JPH0366018B2 - - Google Patents

Info

Publication number
JPH0366018B2
JPH0366018B2 JP56212949A JP21294981A JPH0366018B2 JP H0366018 B2 JPH0366018 B2 JP H0366018B2 JP 56212949 A JP56212949 A JP 56212949A JP 21294981 A JP21294981 A JP 21294981A JP H0366018 B2 JPH0366018 B2 JP H0366018B2
Authority
JP
Japan
Prior art keywords
catalyst
treatment
acid
aqueous solution
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56212949A
Other languages
Japanese (ja)
Other versions
JPS58114731A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21294981A priority Critical patent/JPS58114731A/en
Publication of JPS58114731A publication Critical patent/JPS58114731A/en
Publication of JPH0366018B2 publication Critical patent/JPH0366018B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、廃水の湿式酸化に使用される触媒の
再生法に関する。 化学的酸素要求物質(以下COD成分と記す)、
懸濁物質或いは場合によつては更にアンモニア等
を含む廃水の処理方法については、種々のものが
提案されている。本発明者等もこの様な廃水の処
理方法につき長年研究を重ねた結果、触媒の種
類、湿式酸化に使用する酸素の濃度及び供給量、
廃水の予備的PH調整、湿式酸化反応中のアルカリ
物質供給等が、処理効率、使用する機器類の腐
食、触媒の寿命等に大きく影響することを見出
し、該知見に基いてすでに特許出願を行なつてい
る(特願昭51−95507号、特願昭52−110257号、
特願昭56−165168号等)。これ等の先願方法では、
鉄、コバルト、ニツケル、ルテニウム、パラジウ
ム、ロジウム、イリジウム、白金、金、銅、タン
グステン等の金属並びにこれ等金属の水に不溶性
又は難溶性の化合物の少なくとも1種をそのまま
或いはアルミナ、シリカ、シリカ−アルミナ、チ
タニア、ジルコニア、活性炭等の担体に担持させ
た状態で触媒として使用することが出来る。この
様な触媒(以下単に廃水酸化触媒という)は、廃
水処理においては大量に使用されるので、活性の
低下した触媒を再生し、繰返し使用することが是
非とも必要となる。本発明者は、他の分野におけ
る公知の触媒再生方法が廃水酸化触媒の再生にも
適用し得るのではないかと考え、種々実験を行な
つたが、公知方法の転用が必ずしも有効でないこ
とが判明した。例えば、水素、水蒸気、酸素等の
公知の再生剤のみより廃水酸化触媒の再生を行な
う場合には、触媒表面に付着した物質は、外見上
比較的良好に除去されるにもかかわらず、触媒活
性自体の回復は十分でない。 本発明者は、上記廃水酸化触媒の再生法につい
て新たな観点から研究を進めた結果、塩酸、硝
酸、リン酸、酢酸及びプロピオン酸からなる酸の
中から選ばれた少なくとも1種を含む水溶液によ
る処理(以下これを酸洗処理という)とヒドラジ
ン水和物、ホルムアルデヒド、水素化ホウ素ナト
リウム、水素化アルミニウムリチウム、酒石酸ナ
トリウム、ブドウ糖、ギ酸カリウム及びギ酸ナト
リウムの少なくとも1種を含む水溶液による処理
(以下これを液相還元処理という)或いは水素及
び一酸化炭素の少なくとも1種を含む気体による
処理(以下これを気相還元処理という)とを併せ
行なう場合には、触媒の活性が著るしく回復する
ことを見出した。本発明は、この様な知見に基い
て完成されたものである。 一般に、廃水酸化触媒を高温(100〜370℃程
度)下に廃水の湿式酸化に使用すると廃水中の
CD成分及び懸濁物質の析出、沈積又は付着、溶
解性無機物質の析出、廃水中に含まれていた或は
分解により生成する化学的活性物質による触媒金
属の化学的侵食等に加えて触媒金属表面の化学的
及び物理的性質の変化等の要因より触媒の活性は
次第に低下する。特に後者のミクロ的な化学的及
び物理的性質の変化は、現在の分析技術では、明
確に把握し得ないものであり、従つて未だ十分に
解明されていないが、前者の外見上認識し得る原
因と同等若しくはそれ以上の重大な触媒活性低下
要因であると推測される。しかるに本発明方法に
よれば、これ等の触媒活性低下要因が全般的に解
消されるので、廃水酸化触媒が再使用可能な程度
まで活性を回復し、処理条件によつては新触媒に
ほぼ等しい程度にまで回復する。 本発明方法により再生される廃水酸化触媒は、
触媒活性成分として鉄、コバルト、ニツケル、ル
テニウム、ロジウム、パラジウム、イリジウム、
白金、銅、金及びタングステン、並びにこれ等金
属の水に不溶性又は難溶性の化合物の1種又は2
種以上を含む。水に対して不溶性又は難溶性の化
合物としては、(i)三二酸化鉄、四三酸化鉄、一酸
化コバルト、一酸化ニツケル、二酸化ルテニウ
ム、三二酸化ロジウム、一酸化パラジウム、二酸
化イリジウム、酸化第二銅、二酸化タングステン
等の酸化物、(ii)塩化ルテニウム、酸化白金等の塩
化物、(iii)硫化ルテニウム、硫化ロジウム等の硫化
物等が例示される。 本願発明は、酸洗処理と液相還元処理又は気相
還元処理との組合せにより、4つの発明を包含す
るので、その夫々につき説明を行なうものとす
る。 () 特許請求の範囲第1項に記載の発明(以下
本願第1発明という。又、特許請求の範囲第2
項乃至第4項に記載の発明についても、同様に
本第2発明の様にいうものとする。)において
は、先ず廃水酸化触媒の酸洗処理を行なう。酸
洗処理剤としては、塩酸、硝酸、リン酸、酢酸
及びプロピオン酸からなる酸の中から選ばれた
少なくとも1種を含有する水溶液を用いる。水
溶液中の酸洗処理剤の濃度は、担持された触媒
金属の量、触媒活性低下の程度、酸洗処理時の
温度等により変り得るが、通常0.1〜5.0の規定
の範囲にあり、好ましくは0.25〜2.0規定程度
とする。濃度が低過ぎる場合には、酸洗による
再生の効果が十分でなく、一方濃度の上昇に伴
つて再生効果は漸次改善されるものの、5規定
を越えても再生効果のより一層の改善は実質上
認められない。酸洗処理は、再生すべき廃水酸
化触媒を酸洗処理剤の水溶液に浸漬放置するか
又は該水溶液中で撹拌下に行なう。酸洗処理
は、廃水の湿式酸化処理を行なう反応塔から触
媒を取り出し、これと別個の処理槽に入れて行
なつても良く、或いは触媒を湿式酸化反応塔に
収容した状態で反応塔に酸洗処理剤水溶液を連
続的に流通させて行なつても良い。処理条件
は、通常40℃以上、より好ましくは60℃以上且
つ酸の分解を実質的に生じない温度で、通常15
分間以上、より好ましくは30分間以上の時間と
するのが良いが、処理温度及び処理時間は、触
媒活性低下の程度、触媒の種類、要求される触
媒活性回復の程度、酸洗処理剤の種類及び濃度
等により定められるものであつて、必ずしも限
定されない。酸洗処理の実施に際しての圧力
は、大気圧で良く、加圧する必要は特にない
が、加圧下に行なつても何らの不利益も生じな
い。 酸洗処理を終えた廃水酸化触媒は、すでにそ
の活性を大巾に回復してはいるが、引続きその
まま或いは必要ならば水洗或いは水洗及び乾燥
後、液相還元処理に供される。 尚、触媒活性の低下が著るしい場合、1回の
酸洗処理だけでは触媒活性の回復が十分でない
場合等には、酸洗処理を複数回行なつた後、液
相還元処理に供するのが良い。 液相還元処理剤は、ヒドラジン水和物、ホル
ムアルデヒド、水素化ホウ素ナトリウム、水素
化アルミニウムリチウム、酒石酸ナトリウム、
ブドウ糖、ギ酸カリウム及びギ酸ナトリウムで
あり、これ等の少なくとも1種を含有する水溶
液の形態で使用される。水溶液としての濃度
は、担持された触媒金属の量、触媒活性低下の
程度、還元処理時の温度等により変り得るが、
通常0.1重量%以上であれば良い。濃度があま
り低過ぎる場合には、最終的な再生効果が十分
顕著ではなく、一方濃度が大となるに従つて再
生効果は漸次増加するが、10重量%を越えても
再生効果のより一層の改善はほとんど認められ
ない。還元処理剤の濃度は、0.2〜5重量%と
することがより好ましい。本還元処理は、酸洗
処理を終えた廃水酸化触媒を液相還元処理剤の
水溶液中に浸漬放置するか又は該水溶液中で撹
拌して行なう。湿式酸化反応塔に触媒を収容し
た状態で酸洗処理を行なう場合には、引続き該
反応塔に還元処理剤水溶液を流通させ、還元処
理を行なうのが有利である。還元処理条件は通
常20℃以上の温度で30分以上とすることが好ま
しいが、該条件も酸洗処理の場合と同様に触媒
活性低下の程度、触媒の種類、要求される触媒
活性回復の程度、還元処理剤の種類及び濃度な
ども考慮して、決定される。但し温度が高過ぎ
る場合には、ヒドラジン等が分解する危険性が
あるので、この点に留意する必要がある。本還
元処理に際しての圧力は、大気圧で良く、加圧
する必要は特にないが、加圧下に行なつても何
らの不利益も生じない。 必要ならば、液相還元処理を複数回行なつて
も良い。更に、酸洗処理−液相還元処理という
サイクルを複数回行なつても良い。 酸洗処理に引続く液相還元処理を終えた廃水
酸化触媒は、そのまま或いは必要ならば水洗後
或いは水洗及び乾燥後、再使用される。 () 本願第2発明においては、先ず廃水酸化触
媒の液相還元処理を行ない、次いで酸洗処理を
行なう。液相還元処理及び酸洗処理は、本願第
1発明におけると同様の条件で行なうことが出
来る。 () 本願第3発明においては、先ず廃水酸化触
媒の酸洗処理を行ない、次いで気相還元処理を
行なう。 酸洗処理は、本願第1発明におけると同じ条
件で行なう。 気相還元処理は、酸洗処理を終えた廃水酸化
触媒を水素及び一酸化炭素の少なくとも1種を
含む気体と接触させることにより行なわれる。
気相還元剤としては、水素、一酸化炭素、水素
−一酸化炭素の混合物、水素−水蒸気の混合
物、一酸化炭素−水蒸気の混合物、並びにこれ
等に窒素、炭酸ガス、ヘリウム、アルゴン等の
不活性ガスを希釈剤として加えた混合気体が具
体的に例示される。 触媒処理条件は、担持された触媒金属の量、
触媒活性低下の程度、接触気体中の有効成分
(水素、一酸化炭素)の濃度、酸洗処理による
触媒活性回復の程度等により大きく変り得る
が、通常温度300〜500℃、圧力1〜50気圧(絶
対)程度とする。処理時間は、特に限定されな
いが、触媒劣化を生じない程度の時間とすべき
はいうまでもない。 本願第3発明においても、必要ならば酸洗処
理及び/又は気相還元処理を複数回行なつても
良い。 () 本願第4発明においては、先ず廃水酸化触
媒の気相還元処理を行ない、次いで酸洗処理を
行なう。気相還元処理は本願第3発明と同様に
して行ない、酸洗処理は本願第1発明と同様に
して行なえば良い。 尚、硬度成分(カルシウム塩、マグネシウム
塩、鉄塩等)を含まない廃水、例えば食品工場
廃水、醸造工場廃水等の処理に使用した廃水酸
化触媒の場合には、液相還元処理又は気相還元
処理のみにより、触媒活性を十分に回復し得る
ことが明らかとなつた。 本発明方法によれば、以下の如き顕著な効果
が奏される。 (i) 触媒活性低下要因が大巾に取り除かれるの
で、再使用可能な程度まで廃水酸化触媒の活性
が回復する。 (ii) 再生処理条件によつては、再生後の触媒活性
が新触媒のそれにほぼ等しくなる程度まで回復
する。 (iii) 再生後の再使用により活性の低下した廃水酸
化触媒を更に繰返し再生することが出来、しか
もその活性を新触媒のそれに近いものとするこ
とが出来るので、触媒の全寿命を著るしく増大
させることが可能となつた。 (iv) 廃水処理に要する触媒費用が減少するので廃
水処理費も低減される。 (v) 廃水処理用の反応塔を2基以上使用する場合
には、廃水処理を停止することなく、いずれか
の反応塔内の廃水酸化触媒を交互に再生処理す
ることが出来るので、触媒の取り出しと再充填
等の労力が不要となる。 実施例 1 コークス炉において発生するガス液
(COD6000ppm、全アンモニア量3000ppm、全窒
素量4000ppm)を苛性ソーダ溶液によりPH約10と
し、空間速度1.0 1/hr(空塔基準)として円筒
型反応塔最下部に供給する。 尚、本実施例以下の各実施例で処理されるガス
液は、当初から鉄、カルシウム及びマグネシウム
として総量15ppmを含有しているが、本発明の効
果をより明確に示すべく、その総量が1500ppmと
なる様にこれ等の化合物を更に加えている。液の
質量速度は、8.0トン/m3・hrである。一方空気
を間速度65 1/hr(空塔基準、標準状態換算)と
して上記反応塔下部に供給する。該反応塔には、
下記第1表に示す如き組成の径5mmの球形触媒が
充填されている。尚、第1表において、例えば1
%Ir−TiO2とあるのは、チタニア担体にイリジ
ウム1重量%を担持させたことを意味する。 反応塔内部を温度250℃、圧力70Kg/m3・Gに
保持し、湿式酸化後の液のPHが約7となる様に苛
性ソーダ水溶液を供給しつつ、10000時間にわた
り上記ガス液の湿式酸化を行なうことにより、触
媒の活性指数は、第1表に示す様に低下する。な
お、触媒表面の析出物を分析したところ、硫黄お
よび灰分(シリカ、酸化鉄、酸化マグネシウム)
などの存在が確認されたが、カーボン、炭化水素
類などは検出されなかつた。 活性の低下した触媒を反応塔から取り出し、1
規定のリン酸水溶液(80℃)大気圧下1時間浸漬
放置し、酸洗処理した後、1時間にわたり水洗す
る。次いで、該触媒を1重量%のヒドルジン水溶
液(60℃)に大気圧下1.5時間浸漬放置した後、
1時間水洗する。 再生された各触媒を上記と同様にして廃水処理
に使用した結果は、第1表に示す通りである。 尚、本願明細書において活性指数とは、新触媒
を使用して廃水を湿式酸化処理する場合のアンモ
ニア除去率を100としたとき、同一条件で各触媒
を使用して廃水を湿式酸化処理する場合の各触媒
のアンモニア除去率をいう。COD除去率も、ア
ンモニア除去率と同傾向を示すので、表示しな
い。
The present invention relates to a method for regenerating catalysts used in wet oxidation of wastewater. Chemical oxygen demand substances (hereinafter referred to as COD components),
Various methods have been proposed for treating wastewater containing suspended solids and, in some cases, ammonia and the like. As a result of many years of research into such wastewater treatment methods, the inventors have determined that the type of catalyst, the concentration and supply amount of oxygen used in wet oxidation,
We have discovered that preliminary PH adjustment of wastewater, supply of alkaline substances during wet oxidation reactions, etc. greatly affect treatment efficiency, corrosion of equipment used, and catalyst life, and have already filed a patent application based on this knowledge. Natsuteru (Patent Application No. 51-95507, Patent Application No. 110257-1972,
(Patent Application No. 165168, etc.). In these first-to-file methods,
Metals such as iron, cobalt, nickel, ruthenium, palladium, rhodium, iridium, platinum, gold, copper, and tungsten, as well as at least one kind of water-insoluble or sparingly soluble compounds of these metals, as they are, or alumina, silica, and silica. It can be used as a catalyst in a state where it is supported on a carrier such as alumina, titania, zirconia, or activated carbon. Since such catalysts (hereinafter simply referred to as wastewater oxidation catalysts) are used in large quantities in wastewater treatment, it is absolutely necessary to regenerate and repeatedly use catalysts whose activity has decreased. The present inventor thought that known catalyst regeneration methods in other fields could be applied to the regeneration of waste water oxidation catalysts, and conducted various experiments, but it was found that diversion of known methods was not necessarily effective. did. For example, when regenerating a waste water oxidation catalyst using only known regenerants such as hydrogen, steam, or oxygen, the substances adhering to the catalyst surface appear to be removed relatively well, but the catalyst becomes inactive. Its own recovery is not sufficient. As a result of conducting research from a new perspective on the method for regenerating the waste water oxidation catalyst, the present inventor discovered that the method for regenerating the waste water oxidation catalyst is based on an aqueous solution containing at least one acid selected from hydrochloric acid, nitric acid, phosphoric acid, acetic acid, and propionic acid. treatment (hereinafter referred to as pickling treatment) and treatment with an aqueous solution containing at least one of hydrazine hydrate, formaldehyde, sodium borohydride, lithium aluminum hydride, sodium tartrate, glucose, potassium formate, and sodium formate (hereinafter referred to as pickling treatment). (hereinafter referred to as liquid-phase reduction treatment) or treatment with a gas containing at least one of hydrogen and carbon monoxide (hereinafter referred to as gas-phase reduction treatment), the activity of the catalyst can be significantly recovered. I found out. The present invention was completed based on such knowledge. In general, when wastewater oxidation catalysts are used for wet oxidation of wastewater at high temperatures (approximately 100 to 370℃),
In addition to precipitation, deposition or adhesion of CD components and suspended solids, precipitation of soluble inorganic substances, chemical attack of catalyst metal by chemically active substances contained in wastewater or generated by decomposition, etc. The activity of the catalyst gradually decreases due to factors such as changes in the chemical and physical properties of the surface. In particular, changes in the microscopic chemical and physical properties of the latter cannot be clearly grasped using current analytical techniques, and therefore have not yet been fully elucidated, but changes in the microscopic chemical and physical properties of the former can be recognized from the outside. It is presumed that this is a factor equivalent to or more important than the cause of the decrease in catalyst activity. However, according to the method of the present invention, these factors that reduce catalyst activity are generally eliminated, so that the waste water oxidation catalyst can recover its activity to the extent that it can be reused, and depending on the treatment conditions, it can be almost as active as a new catalyst. recover to some extent. The waste water oxidation catalyst regenerated by the method of the present invention is
Catalytic active components include iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium,
Platinum, copper, gold, tungsten, and one or two of water-insoluble or sparingly soluble compounds of these metals
Contains more than one species. Compounds that are insoluble or sparingly soluble in water include (i) iron sesquioxide, triiron tetroxide, cobalt monoxide, nickel monoxide, ruthenium dioxide, rhodium sesquioxide, palladium monoxide, iridium dioxide, diferric oxide; Examples include oxides such as copper and tungsten dioxide, (ii) chlorides such as ruthenium chloride and platinum oxide, and (iii) sulfides such as ruthenium sulfide and rhodium sulfide. The present invention includes four inventions by combining a pickling treatment and a liquid phase reduction treatment or a gas phase reduction treatment, so each of them will be explained. () The invention set forth in claim 1 (hereinafter referred to as the first invention of the present application. Also, the invention set forth in claim 2)
The inventions described in items 4 to 4 are also referred to as the second invention. ), the waste water oxidation catalyst is first subjected to pickling treatment. As the pickling agent, an aqueous solution containing at least one acid selected from hydrochloric acid, nitric acid, phosphoric acid, acetic acid, and propionic acid is used. The concentration of the pickling treatment agent in the aqueous solution may vary depending on the amount of supported catalyst metal, the degree of reduction in catalyst activity, the temperature during pickling treatment, etc., but it is usually within a specified range of 0.1 to 5.0, and is preferably It should be around 0.25 to 2.0 regulation. If the concentration is too low, the regeneration effect by pickling will not be sufficient; on the other hand, as the concentration increases, the regeneration effect will gradually improve; This is not acceptable. The pickling treatment is carried out by leaving the waste water oxidation catalyst to be regenerated immersed in an aqueous solution of a pickling treatment agent, or by stirring it in the aqueous solution. The pickling treatment may be carried out by taking out the catalyst from the reaction tower that performs the wet oxidation treatment of wastewater and placing it in a separate treatment tank, or by adding acid to the reaction tower while the catalyst is housed in the wet oxidation reaction tower. The cleaning treatment may be carried out by continuously circulating the cleaning agent aqueous solution. The treatment conditions are usually 40°C or higher, preferably 60°C or higher, and at a temperature that does not substantially cause acid decomposition, usually at 15°C.
The treatment time is preferably at least 30 minutes, more preferably at least 30 minutes, but the treatment temperature and treatment time are determined based on the degree of catalyst activity reduction, the type of catalyst, the required degree of catalyst activity recovery, and the type of pickling agent. and concentration, etc., and is not necessarily limited. The pressure in carrying out the pickling treatment may be atmospheric pressure, and there is no particular need to pressurize it, but there will be no disadvantages even if it is carried out under pressure. The waste water oxidation catalyst that has been subjected to the pickling treatment has already recovered its activity to a large extent, but it is subsequently subjected to the liquid phase reduction treatment as it is or, if necessary, after washing with water or washing with water and drying. In addition, if the catalyst activity has significantly decreased or the catalyst activity is not recovered sufficiently by one pickling treatment, it is recommended to perform the pickling treatment multiple times and then subject it to the liquid phase reduction treatment. is good. Liquid phase reduction treatment agents include hydrazine hydrate, formaldehyde, sodium borohydride, lithium aluminum hydride, sodium tartrate,
These are glucose, potassium formate, and sodium formate, and are used in the form of an aqueous solution containing at least one of these. The concentration as an aqueous solution may vary depending on the amount of supported catalyst metal, the degree of catalyst activity reduction, the temperature during reduction treatment, etc.
Usually, it is sufficient if it is 0.1% by weight or more. If the concentration is too low, the final regeneration effect will not be sufficiently pronounced; on the other hand, as the concentration increases, the regeneration effect will gradually increase, but even beyond 10% by weight, the regeneration effect will become even more pronounced. Almost no improvement is observed. The concentration of the reducing agent is more preferably 0.2 to 5% by weight. This reduction treatment is carried out by leaving the pickled waste water oxidation catalyst immersed in an aqueous solution of a liquid-phase reduction treatment agent, or by stirring it in the aqueous solution. When the pickling treatment is carried out with the catalyst housed in the wet oxidation reaction tower, it is advantageous to continue the reduction treatment by passing an aqueous solution of the reducing agent through the reaction tower. The reduction treatment conditions are usually preferably 30 minutes or more at a temperature of 20°C or higher, but the conditions also depend on the degree of catalytic activity reduction, the type of catalyst, and the required degree of catalytic activity recovery, as in the case of pickling treatment. , is determined by taking into account the type and concentration of the reducing agent. However, if the temperature is too high, there is a risk that hydrazine and the like will decompose, so this point must be kept in mind. The pressure during this reduction treatment may be atmospheric pressure, and there is no particular need to pressurize it, but no disadvantage will occur even if it is carried out under pressure. If necessary, the liquid phase reduction treatment may be performed multiple times. Furthermore, the cycle of pickling treatment and liquid phase reduction treatment may be performed multiple times. The waste water oxidation catalyst that has undergone the liquid phase reduction treatment subsequent to the pickling treatment is reused as it is or, if necessary, after washing with water or after washing with water and drying. () In the second invention of the present application, the waste water oxidation catalyst is first subjected to a liquid phase reduction treatment, and then a pickling treatment is performed. The liquid phase reduction treatment and the pickling treatment can be performed under the same conditions as in the first invention of the present application. () In the third invention of the present application, the waste water oxidation catalyst is first subjected to pickling treatment, and then gas phase reduction treatment is performed. The pickling treatment is performed under the same conditions as in the first invention. The gas phase reduction treatment is performed by bringing the pickled waste water oxidation catalyst into contact with a gas containing at least one of hydrogen and carbon monoxide.
Gas phase reducing agents include hydrogen, carbon monoxide, mixtures of hydrogen and carbon monoxide, mixtures of hydrogen and water vapor, and mixtures of carbon monoxide and water vapor, as well as nitrogen, carbon dioxide, helium, argon and other non-containing agents. A specific example is a gas mixture to which an active gas is added as a diluent. Catalyst treatment conditions include the amount of supported catalytic metal;
This can vary greatly depending on the degree of catalyst activity reduction, the concentration of active ingredients (hydrogen, carbon monoxide) in the contact gas, the degree of catalyst activity recovery by pickling treatment, etc., but usually the temperature is 300 to 500℃ and the pressure is 1 to 50 atm. (absolute) degree. The treatment time is not particularly limited, but it goes without saying that it should be a time that does not cause catalyst deterioration. Also in the third invention of the present application, the pickling treatment and/or the gas phase reduction treatment may be performed multiple times if necessary. () In the fourth invention of the present application, the waste water oxidation catalyst is first subjected to a gas phase reduction treatment, and then a pickling treatment is performed. The gas phase reduction treatment may be performed in the same manner as in the third invention of the present application, and the pickling treatment may be performed in the same manner as in the first invention of the present application. In addition, in the case of wastewater oxidation catalysts used to treat wastewater that does not contain hardness components (calcium salts, magnesium salts, iron salts, etc.), such as food factory wastewater, brewing factory wastewater, etc., liquid phase reduction treatment or gas phase reduction treatment is required. It has become clear that the catalytic activity can be sufficiently restored by treatment alone. According to the method of the present invention, the following remarkable effects are achieved. (i) Since the factors that reduce catalyst activity are largely removed, the activity of the wastewater oxidation catalyst is recovered to the extent that it can be reused. (ii) Depending on the regeneration treatment conditions, the catalytic activity after regeneration can be recovered to an extent that is almost equal to that of the new catalyst. (iii) By reusing the waste water oxidation catalyst after regeneration, the activity of the waste water oxidation catalyst whose activity has decreased can be further regenerated, and its activity can be made close to that of a new catalyst, which significantly extends the overall life of the catalyst. It became possible to increase the amount. (iv) Wastewater treatment costs are also reduced because catalyst costs required for wastewater treatment are reduced. (v) When using two or more reaction towers for wastewater treatment, the wastewater oxidation catalyst in one of the reaction towers can be regenerated alternately without stopping the wastewater treatment. Labor such as taking out and refilling becomes unnecessary. Example 1 The gas liquid (COD 6000 ppm, total ammonia amount 3000 ppm, total nitrogen amount 4000 ppm) generated in a coke oven was adjusted to pH approximately 10 with a caustic soda solution, and the space velocity was set at a space velocity of 1.0 1/hr (empty column standard) at the bottom of a cylindrical reaction tower. supply to. The gas liquid treated in each of the Examples below contains iron, calcium, and magnesium in a total amount of 15 ppm from the beginning, but in order to more clearly demonstrate the effects of the present invention, the total amount was 1500 ppm These compounds are further added so that The mass velocity of the liquid is 8.0 tons/m 3 ·hr. On the other hand, air is supplied to the lower part of the reaction tower at an hourly velocity of 65 1/hr (on the empty column basis, in terms of standard conditions). The reaction tower includes
A spherical catalyst having a diameter of 5 mm and having a composition as shown in Table 1 below was filled. In Table 1, for example, 1
%Ir- TiO2 means that 1% by weight of iridium was supported on the titania support. Wet oxidation of the gas liquid was carried out for 10,000 hours while maintaining the inside of the reaction tower at a temperature of 250°C and a pressure of 70 Kg/m 3 G, and while supplying an aqueous solution of caustic soda so that the pH of the liquid after wet oxidation was approximately 7. By doing so, the activity index of the catalyst decreases as shown in Table 1. In addition, analysis of precipitates on the catalyst surface revealed sulfur and ash (silica, iron oxide, magnesium oxide).
The presence of carbon, hydrocarbons, etc. was confirmed, but no carbon or hydrocarbons were detected. The catalyst whose activity has decreased is taken out from the reaction tower and 1
The sample is left immersed in a specified phosphoric acid aqueous solution (80°C) under atmospheric pressure for 1 hour, pickled, and then washed with water for 1 hour. Next, the catalyst was left immersed in a 1% by weight aqueous hydruzine solution (60°C) under atmospheric pressure for 1.5 hours, and then
Wash with water for 1 hour. The regenerated catalysts were used for wastewater treatment in the same manner as above, and the results are shown in Table 1. In this specification, the activity index refers to the ammonia removal rate when wet oxidizing wastewater using the new catalyst is 100, and when wet oxidizing wastewater using each catalyst under the same conditions. refers to the ammonia removal rate of each catalyst. The COD removal rate also shows the same trend as the ammonia removal rate, so it is not displayed.

【表】 第1表に示す結果から、本発明方法による触媒
活性回復の顕著な効果が明らかである。 比較例 1 実施例1の触媒No.1と同様の触媒(1%Ir−
TiO2)を実施例1と同様にしてガス液の湿式酸
化処理に使用した。 次いで、1規定のリン酸水溶液に代えて1規定
のフツ化水素酸水溶液を使用する以外は実施例1
と同様にして上記触媒の再生処理を行なつた。 再生処理前後の触媒の活性指数は、以下の通り
であつた。 再生処理前 再生処理後 71 72 上記の結果から明らかなように、本発明で使用
する特定の酸化外の酸を使用する場合には、再生
処理による効果がほとんど認められない。 実施例 2 実施例1と同様の廃水処理操作により活性の低
下した触媒を反応塔から取り出し、1規定の塩酸
水溶液(80℃)に大気圧下1時間浸漬放置した
後、1時間にわたり水洗する。次いで、該触媒を
1重量%のギ酸ナトリウム水溶液に大気圧下60℃
で1.5時間浸漬放置した後、1時間水洗する。結
果は、第2表に示す通りである。
[Table] From the results shown in Table 1, it is clear that the method of the present invention has a remarkable effect on catalyst activity recovery. Comparative Example 1 A catalyst similar to catalyst No. 1 of Example 1 (1% Ir-
TiO 2 ) was used in the wet oxidation treatment of a gas liquid in the same manner as in Example 1. Next, Example 1 except that 1N hydrofluoric acid aqueous solution was used in place of 1N phosphoric acid aqueous solution.
The above catalyst was regenerated in the same manner as above. The activity index of the catalyst before and after the regeneration treatment was as follows. Before regeneration treatment After regeneration treatment 71 72 As is clear from the above results, when the specific non-oxidizing acid used in the present invention is used, almost no effect of regeneration treatment is observed. Example 2 A catalyst whose activity has been reduced by the same wastewater treatment operation as in Example 1 is taken out from the reaction tower, immersed in a 1N hydrochloric acid aqueous solution (80°C) for 1 hour under atmospheric pressure, and then washed with water for 1 hour. Next, the catalyst was added to a 1% by weight aqueous sodium formate solution at 60°C under atmospheric pressure.
After soaking for 1.5 hours, wash with water for 1 hour. The results are shown in Table 2.

【表】 実施例 3 実施例1と同様の廃水処理に使用した結果当初
の触媒活性指数100が69まで低下した2%Pd−
TiO2触媒を反応塔から取り出し、1規定のリン
酸水溶液に大気気圧下80℃で1時間浸漬放置した
後、1時間水洗する。次いで、該触媒を下記第3
表に示す条件下に還元処理する。尚、No.11,12,
13及び16は、液相還元処理によるものであり、No.
14,15及び17は、気相還元処理によるものであ
る。
[Table] Example 3 2% Pd- whose initial catalytic activity index of 100 decreased to 69 as a result of use in the same wastewater treatment as in Example 1
The TiO 2 catalyst was taken out of the reaction tower, immersed in a 1N aqueous phosphoric acid solution at 80° C. under atmospheric pressure for 1 hour, and then washed with water for 1 hour. Next, the catalyst was added to the following third
Reduction treatment is carried out under the conditions shown in the table. In addition, No.11, 12,
Nos. 13 and 16 are due to liquid phase reduction treatment, and No.
Samples 14, 15 and 17 were obtained by gas phase reduction treatment.

【表】 実施例 4 実施例1と同様の廃水処理に使用した結果活性
指数が100から71にまで低下した2%Ru−TiO2
触媒を反応塔から取り出し、下記第4表に示す条
件下に酸洗処理及び還元処理を行なつて、再生す
る。尚、No.23乃至25は、気相還元処理によるもの
であり、それ以外は液相還元処理によるものであ
る。
[Table] Example 4 2% Ru-TiO 2 whose activity index decreased from 100 to 71 when used in the same wastewater treatment as in Example 1.
The catalyst is taken out from the reaction tower and regenerated by acid washing and reduction under the conditions shown in Table 4 below. Incidentally, Nos. 23 to 25 were obtained by gas phase reduction treatment, and the others were obtained by liquid phase reduction treatment.

【表】 実施例 5 実施例1と同様の廃水処理に使用した結果活性
指数が100から71に低下した2%Ru−TiO2触媒
を反応塔から取り出し、下記第5表に示す各濃度
を有する塩酸水溶液に大気圧下70℃で1時間浸漬
放置した後、1時間水洗し、更に1重量%ギ酸ナ
トリウム水溶液に大気圧下60℃で1.5時間浸漬し、
次いで1時間水洗する。結果は、第5表に示す通
りである。
[Table] Example 5 A 2% Ru-TiO 2 catalyst whose activity index decreased from 100 to 71 as a result of being used in the same wastewater treatment as in Example 1 was taken out from the reaction tower, and it was treated with each concentration shown in Table 5 below. After being immersed in an aqueous hydrochloric acid solution at 70°C under atmospheric pressure for 1 hour, washed with water for 1 hour, and further immersed in a 1% by weight aqueous sodium formate solution at 60°C under atmospheric pressure for 1.5 hours,
Then wash with water for 1 hour. The results are shown in Table 5.

【表】 実施例 6 実施例1と同様の廃水処理に使用した結果活性
指数が当初の100から69に低下した2%Pd−
TiO2触媒を反応塔から取り出し、1規定のリン
酸水溶液に大気圧下下記第6表に示す条件(温度
及び時間)で浸漬放置した後、1時間水洗する。
次いで、(a)1重量%ヒドラジン水溶液に大気圧下
60℃で1.5時間浸漬した後、1時間水洗するか、
又は(b)1重量%ギ酸ナトリウム水溶液に大気圧下
60℃で1.5時間浸漬した後、1時間水洗する。 酸洗処理時の温度及び時間、並びに還元剤の種
類と触媒活性回復程度との関係を第6表に示す。
[Table] Example 6 2% Pd whose activity index decreased from the initial 100 to 69 when used in the same wastewater treatment as in Example 1.
The TiO 2 catalyst was taken out from the reaction tower, left immersed in a 1N aqueous phosphoric acid solution under atmospheric pressure under the conditions (temperature and time) shown in Table 6 below, and then washed with water for 1 hour.
Next, (a) 1% by weight hydrazine aqueous solution was added under atmospheric pressure.
After soaking at 60℃ for 1.5 hours, wash with water for 1 hour, or
or (b) in a 1% by weight aqueous sodium formate solution under atmospheric pressure.
After soaking at 60℃ for 1.5 hours, wash with water for 1 hour. Table 6 shows the relationship between the temperature and time during pickling treatment, the type of reducing agent, and the degree of catalyst activity recovery.

【表】 実施例 7 実施例1と同様の廃水処理に使用した結果活性
指数が100から71にまで低下した2%Ru−TiO2
触媒を反応塔から取り出し、1規定の塩酸水溶液
に大気圧下70℃で1時間浸漬した後、1時間水洗
する。次いで、下記第7表に示す条件下に液相還
元処理(No.35〜39)又は気相還元処理(No.40〜
42)する。 触媒活性回復の結果を第7表に示す。
[Table] Example 7 2% Ru-TiO 2 whose activity index decreased from 100 to 71 when used in the same wastewater treatment as in Example 1.
The catalyst is taken out from the reaction tower, immersed in a 1N aqueous hydrochloric acid solution at atmospheric pressure at 70°C for 1 hour, and then washed with water for 1 hour. Next, liquid phase reduction treatment (Nos. 35 to 39) or gas phase reduction treatment (Nos. 40 to 39) was performed under the conditions shown in Table 7 below.
42) Do. Table 7 shows the results of catalyst activity recovery.

【表】 実施例 8 2%Pd−TiO2触媒を実施例1と同様の廃水処
理に使用すると、活性指数は当初の100から69に
まで低下する。従つて、活性の低下した該廃水酸
化触媒を反応塔から取り出し、1規定のリン酸水
溶液に大気圧下80℃で1時間浸漬した後、1時間
水洗する。次いで、下記第8表に示す各濃度のヒ
ドラジン水溶液に大気圧下60℃で1.5時間浸漬し
た後、1時間水洗する。 ヒドラジン水溶液の濃度と触媒活性回復の程度
との関係は、第8表に示す通りである。
[Table] Example 8 When a 2% Pd-TiO 2 catalyst is used in the same wastewater treatment as in Example 1, the activity index decreases from the initial 100 to 69. Therefore, the waste hydroxidation catalyst whose activity has decreased is taken out from the reaction tower, immersed in a 1N aqueous phosphoric acid solution at 80° C. under atmospheric pressure for 1 hour, and then washed with water for 1 hour. Next, the sample was immersed in an aqueous hydrazine solution of each concentration shown in Table 8 below for 1.5 hours at 60° C. under atmospheric pressure, and then washed with water for 1 hour. The relationship between the concentration of the hydrazine aqueous solution and the degree of catalyst activity recovery is shown in Table 8.

【表】 実施例 9 (i) 実施例1と同様の廃水処理に使用した結果、
活性指数が100から69にまで低下した2%Pd−
TiO2触媒を充填した状態の廃水湿式酸化反応
塔に、下記第9表に示す条件下にリン酸水溶液
を流通させた後、水洗し、更に還元処理を行な
う。結果は、第9表にNo.46として示す通りであ
る。 (ii) 実施例1と同様の廃水処理に使用した結果、
活性指数が100から71まで低下した2%Ru−
TiO2触媒を上記(i)と同様にして反応塔内で酸
洗及び還元処理する。結果は、第9表にNo.47と
して示す通りである。
[Table] Example 9 (i) Results of using the same wastewater treatment as in Example 1,
2% Pd- whose activity index decreased from 100 to 69
A phosphoric acid aqueous solution is passed through a wastewater wet oxidation reaction tower filled with a TiO 2 catalyst under the conditions shown in Table 9 below, followed by washing with water and further reduction treatment. The results are shown as No. 46 in Table 9. (ii) As a result of using the same wastewater treatment as in Example 1,
2% Ru− whose activity index decreased from 100 to 71
The TiO 2 catalyst is pickled and reduced in the reaction tower in the same manner as in (i) above. The results are shown as No. 47 in Table 9.

【表】 実施例 10 (i) 実施例1と同様の廃水処理に使用した結果、
活性指数が当初の100から70まで低下した2%
Ru−TiO2触媒を充填した状態の廃水湿式酸化
反応塔に、下記第10表に示す条件下に塩酸水溶
液を流通させた後、水洗し、更にヒドラジン水
溶液により還元処理を行なう。結果は、第10表
にNo.48として示す通りである。 (ii) 上記(i)の如くして触媒活性を回復させた2%
Ru−TiO2触媒を再度実施例1と同様の廃水処
理に使用すると、活性指数は69まで低下するの
で、これを上記(i)と同様にして酸洗及び還元処
理する。結果は、第10表にNo.49として示す通り
である。 (iii) 上記(ii)で得た触媒No.49を実施例1と同様の廃
水処理に再度使用すると、活性指数は68まで低
下する。これを上記(i)と同様にして酸洗及び還
元処理する。結果は、第10表にNo.50として示す
通りである。
[Table] Example 10 (i) As a result of using the same wastewater treatment as in Example 1,
2% activity index decreased from initial 100 to 70
A hydrochloric acid aqueous solution is passed through a wastewater wet oxidation reaction tower filled with a Ru-TiO 2 catalyst under the conditions shown in Table 10 below, followed by washing with water and further reduction treatment with a hydrazine aqueous solution. The results are shown as No. 48 in Table 10. (ii) 2% whose catalytic activity has been restored as described in (i) above.
When the Ru-TiO 2 catalyst is used again in the same wastewater treatment as in Example 1, the activity index decreases to 69, so it is pickled and reduced in the same manner as in (i) above. The results are shown as No. 49 in Table 10. (iii) When Catalyst No. 49 obtained in (ii) above is used again for the same wastewater treatment as in Example 1, the activity index decreases to 68. This is pickled and reduced in the same manner as in (i) above. The results are shown as No. 50 in Table 10.

【表】 実施例 11 実施例1と同様の廃水処理操作に使用した結
果、活性の低下した触媒を反応塔から取り出し、
1重量%のヒドラジン水溶液(60℃)に大気圧下
1.5時間浸漬放置した後、1時間水洗する。次い
で該触媒を1規定のリン酸水溶液(80℃)大気圧
下1時間浸漬放置し、1時間水洗する。 再生処理による触媒活性回復の程度は、第11表
に示す通りである。
[Table] Example 11 A catalyst whose activity had decreased as a result of being used in the same wastewater treatment operation as in Example 1 was removed from the reaction tower.
1% by weight hydrazine aqueous solution (60℃) under atmospheric pressure.
After soaking for 1.5 hours, wash with water for 1 hour. Next, the catalyst was left immersed in a 1N phosphoric acid aqueous solution (80° C.) under atmospheric pressure for 1 hour, and then washed with water for 1 hour. The degree of catalyst activity recovery by regeneration treatment is as shown in Table 11.

【表】 実施例 12 実施例1と同様の廃水処理操作に使用した結
果、活性の低下した触媒を反応塔から取り出し、
1重量%のギ酸ナトリウム水溶液に大気圧下60℃
で1.5時間浸漬放置した後、1時間水洗する。次
いで、該触媒を1規定の塩酸水溶液に大気圧下80
℃で1時間浸漬放置した後、1時間水洗する。結
果は、第12表に示す通りである。
[Table] Example 12 A catalyst whose activity had decreased as a result of being used in the same wastewater treatment operation as in Example 1 was removed from the reaction tower.
1% by weight sodium formate aqueous solution at 60°C under atmospheric pressure.
After soaking for 1.5 hours, wash with water for 1 hour. Next, the catalyst was added to a 1N aqueous solution of hydrochloric acid under atmospheric pressure for 80 minutes.
After soaking for 1 hour at ℃, wash with water for 1 hour. The results are shown in Table 12.

【表】 実施例 13 実施例1と同様の廃水処理操作に使用した結
果、当初の触媒活性指数100が69まで低下した2
%Pd−TiO2触媒を反応塔から取り出し、下記第
13表に示す条件下に還元処理した後、1規定のリ
ン酸水溶液に大気圧下80℃で1時間浸漬放置し、
次いで1時間水洗する。 再生処理による触媒活性回復の程度は、第13表
に示す通りである。
[Table] Example 13 As a result of using in the same wastewater treatment operation as in Example 1, the initial catalyst activity index of 100 decreased to 692.
%Pd- TiO2 catalyst was taken out from the reaction tower and
After reduction treatment under the conditions shown in Table 13, it was immersed in a 1N phosphoric acid aqueous solution at 80°C under atmospheric pressure for 1 hour.
Then wash with water for 1 hour. The degree of catalyst activity recovery by regeneration treatment is as shown in Table 13.

【表】 実施例 14 実施例1と同様の廃水処理に使用した結果、活
性指数が100から71にまで低下した2%Ru−
TiO2触媒を反応塔から取り出し、下記第14表に
示す条件下に還元処理及び酸洗処理を行なつて、
再生する。尚、No.72及びNo.73は、気相還元処理に
よるものであり、それ以外は液相還元処理による
ものである。
[Table] Example 14 2% Ru- whose activity index decreased from 100 to 71 when used in the same wastewater treatment as in Example 1.
The TiO 2 catalyst was taken out from the reaction tower and subjected to reduction treatment and pickling treatment under the conditions shown in Table 14 below.
Reproduce. Note that No. 72 and No. 73 were obtained by gas phase reduction treatment, and the others were obtained by liquid phase reduction treatment.

【表】 実施例 15 実施例1と同様の廃水処理に使用した結果、活
性指数が100から71に低下した2%Ru−TiO2
媒を反応塔から取り出し、下記第15表に示す各濃
度を有するギ酸ナトリウム水溶液に大気圧下70℃
で1.5時間浸漬放置した後、1時間水洗し、更に
1規定の塩酸水溶液に大気圧下60℃で1時間浸漬
し、次いで1時間水洗する。結果は、第15表に示
す通りである。
[Table] Example 15 A 2% Ru-TiO 2 catalyst whose activity index decreased from 100 to 71 as a result of being used in the same wastewater treatment as in Example 1 was taken out of the reaction tower and the concentrations shown in Table 15 below were determined. Sodium formate solution at 70℃ under atmospheric pressure
After being immersed for 1.5 hours, washed with water for 1 hour, further immersed in a 1N hydrochloric acid aqueous solution at 60° C. under atmospheric pressure for 1 hour, and then washed with water for 1 hour. The results are shown in Table 15.

【表】 実施例 16 実施例1と同様の廃水処理に使用した結果活性
指数が当初の100から69に低下した2%Pd−
TiO2触媒を反応塔から取り出し、1重量%ヒド
ラジン水溶液に大気圧下下記第16表に示す条件
(温度及び時間)で浸漬放置した後、1時間水洗
する。次いで、(a)1規定のリン酸水溶液に大気圧
下60℃で1時間浸漬した後、1時間水洗するか、
又は(b)1規定のプロピオン酸水溶液に大気圧下60
℃で1.5時間浸漬した後、1時間水洗する。 還元処理時の温度及び時間、並びに酸洗処理剤
の種類と触媒活性回復程度との関係を第16表に示
す。
[Table] Example 16 2% Pd- whose activity index decreased from the initial 100 to 69 as a result of use in the same wastewater treatment as in Example 1.
The TiO 2 catalyst was taken out of the reaction tower, left immersed in a 1% by weight aqueous hydrazine solution under atmospheric pressure under the conditions (temperature and time) shown in Table 16 below, and then washed with water for 1 hour. Next, (a) immerse in a 1N phosphoric acid aqueous solution at 60°C under atmospheric pressure for 1 hour, and then wash with water for 1 hour, or
or (b) 1N propionic acid aqueous solution under atmospheric pressure for 60 minutes.
After soaking at ℃ for 1.5 hours, wash with water for 1 hour. Table 16 shows the relationship between the temperature and time during the reduction treatment, the type of pickling treatment agent, and the degree of catalyst activity recovery.

【表】 実施例 17 実施例1と同様の廃水処理に使用した結果活性
指数が当初100から71にまで低下した2%Ru−
TiO2触媒を反応塔から取り出し、下記第17表に
示す条件下に還元処理した後、1規定の塩酸水溶
液に大気圧下70℃で1時間浸漬し、次いで時間水
洗する。触媒活性回復の結果を第17表に示す。
[Table] Example 17 2% Ru- whose activity index decreased from 100 to 71 when used in the same wastewater treatment as in Example 1.
The TiO 2 catalyst was taken out from the reaction tower and subjected to reduction treatment under the conditions shown in Table 17 below, then immersed in a 1N hydrochloric acid aqueous solution at 70° C. under atmospheric pressure for 1 hour, and then washed with water for an hour. Table 17 shows the results of catalyst activity recovery.

【表】 実施例 18 2%Pd−TiO2触媒を実施例1と同様の廃水処
理に使用すると、活性指数は当初の100から69ま
で低下する。従つて、活性の低下した該廃水酸化
触媒を反応塔から取り出し、下記第18表に示す各
濃度のヒドラジン水溶液に大気圧下60℃で1.5時
間浸漬した後、1時間水洗する。次いで1規定の
リン酸水溶液に大気圧下80℃で1時間浸漬した
後、水洗する。 ヒドラジン水溶液の濃度と触媒活性回復の程度
との関係は、第18表に示す通りである。
[Table] Example 18 When a 2% Pd-TiO 2 catalyst is used in the same wastewater treatment as in Example 1, the activity index decreases from the initial 100 to 69. Therefore, the waste water oxidation catalyst whose activity has decreased is taken out from the reaction tower, immersed in an aqueous hydrazine solution of each concentration shown in Table 18 below at 60° C. for 1.5 hours under atmospheric pressure, and then washed with water for 1 hour. Next, it is immersed in a 1N aqueous phosphoric acid solution at 80° C. under atmospheric pressure for 1 hour, and then washed with water. The relationship between the concentration of the hydrazine aqueous solution and the degree of catalyst activity recovery is shown in Table 18.

【表】 実施例 19 (i) 実施例1と同様の廃水処理に使用した結果、
活性指数が100から69にまで低下した2%Pd−
TiO2触媒を充填した状態の廃水湿式酸化反応
塔に、下記第19表に示す条件下に還元処理液を
流通させた後、水洗し、更に酸洗処理を行な
う。結果は、第19表にNo.94として示す通りであ
る。 (ii) 実施例1と同様の廃水処理に使用した結果、
活性指数が100から71まで低下した2%Ru−
TiO2触媒を上記(i)と同様にして反応塔内で還
元及び酸化処理する。結果は第19表にNo.95とし
て示す通りである。
[Table] Example 19 (i) As a result of using the same wastewater treatment as in Example 1,
2% Pd- whose activity index decreased from 100 to 69
The reduction treatment liquid is passed through a wastewater wet oxidation reaction tower filled with a TiO 2 catalyst under the conditions shown in Table 19 below, and then washed with water and further subjected to pickling treatment. The results are shown as No. 94 in Table 19. (ii) As a result of using the same wastewater treatment as in Example 1,
2% Ru− whose activity index decreased from 100 to 71
The TiO 2 catalyst is reduced and oxidized in the reaction tower in the same manner as in (i) above. The results are shown as No. 95 in Table 19.

【表】 実施例 20 (i) 実施例1と同様の廃水処理に使用した結果、
活性指数が当初の100から70まで低下した2%
Ru−TiO2触媒を充填した状態の廃水湿式酸化
反応塔に、下記第20表に示す条件下にヒドロラ
ジン水溶液を流通させた後、水洗し、更に塩酸
水溶液により酸洗処理を行なう。結果は、第20
表にNo.96として示す通りである。 (ii) 上記(i)の如くして触媒活性を回復させた2%
Ru−TiO2触媒を再度実施例1と同様の廃水処
理に使用すると、活性指数は69まで低下するの
で、これを上記(i)と同様にして還元及び酸洗処
理する。結果は、第20表にNo.97として示す通り
である。 (iii) 上記(ii)で得た触媒No.97を実施例1と同様の廃
水処理に再度使用すると、活性指数は68まで低
下する。これを上記(i)と同様にして還元及び酸
洗処理する。結果は、第20表にNo.98として示す
通りである。
[Table] Example 20 (i) As a result of using the same wastewater treatment as in Example 1,
2% activity index decreased from initial 100 to 70
A hydrolazine aqueous solution is passed through a wastewater wet oxidation reaction tower filled with a Ru-TiO 2 catalyst under the conditions shown in Table 20 below, followed by washing with water and further pickling treatment with an aqueous hydrochloric acid solution. The result is the 20th
This is shown as No. 96 in the table. (ii) 2% whose catalytic activity has been restored as described in (i) above.
When the Ru-TiO 2 catalyst is used again in the same wastewater treatment as in Example 1, the activity index drops to 69, so it is reduced and pickled in the same manner as in (i) above. The results are shown as No. 97 in Table 20. (iii) When Catalyst No. 97 obtained in (ii) above is used again for the same wastewater treatment as in Example 1, the activity index decreases to 68. This is reduced and pickled in the same manner as in (i) above. The results are shown as No. 98 in Table 20.

【表】【table】

Claims (1)

【特許請求の範囲】 1 鉄、コバルト、ニツケル、ルテニウム、ロジ
ウム、パラジウム、イリジウム、白金、銅、金及
びタングステン並びにこれ等金属の水に不活性又
は難溶性の化合物の1種又は2種以上を触媒活性
成分として含有する廃水の湿式酸化用担持接触の
再生方法において、 (i) 触媒を塩酸、硝酸、リン酸、酢酸及びプロピ
オン酸からなる酸の中から選ばれた少なくとも
1種を含む水溶液に40℃以上の温度で接触させ
る工程、及び (ii) 該触媒をヒドラジン水和物、ホルムアルデヒ
ド、水素化ホウ素ナトリウム、水素化アルミニ
ウムリチウム、酒石酸ナトリウム、ブドウ糖、
ギ酸カリウム及びギ酸ナトリウムの少なくとも
1種を含む水溶液に20℃以上の温度で接触させ
る工程を備えたことを特徴とする触媒の再生方
法。 2 鉄、コバルト、ニツケル、ルテニウム、ロジ
ウム、パラジウム、イリジウム、白金、銅、金及
びタングステン並びにこれ等金属の水に不活性又
は難溶性の化合物の1種又は2種以上を触媒活性
成分として含有する廃水の湿式酸化用担持触媒の
再生方法において、 (i) 触媒をヒドラジン水和物、ホルムアルデヒ
ド、水素化ホウ素ナトリウム、水素化アルミニ
ウムリチウム、酒石酸ナトリウム、ブドウ糖、
ギ酸カリウム及びギ酸ナトリウムの少なくとも
1種を含む水溶液に20℃以上の温度で接触させ
る工程、及び (ii) 該触媒を塩酸、硝酸、リン酸、酢酸及びプロ
ピオン酸からなる酸の中から選ばれた少なくと
も1種を含む水溶液に40℃以上の温度で接触さ
せる工程 を備えたことを特徴とする触媒の再生方法。 3 鉄、コバルト、ニツケル、ルテニウム、ロジ
ウム、パラジウム、イリジウム、白金、銅、金及
びタングステン並びにこれ等金属の水に不活性又
は難溶性の化合物の1種又は2種以上を触媒活性
成分として含有する廃水の湿式酸化用担持触媒の
再生方法において、 (i) 触媒を塩酸、硝酸、リン酸、酢酸及びプロピ
オン酸からなる酸の中から選ばれた少なくとも
1種を含む水溶液に40℃以上の温度で接触させ
る工程、及び (ii) 該触媒を水素及び一酸化炭素の少なくとも1
種を含む気体に300〜500℃で接触させる工程 を備えたことを特徴とする触媒の再生方法。 4 鉄、コバルト、ニツケル、ルテニウム、ロジ
ウム、パラジウム、イリジウム、白金、銅、金及
びタングステン並びにこれ等金属の水に不活性又
は難溶性の化合物の1種又は2種以上を触媒活性
成分として含有する廃水の湿式酸化用担持触媒の
再生方法において、 (i) 触媒を水素及び一酸化炭素の少なくとも1種
を含む気体に300〜500℃で接触させる工程、及
び (ii) 該触媒を塩酸、硝酸、リン酸、酢酸及びプロ
ピオン酸からなる酸の中から選ばれた少なくと
も1種を含む水溶液に40℃以上の温度で接触さ
せる工程 を備えたことを特徴とする触媒の再生方法。
[Claims] 1. Iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum, copper, gold, tungsten, and one or more compounds of these metals that are inert or poorly soluble in water. In a method for regenerating a supported catalyst for wet oxidation of wastewater containing as a catalyst active component, (i) the catalyst is dissolved in an aqueous solution containing at least one acid selected from hydrochloric acid, nitric acid, phosphoric acid, acetic acid and propionic acid; (ii) contacting the catalyst with hydrazine hydrate, formaldehyde, sodium borohydride, lithium aluminum hydride, sodium tartrate, glucose,
A method for regenerating a catalyst, comprising a step of bringing the catalyst into contact with an aqueous solution containing at least one of potassium formate and sodium formate at a temperature of 20°C or higher. 2 Contains one or more of iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum, copper, gold, tungsten, and water-inactive or sparingly soluble compounds of these metals as catalytic active components. In a method for regenerating a supported catalyst for wet oxidation of wastewater, (i) the catalyst is mixed with hydrazine hydrate, formaldehyde, sodium borohydride, lithium aluminum hydride, sodium tartrate, glucose,
(ii) contacting the catalyst with an aqueous solution containing at least one of potassium formate and sodium formate at a temperature of 20°C or higher; A method for regenerating a catalyst, comprising the step of bringing it into contact with an aqueous solution containing at least one catalyst at a temperature of 40°C or higher. 3 Contains one or more of iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum, copper, gold, tungsten, and water-inactive or sparingly soluble compounds of these metals as catalytic active components. In a method for regenerating a supported catalyst for wet oxidation of wastewater, (i) the catalyst is added to an aqueous solution containing at least one acid selected from hydrochloric acid, nitric acid, phosphoric acid, acetic acid, and propionic acid at a temperature of 40°C or higher; (ii) contacting the catalyst with at least one of hydrogen and carbon monoxide;
A method for regenerating a catalyst, comprising a step of bringing it into contact with a gas containing seeds at 300 to 500°C. 4 Contains one or more of iron, cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum, copper, gold, tungsten, and water-inactive or sparingly soluble compounds of these metals as a catalytic active component. A method for regenerating a supported catalyst for wet oxidation of wastewater includes (i) contacting the catalyst with a gas containing at least one of hydrogen and carbon monoxide at 300 to 500°C, and (ii) contacting the catalyst with hydrochloric acid, nitric acid, A method for regenerating a catalyst, comprising the step of bringing the method into contact with an aqueous solution containing at least one acid selected from phosphoric acid, acetic acid, and propionic acid at a temperature of 40°C or higher.
JP21294981A 1981-12-29 1981-12-29 Regenerating method of catalyst Granted JPS58114731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21294981A JPS58114731A (en) 1981-12-29 1981-12-29 Regenerating method of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21294981A JPS58114731A (en) 1981-12-29 1981-12-29 Regenerating method of catalyst

Publications (2)

Publication Number Publication Date
JPS58114731A JPS58114731A (en) 1983-07-08
JPH0366018B2 true JPH0366018B2 (en) 1991-10-15

Family

ID=16630961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21294981A Granted JPS58114731A (en) 1981-12-29 1981-12-29 Regenerating method of catalyst

Country Status (1)

Country Link
JP (1) JPS58114731A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061954A1 (en) * 2005-12-23 2007-07-05 Basf Ag Recycling of ruthenium from an used ruthenium catalyst comprises treating the catalyst containing ruthenium oxide in a hydrogen stream and treating the carrier material containing ruthenium metal with hydrochloric acid
JP2012050952A (en) * 2010-09-03 2012-03-15 Japan Atomic Energy Agency Method of regenerating denitration waste catalyst
CN102276046B (en) * 2011-05-18 2013-01-30 华东理工大学 Method for treating various organic pollutants in industrial wastewater through green wet oxidation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339283A (en) * 1976-09-22 1978-04-11 Mitsui Toatsu Chem Inc Reactivating method for catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339283A (en) * 1976-09-22 1978-04-11 Mitsui Toatsu Chem Inc Reactivating method for catalyst

Also Published As

Publication number Publication date
JPS58114731A (en) 1983-07-08

Similar Documents

Publication Publication Date Title
EP2240614B1 (en) Process for the recovery of precious metals from used and/or defective catalytic carriers
TW516975B (en) Catalyst for the production of vinyl acetate and process for the production of vinyl acetate by reaction of ethylene, oxygen and acetic acid as reactants
RU2198731C2 (en) Method of preparing catalyst for production of vinyl acetate including palladium and gold on copper-containing support, and method for production of vinyl acetate using above catalyst (options)
CN1436591A (en) Pretreating process of active carbon carrier for noble metal catalyst
JPH0366018B2 (en)
JPS58114732A (en) Regenerating method of catalyst
UA56239C2 (en) A process for producing vinyl acetate with use of the palladium-gold-copper catalyst
JP3083463B2 (en) Regeneration method of catalyst for wet oxidation treatment
JP4013010B2 (en) Method for cleaning and regenerating catalyst
JPS58114733A (en) Regenerating treatment of catalyst
JPS58114734A (en) Regenerating method for catalyst for wet oxidation of waste water
JPS60102945A (en) Catalyst regenerating method
JP3644050B2 (en) Method for treating water containing ammoniacal nitrogen and metal salts
JPS6332502B2 (en)
JP3263968B2 (en) Treatment of wastewater containing nitrate
US3463740A (en) Formaldehyde in the removal of nitrate ions from regenerated alkylation catalysts
JPH07227542A (en) Ruthenium-based catalyst capable of recovering
JPS58112088A (en) Purification of hydrazine-contg. waste water
EP1094898A1 (en) Process for regenerating a used precious metal catalyst
JP3855326B2 (en) Wastewater treatment method
JP3693354B2 (en) Treatment method of wastewater containing nitrate
JPH0361497B2 (en)
JP2000140864A (en) Treatment of ammonia-containing water
JP4450146B2 (en) COD component-containing water treatment method
JPS59115748A (en) Regenerating method of catalyst