JPS5855838B2 - Method for removing ammonia nitrogen from wastewater - Google Patents

Method for removing ammonia nitrogen from wastewater

Info

Publication number
JPS5855838B2
JPS5855838B2 JP51099671A JP9967176A JPS5855838B2 JP S5855838 B2 JPS5855838 B2 JP S5855838B2 JP 51099671 A JP51099671 A JP 51099671A JP 9967176 A JP9967176 A JP 9967176A JP S5855838 B2 JPS5855838 B2 JP S5855838B2
Authority
JP
Japan
Prior art keywords
zeolite
adsorption
wastewater
ammonia nitrogen
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51099671A
Other languages
Japanese (ja)
Other versions
JPS5326454A (en
Inventor
昌治 久保田
昌良 久保田
燥吉 高橋
康雄 小関
勇作 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP51099671A priority Critical patent/JPS5855838B2/en
Publication of JPS5326454A publication Critical patent/JPS5326454A/en
Publication of JPS5855838B2 publication Critical patent/JPS5855838B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は汚水中からのアンモニア性窒素(以下NH3−
Nと略す)除去法に係り、特に、ゼオライトによるNH
3−N の吸着除去に使用するに好適な吸着部とゼオ
ライトの分離回収装置を備えた汚水中からのNH3−N
除去法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention deals with the treatment of ammonia nitrogen (hereinafter referred to as NH3-
NH) removal method using zeolite.
NH3-N from wastewater equipped with an adsorption unit suitable for adsorption and removal of 3-N and a zeolite separation and recovery device.
Regarding the removal method.

産業廃水や家庭下水の処理法の主流である活性汚泥法や
活性炭吸着法では汚水中の有機物を除去し清澄な水とす
ることはできるが、汚水中のNH3−Nは除去できずそ
のまま放出される。
The activated sludge method and activated carbon adsorption method, which are the mainstream treatment methods for industrial wastewater and domestic sewage, can remove organic matter from sewage and make it clear, but NH3-N in sewage cannot be removed and is released as is. Ru.

ところがこのNH3−Nは藻類に対して窒素の補給源と
なるため廃水の富栄養化が促進され生物の成長のバラン
スをくずし、いわゆる赤潮発生の原因となり魚類の大量
死滅を招いたり、又河川、湖沼では悪臭の発生源となる
However, this NH3-N serves as a nitrogen supply source for algae, which promotes eutrophication of wastewater and disrupts the balance of biological growth, causing what is called red tide, resulting in mass die-off of fish, and rivers, rivers, etc. In lakes and marshes, it is a source of foul odors.

このため廃水中のNH3−Nは公害問題として社会の注
目を浴び、NH3−Hの放出は法規制の方向にあり、早
急にNH3−N除去技術の確立が強く望まれている。
For this reason, NH3-N in wastewater has attracted the attention of society as a pollution problem, and the release of NH3-H is being regulated by law, and there is a strong desire to establish a technology for removing NH3-N as soon as possible.

汚水中のNH3−Hの除去にはアスモニアストリツピン
グ、生物処理、化学的処理及び吸着法等各種のものが試
みられているが、各法にはそれぞれ一長一短があり、未
だ決め手となる方法は開発されていない。
Various methods such as asmonia stripping, biological treatment, chemical treatment, and adsorption methods have been attempted to remove NH3-H from wastewater, but each method has its own advantages and disadvantages, and there is still no definitive method. Not developed.

クリノプチロライト、モルデナイト、チャバサイトなど
の天然ゼオライト、シリカ・アルミナ源となる原料物質
を結晶化して製造した合成ゼオライトなどを用いてNH
3−N を含む下水、廃水を処理してNH3−N
を汚水中より吸着除去する方法は簡単で優れた方法であ
る。
Natural zeolites such as clinoptilolite, mordenite, and chabasite, as well as synthetic zeolites produced by crystallizing raw materials that serve as silica and alumina sources, are used to produce NH.
NH3-N by treating sewage and wastewater containing NH3-N
It is a simple and excellent method to adsorb and remove wastewater from wastewater.

ゼオライトはSin、とAlO4の四面体からなる三次
元構造の結晶性含水アルミノシリケートであって、Al
O4によって生ずる電荷の不足はアルカリ金属あるいは
アルカリ土類金属イオンによって補われている。
Zeolite is a crystalline hydrated aluminosilicate with a three-dimensional structure consisting of tetrahedrons of Sin and AlO4.
The lack of charge caused by O4 is compensated by alkali metal or alkaline earth metal ions.

この陽イオンは交換性があるためゼオライトは陽イオン
交換能を有しており、水中の陽イオンを選択的に除去す
るのに使用される。
Since these cations are exchangeable, zeolite has cation exchange ability and is used to selectively remove cations from water.

これらのゼオライトのうちクリノプチロライト、モルデ
ナイトと称されているものはアンモニウムイオン(以下
NH4+と称す)を選択的に吸着除去する。
Among these zeolites, those called clinoptilolite and mordenite selectively adsorb and remove ammonium ions (hereinafter referred to as NH4+).

このためゼオライトによる汚水中のNH3−Hの除去に
は安価な天然ゼオライト(クリノプチロライト、モルデ
ナイト等)がもっばら使用されている。
For this reason, inexpensive natural zeolites (clinoptilolite, mordenite, etc.) are often used to remove NH3-H from wastewater using zeolites.

汚水中のNH3−N の除去にゼオライトを使用する場
合、吸着操作とNH3−N を吸着したゼオライトの
再生操作を繰返し行なうサイクルシステム方式を採用す
ることが経済的見地から望ましい。
When using zeolite to remove NH3-N from wastewater, it is desirable from an economic standpoint to adopt a cycle system in which adsorption operations and regeneration operations of the zeolite that has adsorbed NH3-N are repeated.

したがって従来より工業的に実施されているイオン交換
樹脂を使用する純水製造装置や硬水軟化装置と同様な充
填塔に粒状ゼオライト(粒径数mm)を充填し、被処理
液を通液しNH3−N を吸着除去した後、アルカリ
金属、アルカリ土類金属の水酸化物、炭酸塩、塩化物等
の水溶液を通液する方法やNH3−N を吸着したゼ
オライトを500〜600℃に加熱してNH3−N
を脱離する方法によりゼオライトのNH3−N吸着能を
回復させる再生法がとられている。
Therefore, granular zeolite (particle size of several mm) is packed into a packed tower similar to that used in water purification equipment and water softening equipment that use ion exchange resins, which have been carried out industrially in the past, and the liquid to be treated is passed through it. After -N is adsorbed and removed, aqueous solutions of alkali metal and alkaline earth metal hydroxides, carbonates, chlorides, etc. NH3-N
A regeneration method is being used to recover the NH3-N adsorption ability of zeolite by desorbing it.

ところが上記の充填塔方式のNH3−N 除去法ではN
H4+のゼオライトへの吸着速度が遅いため充填塔先端
からNH4+がリークしたり、汚水中にNa+、K十、
Ca+2等の陽イオンが共存するとNH,l+の吸着容
量が低下したりする・又、アルカリ金属の水酸化物等の
溶液を通液するゼオライトの再生法では再生に長時間を
要し、かつNH3−N を含み高濃度に汚染された再
生廃液の排出は避けられない。
However, in the packed column type NH3-N removal method described above, N
Because the adsorption speed of H4+ to zeolite is slow, NH4+ may leak from the tip of the packed column, and Na+, K+,
When cations such as Ca+2 coexist, the adsorption capacity for NH and L+ decreases.In addition, in the zeolite regeneration method that passes a solution such as alkali metal hydroxide, it takes a long time for regeneration, and NH3 The discharge of highly contaminated recycled wastewater containing -N is unavoidable.

これに対しNH3−N を吸着したゼオライトを50
0〜600℃に加熱しアンモニアガス(NH3) を
脱離する加熱再生法では再生廃液の排出は無(優れた再
生法である。
On the other hand, 50% of zeolite adsorbed NH3-N
The thermal regeneration method, in which ammonia gas (NH3) is desorbed by heating to 0 to 600°C, does not require the discharge of recycled waste liquid (it is an excellent regeneration method).

しかし、粒状ゼオライトを充填塔に充填した方式では再
生時に充填塔よりゼオライトを取出し加熱炉で再生を行
なわなければならず、実装置において大量の一ゼオライ
トを充填塔より取出すことは大変な仕事であると同時に
粒状ゼオライトの粉化が起る。
However, in a method in which granular zeolite is packed into a packed column, the zeolite must be taken out from the packed column and regenerated in a heating furnace during regeneration, and it is a difficult task to extract a large amount of zeolite from the packed column in actual equipment. At the same time, powdering of the granular zeolite occurs.

更に、多量の水分を含んだ粒状ゼオライトを加熱再生炉
まで輸送することは大変な困難が伴なう。
Furthermore, it is very difficult to transport granular zeolite containing a large amount of water to a heating regeneration furnace.

本発明の目的はゼオライトへのNH3−Hの吸着速度を
速めることにある。
The purpose of the present invention is to increase the rate of adsorption of NH3-H onto zeolite.

本発明は、アンモニア性窒素を含む汚水とゼオライトを
接触させて汚水中よりアンモニア性窒素をゼオライトで
吸着除去する方法であって、下記(a)〜(d)の手段
、 (a) 垂直に設けられた流動層吸着塔を用い、活性
汚泥の不存在下、かつ非曝気の条件下において、先ず塔
下部より汚水を流入せしめ該塔下部にて汚水と100m
eshを通過する粒径の粉末ゼオライトとを攪拌下で接
触させてアンモニア性窒素を吸着させ、さらに塔内を上
昇させ、塔上部において非攪拌下で汚水と粉末ゼオライ
トとの接触を保つことによりアンモニア性窒素の吸着を
継続するようにした流動層吸着手段、 (b) 前記流動層吸着を終えた汚水とゼオライトと
を、沢材を備えた固定層吸着室に送り、ここで該沢材に
よってゼオライトを凝集させて固定吸着層を形成し、こ
こで残存アンモニア性窒素を吸着する手段、 (c) 前記凝集ゼオライトを処理水より分離、回収
し、再生する手段、および (d) 再生ゼオライトを前記流動層吸着手段へ再び
循環供給する手段、 を含むことを特徴とする。
The present invention is a method for adsorbing and removing ammonia nitrogen from waste water by bringing the waste water containing ammonia nitrogen into contact with zeolite, and the method includes the following means (a) to (d): (a) installed vertically; Using a fluidized bed adsorption tower, in the absence of activated sludge and under non-aerated conditions, sewage was first introduced from the bottom of the tower, and the sewage was separated by 100 m from the bottom of the tower.
Ammonia nitrogen is adsorbed by contacting powdered zeolite with a particle size that passes through the esh under stirring to adsorb ammonia nitrogen, and then raising the column and maintaining contact between wastewater and powdered zeolite at the top of the column without stirring. a fluidized bed adsorption means configured to continue adsorbing nitrogen, (b) sending the wastewater and zeolite that have been subjected to the fluidized bed adsorption to a fixed bed adsorption chamber equipped with a swamp material, where the zeolite is absorbed by the swamp material; (c) means for separating, recovering and regenerating the flocculated zeolite from the treated water; and (d) means for regenerating the regenerated zeolite from the fluidized water. It is characterized by comprising means for circulating supply again to the bed adsorption means.

本発明者等は、NH3−N・のゼオライトへの吸着速度
について着目し検討した結果、吸着速度はゼオライトの
粒子径、及び汚水とゼオライトの接触状態に大きく影響
を受けることを実験で確認した。
The present inventors focused on and studied the adsorption rate of NH3-N to zeolite, and as a result, they confirmed through experiments that the adsorption rate is greatly influenced by the particle size of the zeolite and the contact state between the wastewater and the zeolite.

即ち、ゼオライトの粒子径が小さい程、しかも汚水を攪
拌した方が吸着速度が増大することを確認した。
That is, it was confirmed that the adsorption rate increases as the particle size of the zeolite becomes smaller and as the wastewater is stirred.

さらに、本発明者らは次のような新しい知見を得、これ
により本発明を完成したものである。
Furthermore, the present inventors obtained the following new knowledge, and thereby completed the present invention.

即ち、流動層吸着におけるNH3−N の1オライド
への吸着現象は、液体からゼオライト表面までの過程、
ゼオライト表面におけるNH3−hとNa”、Ka等と
の交換吸着の過程とに大別ばれ、このうち、前者の過程
は汚水を攪拌した方力吸着時間短縮に有効であるが、後
者はほとんど詫響を受けず、従って、吸着初期のみ攪拌
すればよいということを確認した。
That is, the adsorption phenomenon of NH3-N to 1-olide in fluidized bed adsorption is a process from the liquid to the zeolite surface,
The process is roughly divided into the exchange adsorption process between NH3-h and Na'', Ka, etc. on the zeolite surface. Of these, the former process is effective in shortening the adsorption time by stirring the wastewater, but the latter process is almost impossible. Therefore, it was confirmed that stirring was only necessary at the initial stage of adsorption.

例えば比較的塔径のスなる流動層吸着塔下部に円周接線
方向より汚水を導入して過流を生じせしめて攪拌し、そ
の後上デさせて塔の上部より取り出すようにすれば、塔
下部では攪拌、塔上部では滞溜時間の確保を1つの塔で
行なうことができる。
For example, if wastewater is introduced from the tangential direction of the circumference into the lower part of a fluidized bed adsorption tower with a relatively small diameter, a turbulent flow is created and stirred, and then it is raised and taken out from the upper part of the tower. In this case, stirring and ensuring residence time in the upper part of the column can be performed in one column.

このように、吸着の初期段階、即ち、流動層吸着塔の下
部のみで攪拌を行なえばよいので、吸着塔の容量が大規
模であっても、攪拌装置を増設したり、もしくはより大
型の攪拌装置に設ける必要がない。
In this way, it is only necessary to stir at the initial stage of adsorption, that is, at the bottom of the fluidized bed adsorption tower. There is no need to provide it in the device.

また、攪拌装置の増設や大型化に伴なうエネルギ消費の
増大を招くこともない。
Moreover, an increase in energy consumption due to the addition or enlargement of the stirring device is not caused.

粉末ゼオライトの粒子径としては100mesh以下が
好ましい。
The particle size of the powdered zeolite is preferably 100 mesh or less.

以下、参考例、従来例および本発明の実施例を示す。Reference examples, conventional examples, and examples of the present invention are shown below.

第1図は以下の参考例1〜3および実験例1.2におけ
る経過時間(処理時間)とNH4+H4率との関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between elapsed time (processing time) and NH4+H4 ratio in Reference Examples 1 to 3 and Experimental Example 1.2 below.

従来例 1 内径20φの充填塔に天然ゼオライト(クリノプチロラ
イト、陽イオン交換容量160meq/100 ? )
8〜20mesh (0,84〜2.38mm)90
?を充填しく充填層高30cIrL)、NH,、ll−
30ppを含む汚水(蒸留水にNH4Clを溶解したも
の)を空塔速度(LV)10m/h、空間速度(Sv1
32h ’で流したところ、通水初期より0、8〜1
ppm のNH4+’がリークし、処理水量/ゼオ
ライト量(CV)150位がらNH4+の破過が認めら
れた。
Conventional example 1 Natural zeolite (clinoptilolite, cation exchange capacity 160 meq/100?) in a packed column with an inner diameter of 20φ
8~20mesh (0.84~2.38mm)90
? Filled bed height 30 cIrL), NH,, ll-
Sewage containing 30pp (NH4Cl dissolved in distilled water) was heated at a superficial velocity (LV) of 10 m/h and a space velocity (Sv1
When I flushed it at 32h', it was 0,8-1 from the beginning of water flow.
ppm of NH4+' leaked, and breakthrough of NH4+ was observed when the treated water amount/zeolite amount (CV) was around 150.

従来例 2 内径20φの充填塔に従来例1の天然ゼオライ) 32
〜60mesh (0,25〜0.5mm) 90 ?
を充填しく充填層高30 crfL) NH4+30
ppm を含む汚水(蒸留水にNH4Clを溶解した
もの)を空塔速度Ion/h、空間速度3211−1で
流したところ、通水初期より0.7〜0.9ppmノN
H4−+−がリークし、処理水量/ゼオライト量150
位がらNH4+の破過が認められた。
Conventional Example 2 Natural zeolite of Conventional Example 1 in a packed column with an inner diameter of 20φ) 32
~60mesh (0.25~0.5mm) 90?
Packed bed height 30 crfL) NH4+30
When wastewater (NH4Cl dissolved in distilled water) containing N ppm was flowed at a superficial velocity of Ion/h and a space velocity of 3211-1, 0.7 to 0.9 ppm of N was detected from the initial stage of water flow.
H4-+- leaked and the amount of treated water/zeolite amount was 150
Breakthrough of NH4+ was observed.

従来例 3 内径20φの充填塔に従来例1の天然ゼオライト60〜
100mesh (0,149〜0.25mm)90?
を充填しく充填層高30cm ) NH4+30ppm
を含む汚水(蒸留水にNH4Clを溶解したもの)
を空塔速度10m/h、空間速度(32h−で流したと
ころ、通水初期より0.4〜0.5ppm のNH,I
+がリークし、処理水量/ゼオライト量150位からN
H4+の破過が認められた。
Conventional Example 3 Natural zeolite 60~ of Conventional Example 1 is packed in a packed column with an inner diameter of 20φ.
100mesh (0.149~0.25mm) 90?
Filled bed height 30cm) NH4+30ppm
(NH4Cl dissolved in distilled water)
When flowing at a superficial velocity of 10 m/h and a space velocity of 32 h, 0.4 to 0.5 ppm of NH,I
+ leaked and N from the 150th position of treated water amount/zeolite amount
Breakthrough of H4+ was observed.

上記従来例1〜3よりゼオライトの粒径が小さい程す−
クNH4+濃度が低くなっており、明らかにゼオライト
へのNH4+の吸着速度が速くなっている。
The smaller the particle size of the zeolite is than the conventional examples 1 to 3 above, the
The NH4+ concentration in the zeolite is lower, and the rate of adsorption of NH4+ into the zeolite is clearly faster.

更にゼオライト粒径を小さくすれば(io。m esh
以下)その効果は顕著に表われることが予想される。
If the zeolite particle size is further reduced (io.mesh
(below) The effect is expected to be significant.

しかし、充填塔形式の吸着方式ではゼオライト粒径と塔
圧損は反比例の関係にあり粒径が小さくなる程塔圧損は
大きくなる。
However, in the packed column adsorption system, the zeolite particle size and column pressure loss are inversely proportional, and the smaller the particle size, the greater the column pressure loss.

このため充填塔形式の吸着方式でのゼオライト粒径は実
用的にはせいぜい20mesh程度である。
For this reason, the zeolite particle size in the packed column type adsorption system is practically about 20 mesh at most.

粒径2゜meshのゼオライトを用いて従来例1〜3の
処理条件では1pl)m程度のNH4+がリークし好ま
しくない。
Under the treatment conditions of Conventional Examples 1 to 3 using zeolite having a particle size of 2° mesh, about 1 pl)m of NH4+ leaks, which is not preferable.

これを避けるには空塔速度や空間速度を下げる、すなわ
ち吸着塔の処理能力の低下を余儀無くされる。
To avoid this, it is necessary to reduce the superficial velocity and space velocity, that is, to reduce the throughput of the adsorption tower.

従来例 4 内径2oφの充填塔に従来例1の天然ゼオライト8〜2
0mesh (0,84〜2.38mm)90 ?を充
填しく充填層高30CrIl)、NH4+30 ppm
、Na+6.0 1 Ca十+7・3ppm 1
Mg十十pm 2、5 ppm 、 Fe”+0.09 ppm を
含む汚水(水道水にNH4Clを溶解したもの)を空塔
速度10n/h、空間速度32h−’で流したところ通
水初期より1.5〜1.8 ppm のNH4+がリ
ークし、処理水量/ゼオライト70位がらNH4+の破
過が認められた。
Conventional Example 4 Natural zeolite 8 to 2 of Conventional Example 1 was placed in a packed column with an inner diameter of 2oφ.
0mesh (0.84~2.38mm)90? Filled bed height 30CrIl), NH4+30 ppm
, Na+6.0 1 Ca+7.3ppm 1
When sewage (NH4Cl dissolved in tap water) containing 100 pm 2.5 ppm of Mg and 0.09 ppm of Fe was flowed at a superficial velocity of 10 n/h and a space velocity of 32 h-', from the initial stage of water flow, 1. .5 to 1.8 ppm of NH4+ leaked, and breakthrough of NH4+ was observed from the treated water amount/zeolite level of 70.

従来例 5 内径20φの充填塔に従来例1の天然ゼオライト32〜
60mesh (0,25〜0.5mm) 90 ?を
充填しく充填層高30cIfL)、NH4+30ppm
十 Na 6.Oppm、Ca十+7.3ppm、Mg千
十十十干 2、5 ppm、 Fe 0.09 ppm
を含む汚水(水道水にNH4Clを溶解したもの)を空
塔速度10m/h1空間速度32h−’ で流したとこ
ろ通水初期より1.0〜1.2 ppm のNH,l
+がリークし、処理水量/ゼオライト80位からNH4
+の破過が認められた。
Conventional Example 5 Natural zeolite 32~ of Conventional Example 1 was placed in a packed tower with an inner diameter of 20φ.
60mesh (0.25~0.5mm) 90? Filled bed height 30cIfL), NH4+30ppm
10 Na 6. Oppm, Ca + 7.3 ppm, Mg 1,111 2,5 ppm, Fe 0.09 ppm
When sewage containing NH4Cl (NH4Cl dissolved in tap water) was flowed at a superficial velocity of 10 m/h and a space velocity of 32 h-', 1.0 to 1.2 ppm of NH,l was detected from the beginning of water flow.
+ leaks and NH4 from the treated water amount/zeolite 80th position
+ breakthrough was observed.

従来例 6 内径20φの充填塔に従来例1の天然ゼオライト6 o
〜i 00mesh (0,149〜0.25mm)
90S’を充填しく充填層高30cIrL)、NH,l
+30ppm 、 Na”6.0 、 Ca十+7
.3 ppm、99m Mg ” 2.5 ppm、 Fe 十+0.09 p
pmを含む汚水(水道水にNH4Clを溶解したもの)
を空塔速度10m/h、空間速度32h−’ で流した
ところ通水初期より0.6〜0.8 ppm のNH
4+がリークし、処理水量/ゼオライ)110位からN
H,+の破過が認められた。
Conventional Example 6 Natural zeolite of Conventional Example 1 6 o in a packed tower with an inner diameter of 20φ
~i 00mesh (0,149~0.25mm)
90S' packed bed height 30cIrL), NH,l
+30ppm, Na”6.0, Ca+7
.. 3 ppm, 99m Mg ” 2.5 ppm, Fe +0.09 p
Sewage containing pm (NH4Cl dissolved in tap water)
When the water was flowed at a superficial velocity of 10 m/h and a space velocity of 32 h-', 0.6 to 0.8 ppm of NH was detected from the beginning of water flow.
4+ leaked, treated water amount/zeolite) N from 110th position
Breakthrough of H,+ was observed.

上記従来例4〜6より汚水中にNH,I+以外のNa+
等の陽イオンが共存するとゼオライトのNH4+吸着容
量は著しく低下し、リークNH4+濃度も高くなること
がわかる。
From the above conventional examples 4 to 6, Na+ other than NH and I+ is present in the wastewater.
It can be seen that when such cations coexist, the NH4+ adsorption capacity of zeolite decreases significantly and the leakage NH4+ concentration also increases.

しかし、使用するゼオライトの粒径な小さくするとこれ
らの悪影響が緩和されている。
However, these adverse effects are alleviated by reducing the particle size of the zeolite used.

これはゼオライトの粒径が小さい程、NH4+の吸着速
度が早くなるため共存陽イオンの影響が少なくなり、N
H4+の吸着容量の著しい低下をきたすことなく、リー
クNH4+濃度も低くなるものと考えられる。
This is because the smaller the particle size of zeolite, the faster the adsorption rate of NH4+, which reduces the influence of coexisting cations, and N
It is considered that the leak NH4+ concentration is also reduced without causing a significant decrease in the H4+ adsorption capacity.

参考例 1 従来例1の天然ゼオライト8〜20mesh(0,84
〜2.38mm) 5 ?をNH4+50ppmを含む
汚水(蒸留水にNH4Clを溶解したもの)5001r
Ll中に投入し、200 rpm で攪拌したところ
、ゼオライトは浮遊することなく沈降していた。
Reference example 1 Natural zeolite of conventional example 1 8 to 20 mesh (0.84
~2.38mm) 5? Wastewater containing NH4+50ppm (NH4Cl dissolved in distilled water) 5001r
When the zeolite was poured into Ll and stirred at 200 rpm, the zeolite was found to be sedimented without floating.

この時の経過時間とNH4+除去率の関係を求めたとこ
ろ、経過時間の増加につれNH,l+除去率は徐々に向
上した。
When the relationship between the elapsed time and the NH4+ removal rate was determined, the NH,l+ removal rate gradually improved as the elapsed time increased.

参考例 2 従来例1の天然ゼオライト8〜20mesh(0,84
〜2.38mm) 5 ?をNH4+50 ppm を
含む汚水(蒸留水にNH4Clを溶解したもの)500
ml中に投入し600 rpmで攪拌したところゼオラ
イトの一部が浮遊した。
Reference example 2 Natural zeolite of conventional example 1 8 to 20 mesh (0.84
~2.38mm) 5? Wastewater containing NH4 + 50 ppm (NH4Cl dissolved in distilled water) 500
ml and stirred at 600 rpm, some of the zeolite floated.

経過時間とNH4+除去率の関係を求めたところ20m
1yr程度でNH4+除去率は一定になった。
The relationship between elapsed time and NH4+ removal rate was found to be 20m.
The NH4+ removal rate became constant after about 1 yr.

参考例 3 従来例1の天然ゼオライ)60〜100mesh(0,
149〜0.25mm) 5 L?をNH4+ 50p
pmを含む汚水(蒸留水にNH4Clを溶解したもの)
500ml中に投入し600 rpm で攪拌したと
ころゼオライトの半分程度が浮遊した。
Reference Example 3 Natural zeolite of Conventional Example 1) 60 to 100 mesh (0,
149~0.25mm) 5 L? NH4+ 50p
Wastewater containing pm (NH4Cl dissolved in distilled water)
When the mixture was poured into 500 ml and stirred at 600 rpm, about half of the zeolite was suspended.

経過時間とNH4+除去率の関係を求めたところ15m
m程度でNH,I+除去率は一定になった。
The relationship between elapsed time and NH4+ removal rate was found to be 15m.
The NH, I+ removal rate became constant at about m.

従来例 7 従来例1で用いたのと同じ天然ゼオライト(100me
sh通過)52を、NH4+50ppm、COD 10
0 ppm(グルコース)、活性汚泥2000 ppm
を含む汚水500m1中に投入し、2時間空気曝気
した後、処理水中の窒素成分を分析した結果、NH4+
5 ppm、 No、 73 ppm であった。
Conventional Example 7 The same natural zeolite (100me
sh passing) 52, NH4+50ppm, COD 10
0 ppm (glucose), activated sludge 2000 ppm
After pouring into 500ml of wastewater containing
5 ppm, No. 73 ppm.

上記従来例7では好気的条件下で微生物と接触するため
、COD成分の酸化と並行してNH,l+の硝化反応が
進行し、NO3−が生成する。
In Conventional Example 7, since contact is made with microorganisms under aerobic conditions, the nitrification reaction of NH and l+ proceeds in parallel with the oxidation of COD components, and NO3- is produced.

NO3−は陽イオン交換体であるゼオライトでは除去で
きず処理水中に残留してしまう。
NO3- cannot be removed by zeolite, which is a cation exchanger, and remains in the treated water.

したがって、この例における窒素成分の除去はゼオライ
トに一部残留吸着している僅かのNH,l+だげであり
、その除去率は36%程度と低い。
Therefore, the removal of nitrogen components in this example involves only a small amount of NH, l+ partially remaining adsorbed on the zeolite, and the removal rate is as low as about 36%.

実験例 1 従来例1の天然ゼオライ) 100mesh以下(0,
149maLl下、粉末ゼオライト)5グをNH4+5
0ppm を含む汚水(蒸留水にNH4C1を溶解した
もの)500ml中に投入し20Orpmで攪拌したと
ころでゼオライトの半分程度が浮遊した。
Experimental example 1 Natural zeolite of conventional example 1) 100 mesh or less (0,
Under 149maLl, 5g of powdered zeolite) was added to NH4+5
When the zeolite was poured into 500 ml of waste water containing 0 ppm (NH4C1 dissolved in distilled water) and stirred at 20 rpm, about half of the zeolite was suspended.

経過時間とNH4+除去率の関係を求めたところ8m1
n程度でNH4+除去率は一定になった。
The relationship between elapsed time and NH4+ removal rate was found to be 8m1.
The NH4+ removal rate became constant at about n.

実験例 2 従来例1の天然ゼオライ)100mesh以下(0,1
49mm以下、粉末ゼオライト)51をNHン50 p
pm を含む汚水(蒸留水にNH4C1を溶解したも
の)5007711中に投入し600rpmで攪拌した
ところゼオライトのほとんどが浮遊した。
Experimental Example 2 Natural zeolite of Conventional Example 1) 100 mesh or less (0,1
49mm or less, powdered zeolite) 51 with NH-50p
When the zeolite was poured into 5007711 wastewater (distilled water containing NH4C1) containing 5007711 pm and stirred at 600 rpm, most of the zeolite was suspended.

経過時間とNH4+除去率の関係を求めたところ4m1
yr程度でNH4+除去率は一定になった。
The relationship between elapsed time and NH4+ removal rate was found to be 4m1.
The NH4+ removal rate became constant at about yr.

上記参考例1〜3、実験例1.2よりゼオライトへのN
H4+の吸着速度はゼオライトの粒径とともに、ゼオラ
イトとNH4+の接触状態に大きくル響を受けることが
わかる。
From the above Reference Examples 1 to 3 and Experimental Example 1.2, N to zeolite
It can be seen that the adsorption rate of H4+ is greatly influenced by the particle size of the zeolite as well as the state of contact between the zeolite and NH4+.

これはゼオライト自身のNH4+吸着容量が1%程度と
、活性炭のCOD吸着吸着容量1稈 ト自身のNH,I+吸着点が非常に少ないことによるも
のと考えられる。
This is considered to be due to the fact that the NH4+ adsorption capacity of the zeolite itself is about 1%, and the number of NH, I+ adsorption points per culm of the COD adsorption capacity of activated carbon is very small.

参考例 4 従来例1の天然ゼオライト8〜20mesh(0,84
〜2.38mm) 59を水500m1中に投入後、穴
径10μのフィルターで濾過し、フィルター上よりゼオ
ライトを剥離して水中に再び投入したところフィルター
上での形は直ちに崩れた。
Reference example 4 Natural zeolite of conventional example 1 8 to 20 mesh (0.84
~2.38 mm) 59 was poured into 500 ml of water, filtered through a filter with a hole diameter of 10 μm, and when the zeolite was peeled off from the top of the filter and poured into the water again, the shape on the filter immediately collapsed.

参考例 5 従来例1の天然ゼオライト60〜100 mesh(0
,149〜0.25mm)5グを水500mA中に投入
後、穴径10μのフィルターで濾過し、フィルター上よ
りゼオライトを剥離して水中に再び投入したこころフィ
ルター上での形は直ちに崩れた。
Reference example 5 Natural zeolite of conventional example 1 60 to 100 mesh (0
, 149-0.25 mm) was poured into water at 500 mA, filtered through a filter with a hole diameter of 10 μm, the zeolite was peeled off from the top of the filter, and the shape immediately collapsed on the Kokoro filter when it was put back into the water.

実験例 3 従来例1の天然ゼオライ) 100 mesh以下(0
,149mm以下、粉末ゼオライト)5グを水500m
1中に投入後、穴径10μのフィルターで沢過するとゼ
オライトはフィルター上よりフレーク状に剥離でき、こ
の物を再び水中に投入したところフィルター上での形を
数分間保った後、徐々に崩壊した。
Experimental example 3 Natural zeolite of conventional example 1) 100 mesh or less (0
, 149 mm or less, 5 g of powdered zeolite) in 500 m of water
After pouring it into water, the zeolite was filtered through a filter with a hole diameter of 10μ, and the zeolite was peeled off from the top of the filter in the form of flakes.When this material was poured into water again, it maintained its shape on the filter for several minutes, then gradually disintegrated. did.

上記参考例4.5および実験例3より粒径の小さいゼオ
ライトをp材を用いて凝集したものは短時間であれば水
中でそのままの形を保ち、水との分離が容易であること
がわかる。
From Reference Example 4.5 and Experimental Example 3 above, it can be seen that zeolite with a small particle size agglomerated using P material maintains its shape in water for a short time and is easily separated from water. .

これは粒径の小さいゼオライトを沢材で加圧凝集するこ
とにより、ゼオディト粒子間に粘着性が生じ固化するこ
とによるものである。
This is because zeolite with a small particle size is agglomerated under pressure using a baffle material, which causes adhesion between the zeodyte particles and solidifies them.

なお、上記実験例3は本発明において粉末ゼオライトの
ね径が100 mesh通過のものが好適であることを
示す例である。
The above Experimental Example 3 is an example showing that powdered zeolite having a thread diameter of 100 mesh is suitable in the present invention.

実施例 第2図は本発明の具体的実施例を示すフローである。Example FIG. 2 is a flowchart showing a specific embodiment of the present invention.

NH,l+30 ppm を含む汚水1と150〜2
50 meshの粉末ゼオライト3(汚水に対するゼオ
ライト量は2容量%)をポンプ2で流動層吸着塔4に導
き1分間吸着処理した。
Sewage 1 and 150-2 containing NH, l+30 ppm
Powdered zeolite 3 (the amount of zeolite relative to wastewater is 2% by volume) of 50 mesh was introduced into a fluidized bed adsorption tower 4 using a pump 2 and subjected to adsorption treatment for 1 minute.

汚水は吸着塔4の下部で外周接線方向から導入され渦流
となって攪拌効果を生じながら粉末ゼオライトと接触し
、かつそれらは次第に上昇しそして非攪拌状態で粉末ゼ
オライトとの接触を十分に保ち、汚水中のNH4+を速
やかにゼオライトに吸着させる。
The waste water is introduced from the tangential direction of the outer circumference at the bottom of the adsorption tower 4, forms a vortex, and comes into contact with the powdered zeolite while producing a stirring effect, and gradually rises and maintains sufficient contact with the powdered zeolite in a non-stirring state. To quickly adsorb NH4+ in wastewater onto zeolite.

ここで、上昇した汚水は吸着塔4の上部では渦流が止ま
り単なる上昇流となり、そして実質的に非攪拌状態とな
る。
Here, the vortex of the rising wastewater stops at the upper part of the adsorption tower 4 and becomes a mere upward flow, and is substantially in a non-agitation state.

そして接触滞溜時間の確保だけが行なわれる。Only the contact residence time is ensured.

汚水中のNH4+を吸着した粉末ゼオライトは分離塔5
で水より分離される。
Powdered zeolite that has adsorbed NH4+ in wastewater is transferred to separation column 5.
It is separated from water.

すなわち粉末ゼオライトはp材6上にゼオライト固定層
7となって分離される。
That is, the powdered zeolite becomes a zeolite fixed layer 7 on the p-material 6 and is separated.

ゼオライトは固定層の厚さが1の、ろ過面In”になる
量を分離塔に送入した。
The zeolite was fed into the separation column in such an amount that the thickness of the fixed bed was 1 and the filtration surface was In''.

分離塔5を出たp通塔8により分離塔5で分離しきれな
かった少量の粉末ゼオライトを沢過しNH,I+を含ま
ない処理水9となって放流される。
A small amount of powdered zeolite that could not be completely separated in the separation column 5 is filtered through the p-passing column 8 that exits the separation column 5, and is discharged as treated water 9 that does not contain NH and I+.

所定のゼオライトを分離した分離塔5は汚水の導入を止
めた後、沢材6にp適時の逆圧をかげ1材表面のゼオラ
イト固定層をフレーク状10に剥離し分離塔5の下部に
剥離ゼオライト11として分離回収する。
After separating the predetermined zeolite, the separation tower 5 stops introducing wastewater, and then applies a timely back pressure to the slough material 6 to peel off the zeolite fixed layer on the surface of the material 1 into flakes 10, which are then peeled off at the bottom of the separation tower 5. It is separated and recovered as zeolite 11.

分離塔5より取出された剥離ゼオライトは公知の再生方
法で再生装置12により再生され再び使用する。
The exfoliated zeolite taken out from the separation column 5 is regenerated by a regenerator 12 using a known regeneration method and used again.

本実施例によれば粒径の小さい粉末ゼオライトを用いて
おり、ゼオライトと汚水との接触を十分行ないうるので
汚水中のNa十等共存イオンの影響は少なく、又、1材
表面に粉末ゼオライトの固定層吸着部を形成させている
ので低濃度のNf(Jのリークも妨げる。
According to this example, powdered zeolite with a small particle size is used, and the zeolite and wastewater can sufficiently contact each other, so that the influence of coexisting ions such as Na and the like in the wastewater is small. Since a fixed layer adsorption portion is formed, leakage of low concentration Nf (J) is also prevented.

実際、CV150まで処理したときの処理水中のNH,
1+量は0.lppm であった。
In fact, NH in treated water when treated up to CV150,
1+ amount is 0. It was lppm.

更に、粉末ゼオライトの持つ粒径分布によりt材表面で
は粉末ゼオライト自身がp材の役目をはたす、いわゆる
自己プリコー)?過が行なわれるため分離塔での圧損は
せいぜい1ky/c7Aと小さい。
Furthermore, due to the particle size distribution of the powdered zeolite, the powdered zeolite itself acts as a p-material on the surface of the t-material (so-called self-precor)? Since filtration is carried out, the pressure drop in the separation column is as small as 1 ky/c7A at most.

分離塔からのゼオライトの取出しは剥離時のフレーク状
の形を保っているので容易であり、分離塔から取出した
ゼオライトは粉末であるためスラリー状として容易に再
生装置まで輸送できる。
The zeolite can be easily taken out from the separation tower since it maintains its flake-like shape at the time of separation, and since the zeolite taken out from the separation tower is a powder, it can be easily transported to the regenerator in the form of a slurry.

本発明において分離塔を複数個設けることにより連続運
転が可能である。
In the present invention, continuous operation is possible by providing a plurality of separation columns.

更に、NH3−N 吸着済みゼオライトの水からの分離
が容易なので、再生法としては廃液処理の必要のない加
熱再生法が簡単に適用できる。
Furthermore, since the NH3-N adsorbed zeolite can be easily separated from water, a thermal regeneration method that does not require waste liquid treatment can be easily applied as a regeneration method.

以上本発明によれば、ゼオライトへのNH3−Nの吸着
速度を速めることができる。
As described above, according to the present invention, the rate of adsorption of NH3-N to zeolite can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNH4+の吸着速度を示す図、第2図は本発明
の詳細な説明する概略図である。 1・・・・・・汚水、3・・・・・・粉末ゼオライト、
4・・・・・・流動層吸着塔、5・・・・・・分離塔、
6・・・・・・沢材、7・・・・・・ゼオライト固定層
、8・・・・・・沢過塔、9・・・・・・処理水、12
・・・・・・再生装置。
FIG. 1 is a diagram showing the adsorption rate of NH4+, and FIG. 2 is a schematic diagram illustrating details of the present invention. 1... Sewage, 3... Powdered zeolite,
4... Fluidized bed adsorption tower, 5... Separation tower,
6... Swash material, 7... Zeolite fixed bed, 8... Swarf tower, 9... Treated water, 12
・・・・・・Playback device.

Claims (1)

【特許請求の範囲】 1 アンモニア性窒素を含む汚水とゼオライトを接触さ
せて汚水中よりアンモニア性窒素を除去する方法であっ
て、下記(a)〜(d)の手段、(a) 垂直に設け
られた流動層吸着塔を用い、活性汚泥の不存在下、かつ
非曝気の条件下において、先ず塔下部より汚水を流入せ
しめ該塔下部にて汚水と100 meshを通過する粒
径の粉末ゼオライトを攪拌下で接触させてアンモニア性
窒素を吸着させ、さらに塔内を上昇させ、塔上部におい
て非攪拌下で汚水と粉末ゼオライトとの接触を保つこと
によりアンモニア性窒素の吸着を継続するようにした流
動層吸着手段、 (b) 前記流動層吸着を終えた汚水とゼオライトと
を、沢材を備えた固定層吸着室に送り、ここで該P材に
よってゼオライトを凝集させて固定吸着層を形成し、こ
こで残存アンモニア性窒素を吸着する手段、 (C) 前記凝集ゼオライトを処理水より分離、回収
し、再生する手段、および (d) 再生ゼオライトを前記流動層吸着手段へ再び
循環供給する手段、 を含むことを特徴とする汚水中からのアンモニア性窒素
除去方法。
[Scope of Claims] 1. A method for removing ammonia nitrogen from waste water by contacting waste water containing ammonia nitrogen with zeolite, the method comprising the following means (a) to (d): (a) installed vertically; Using a fluidized bed adsorption tower, in the absence of activated sludge and under non-aerated conditions, sewage was first introduced from the bottom of the tower, and powdered zeolite with a particle size that would pass through the sewage and 100 mesh was mixed at the bottom of the tower. A fluid flow system that adsorbs ammonia nitrogen by contacting it under stirring, then raises the inside of the column, and maintains contact between wastewater and powdered zeolite at the top of the column without stirring to continue adsorbing ammonia nitrogen. bed adsorption means, (b) sending the sewage and zeolite that have undergone the fluidized bed adsorption to a fixed bed adsorption chamber equipped with a bed material, where the zeolite is aggregated by the P material to form a fixed adsorption bed; (C) means for separating, recovering and regenerating the flocculated zeolite from the treated water; and (d) means for circulating and supplying the regenerated zeolite to the fluidized bed adsorption means. A method for removing ammonia nitrogen from wastewater, characterized by comprising:
JP51099671A 1976-08-23 1976-08-23 Method for removing ammonia nitrogen from wastewater Expired JPS5855838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51099671A JPS5855838B2 (en) 1976-08-23 1976-08-23 Method for removing ammonia nitrogen from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51099671A JPS5855838B2 (en) 1976-08-23 1976-08-23 Method for removing ammonia nitrogen from wastewater

Publications (2)

Publication Number Publication Date
JPS5326454A JPS5326454A (en) 1978-03-11
JPS5855838B2 true JPS5855838B2 (en) 1983-12-12

Family

ID=14253487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51099671A Expired JPS5855838B2 (en) 1976-08-23 1976-08-23 Method for removing ammonia nitrogen from wastewater

Country Status (1)

Country Link
JP (1) JPS5855838B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115488A (en) * 1984-06-29 1986-01-23 Matsushita Electric Ind Co Ltd Color synchronizing device
CN1330583C (en) * 2004-12-27 2007-08-08 上海自来水市北科技有限公司 Method for removing ammonia and nitrogen in raw water with powdery zeolite
JP5259535B2 (en) 2009-09-07 2013-08-07 株式会社東芝 Valuables collection system and method of operating valuables collection system
JP5562606B2 (en) * 2009-09-30 2014-07-30 株式会社東芝 Method for treating radioactive ammonia-containing effluent
JP2019093329A (en) * 2017-11-21 2019-06-20 清水建設株式会社 Method of removing ammonia

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882661A (en) * 1972-02-02 1973-11-05
JPS4978676A (en) * 1972-12-05 1974-07-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882661A (en) * 1972-02-02 1973-11-05
JPS4978676A (en) * 1972-12-05 1974-07-29

Also Published As

Publication number Publication date
JPS5326454A (en) 1978-03-11

Similar Documents

Publication Publication Date Title
JPS62500009A (en) Method and apparatus for removing suspended substances, biological nutrients and dissolved metal compounds from sewage contaminated with organic and/or inorganic substances
US20100300948A1 (en) Water treatment equipment
US7273555B2 (en) Process for continuous ion exchange
JPS5889986A (en) Reduction of metal content treated efluent
CN203360206U (en) Device for purifying technological styrene condensate
JPS5855838B2 (en) Method for removing ammonia nitrogen from wastewater
JP2004045371A (en) Processing method and device for liquid including radionuclide
JP3913939B2 (en) Boron recovery method
JP3373033B2 (en) How to remove phosphorus from water
JP2002224663A (en) Method and apparatus for removing and recovering phosphorus from water containing ss and phosphorus
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
TW201813929A (en) Method of synthesizing homogeneous granular basic cupric carbonate and copper oxide by using fluidized-bed crystallization technology
JPH11147088A (en) Dephosphorization of waste water
JPH11207365A (en) Treatment of selenium-containing waste water
CN1251973C (en) Method of treating reduction water of DSD acid producing process by ion exchange adsoption
JP4665279B2 (en) Method for treating boron-containing water
RU2573826C1 (en) Method of deactivation of wasted ion-exchange resins, polluted with radionuclides
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP3156956B2 (en) Advanced treatment of organic wastewater
JPS6036831B2 (en) Treatment method for water containing arsenic and silica
JPS5848237B2 (en) How to remove ammonia nitrogen from wastewater
JPH10314797A (en) Method for treating water containing fluoride ion and cod component
SU812735A1 (en) Method of solution desalinization
JP2003080269A (en) Method for treating boron-containing water
JPS5913622A (en) Method for recovering boric acid from sea water