JP2003080269A - Method for treating boron-containing water - Google Patents

Method for treating boron-containing water

Info

Publication number
JP2003080269A
JP2003080269A JP2001271428A JP2001271428A JP2003080269A JP 2003080269 A JP2003080269 A JP 2003080269A JP 2001271428 A JP2001271428 A JP 2001271428A JP 2001271428 A JP2001271428 A JP 2001271428A JP 2003080269 A JP2003080269 A JP 2003080269A
Authority
JP
Japan
Prior art keywords
boron
containing water
ion exchange
exchange resin
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001271428A
Other languages
Japanese (ja)
Inventor
Takao Hayasaka
孝雄 早坂
Tsuguaki Yamaura
継明 山浦
Takeshi Sato
武 佐藤
Yoshihiro Eto
良弘 惠藤
Hiroyuki Asada
裕之 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Kurita Water Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2001271428A priority Critical patent/JP2003080269A/en
Publication of JP2003080269A publication Critical patent/JP2003080269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating boron-containing water by which the amount of chemicals used and the regeneration frequency of an ion exchange resin are reduced and boron can be efficiently removed by flocculation precipitation and/or ion exchange. SOLUTION: (1) In the method for treating boron-containing water by flocculation precipitation, the concentration of boron in the boron-containing water is automatically analyzed and the amount of a flocculant added is automatically controlled. (2) When the boron-containing water is treated by an ion exchange method, the concentration of boron is automatically analyzed and time appropriate to the regeneration of an ion exchange resin is automatically controlled. (3) When the boron-containing water is treated by the ion exchange method after treatment by flocculation precipitation, the concentration of boron is automatically analyzed and the amount of a flocculant added is automatically controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ホウ素含有水の処
理方法に関する。さらに詳しくは、本発明は、ホウ素含
有水を凝集沈殿処理及び/又はイオン交換処理により処
理するに際して、使用する薬剤の量とイオン交換樹脂の
再生頻度を低減し、効率的にホウ素を除去することがで
きるホウ素含有水の処理方法に関する。
TECHNICAL FIELD The present invention relates to a method for treating water containing boron. More specifically, the present invention reduces the amount of chemicals used and the regeneration frequency of the ion exchange resin to efficiently remove boron when the boron-containing water is treated by coagulation sedimentation treatment and / or ion exchange treatment. The present invention relates to a method for treating water containing boron.

【0002】[0002]

【従来の技術】ホウ素化合物は、医薬品、化粧品、石け
ん、電気メッキなどの種々の用途に使用され、これらの
製造工程などから発生する排水にはホウ素が含まれてい
る。また、ごみ焼却場の洗煙排水、排煙脱硫排水、地熱
発電排水などにもホウ素が含まれている場合がある。こ
のようなホウ素含有水の処理方法として、硫酸アルミニ
ウムと水酸化カルシウムを添加してホウ素を不溶性沈殿
物として除去する方法、ホウ素を選択的に吸着するイオ
ン吸着樹脂を用いてホウ素を吸着除去する方法などが知
られている。排水中に含まれるホウ素の量は、多くの場
合、時間とともに変動する。例えば、ある石炭火力発電
所の排煙脱硫排水では、排水に含まれるホウ素の量が1
00〜500mg/Lの範囲で変動している。このような
場合、従来は、最大ホウ素濃度に合わせた薬剤添加量又
はイオン交換樹脂再生頻度に設定して運転していた。こ
のために、薬剤使用量と汚泥発生量が多いという問題が
あった。
2. Description of the Related Art Boron compounds are used for various purposes such as pharmaceuticals, cosmetics, soaps, electroplating, etc., and the wastewater generated from the manufacturing process of these compounds contains boron. Boron may also be contained in the smoke incinerator wastewater, flue gas desulfurization wastewater, and geothermal power generation wastewater. As a method of treating such boron-containing water, a method of adding aluminum sulfate and calcium hydroxide to remove boron as an insoluble precipitate, a method of adsorbing and removing boron using an ion adsorption resin that selectively adsorbs boron Are known. The amount of boron contained in wastewater often fluctuates over time. For example, in a flue gas desulfurization wastewater of a coal-fired power plant, the amount of boron contained in the wastewater is 1
It varies in the range of 00 to 500 mg / L. In such a case, conventionally, the operation was performed by setting the amount of chemical addition or the ion-exchange resin regeneration frequency according to the maximum boron concentration. Therefore, there is a problem that the amount of chemicals used and the amount of sludge generated are large.

【0003】[0003]

【発明が解決しようとする課題】本発明は、ホウ素含有
水を凝集沈殿処理及び/又はイオン交換処理により処理
するに際して、使用する薬剤の量とイオン交換樹脂の再
生頻度を低減し、効率的にホウ素を除去することができ
るホウ素含有水の処理方法を提供することを目的として
なされたものである。
DISCLOSURE OF THE INVENTION The present invention reduces the amount of chemicals used and the regeneration frequency of an ion exchange resin efficiently when treating boron-containing water by coagulating sedimentation treatment and / or ion exchange treatment. The object of the present invention is to provide a method for treating boron-containing water capable of removing boron.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意研究を重ねた結果、水質変動の激し
いホウ素含有水の処理に際して、ホウ素含有水中のホウ
素濃度を分析して、凝集薬剤の添加量又はイオン交換樹
脂の再生時機を制御することにより、使用する薬剤量と
発生する汚泥量を低減し得ることを見いだし、この知見
に基づいて本発明を完成するに至った。すなわち、本発
明は、(1)ホウ素含有水を凝集沈殿処理するに際し
て、ホウ素含有水のホウ素濃度を自動分析して凝集薬剤
の添加量を自動制御することを特徴とするホウ素含有水
の処理方法、(2)ホウ素含有水をイオン交換処理する
に際して、ホウ素含有水のホウ素濃度を自動分析してイ
オン交換樹脂の再生時機を自動制御することを特徴とす
るホウ素含有水の処理方法、(3)ホウ素含有水を凝集
沈殿処理したのちイオン交換処理するに際して、ホウ素
含有水のホウ素濃度を自動分析して凝集薬剤の添加量を
自動制御することを特徴とするホウ素含有水の処理方
法、及び、(4)ホウ素含有水を凝集沈殿処理したのち
イオン交換処理するに際して、ホウ素含有水のホウ素濃
度を自動分析して凝集薬剤の添加量を自動制御し、凝集
沈殿処理水のホウ素濃度を自動分析してイオン交換樹脂
の再生時機を自動制御することを特徴とするホウ素含有
水の処理方法、を提供するものである。さらに、本発明
の好ましい態様として、(5)凝集薬剤が、アルミニウ
ム化合物及びカルシウム化合物である第1項、第3項又
は第4項記載のホウ素含有水の処理方法、(6)イオン
交換樹脂が、ホウ素選択吸着樹脂である第2項、第3項
又は第4項記載のホウ素含有水の処理方法、を挙げるこ
とができる。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have analyzed the boron concentration in boron-containing water when treating the boron-containing water whose water quality changes drastically. It was found that the amount of the chemical used and the amount of sludge generated can be reduced by controlling the amount of the flocculating chemical added or the time of regeneration of the ion exchange resin, and the present invention has been completed based on this finding. That is, the present invention provides (1) a method of treating boron-containing water, which comprises automatically analyzing the boron concentration of boron-containing water and automatically controlling the amount of addition of the aggregating agent when the boron-containing water is aggregated and precipitated. (2) A method for treating boron-containing water, which comprises automatically analyzing the boron concentration of the boron-containing water and automatically controlling the regeneration time of the ion-exchange resin when the boron-containing water is subjected to the ion exchange treatment, (3) When performing an ion exchange treatment after the coagulation-precipitation treatment of the boron-containing water, the boron-containing water treatment method is characterized by automatically controlling the boron concentration of the boron-containing water and automatically controlling the addition amount of the aggregating agent, and ( 4) When the boron-containing water is subjected to the coagulation-sedimentation treatment and then the ion exchange treatment, the boron concentration of the boron-containing water is automatically analyzed to automatically control the addition amount of the aggregating agent to perform the coagulation-sedimentation treatment. The boron concentration of the water by the automatic analysis is intended to provide a processing method, the boron-containing water, characterized by automatically controlling the playback timing of the ion exchange resin. Further, as a preferred embodiment of the present invention, (5) the aggregating agent is an aluminum compound and a calcium compound, the method for treating boron-containing water according to the first, third or fourth aspects, (6) an ion exchange resin The method of treating boron-containing water according to item 2, 3, or 4 which is a boron selective adsorption resin.

【0005】[0005]

【発明の実施の形態】本発明方法の第一の態様において
は、ホウ素含有水を凝集沈殿処理するに際して、ホウ素
含有水のホウ素濃度を自動分析して凝集薬剤の添加量を
自動制御する。本発明方法の第二の態様においては、ホ
ウ素含有水をイオン交換処理するに際して、ホウ素含有
水のホウ素濃度を自動分析してイオン交換樹脂の再生時
機を自動制御する。本発明方法の第三の態様において
は、ホウ素含有水を凝集沈殿処理したのちイオン交換処
理するに際して、ホウ素含有水のホウ素濃度を自動分析
して凝集薬剤の添加量を自動制御する。本発明方法の第
四の態様においては、ホウ素含有水を凝集沈殿処理した
のちイオン交換処理するに際して、ホウ素含有水のホウ
素濃度を自動分析して凝集薬剤の添加量を自動制御し、
凝集沈殿処理水のホウ素濃度を自動分析してイオン交換
樹脂の再生時機を自動制御する。本発明方法において、
ホウ素含有水のホウ素濃度の分析方法に特に制限はな
く、例えば、マンニトール添加苛性ソーダ滴定法、メチ
レンブルー吸光光度法、アゾメチンH吸光光度法などを
挙げることができる。本発明方法に用いる凝集薬剤とし
ては、例えば、硫酸アルミニウムなどのアルミニウム化
合物、水酸化カルシウムなどのカルシウム化合物などを
挙げることができる。凝集薬剤を添加したときの水のpH
は、9以上であることが好ましく、10以上であること
がより好ましく、12以上であることがさらに好まし
い。pH9以上において、凝集薬剤を存在させることによ
り、ホウ素は不溶性沈殿物となって分離、除去される。
本発明方法においては、ホウ素含有水を凝集沈殿処理す
るに際して、ホウ素含有水のホウ素濃度を自動分析し、
処理水の目標水質に合わせた凝集薬剤の添加量を自動制
御する。必要な凝集薬剤の添加量は、あらかじめジャー
テストなどにより求めておくことができる。凝集薬剤の
添加量の自動制御は、薬剤注入ポンプとしてプランジャ
ーポンプ、歯車ポンプなどを用いて、そのストローク、
回転速度などを自動制御することにより行うことができ
る。pHの調整は、必要に応じてアルカリ剤を添加するこ
とにより行うことができる。生成する不溶性沈殿物は沈
降性が良好であり、自然沈降により容易に固液分離さ
れ、系外に除去することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the first aspect of the method of the present invention, when the boron-containing water is subjected to coagulation-precipitation treatment, the boron concentration of the boron-containing water is automatically analyzed to automatically control the addition amount of the coagulation agent. In the second embodiment of the method of the present invention, when the boron-containing water is subjected to the ion exchange treatment, the boron concentration of the boron-containing water is automatically analyzed to automatically control the regeneration time of the ion exchange resin. In the third aspect of the method of the present invention, when the boron-containing water is subjected to the coagulation-precipitation treatment and then the ion-exchange treatment, the boron concentration of the boron-containing water is automatically analyzed to automatically control the addition amount of the aggregating agent. In the fourth aspect of the method of the present invention, when the ion-exchange treatment after the coagulation-precipitation treatment of the boron-containing water, the boron concentration of the boron-containing water is automatically analyzed to automatically control the addition amount of the aggregating agent,
The boron concentration of the coagulation-precipitation treated water is automatically analyzed to automatically control the time of regeneration of the ion exchange resin. In the method of the present invention,
The method for analyzing the boron concentration of the boron-containing water is not particularly limited, and examples thereof include a mannitol-added caustic soda titration method, a methylene blue absorptiometry method, and an azomethine H absorptiometry method. Examples of the aggregating agent used in the method of the present invention include aluminum compounds such as aluminum sulfate and calcium compounds such as calcium hydroxide. PH of water when a flocculant is added
Is preferably 9 or more, more preferably 10 or more, and further preferably 12 or more. At pH 9 or higher, the presence of the aggregating agent causes boron to be separated and removed as an insoluble precipitate.
In the method of the present invention, in the coagulating sedimentation treatment of boron-containing water, the boron concentration of boron-containing water is automatically analyzed,
The amount of flocculating agent added is automatically controlled according to the target water quality of the treated water. The required amount of the aggregating agent to be added can be determined in advance by a jar test or the like. Automatic control of the amount of aggregating agent added, using a plunger pump, a gear pump, etc. as the agent injection pump, its stroke,
It can be performed by automatically controlling the rotation speed and the like. The pH can be adjusted by adding an alkaline agent as needed. The resulting insoluble precipitate has a good settling property and can be easily solid-liquid separated by natural settling and removed outside the system.

【0006】本発明方法に用いるイオン交換樹脂として
は、例えば、アニオン交換樹脂、ホウ素選択吸着樹脂な
どを挙げることができる。ホウ素含有水中のホウ素が、
オルトホウ酸イオンBO3 3-、テトラフルオロホウ酸イ
オンBF4 -などとして存在する場合は、アニオン交換樹
脂を好適に用いることができる。アニオン交換樹脂は、
強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂
のいずれをも用いることができるが、弱塩基性アニオン
交換樹脂の方が再生効率は良好である。アニオン交換樹
脂はSO4形又はOH形とし、イオン交換樹脂層にホウ
素含有水を通水してホウ素を交換吸着させることができ
る。ホウ素選択吸着樹脂としては、例えば、グルカミン
型イオン交換樹脂などを挙げることができる。ホウ素選
択吸着樹脂を用いると、ホウ素含有水中のホウ素を選択
的に吸着して除去することができる。本発明方法におい
ては、イオン交換樹脂に通水するホウ素含有水中のホウ
素濃度を分析して、ホウ素濃度(g/m3)と通水量
(m3)の積として算出されるホウ素負荷量が、イオン
交換樹脂の交換容量に近づいたとき、あるいは、交換容
量に達したときに、自動制御によりホウ素含有水の通水
を中止してイオン交換樹脂の再生に移行する。例えば、
ホウ素含有水のホウ素濃度を1時間ごとに自動分析し、
その間の通水量との積からイオン交換樹脂に送られたホ
ウ素の量を算出し、ホウ素の量を積算することにより、
イオン交換樹脂の再生時機を自動制御することができ
る。ホウ素を吸着したアニオン交換樹脂は、再生剤を通
液して吸着されたホウ素を溶離することにより、再生す
ることができる。再生剤としては、例えば、硫酸、塩酸
などを用いることができる。硫酸を再生剤として通液す
ることにより、樹脂からホウ素が溶離し、樹脂がSO4
形となって再生される。さらに、必要に応じて水酸化ナ
トリウム水溶液などを通液することにより、樹脂をOH
形にすることができる。
Examples of the ion exchange resin used in the method of the present invention include anion exchange resins and boron selective adsorption resins. Boron in the boron-containing water
When present as orthoborate ion BO 3 3− , tetrafluoroborate ion BF 4 −, etc., an anion exchange resin can be preferably used. Anion exchange resin is
Although both a strongly basic anion exchange resin and a weakly basic anion exchange resin can be used, the weakly basic anion exchange resin has better regeneration efficiency. The anion exchange resin is SO 4 type or OH type, and boron-containing water can be passed through the ion exchange resin layer to exchange and adsorb boron. Examples of the boron selective adsorption resin include glucamine type ion exchange resin and the like. By using the boron selective adsorption resin, boron in the boron-containing water can be selectively adsorbed and removed. In the method of the present invention, the boron loading amount calculated as the product of the boron concentration (g / m 3 ) and the water flow rate (m 3 ) is analyzed by analyzing the boron concentration in the boron-containing water that passes through the ion exchange resin. When the exchange capacity of the ion exchange resin approaches or when the exchange capacity is reached, the water flow containing boron is stopped by automatic control and the ion exchange resin is regenerated. For example,
Automatically analyze the boron concentration of boron-containing water every hour,
By calculating the amount of boron sent to the ion exchange resin from the product with the water flow rate during that time, and by integrating the amount of boron,
The time of regeneration of the ion exchange resin can be automatically controlled. The anion exchange resin having adsorbed boron can be regenerated by passing a regenerant and eluting the adsorbed boron. As the regenerant, for example, sulfuric acid, hydrochloric acid or the like can be used. By passing sulfuric acid as a regenerant, boron is eluted from the resin and the resin is dissolved in SO 4
Shaped and played. Furthermore, if necessary, pass an aqueous solution of sodium hydroxide, etc.
Can be shaped.

【0007】本発明方法において、ホウ素含有水を凝集
沈殿処理したのちイオン交換処理する場合は、ホウ素含
有水のホウ素濃度を自動分析して凝集薬剤の添加量を自
動制御し、イオン交換樹脂の再生は一定時間ごとに行う
ことができ、あるいは、ホウ素含有水のホウ素濃度を自
動分析して凝集薬剤の添加量を自動制御し、さらに凝集
沈殿処理水のホウ素濃度を自動分析して、イオン交換樹
脂の再生時機を自動制御することもできる。凝集沈殿処
理において、ホウ素含有水のホウ素濃度を自動分析して
凝集薬剤の添加量を自動制御することにより、凝集沈殿
処理水のホウ素濃度はほぼ一定となるので、イオン交換
樹脂の再生は一定時間ごとに行うことができる。しか
し、凝集沈殿処理水のホウ素濃度を自動分析してイオン
交換樹脂の再生時機を自動制御することにより、イオン
交換樹脂の再生頻度をさらに減少することができる。図
1は、本発明方法の実施の一態様の工程系統図である。
本態様は、ホウ素含有水の凝集沈殿処理であり、装置
は、反応槽1、アルミニウム化合物貯槽2、カルシウム
化合物貯槽3、ホウ素濃度自動分析計4、アルミニウム
化合物注入ポンプ5、pHセンサー6、カルシウム化合物
注入量制御装置7、カルシウム化合物注入ポンプ8、沈
殿槽9を備えている。反応槽1に供給される原水のホウ
素濃度が、ホウ素濃度自動分析計4により分析され、信
号がアルミニウム化合物注入ポンプ5に送られて、アル
ミニウム化合物貯槽2から注入されるアルミニウム化合
物の量が制御される。pHセンサー6とカルシウム化合物
注入量制御装置7により、カルシウム化合物注入ポンプ
8に信号が送られ、反応槽内の水のpHが所定の値になる
ように、カルシウム化合物貯槽3から注入されるカルシ
ウム化合物の量が制御される。ホウ素が不溶性沈殿物を
生成して沈殿した水は、反応槽から沈殿槽9に送られて
固液分離され、汚泥は沈殿槽底部から抜き取られ、上澄
水が凝集沈殿処理水として得られる。
In the method of the present invention, when the boron-containing water is subjected to the coagulation-precipitation treatment and then the ion-exchange treatment, the boron concentration of the boron-containing water is automatically analyzed to automatically control the addition amount of the coagulation agent to regenerate the ion-exchange resin. Can be performed at regular intervals, or the boron concentration of boron-containing water can be automatically analyzed to automatically control the amount of the flocculant added, and the boron concentration of the flocculation-precipitated water can also be automatically analyzed to obtain an ion-exchange resin. It is also possible to automatically control the time of reproduction. In the coagulation-sedimentation treatment, the boron concentration of the water containing boron is automatically analyzed and the amount of the coagulation agent added is automatically controlled to keep the boron concentration of the coagulation-sedimentation water almost constant. Can be done for each. However, the frequency of regeneration of the ion exchange resin can be further reduced by automatically analyzing the boron concentration of the coagulated sedimentation treated water and automatically controlling the time of regeneration of the ion exchange resin. FIG. 1 is a process system diagram of an embodiment of the method of the present invention.
This embodiment is a coagulation sedimentation treatment of boron-containing water, and the apparatus is a reaction tank 1, an aluminum compound storage tank 2, a calcium compound storage tank 3, an automatic boron concentration analyzer 4, an aluminum compound injection pump 5, a pH sensor 6, a calcium compound. An injection amount control device 7, a calcium compound injection pump 8 and a precipitation tank 9 are provided. The boron concentration of the raw water supplied to the reaction tank 1 is analyzed by the boron concentration automatic analyzer 4, a signal is sent to the aluminum compound injection pump 5, and the amount of the aluminum compound injected from the aluminum compound storage tank 2 is controlled. It A signal is sent to the calcium compound injection pump 8 by the pH sensor 6 and the calcium compound injection amount control device 7, and the calcium compound is injected from the calcium compound storage tank 3 so that the pH of the water in the reaction tank becomes a predetermined value. The amount of is controlled. The water in which boron forms an insoluble precipitate and is precipitated is sent from the reaction tank to the precipitation tank 9 for solid-liquid separation, sludge is withdrawn from the bottom of the precipitation tank, and supernatant water is obtained as coagulation sedimentation treated water.

【0008】図2は、本発明方法の実施の他の態様の工
程系統図である。本態様は、ホウ素含有水のイオン交換
処理であり、装置は、イオン交換樹脂塔10、ホウ素濃
度自動分析計11、イオン交換樹脂再生装置12を備え
ている。イオン交換樹脂塔10に送られる原水のホウ素
濃度が、ホウ素濃度自動分析計11により分析され、ホ
ウ素濃度の分析値と、流量計(図示していない。)で測
定されたイオン交換塔へ供給された原水量とから、イオ
ン交換塔に負荷されたホウ素の量が算出される。イオン
交換塔に負荷されたホウ素の量は累積され、その累積値
が所定の値となったとき、イオン交換樹脂の再生時機と
してイオン交換樹脂再生装置12に信号が送られ、原水
の通水が停止され、イオン交換樹脂の再生が開始され
る。イオン交換樹脂の再生が終了すると、イオン交換樹
脂塔への原水の供給が再開される。図3は、本発明方法
の実施の他の態様の工程系統図である。本態様は、ホウ
素含有水を凝集沈殿処理したのちイオン交換処理する方
法であり、図1に示す態様の凝集沈殿処理の処理水を、
図2に示す態様のイオン交換処理の原水として用いる方
法である。本図に示す態様では、凝集沈殿処理の処理水
のホウ素濃度をホウ素濃度自動分析計11により分析
し、イオン交換樹脂再生装置12に信号を送っている
が、凝集沈殿処理の処理水のホウ素濃度は比較的安定し
ているので、ホウ素濃度自動分析計11を省略して、一
定時間ごとにイオン交換樹脂の再生を行うこともでき
る。本発明のホウ素含有水の処理方法によれば、少ない
薬剤使用量で効率的にホウ素を除去することができ、汚
泥や再生廃液の発生量を減少することができる。
FIG. 2 is a process flow chart of another embodiment of the method of the present invention. This embodiment is an ion exchange treatment of boron-containing water, and the apparatus includes an ion exchange resin tower 10, an automatic boron concentration analyzer 11, and an ion exchange resin regenerator 12. The boron concentration of the raw water sent to the ion exchange resin tower 10 is analyzed by the boron concentration automatic analyzer 11, and the analyzed value of the boron concentration and the ion concentration measured by a flow meter (not shown) are supplied to the ion exchange tower. The amount of boron loaded on the ion exchange column is calculated from the amount of raw water. The amount of boron loaded in the ion exchange tower is accumulated, and when the accumulated value reaches a predetermined value, a signal is sent to the ion exchange resin regenerator 12 as a time of regeneration of the ion exchange resin, and raw water is passed through. It is stopped and the regeneration of the ion exchange resin is started. When the regeneration of the ion exchange resin is completed, the supply of raw water to the ion exchange resin tower is restarted. FIG. 3 is a process flow chart of another embodiment of the method of the present invention. This embodiment is a method in which boron-containing water is subjected to coagulation-sedimentation treatment and then subjected to ion exchange treatment.
This is a method used as raw water for the ion exchange treatment of the embodiment shown in FIG. In the embodiment shown in this figure, the boron concentration of the treated water of the coagulating sedimentation treatment is analyzed by the boron concentration automatic analyzer 11 and the signal is sent to the ion exchange resin regenerator 12. Is relatively stable, the automatic boron concentration analyzer 11 can be omitted, and the ion exchange resin can be regenerated at regular intervals. According to the method for treating boron-containing water of the present invention, boron can be efficiently removed with a small amount of chemicals used, and the amount of sludge or recycled waste liquid generated can be reduced.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 比較例1 従来は、ホウ素濃度が100〜500mg/Lの範囲で変
動する石炭火力発電所の排煙脱硫排水に、最大ホウ素濃
度500mg/Lに合わせて、アルミニウム4.2重量%
を含む液体硫酸バンド35,000mg/Lを添加し、さ
らに、pHが12.0〜12.5になるように消石灰を添加
し、ホウ素を不溶性沈殿物として固液分離していた。処
理水のホウ素濃度は、20〜100mg/Lになってい
た。消石灰の添加量は21,000mg/Lであり、汚泥
の発生量は33,000mg/Lであった。 実施例1 比較例1と同じ石炭火力発電所の排煙脱硫排水につい
て、図1に示す工程により凝集沈殿処理を行った。排煙
脱硫排水のホウ素濃度を、排水系にマンニトール添加苛
性ソーダ滴定方式のホウ素濃度自動分析計を設置して1
時間ごとに分析し、液体硫酸バンドの添加量が次式で表
される量になるように、液体硫酸バンド注入ポンプのス
トロークを自動制御し、さらに、反応槽内の水のpHが1
2.0〜12.5になるように消石灰を添加し、ホウ素を
不溶性沈殿物として固液分離した。 液体硫酸バンド添加量(mg/L)= 70 × 排水のホ
ウ素濃度(mg/L) 26日間の連続処理において、液体硫酸バンドの平均添
加量は8,300mg/Lであり、消石灰の平均添加量は
6,200mg/Lであり、汚泥の平均発生量は11,00
0mg/Lであった。処理水のホウ素濃度は80〜100
mg/Lであった。比較例1及び実施例1の結果を、第1
表に示す。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Comparative Example 1 Conventionally, in a flue gas desulfurization effluent of a coal-fired power plant whose boron concentration fluctuates within a range of 100 to 500 mg / L, 4.2 wt% of aluminum is adjusted to a maximum boron concentration of 500 mg / L.
A liquid sulfuric acid band containing 35,000 mg / L was added, and slaked lime was added so that the pH became 12.0 to 12.5, and boron was solid-liquid separated as an insoluble precipitate. The boron concentration of the treated water was 20 to 100 mg / L. The amount of slaked lime added was 21,000 mg / L, and the amount of sludge generated was 33,000 mg / L. Example 1 The same flue gas desulfurization wastewater of a coal-fired power plant as in Comparative Example 1 was subjected to coagulation-sedimentation treatment according to the process shown in FIG. For the boron concentration of flue gas desulfurization effluent, install a mannitol-added caustic soda titration automatic boron concentration analyzer in the drainage system.
Analyze each time, and automatically control the stroke of the liquid sulfuric acid band injection pump so that the added amount of liquid sulfuric acid band becomes the amount expressed by the following formula.
Slaked lime was added so as to be 2.0 to 12.5, and boron was solid-liquid separated as an insoluble precipitate. Liquid sulfuric acid band addition amount (mg / L) = 70 × boron concentration of waste water (mg / L) In a continuous treatment for 26 days, the average addition amount of the liquid sulfuric acid band was 8,300 mg / L, and the average addition amount of slaked lime Is 6,200 mg / L, and the average amount of sludge generated is 1100.
It was 0 mg / L. The boron concentration of treated water is 80-100
It was mg / L. The results of Comparative Example 1 and Example 1 are
Shown in the table.

【0010】[0010]

【表1】 [Table 1]

【0011】第1表に見られるように、本発明方法を実
施した実施例1における薬剤の使用量と汚泥の発生量
は、比較例1の3分の1又はそれ以下である。 実施例2 比較例1と同じ石炭火力発電所の排煙脱硫排水の中和ろ
過水について、図2に示す工程によりイオン交換処理を
行った。排水に塩酸を添加してpH7〜9に調整し、不織
布を用いてろ過して中和ろ過水を得た。中和ろ過水のホ
ウ素濃度は、150〜500mg/Lの範囲で変動してい
た。この中和ろ過水を、N−メチルグルカミン型イオン
交換樹脂[三菱化学(株)、ダイヤイオンCRBO2]1
0Lを充填したカラムに、5L/hの流速で通水した。
排煙脱硫排水のホウ素濃度を、1時間ごとに実施例1と
同様にして自動分析し、ホウ素の積算負荷量が30,0
00mgに達したときに、イオン交換樹脂の再生を行っ
た。20日間の連続処理において、平均再生頻度は24
時間に1回であった。また、処理水のホウ素濃度は、常
時0.5mg/L以下であった。 比較例2 実施例2と同じ条件で、排煙脱硫排水のホウ素濃度の自
動分析を行わずに、排煙脱硫排水の最大ホウ素濃度50
0mg/Lに合わせて、12時間に1回イオン交換樹脂を
再生しつつ、中和ろ過水のイオン交換処理を行った。処
理水のホウ素濃度は、常時0.5mg/L以下であった。
実施例2及び比較例2の結果を、第2表に示す。
As can be seen from Table 1, the amount of chemicals used and the amount of sludge generated in Example 1 in which the method of the present invention was carried out were one-third or less than those in Comparative Example 1. Example 2 The same neutralization filtered water of flue gas desulfurization wastewater of the same coal-fired power plant as in Comparative Example 1 was subjected to ion exchange treatment by the process shown in FIG. Hydrochloric acid was added to the waste water to adjust the pH to 7 to 9, and filtration was performed using a non-woven fabric to obtain neutralized filtered water. The boron concentration of the neutralized filtered water varied in the range of 150 to 500 mg / L. This neutralized filtered water was mixed with N-methylglucamine type ion exchange resin [Mitsubishi Chemical Corporation, Diaion CRBO2] 1.
Water was passed through the column filled with 0 L at a flow rate of 5 L / h.
The boron concentration of the flue gas desulfurization effluent was automatically analyzed every hour in the same manner as in Example 1, and the accumulated loading amount of boron was 30,0.
When the amount reached 00 mg, regeneration of the ion exchange resin was performed. After continuous treatment for 20 days, the average regeneration frequency is 24
It was once an hour. Moreover, the boron concentration of the treated water was always 0.5 mg / L or less. Comparative Example 2 Under the same conditions as in Example 2, the maximum boron concentration of flue gas desulfurization wastewater was 50 without automatic analysis of the boron concentration of flue gas desulfurization wastewater.
According to the amount of 0 mg / L, the ion exchange resin was regenerated once every 12 hours, and the ion exchange treatment of the neutralized filtered water was performed. The boron concentration in the treated water was always 0.5 mg / L or less.
The results of Example 2 and Comparative Example 2 are shown in Table 2.

【0012】[0012]

【表2】 [Table 2]

【0013】第2表に見られるように、本発明方法を実
施した実施例2におけるイオン交換樹脂の再生頻度は、
排煙脱硫排水の最大ホウ素濃度に合わせて再生頻度を決
定した比較例2の2分の1であり、再生に必要とする薬
剤量及び発生する再生廃液量を半減することができる。 実施例3 比較例1と同じ石炭火力発電所の排煙脱硫排水につい
て、図3に示す工程により凝集沈殿処理とイオン交換処
理を行った。ただし、ホウ素濃度自動分析計11は使用
せず、一定時間ごとにイオン交換樹脂の再生を行った。
凝集沈殿処理は、実施例1と同様に行い、ホウ素濃度8
0〜100mg/Lの凝集沈殿処理水を、実施例2と同じ
イオン交換樹脂を充填したカラムに供給した。イオン交
換樹脂の再生は、60時間ごとに行った。20日間の連
続処理において、処理水のホウ素濃度は、常時0.5mg
/L以下であった。 実施例4 比較例1と同じ石炭火力発電所の排煙脱硫排水につい
て、図3に示す工程により凝集沈殿処理とイオン交換処
理を行った。凝集沈殿処理は、実施例1と同様に行い、
ホウ素濃度80〜100mg/Lの凝集沈殿処理水を、実
施例2と同じイオン交換樹脂を充填したカラムに供給し
た。凝集沈殿処理水のホウ素濃度を、1時間ごとに実施
例1と同様にして自動分析し、ホウ素の積算負荷量が3
0,000mgに達したときに、イオン交換樹脂の再生を
行った。20日間の連続処理において、平均再生頻度は
65時間に1回であった。また、処理水のホウ素濃度
は、常時0.5mg/L以下であった。実施例3〜4の結
果を、第3表に示す。
As seen in Table 2, the regeneration frequency of the ion exchange resin in Example 2 in which the method of the present invention was carried out was
This is one-half that of Comparative Example 2 in which the regeneration frequency was determined according to the maximum boron concentration in the flue gas desulfurization wastewater, and the amount of chemicals required for regeneration and the amount of regeneration waste liquid generated can be halved. Example 3 The same flue gas desulfurization wastewater of the coal-fired power plant as in Comparative Example 1 was subjected to coagulation sedimentation treatment and ion exchange treatment by the steps shown in FIG. However, the automatic boron concentration analyzer 11 was not used, and the ion exchange resin was regenerated at regular intervals.
The coagulation-sedimentation treatment was performed in the same manner as in Example 1, and the boron concentration was 8
0 to 100 mg / L of coagulated sedimentation treated water was supplied to the column packed with the same ion exchange resin as in Example 2. Regeneration of the ion exchange resin was performed every 60 hours. In continuous treatment for 20 days, the concentration of boron in treated water is always 0.5 mg.
/ L or less. Example 4 The same flue gas desulfurization wastewater of a coal-fired power plant as in Comparative Example 1 was subjected to coagulation sedimentation treatment and ion exchange treatment by the steps shown in FIG. The coagulating sedimentation treatment is performed in the same manner as in Example 1,
The coagulation-sedimentation-treated water having a boron concentration of 80 to 100 mg / L was supplied to the column packed with the same ion exchange resin as in Example 2. The boron concentration of the coagulation-sedimentation-treated water was automatically analyzed every hour in the same manner as in Example 1, and the cumulative loading amount of boron was 3
Regeneration of the ion exchange resin was carried out when it reached 000 mg. In the continuous treatment for 20 days, the average regeneration frequency was once every 65 hours. Moreover, the boron concentration of the treated water was always 0.5 mg / L or less. The results of Examples 3 to 4 are shown in Table 3.

【0014】[0014]

【表3】 [Table 3]

【0015】第3表に見られるように、排煙脱硫排水に
ついて凝集沈殿処理とイオン交換処理を行うと、処理水
のホウ素濃度は常時0.5mg/L以下となり、良好な水
質の処理水が得られている。60時間ごとにイオン交換
樹脂の再生を行った実施例3と、凝集沈殿処理水のホウ
素濃度を自動分析して、ホウ素の積算負荷量が30,0
00mgに達したときに、イオン交換樹脂の再生を行った
実施例4では、処理水のホウ素濃度に差はないが、実施
例4の方が実施例3よりイオン交換樹脂の再生頻度がや
や少なくなっている。
As shown in Table 3, when the flue gas desulfurization wastewater is subjected to coagulation sedimentation treatment and ion exchange treatment, the boron concentration of the treated water is always 0.5 mg / L or less, and the treated water of good quality is obtained. Has been obtained. Example 3 in which the ion exchange resin was regenerated every 60 hours, and the boron concentration of the coagulation-sedimentation-treated water was automatically analyzed, and the cumulative loading amount of boron was 30,0.
In Example 4 in which the ion exchange resin was regenerated when it reached 00 mg, there was no difference in the boron concentration of the treated water, but in Example 4, the regeneration frequency of the ion exchange resin was slightly lower than in Example 3. Has become.

【0016】[0016]

【発明の効果】本発明のホウ素含有水の処理方法によれ
ば、少ない薬剤使用量で効率的にホウ素を除去すること
ができ、汚泥や再生廃液の発生量を減少することができ
る。
EFFECTS OF THE INVENTION According to the method for treating boron-containing water of the present invention, boron can be efficiently removed with a small amount of chemicals used, and the amount of sludge and recycled waste liquid can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明方法の実施の一態様の工程系統
図である。
FIG. 1 is a process system diagram of an embodiment of the method of the present invention.

【図2】図2は、本発明方法の実施の他の態様の工程系
統図である。
FIG. 2 is a process flow chart of another embodiment of the implementation of the method of the present invention.

【図3】図3は、本発明方法の実施の他の態様の工程系
統図である。
FIG. 3 is a process flow chart of another embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 アルミニウム化合物貯槽 3 カルシウム化合物貯槽 4 ホウ素濃度自動分析計 5 アルミニウム化合物注入ポンプ 6 pHセンサー 7 カルシウム化合物注入量制御装置 8 カルシウム化合物注入ポンプ 9 沈殿槽 10 イオン交換樹脂塔 11 ホウ素濃度自動分析計 12 イオン交換樹脂再生装置 1 reaction tank 2 Aluminum compound storage tank 3 calcium compound storage tank 4 Boron concentration automatic analyzer 5 Aluminum compound injection pump 6 pH sensor 7 Calcium compound injection amount control device 8 Calcium compound infusion pump 9 settling tank 10 Ion exchange resin tower 11 Boron concentration automatic analyzer 12 Ion exchange resin regeneration device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山浦 継明 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社研究開発センター内 (72)発明者 佐藤 武 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 惠藤 良弘 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 朝田 裕之 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D015 BA19 BA21 BB05 CA20 DA05 DA22 EA15 EA32 FA02 FA12 FA22 4D025 AA09 AB33 BA13 BB02 CA02 CA05 CA06 DA10 4D038 AA08 AB25 BA04 BA06 BB06 BB08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsutsuaki Yamaura             2-2-1 Nakayama, Aoba-ku, Sendai City, Miyagi Prefecture             Tohoku Electric Power Co., Inc. Research and Development Center (72) Inventor Takeshi Sato             Kurita, 3-4-3 Nishi-Shinjuku, Shinjuku-ku, Tokyo             Industry Co., Ltd. (72) Inventor Yoshihiro Keito             Kurita, 3-4-3 Nishi-Shinjuku, Shinjuku-ku, Tokyo             Industry Co., Ltd. (72) Inventor Hiroyuki Asada             Kurita, 3-4-3 Nishi-Shinjuku, Shinjuku-ku, Tokyo             Industry Co., Ltd. F-term (reference) 4D015 BA19 BA21 BB05 CA20 DA05                       DA22 EA15 EA32 FA02 FA12                       FA22                 4D025 AA09 AB33 BA13 BB02 CA02                       CA05 CA06 DA10                 4D038 AA08 AB25 BA04 BA06 BB06                       BB08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ホウ素含有水を凝集沈殿処理するに際し
て、ホウ素含有水のホウ素濃度を自動分析して凝集薬剤
の添加量を自動制御することを特徴とするホウ素含有水
の処理方法。
1. A method for treating boron-containing water, which comprises automatically analyzing the boron concentration of boron-containing water to automatically control the addition amount of the aggregating agent when the boron-containing water is subjected to coagulation-precipitation treatment.
【請求項2】ホウ素含有水をイオン交換処理するに際し
て、ホウ素含有水のホウ素濃度を自動分析してイオン交
換樹脂の再生時機を自動制御することを特徴とするホウ
素含有水の処理方法。
2. A method for treating boron-containing water, which comprises automatically analyzing the boron concentration of the boron-containing water and automatically controlling the regeneration time of the ion-exchange resin when the boron-containing water is subjected to the ion exchange treatment.
【請求項3】ホウ素含有水を凝集沈殿処理したのちイオ
ン交換処理するに際して、ホウ素含有水のホウ素濃度を
自動分析して凝集薬剤の添加量を自動制御することを特
徴とするホウ素含有水の処理方法。
3. Treatment of boron-containing water, characterized in that when the boron-containing water is subjected to coagulation-precipitation treatment and then subjected to ion-exchange treatment, the boron concentration of the boron-containing water is automatically analyzed to automatically control the addition amount of the aggregating agent. Method.
【請求項4】ホウ素含有水を凝集沈殿処理したのちイオ
ン交換処理するに際して、ホウ素含有水のホウ素濃度を
自動分析して凝集薬剤の添加量を自動制御し、凝集沈殿
処理水のホウ素濃度を自動分析してイオン交換樹脂の再
生時機を自動制御することを特徴とするホウ素含有水の
処理方法。
4. When the boron-containing water is subjected to the coagulation-precipitation treatment and then the ion exchange treatment, the boron concentration of the boron-containing water is automatically analyzed to automatically control the addition amount of the coagulation agent to automatically adjust the boron concentration of the coagulation-precipitation treated water. A method for treating boron-containing water, comprising analyzing and automatically controlling the time of regeneration of the ion exchange resin.
JP2001271428A 2001-09-07 2001-09-07 Method for treating boron-containing water Pending JP2003080269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271428A JP2003080269A (en) 2001-09-07 2001-09-07 Method for treating boron-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271428A JP2003080269A (en) 2001-09-07 2001-09-07 Method for treating boron-containing water

Publications (1)

Publication Number Publication Date
JP2003080269A true JP2003080269A (en) 2003-03-18

Family

ID=19096938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271428A Pending JP2003080269A (en) 2001-09-07 2001-09-07 Method for treating boron-containing water

Country Status (1)

Country Link
JP (1) JP2003080269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144433A (en) * 2013-01-29 2014-08-14 Panasonic Corp Boron-containing effluent treatment method and boron-containing effluent treatment system
JP2014233698A (en) * 2013-06-04 2014-12-15 栗田工業株式会社 Operation control method for pure water production device
CN107068228A (en) * 2017-05-15 2017-08-18 重集团大连工程技术有限公司 A kind of nuclear power plant's low-activity technique waste water advanced treatment apparatus and its processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296978A (en) * 1993-04-20 1994-10-25 Meidensha Corp Device for removing phosphorus from digested sludge dehydration filtrate
JP2000279954A (en) * 1999-03-31 2000-10-10 Miura Co Ltd Water softening device and control method thereof
JP2001232372A (en) * 2000-02-21 2001-08-28 Kurita Water Ind Ltd Treatment process for water containing boron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296978A (en) * 1993-04-20 1994-10-25 Meidensha Corp Device for removing phosphorus from digested sludge dehydration filtrate
JP2000279954A (en) * 1999-03-31 2000-10-10 Miura Co Ltd Water softening device and control method thereof
JP2001232372A (en) * 2000-02-21 2001-08-28 Kurita Water Ind Ltd Treatment process for water containing boron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144433A (en) * 2013-01-29 2014-08-14 Panasonic Corp Boron-containing effluent treatment method and boron-containing effluent treatment system
JP2014233698A (en) * 2013-06-04 2014-12-15 栗田工業株式会社 Operation control method for pure water production device
CN107068228A (en) * 2017-05-15 2017-08-18 重集团大连工程技术有限公司 A kind of nuclear power plant's low-activity technique waste water advanced treatment apparatus and its processing method
CN107068228B (en) * 2017-05-15 2023-08-29 一重集团大连工程技术有限公司 Nuclear power plant low-radioactivity process wastewater advanced treatment device and treatment method thereof

Similar Documents

Publication Publication Date Title
JP5157941B2 (en) Method for treating boron-containing water
JP4880656B2 (en) Water treatment apparatus and water treatment method
CN103214115B (en) Water treatment method of strong acid cation exchange resin incomplete regeneration
JP2012223700A (en) Method and apparatus for removing dissolved aluminum
JP5360764B2 (en) Method and system for simultaneous recovery of ammonia and phosphorus components in water to be treated
JP2007209886A (en) Fluorine removing agent, and method and apparatus for treating drain containing fluorine using the agent
JP2013104723A (en) METHOD AND APPARATUS FOR TREATING Sr-CONTAINING WATER
JP4693128B2 (en) Phosphorus recovery method and phosphorus recovery system
JP2005193167A (en) Drainage purification method and purification method
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP3319053B2 (en) Treatment method for fluoride-containing water
CA2912832A1 (en) System and process for removing ammonium, soluble bod and suspended solids from a wastewater stream
JP2003080269A (en) Method for treating boron-containing water
JP2002205077A (en) Method and apparatus for treating organic sewage
JPS5815193B2 (en) How to treat boron-containing water
JPH04371292A (en) Treatment of water containing fluoride
JP2010017631A (en) Method and apparatus for treating phosphoric acid-containing water
JP2001232372A (en) Treatment process for water containing boron
JPH07232161A (en) Method for removing phosphorus in water
JP2005324137A (en) Method for removing fluoride ion in wastewater
CN103011460A (en) Novel process for removing phosphorus from metal-salt-containing waste phosphoric acid
JP2737610B2 (en) Treatment of flue gas desulfurization wastewater
JPS5855838B2 (en) Method for removing ammonia nitrogen from wastewater
RU2698800C1 (en) Method of producing strontium sorbent for solutions containing hardness salts
JP2899697B1 (en) Method for treating wastewater containing molybdenum compound and / or antimony compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111118