JPS58114732A - Regenerating method of catalyst - Google Patents
Regenerating method of catalystInfo
- Publication number
- JPS58114732A JPS58114732A JP21585281A JP21585281A JPS58114732A JP S58114732 A JPS58114732 A JP S58114732A JP 21585281 A JP21585281 A JP 21585281A JP 21585281 A JP21585281 A JP 21585281A JP S58114732 A JPS58114732 A JP S58114732A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- acid
- catalysts
- activity
- contg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、廃水の湿式酸化に使用される触媒の再生法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating catalysts used in the wet oxidation of wastewater.
化学的酸素要求物質(以下COD成分と記す)、懸濁物
質或いは場合によっては更にアンモニア等をも含む廃水
の処理方法については、種々のもの処理方法につき長年
研究を重ねた結果、触媒の種類、湿式酸化に使用する酸
素の濃度及び供給量、廃水の予備的pill整、湿式酸
化反応中のアルカリ物質供給等が、処理効率、使用する
機器類の腐食、触媒の寿命等に大きく影響することを見
出し、蚊知見に基いてすでに特許出願を行なっている(
特願1id51−95507号、特願昭52−1102
57号、特願昭56−165168号等)。これ停の先
一方法では、鉄、コバルト、ニッケル、ルテニウム、ロ
ジウム、イリジウム、白金、金、タングステン等の”金
属並びにこれ等金属の水に不溶性又は難溶性の化合物の
少なくとも1種をそのまま或いはアルミナ、シリカ、シ
リカ−アルミナ、チタニア、ジルコニア、活性炭等の担
体に担持させた状態で触媒として使用することが出来る
。この様な触媒(以下単に廃水酸化触媒という)は、廃
水処理においては大量忙使用されるので、活性の低下し
た要となる。本発明者は、他の分野における公知の触媒
再生方法が廃水酸化触媒の再生にも適用し得るのではな
いかと考え、種々実験を行なつ九が、公知方法の転用が
必ずしも有効でないことが判明した。例えば、水素、水
蒸気、酸素等の公知の再生剤により廃水酸化触媒の再生
を行なう場合には、触媒表面に付着した物質は、外見上
比較的良好に除去されるにもかかわらず、触媒活性自体
の回復は十分でない。As for the treatment of wastewater containing chemical oxygen demand substances (hereinafter referred to as COD components), suspended solids, and even ammonia in some cases, as a result of many years of research into various treatment methods, we have found that the types of catalysts, It is important to note that the concentration and supply amount of oxygen used in wet oxidation, preliminary pill preparation of wastewater, supply of alkaline substances during wet oxidation reaction, etc. greatly affect treatment efficiency, corrosion of equipment used, life of catalyst, etc. A patent application has already been filed based on the headline and mosquito findings (
Patent Application No. 1id51-95507, Patent Application No. 1102-1982
No. 57, Japanese Patent Application No. 165168/1984, etc.). In the first method, at least one of metals such as iron, cobalt, nickel, ruthenium, rhodium, iridium, platinum, gold, and tungsten, as well as water-insoluble or sparingly soluble compounds of these metals, may be used as is or alumina. It can be used as a catalyst when supported on a carrier such as silica, silica-alumina, titania, zirconia, or activated carbon.Such catalysts (hereinafter simply referred to as wastewater oxidation catalysts) are used in large quantities in wastewater treatment. The present inventor thought that known catalyst regeneration methods in other fields could be applied to the regeneration of wastewater oxidation catalysts, and conducted various experiments. It has been found that the conversion of known methods is not necessarily effective. For example, when regenerating a waste water oxidation catalyst using a known regenerating agent such as hydrogen, steam, or oxygen, the substances attached to the catalyst surface are Although the catalyst is successfully removed, the recovery of the catalyst activity itself is not sufficient.
本発明者は、上記廃水酸化触媒の再生法について新たな
観点から研究を進めた結果、無機酸及び有機酸の少なく
とも1種を含む水溶液による峡触媒の処理が極めて効果
的であることを見出した。As a result of conducting research from a new perspective on the method for regenerating the waste water oxidation catalyst, the present inventor found that treatment of the oxidation catalyst with an aqueous solution containing at least one of an inorganic acid and an organic acid is extremely effective. .
即ち、本発明は、鉄、コバルト、ニッケル、ルテニウム
、ロジウム、イリジウム、白金、鋼、金及びタングステ
ン並びにこれ等金属の水に不溶性又は難溶性の化合物の
1種又は2種以上を触媒活性成分とする廃水の湿式酸化
用担持触媒の再生方法において、触媒を無機酸及び有機
酸(但しギ酸及びシェラ鐵を除く)の少なくとも1種を
含む水溶液に接触させることを特徴とする触媒の再生法
に係る。That is, the present invention uses iron, cobalt, nickel, ruthenium, rhodium, iridium, platinum, steel, gold, tungsten, and one or more water-insoluble or sparingly soluble compounds of these metals as a catalytically active component. A method for regenerating a supported catalyst for wet oxidation of wastewater, the method comprising bringing the catalyst into contact with an aqueous solution containing at least one of an inorganic acid and an organic acid (excluding formic acid and Sierra iron). .
一般に、廃水酸化触媒を高温(100〜870℃根度)
下に廃水の湿式酸化に使用すると、廃水中のCOD成分
及び懸濁物質の析出、沈積又は付層、溶解性無機物質の
析出、廃水中に含まれていた或いは分解により生成する
化学的活性物質による触媒金属の化学的侵食等に加えて
、触媒金属表面の化学的及び物理的性質の変化等の要因
により触媒の活性は次第に低下する。特に後者のミクロ
的な化学的及び物理的性質の変化は、現在の分析技術で
は、明確に把握し得ないものであり、従って未だ十分に
解明されていないが、前者の外見上認識し得る原因と同
等1しくけそれ以上の重大な触媒 (活性低下要因で
あると推測される。しかるに本発明方法によれば、これ
等の触媒活性低下要因が全般的に解消されるので、廃水
酸化触媒が再使用可能な程度まで活性を回復し、処理条
件によっては新触媒にほぼ等しい程度Kまで回復する。Generally, waste water oxidation catalyst is used at high temperature (100~870℃)
When used in wet oxidation of wastewater, precipitation, sedimentation or layering of COD components and suspended substances in wastewater, precipitation of soluble inorganic substances, and chemically active substances contained in wastewater or generated by decomposition. The activity of the catalyst gradually decreases due to factors such as changes in the chemical and physical properties of the surface of the catalyst metal, in addition to chemical attack of the catalyst metal by oxidation. In particular, changes in the microscopic chemical and physical properties of the latter cannot be clearly grasped using current analytical techniques, and therefore have not yet been fully elucidated, but the causes of the former that can be recognized from the outside are It is assumed that this is a factor that reduces the activity of a catalyst that is equivalent to or more important than that of the catalyst. However, according to the method of the present invention, these factors that reduce the catalyst activity are generally eliminated, so that the wastewater oxidation catalyst is The activity is recovered to the extent that it can be reused, and depending on the processing conditions, the K can be recovered to a level that is almost the same as that of a new catalyst.
本発明方法により再生される触媒は、触媒活性成分とし
て鉄、コバルト、ニッケル、ルテニウム、ロジウム、イ
リジウム、白金、鋼、金及びタングステン、並びにこれ
等の水に対し不溶性又は難溶性の化合物の1種又2種以
上を含む。水に対し不溶性又は離溶性の化合物としては
、(I)三二酸化鉄、四三酸化鉄、−酸化コバルト、−
酸化ニッケル、二酸化ルテニウム、三二酸化ロジウム、
二酸化イリジウム、酸化第二鋼、二酸化タングステン等
の酸化物、(11)塩化ルテニウム、塩化白金等の塩化
物、(lIi)硫化ルテニウム、硫化ロジウム等の硫化
物等が例示される。The catalyst regenerated by the method of the present invention contains iron, cobalt, nickel, ruthenium, rhodium, iridium, platinum, steel, gold, and tungsten as catalytic active components, and one type of water-insoluble or sparingly soluble compounds thereof. It also includes two or more types. Examples of water-insoluble or dissolvable compounds include (I) iron sesquioxide, triiron tetroxide, -cobalt oxide, -
Nickel oxide, ruthenium dioxide, rhodium sesquioxide,
Examples include oxides such as iridium dioxide, second steel oxide, and tungsten dioxide; (11) chlorides such as ruthenium chloride and platinum chloride; and (lIi) sulfides such as ruthenium sulfide and rhodium sulfide.
本発明において使用する廃水酸化触媒の再生処理剤は、
無機酸及び有機酸であり、これ等の少なくとも1種を含
有する水溶液の形態で使用される。The waste water oxidation catalyst regeneration treatment agent used in the present invention is:
They are inorganic acids and organic acids, and are used in the form of an aqueous solution containing at least one of these acids.
無機酸としては、塩酸、硝酸、亜硝酸、硫酸、亜硫酸、
リン酸、炭酸、ホウ酸、次亜塩素酸、塩素酸、臭素酸等
が例示され、有機酸と【7ては、(1)酢酸、プロピオ
ン酸、乳酸、酪酸、酒石酸、クエン酸、リンゴ酸、コハ
ク酸、マロン酸、フマール酸、マレイン酸等の脂肪族カ
ルボン酸、<++)フェノール類、(2)安息香酸、フ
タール哨、サリチル酸等の芳香族カルボン酸等が例示さ
れる。水溶液中の再生処理剤の濃度は、担持された触媒
金属の量、触媒活性低下の程度、再生処理時の温度等に
より変り得るが、通常0.1〜6.0規定の範囲にあり
、好ましくは0.25〜2.0規定機度とする。濃度が
低過ぎる場合には、再生の効果が十分でなく、一方濃度
の上昇に伴って再生効果は順次改善されるものの、5規
定を越えて吃再生効果のより一層の改善は貞質上認めら
nない。Inorganic acids include hydrochloric acid, nitric acid, nitrous acid, sulfuric acid, sulfurous acid,
Examples include phosphoric acid, carbonic acid, boric acid, hypochlorous acid, chloric acid, bromic acid, etc.; (2) aliphatic carboxylic acids such as succinic acid, malonic acid, fumaric acid, and maleic acid; <++) phenols; and (2) aromatic carboxylic acids such as benzoic acid, phthalate, and salicylic acid. The concentration of the regeneration treatment agent in the aqueous solution may vary depending on the amount of supported catalyst metal, the degree of catalyst activity reduction, the temperature during regeneration treatment, etc., but is usually in the range of 0.1 to 6.0 normal, and is preferably shall be 0.25 to 2.0 normal strength. If the concentration is too low, the regeneration effect will not be sufficient; on the other hand, as the concentration increases, the regeneration effect will gradually improve; however, further improvement in the stuttering regeneration effect beyond the 5 provisions is morally acceptable. There is no.
再生処理は、再生すべき廃水酸化触媒を再生処理剤の水
溶液に浸漬放置するか又は該水溶液中で攪拌下に行なう
。再生処理は、廃水の湿式酸化処理を行なう反応塔から
触媒を取り出し、これを別個の処理槽に入れて行なって
も曳く、或いは触媒を湿式酸化反応塔に収容し良状態で
反応塔に再生処理剤水溶液を連続的に流通させて行なっ
ても良い。処理条件は、通常40℃以上、より好ましく
は60℃以上の温度で、通常16分間以上、より好まし
くは80分間以上の時間とするのが良いが。The regeneration treatment is carried out by leaving the waste water oxidation catalyst to be regenerated immersed in an aqueous solution of a regeneration treatment agent, or by stirring it in the aqueous solution. Regeneration treatment can be carried out by removing the catalyst from the reaction tower that performs wet oxidation treatment of wastewater and placing it in a separate treatment tank, or by storing the catalyst in the wet oxidation reaction tower and returning it to the reaction tower in good condition for regeneration treatment. The aqueous solution of the agent may be continuously distributed. The treatment conditions are usually at a temperature of 40°C or higher, more preferably at 60°C or higher, and for a time of usually 16 minutes or more, more preferably 80 minutes or more.
処理温度及び処理時間は、触媒活性低下の程度、触媒の
種類、要求される触媒活性回復の程度、再生処理剤の種
類及び濃度等により定められるものであって、必ずしも
限定されない。本発明方法の実施に際しての圧力は、大
気圧で曳く、加圧する必要は特にないが、加圧下忙行な
っても何らの不利益も生じない。The treatment temperature and treatment time are determined by the degree of catalyst activity reduction, the type of catalyst, the required degree of catalyst activity recovery, the type and concentration of the regenerating agent, and are not necessarily limited. The pressure in carrying out the method of the present invention is atmospheric pressure, and there is no particular need for pressurization, but there is no disadvantage in carrying out the process under pressure.
本発明による再生処理を終えた廃水酸化触媒は、そのt
ま或いは必要ならば水洗後或いは水洗及び乾燥後、再使
用可能と々る。The waste water oxidation catalyst that has undergone the regeneration treatment according to the present invention has its t
Alternatively, if necessary, it can be reused after washing with water or after washing and drying.
尚、触媒活性の低下が着るしい場合、1回の再生処理だ
けでは触媒活性の回復が十分でない場合等圧は、本発明
再生処理を繰返し行なうのが良い。In addition, if the catalytic activity is likely to decrease and the catalytic activity is not sufficiently restored by one regeneration treatment, it is preferable to repeat the regeneration treatment of the present invention under equal pressure.
本発明方法によれば、以下の如き顕著な効果が奏される
。According to the method of the present invention, the following remarkable effects are achieved.
(1)触媒活性低下要因が大巾に取ね除かれるので、再
使用可能な程度まで廃水酸化触媒の活性が回復する。(1) Since the factors that reduce catalyst activity are largely eliminated, the activity of the wastewater oxidation catalyst is recovered to the extent that it can be reused.
(11)再生処理条件によっては、再生後の触媒活性が
新触媒のそれにほぼ等しくなる程度まで回復する。(11) Depending on the regeneration treatment conditions, the catalyst activity after regeneration can be recovered to a degree that is almost equal to that of the new catalyst.
QiD再生後の再使用により活性の低下した廃水酸化触
媒を更に繰返し再生することが出来、しかもその活性を
新触媒のそれに近いものとすることが出来るので、触媒
の全寿命を著るしく増大させることが可能となった。By reusing the QiD after regeneration, the waste water oxidation catalyst whose activity has decreased can be further regenerated repeatedly, and its activity can be made close to that of the new catalyst, thereby significantly increasing the overall life of the catalyst. It became possible.
1埴廃水処理に要−する触媒費用が減少するので、廃水
処理費も低減される。Since the cost of the catalyst required for 1-silicon wastewater treatment is reduced, the wastewater treatment cost is also reduced.
(V)廃水処理用の反応塔t2基以上使用する場合には
、廃水処理を停止することなく、いずれかの反厄塔内の
廃水酸化触媒を交互に再生処理することが出来るので、
触媒の取り出しと再充填等の労力が不要となる。(V) When using two or more reaction towers for wastewater treatment, the wastewater oxidation catalyst in either of the anti-hazardous towers can be regenerated alternately without stopping the wastewater treatment.
Labor such as removing and refilling the catalyst becomes unnecessary.
実施例1
コークス炉において発生するガス液(COD6000p
pm、全ア7%3ア量soooppm=全窒素量+00
0ppm)を苛性ソーダ溶液によりpH約lOとし、空
間速度1.0 /hr(空塔基準)として円筒型反応
塔最下部に供給する。尚、実施例1〜8で処理するガス
液は、当初から鉄、カルシウム及びマグネシウムとして
総量16 p pm含有している力(本発明の効果をよ
り明確に示すべく、更にその総量が1500ppm と
なる様にこれ等の化合物を加えである。液の質量速度は
、8.0)ン/−・hrである。一方空気を空間速度6
5 ンhr (空塔基準、標準状態換算)として上記反
応塔下部に供給する。諒反応塔には、下記第1表に示す
如き組成の径5msの球形触媒が充填されている。尚、
41表において、例えばlチIr−Ti01 とある
のは、チタニア担体にイリジウム1重量%を担持させた
ことを意味する。Example 1 Gas liquid (COD6000p) generated in a coke oven
pm, total nitrogen amount 7% 3 amount soooppm = total nitrogen amount + 00
0 ppm) with a caustic soda solution to a pH of about 10 and fed to the bottom of the cylindrical reaction tower at a space velocity of 1.0/hr (based on the empty column). Note that the gas liquids treated in Examples 1 to 8 originally contained iron, calcium, and magnesium in a total amount of 16 ppm (in order to more clearly demonstrate the effects of the present invention, the total amount was further increased to 1500 ppm). When these compounds are added, the mass velocity of the liquid is 8.0 tons/-.hr. On the other hand, air has a space velocity of 6
5 hours (based on the empty column, converted to standard conditions) is supplied to the lower part of the reaction tower. The cylindrical reaction tower was filled with spherical catalysts having a diameter of 5 ms and having the composition shown in Table 1 below. still,
In Table 41, for example, Ir-Ti01 means that 1% by weight of iridium was supported on the titania support.
反応塔内部を温度250℃、圧カフ0t/−・OK保持
し、湿式酸化後の液のpHが約7となる様に苛性ソーダ
水溶液を供給しつつ、toooo時間にわたり上記ガス
液の湿式酸化を行なうことKより、触媒の活性指数は、
41表に示す様に低下する・
活性の低下した触媒を反応塔から取り出し、l規定のリ
ン酸水溶液(80℃)に大気圧下1時間浸漬放置し、再
生処理した後、1時間にわたり水洗する。再生された各
触媒を上記と同様の廃水処理に使用し大結果は、第1表
に示す通りである。The temperature inside the reaction tower is kept at 250°C and the pressure cuff is maintained at 0t/- OK, and the above gas liquid is wet-oxidized for too long while supplying a caustic soda aqueous solution so that the pH of the liquid after wet oxidation is approximately 7. From K, the activity index of the catalyst is
The activity decreases as shown in Table 41. The catalyst whose activity has decreased is taken out from the reaction tower and left immersed in a normal phosphoric acid aqueous solution (80°C) for 1 hour under atmospheric pressure. After being regenerated, it is washed with water for 1 hour. . The regenerated catalysts were used in the same wastewater treatment as above, and the results are shown in Table 1.
尚、本願明細書において活性指数とは、新触媒を使用し
て廃水を湿式醸化処理する場合のアンモニア除去率を1
00としたとき、同一条件で各触媒を使用して廃水を湿
式酸化処理する場合の各触媒のアンモニア除去率をいう
。COD除去率も、アンモニア除去率と同傾向を示すの
で、特に表示しない。In addition, in the specification of this application, the activity index refers to the ammonia removal rate of 1 when wastewater is wet-breeded using a new catalyst.
00, it refers to the ammonia removal rate of each catalyst when wastewater is subjected to wet oxidation treatment using each catalyst under the same conditions. Since the COD removal rate also shows the same tendency as the ammonia removal rate, it is not particularly displayed.
第 1 表
第1表に示す結果から、本発明方法による触媒活性回復
の顕著な効果が明□らかである。Table 1 From the results shown in Table 1, it is clear that the method of the present invention has a remarkable effect on catalyst activity recovery.
夷m例2
実施例1と同様の廃水処理繰作により活性の低下した触
媒を反応塔から取り出し、1規定の塩酸水溶液(80℃
)に大気圧下1時間浸漬放置した後、1時間にわたり水
洗する。再生結果は、第2表に示す通りである。Example 2 A catalyst whose activity had decreased due to the same wastewater treatment as in Example 1 was taken out of the reaction tower and treated with a 1N aqueous hydrochloric acid solution (80°C).
) for 1 hour under atmospheric pressure, and then washed with water for 1 hour. The reproduction results are shown in Table 2.
第 2 表
実施例8
実施例1と同様の廃水処理操作により活性の低下した触
媒を反応塔から取抄出し、l規定の硝酸水溶液(70℃
)に大気圧下1時間浸漬放置した後、1時間水洗する。Table 2 Example 8 The catalyst whose activity had decreased by the same wastewater treatment operation as in Example 1 was taken out from the reaction tower and treated with a normal nitric acid aqueous solution (70°C
) for 1 hour under atmospheric pressure, and then washed with water for 1 hour.
再生前後の触媒活性の変化は、[8表に示す通りである
。 l第 8 表
実施例4
実施例1と同様、の廃水処理に使用した結果活性指数が
100から71にまで低下した2優Ru−Ti触媒を反
応塔から取り出し、下記第4表に示す条件により浸漬再
生処理する。再生後の触媒の活性は、第4表に示す通り
である。Changes in catalyst activity before and after regeneration are shown in Table 8. Table 8 Example 4 In the same manner as in Example 1, the 2-dominant Ru-Ti catalyst whose activity index decreased from 100 to 71 as a result of being used for wastewater treatment was taken out of the reaction tower and treated under the conditions shown in Table 4 below. Perform immersion regeneration treatment. The activity of the catalyst after regeneration is as shown in Table 4.
実施例6
実施例1と同様の廃水処理に使用した結果活性指数が1
00から72にまで低下した2 % Rh −TiO,
触媒を下記第6表に示す条件により浸漬再生処理する。Example 6 When used in the same wastewater treatment as in Example 1, the activity index was 1.
2% Rh-TiO decreased from 00 to 72,
The catalyst is immersed and regenerated under the conditions shown in Table 6 below.
再生処理による触媒活性の回復の度合は、1s6表に示
す通りである。The degree of recovery of catalyst activity by regeneration treatment is as shown in Table 1s6.
第5表
実施例6
実施例1と同様の廃水処理に使用した結果、活性指数が
100から71にまで低下した2%Ru−Ti01触媒
を檀々の濃度の塩酸水溶液(70℃)に大気圧下1時間
浸漬放置した後、1時間水洗する。塩酸濃度と触媒活性
回復程度との関係を下記第6表に示す。Table 5 Example 6 A 2% Ru-Ti01 catalyst whose activity index decreased from 100 to 71 as a result of use in the same wastewater treatment as in Example 1 was added to an aqueous solution of hydrochloric acid (70°C) at a similar concentration at atmospheric pressure. After soaking for 1 hour, wash with water for 1 hour. The relationship between the hydrochloric acid concentration and the degree of catalyst activity recovery is shown in Table 6 below.
116表
実施例7
実施例1と同様の廃水処理に使用した結果、活性指数が
100から72にまで低下した2*Ru−Ti0z触媒
を充填する反応塔に、0.5規定のリン酸水溶液を温度
80℃、空間速度0.99 /hrの条件下に1時間
連続的に流通させる。次いで再生処理を終えた反応塔内
の触媒を空間速度2.0 3/hr(水/触媒)の流水
で1時間水洗する。かくして、再生触媒(425)の活
性指数は、86まで回復した。Table 116 Example 7 A 0.5 N phosphoric acid aqueous solution was added to a reaction tower filled with a 2*Ru-Ti0z catalyst whose activity index decreased from 100 to 72 as a result of use in the same wastewater treatment as in Example 1. It is allowed to flow continuously for 1 hour under the conditions of a temperature of 80° C. and a space velocity of 0.99/hr. Next, the catalyst in the reaction tower that has undergone regeneration treatment is washed with running water at a space velocity of 2.0 3/hr (water/catalyst) for 1 hour. In this way, the activity index of the regenerated catalyst (425) was recovered to 86.
実施例8
(イ)実施例1と同様の廃水処理に使用した結果、活性
指数が100から70にまで低下した2%Ru−Ti0
.触媒を充填する反応塔に、80℃の1規定塩酸水溶液
を空間速度0.991/hr で1時間連続的に流通
させ、更に空間速度2,0 /hr(水/触媒)の流
水で1時間水洗する。かくして、再生触媒(A26)の
活性指数は、90に回復した。Example 8 (a) 2% Ru-Ti0 whose activity index decreased from 100 to 70 as a result of use in the same wastewater treatment as in Example 1.
.. A 1N aqueous hydrochloric acid solution at 80°C was continuously passed through the reaction tower filled with the catalyst at a space velocity of 0.991/hr for 1 hour, and then flowing water at a space velocity of 2.0/hr (water/catalyst) was further passed for 1 hour. Wash with water. Thus, the activity index of the regenerated catalyst (A26) was restored to 90.
(ロ)上記の再生触媒A26を書度実施例1と同様の廃
水処理に使用すると、活性指数は69にまで低下するの
で、これ全上記0)と同様にして再生処理及び水洗を行
なう。かくして、再生触媒(扁27)の活性指数は、8
91で1g141シた。(b) When the above regenerated catalyst A26 is used in the same wastewater treatment as in Example 1, the activity index decreases to 69, so the regeneration treatment and water washing are carried out in the same manner as in 0) above. Thus, the activity index of the regenerated catalyst (Ban 27) is 8.
91 and 1g was 141 shi.
e→ 上記の再生触媒!27全実施例1と同様の廃水処
理に再び使用したところ、活性指数は69に低下した・
該触媒を上記ピ)と同様にして再生処理 、、及
び水洗したところ、再生後の触媒(A”28 )の活性
は、再び89にまで回復した。e→ The above regenerated catalyst! 27 When used again for the same wastewater treatment as in Example 1, the activity index decreased to 69.
When the catalyst was regenerated and washed with water in the same manner as in step (i) above, the activity of the regenerated catalyst (A''28) was again restored to 89.
上記(イ)、゛(ロ)及び(ハ)の結果から、本発明方
法によれば廃水酸化触媒を繰返し再生することがaJ能
であり、触媒の全寿命を著るしく増大させ得ることが明
らかである。From the results of (a), (b), and (c) above, it is clear that according to the method of the present invention, it is possible to repeatedly regenerate the waste water oxidation catalyst, and the overall life of the catalyst can be significantly increased. it is obvious.
(以 上)(that's all)
Claims (1)
イリジウム、白金、鋼、金及びタングステン並びにこれ
等金属の水に不溶性又は難溶性の化合物の1種又は2種
以上を触媒活性成分とする廃水の湿式酸化用担持触媒の
再生方法において、触媒を無機酸及び有機酸(但しギ酸
及びシュウ酸を除く)の少なくとも1種を含む水溶液に
接触させることを特徴とする触畠の再生法。■ Iron, cobalt, nickel, ruthenium, rhodium,
In a method for regenerating a supported catalyst for wet oxidation of wastewater, the catalyst is an inorganic A method for regenerating a tentacle, which comprises contacting with an aqueous solution containing at least one of an acid and an organic acid (excluding formic acid and oxalic acid).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21585281A JPS58114732A (en) | 1981-12-28 | 1981-12-28 | Regenerating method of catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21585281A JPS58114732A (en) | 1981-12-28 | 1981-12-28 | Regenerating method of catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58114732A true JPS58114732A (en) | 1983-07-08 |
Family
ID=16679336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21585281A Pending JPS58114732A (en) | 1981-12-28 | 1981-12-28 | Regenerating method of catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58114732A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60102944A (en) * | 1983-11-08 | 1985-06-07 | Daido Steel Co Ltd | Catalyst regenerating method |
EP0159959A2 (en) * | 1984-04-05 | 1985-10-30 | Mitsubishi Jukogyo Kabushiki Kaisha | Method for recovering denitrating catalyst for ammonia catalytic reduction |
EP0824973A2 (en) * | 1996-08-19 | 1998-02-25 | Siemens Aktiengesellschaft | Method and installation for cleaning a contaminated object |
JP2010115645A (en) * | 2008-10-10 | 2010-05-27 | Eurecat Sa | Process for regeneration of catalyst for treatment of hydrocarbon |
CN105903469A (en) * | 2016-05-05 | 2016-08-31 | 西南石油大学 | Transition metal catalyst for catalytic wet oxidation of fracturing backflow liquid and preparation method of transition metal catalyst |
CN106944138A (en) * | 2016-01-07 | 2017-07-14 | 中国石油化工股份有限公司 | A kind of Application way of useless hydrogenation catalyst |
JP2019098248A (en) * | 2017-12-01 | 2019-06-24 | 三菱重工業株式会社 | Modifier of platinum group catalyst for water treatment, catalyst modification device, modification method of platinum group catalyst for water treatment, water treatment system, and water treatment method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5080291A (en) * | 1973-11-20 | 1975-06-30 | ||
JPS5142070A (en) * | 1974-10-09 | 1976-04-09 | Mitsubishi Chem Ind | |
JPS5451991A (en) * | 1977-09-30 | 1979-04-24 | Daihatsu Motor Co Ltd | Regeneration of exhaust gas purifying catalyst |
-
1981
- 1981-12-28 JP JP21585281A patent/JPS58114732A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5080291A (en) * | 1973-11-20 | 1975-06-30 | ||
JPS5142070A (en) * | 1974-10-09 | 1976-04-09 | Mitsubishi Chem Ind | |
JPS5451991A (en) * | 1977-09-30 | 1979-04-24 | Daihatsu Motor Co Ltd | Regeneration of exhaust gas purifying catalyst |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60102944A (en) * | 1983-11-08 | 1985-06-07 | Daido Steel Co Ltd | Catalyst regenerating method |
JPH0428420B2 (en) * | 1983-11-08 | 1992-05-14 | Daido Steel Co Ltd | |
EP0159959A2 (en) * | 1984-04-05 | 1985-10-30 | Mitsubishi Jukogyo Kabushiki Kaisha | Method for recovering denitrating catalyst for ammonia catalytic reduction |
EP0824973A2 (en) * | 1996-08-19 | 1998-02-25 | Siemens Aktiengesellschaft | Method and installation for cleaning a contaminated object |
EP0824973A3 (en) * | 1996-08-19 | 1998-12-02 | Siemens Aktiengesellschaft | Method and installation for cleaning a contaminated object |
JP2010115645A (en) * | 2008-10-10 | 2010-05-27 | Eurecat Sa | Process for regeneration of catalyst for treatment of hydrocarbon |
CN106944138A (en) * | 2016-01-07 | 2017-07-14 | 中国石油化工股份有限公司 | A kind of Application way of useless hydrogenation catalyst |
CN106944138B (en) * | 2016-01-07 | 2019-07-12 | 中国石油化工股份有限公司 | A kind of utilization method of useless hydrogenation catalyst |
CN105903469A (en) * | 2016-05-05 | 2016-08-31 | 西南石油大学 | Transition metal catalyst for catalytic wet oxidation of fracturing backflow liquid and preparation method of transition metal catalyst |
JP2019098248A (en) * | 2017-12-01 | 2019-06-24 | 三菱重工業株式会社 | Modifier of platinum group catalyst for water treatment, catalyst modification device, modification method of platinum group catalyst for water treatment, water treatment system, and water treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2240614B1 (en) | Process for the recovery of precious metals from used and/or defective catalytic carriers | |
JPS58114732A (en) | Regenerating method of catalyst | |
US3578395A (en) | Recovery of metals | |
JPH0366018B2 (en) | ||
JP3083463B2 (en) | Regeneration method of catalyst for wet oxidation treatment | |
JPS58114733A (en) | Regenerating treatment of catalyst | |
JP4013010B2 (en) | Method for cleaning and regenerating catalyst | |
JPH09327694A (en) | Removal of arsenic in water | |
JPH07185540A (en) | Adsorbent for waste water treatment, treatment of waste water using the same and method of regenerating adsorbent | |
JP4066527B2 (en) | Treatment of wastewater containing hydrogen peroxide and ammonia | |
JPS58114734A (en) | Regenerating method for catalyst for wet oxidation of waste water | |
JP3263968B2 (en) | Treatment of wastewater containing nitrate | |
JP3644050B2 (en) | Method for treating water containing ammoniacal nitrogen and metal salts | |
JP4187845B2 (en) | Method for treating ammonia-containing water | |
JPS59115745A (en) | Catalyst for wet oxydation treatment | |
JP3693354B2 (en) | Treatment method of wastewater containing nitrate | |
JP3565637B2 (en) | Treatment of wastewater containing ammonia | |
SU1511893A1 (en) | Catalyst for oxidizing ferrous sulfate with oxygen | |
JP3855326B2 (en) | Wastewater treatment method | |
JP3457143B2 (en) | Method of treating water containing imidazolidinone compound | |
JP3509186B2 (en) | Denitrification treatment method | |
JPS59115744A (en) | Wet type oxidation processing catalyst | |
JP3575059B2 (en) | Method for treating water containing nitrate nitrogen and ammonia nitrogen | |
US3536443A (en) | Process for recovering metal compounds | |
JPH05269475A (en) | Treatment of waste water containing hydrogen peroxide and ammonia |