 1984-12-12 Treatment of water containing hydrazine Granted JPS61141987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26255384A JPS61141987A (en) 1984-12-12 1984-12-12 Treatment of water containing hydrazine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26255384A JPS61141987A (en) 1984-12-12 1984-12-12 Treatment of water containing hydrazine

Publications (2)

Publication Number Publication Date
JPS61141987A JPS61141987A (en) 1986-06-28
JPS6316194B2 true JPS6316194B2 (en) 1988-04-07

Family

ID=17377401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26255384A Granted JPS61141987A (en) 1984-12-12 1984-12-12 Treatment of water containing hydrazine

Country Status (1)

Country Link
JP (1) JPS61141987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219593U (en) * 1988-07-26 1990-02-08
JPH0219594U (en) * 1988-07-26 1990-02-08
JPH0370999U (en) * 1989-11-10 1991-07-17

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219593U (en) * 1988-07-26 1990-02-08
JPH0219594U (en) * 1988-07-26 1990-02-08
JPH0370999U (en) * 1989-11-10 1991-07-17

Also Published As

Publication number Publication date
JPS61141987A (en) 1986-06-28

Similar Documents

Publication Publication Date Title
US4534867A (en) System for removing iron and/or other chemically reducing substances from potable water
CN106256787A (en) A kind of refinery sewage O3 catalytic oxidation processing method
US5512182A (en) Process for removing trace amounts of ammonia-containing compounds from aqueous streams
CN107935094B (en) Treatment process device and method for resin adsorption regeneration high-concentration organic waste liquid
JP2006122795A (en) Wastewater treatment method
JPS6316194B2 (en)
JP3729342B2 (en) Method and apparatus for treating radioactive wastewater
KR20230125059A (en) Method for water treatment by adsorption on activated carbon combined with addition of ozone and equipment for carrying out the method
JPWO2013084855A1 (en) Method for treating hydrogen peroxide-containing water
JPH0443705B2 (en)
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
RU2658419C1 (en) Method of underground water treatment
JP3095600B2 (en) Removal method of hydrogen peroxide by granular activated carbon packed tower
JP3356928B2 (en) Operating method of water treatment equipment using immersion type membrane filtration device
WO2011063576A1 (en) Advanced treatment method of feed water by combination of metal zinc and ozone
JPH0150479B2 (en)
JP2005246327A (en) Wastewater treatment apparatus
RU2087427C1 (en) Method of purifying underground water
JP2004261734A (en) Method for treating ammonia-containing waste water
CN216584297U (en) Adsorption regeneration device for treating industrial wastewater
Chan et al. The use of immobilised iron/copper bimetallic nanoparticles for rubber wastewater treatment
JP3843141B2 (en) Method and apparatus for treating flue gas desulfurization waste water
JPS5855838B2 (en) Method for removing ammonia nitrogen from wastewater
CN215288306U (en) High salt effluent disposal system
JPH02203996A (en) Method for treating city water and the like